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= ABSTRACT: In this paper, we discuss some aspects of fractional factorial designs 52 where

k is the number of factors, with only 25 treatments involving two to six quantitative factors, with

the purpose of using them on experiments on poor soil areas like those of “cerrado”. They are

specially developed in order to assess the nutritional response to fertilizer soil addition in new

areas. We also evaluate the performance of the design using simulations considering previous
information.
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1 Introduction

In Brazil, approximately 2 million km® is occupied by “cerrado” areas, its second
largest biome. In those areas, the soil is an essential factor for the growth and
development of vegetation and has a low concentration of nutrients nitrogen (N),
phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg), and high aluminum
saturation, what is a characteristic of a poor soil which tend to be acidic. As a
consequence, the low nutrient concentration and high concentration of aluminum in the
soil contribute to low production of biomass of plants, causing the scleromorphism of
native vegetation and also influence the low production throughout the year. This means
that a minimum necessary to improve production is to use fertilizers containing the
macronutrients N, P, K and correct the soil acidicity by addition of some Ca source (lime).
It is also important to account for the difference in production caused by different number
of plants by unit of area.

With the increasing establishment of agriculture in the “cerrado”, planning fertilizer
experiments is of major importance. In this type of experiment, in general, at least five
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quantitative factors, with three to five levels each, are used with the aim of determining
the optimal economical design and studying the response surface shape.

In general there is a great deal of redundancy in a factorial experiment in that high-
order interactions are likely to be negligible and some variables may not affect the
response at all (Box, Hunter and Hunter, 2005, Brien, 2010a, b, Montgomery, 2012).
Solutions to overcome those problems are the use of incomplete block designs and
fractional factorials. Conagin and Jorge (1977, 1982a) proposed a 5> fractional factorial
to be used in fertilizer experiments and an application of it is illustrated in Caetano et al
(2013). Andrade and Noletto (1986) presented (1/2)4° and (1/4)4* fractional factorials to
be used in experiments to study the fertility of “cerrado” soils. Primavesi et al (2004) uses
the (1/2)4” fractional factorial to design an experiment to measure the response of oats to
fertilization on red yellow latosol in two planting systems.

In this paper, we discuss some aspects of fractional factorial designs 5*2 | where k
is the number of factors, with only 25 treatments involving two to six quantitative factors,
with the purpose of using them on experiments on poor soil areas like those of “cerrado”.
They are specially developed in order to assess the nutritional response to fertilizer soil
addition in new areas. We also evaluate the performance of the design using simulations
considering previous information.

2 Some basics

The concept of factorial experiments was introduced by Fisher (1935). While single-
treatment-factor experiments involve just a single treatment factor, others involve two or
more factors and are often performed as factorial experiments (Brien, 2010a, b). In those
experiments the treatments are all combinations of the levels of all the factors and,
generally, the number of treatments is equal to the product of the numbers of levels of the
factors in the experiment. The major advantage of factorial experiments is that they allow
the detection of interaction but the main disadvantage is that the total number of
treatments becomes large as the number of levels and/or number of factors increases.
Also, in most situations there are more factors to be investigated than can be conveniently
accommodated with the time and budget available or there is an upper limit on the number
of experimental units due to economical reasons or in order to have homogeneous
conditions.

Full factorial experiments were, initially, proposed for two and three factors with
two levels of each factor (Fisher, 1935) and extended to k factors, particularly useful in
the early stages of experimental work when there are likely to be many factors to be
investigated (Mongomery, 2012). Designs with 3 or more levels as, for example, 3x3,
3x4, 4x4 and 3x3x3 were proposed to study the shape of response surfaces and to
estimate linear and quadratic effects and interactions. Yates (1937) presented a
comprehensive survey of the simpler factorial designs and a description of the appropriate
methods of analysis.

When there are four or more factors and if the experimenter can assume that certain
high-order interactions are negligible, the number of treatments can be reduced by running
a fraction of the complete factorial experiment. These designs are called fractional
factorial designs and are among the most widely used types of designs for product and
process design and for process trouble shooting (Montgomery, 2012). In the case of two-
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level factors, those designs are mainly used as screening experiments with the purpose of
identifying those factors that have large effects. On the other hand, if the factors have
three or more levels the fractional factorial designs can be used to fit response surface
models (Box and Draper, 1987; Khuri and Cornell, 1996; Myers, Montgomery, Anderson-
Cook, 2009).

1 lk

. . . . . k-
Fractional factorial designs are expressed using the notations [° 7 or —

7 or

(1/1P)1%, where [ P i3 the number of treatments used per fraction, [ is the number of
levels of each factor investigated, k is the number of the factors and p describes the
size of the fraction of the full factorial used. Formally, p is the number of generators,
assignments as to which effects or interactions are confounded, i.e., cannot be estimated

independently of each other. A design with p such generators is a 1/17 fraction of the

full factorial design (Box, Hunter and Hunter, 2005). However, in these designs the
interactions do not go away, they just become confounded with other effects. This is not
necessarily a bad thing, but it is a good idea to be aware of it so one can make an informed
decision about the design one wants.

When selecting a fractional factorial design it is important to consider:

i) how many experimental units are required,
ii) which effects are aliased with effects of interest,
iii) how many effects are aliased with the effects of interest.

The best fractional factorial design is the most economical one while enabling
satisfactory estimation of the effects of interest.

3 Methodology
3.1 Generating a fractional factorial design

A Lr design can be generated superimposing orthogonal Latin squares or from a
full factorial structure by choosing an alias structure (Wu and Hamada, 2000). The use of
latin squares to produce fractional factorial designs has been suggested by Cochran and
Cox (1957), Davies (1950) and John (1971). This methodology was used to obtain 53!
design (Conagin and Jorge, 1977), (1/2)4> design in four blocks (Conagin and Jorge,
1982b) and (1/2)4° design in two blocks (Andrade and Noleto, 1986).

A 573 design, for example, is 1/125 of a five level, five factor factorial design.
Rather than 3125 treatments that would be required for the full factorial experiment, this
experiment requires only 25 treatments. The 25 treatments can be generated
superimposing three of the four orthogonal latin squares 5x5, with the addition of two
columns of treatments that produces treatments with the levels of one factor balanced for
the levels of the remaining factors.

An alternative method is to generate a fractional factorial design from a full factorial
structure by choosing an alias structure that determines which effects are confounded
with each other. Wu and Hamada (2000) discuss how to obtain 25-run fractional factorial
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designs at five levels and 49-run fractional factorial designs at seven levels, showing the
results in their Tables 6C and 6D of Appendix, and generalize for /*”.

Following Wu & Hamada (2000), the 25 runs of a 5°* design are generated
considering, initially, the 5x5 combinations of the levels of the first two factors, as given
by the first two numbers (in bold) of the cells, presented in Table 1. The remaining four
numbers of the cells are generated from the first two by using the following method. Let
x; and x, denote the first two numbers, respectively. Then the third through sixth
numbers, having as central point (3,3,3,3,3,3), are obtained by setting:

x5 = (%, + 1.x, + 1)(mod 5) + 1,
X4 = (%, + 2.2, + 3)(mod 5) + 1,
xs = (¢ +3.x, +0)(mod 5) + 1
Xg = (%, +4.x, + 2)(mod 5) + 1.

Table 1 - A 5°* fractional factorial design with six quantitative factors and five
equidistant levels (1, 2, 3, 4 e 5), giving 25 treatments, denoted by the sequence

(xl! X2, X3, X4y X5, x6)

131111 232222 333333 434444 535555
142345 243451 344512 445123 541234
153524 254135 355241 451352 552413
114253 215314 311425 412531 513142
125432 221543 322154 423215 524321

This is equivalent to use a centered version of the p = 4 defining relations C = AB,
D = AB?, E = AB® and F = AB* or the four generators of the design I = ABC* =
AB?D* = AB3E* = AB*F* (design of resolution III) with their generalized interactions
that are automatically confounded. The alias of any main effect or component of
interaction is produced by the multiplication modulus 5 of the effect by I, I?, I3, and I*
and using the convention that the first letter have unitary power.

Finally, to have a 5% fractional factorial with k factors and 25 treatments, we fix
p =k — 2 and using any k numbers that are in the same position in all the cells in Table 1
we have a 552 design. Note that, for k = 3, ...,6, we get 531 5%2 553 4ng 554 designs.
Once generated the randomized level sequence, for example, (x4, X3, X4, X5, X, ), We obtain
the 57 fractional factorial design.

The method suggested by Cochran and Cox (1957), Davies (1956) and John (1971),
based on superimposing three of the four orthogonal latin squares with the addition of two
adequate columns of treatments would use the sequences (x3,Xy4, Xg, X1,X3),
(%3, x4, X6, X1, X2), (X3, X5, Xg, X1, Xz) and (x4, X5, X, X1, X5) as presented in Table 2. Note
that the level sequence (xg, X3, X4, X5, X;) gives the same treatments presented in I of
Table 2.

Once chosen one of the fractional factorial design, a proper randomization is needed
before using it.
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Table 2 - Four 5°°
sequences

fractional

(X3, X4, X5, X1, xZ)’
(x4, X5, X6, X1, X5) from Table 1

(x?)' X5, X6, X1, xZ)

11113 22223 33333 44443 55553
23414 34524 45134 51244 12354
I 35215 41325 52435 13545 24155
42511 53121 14231 25341 31451
54312 15422 21532 32142 43252
11113 22223 33333 44443 55553
23511 34121 45231 51341 12451
| 35412 41522 52132 13242 24352
42314 53424 14534 25144 31254
54215 15325 21435 32545 43155
11113 22223 33333 44443 55553
24514 35124 41234 52344 13454
m 32415 43525 54135 15245 21355
45311 51421 12531 23141 34251
53212 14322 25432 31542 42152
11113 22223 33333 44443 55553
34515 45125 51235 12345 23455
v 52414 13524 24134 35244 41354
25312 31422 42532 53142 14252
43211 54321 15431 21541 32151

3.2 Data analysis

factorial design obtained by the generated level

(X3, X4) X6, X1, xZ)’

and

To analyze the data from a fractional factorial design we consider the classical linear

model

y=Xf+e,

where y is the vector of observations, X is the design matrix, § is the parameter vector
and e is the error vector, normally distributed with mean 0 and variance-covariance

matrix a2I, e~N(0, a2I). The vector of estimated parameters is given by
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with E(ﬁ ) =0 and Var(ﬁ ) = ¢?2I. The analysis of variance can be done in the usual
way (Steel and Torrie, 1981, Draper and Smith, 1966, Montgomery, 2012) using
statistical packages as R and SAS, for example.

For a quantitative factor, X, in a five-level design, its linear and quadratic effects can

be represented by the orthogonal contrast vectors X; = -1,0,1,2) and X, =

1
NA
\/%(2,—1,—2,—1, 2). Then, for example, the quadratic regression model without

interaction for the fractional factorial 5° can be expressed as
E(Y) = o + BraXii + - + BisXisi + Bar Xz + - + PosXis (0= 1,...,25),

where f, is the intercept, By, and fS,, k =1,...,5, are, respectively, the linear and
quadratic parameters for the k™ factor, X;,; and X,; are, respectively, the values of the
linear and quadratic polynomials. Then the sums of squares for a linear and quadratic
regressions can be obtained, respectively, by

25 w2 25 Y
SSLR,, = Ei=Xwi¥d g goop, = CmXawd g _q 5y
iz1X1ki Y21 Xoki

This means that only 2 degrees of freedom (df) out of 4 df of any main effect are
used, giving a total of (2 * k) df for the model and leaving 2 * (12 — k) df for the error
under the assumption of no interaction.

3.3 Simulation study

In order to evaluate the performance of fractional factorial 5°~ designs, a Monte
Carlo simulation study of size equal to 10,000 was performed. Using information from
previous corn experiments, the common factor levels for this type of experiments are:
dosages for N (30, 45, 60, 75, 90) kg.ha’l, P,0Os5 (30, 45, 60, 75, 90) kg.ha’l, K,0 (30, 40,
50, 60, 70) kg.ha’l, lime (1;1,5; 2,0; 2,5; 3) tha'! and population density (50, 55, 60, 65,
70) x10° plantas.ha™ with the vector of parameters equal to

B = [5952,0000 975,8074 763,6753 827,3149 763,6753 1081,8734 — 1003,9920
—896,4215 —376,4970 — 322,7117 —376,4970]7,

and the error e; ~ N(0; B, X CV) for i = 1,...,25, that is, ¢;~N(0;5952 X CV) for the
coefficients of variation, CV, assuming the values 0,1%, 0,2%, ... ,15,0%.

For each combination of simulation factors, we calculated:
i) the mean absolute bias,

ii) the percentage of times that the signs of the parameter estimates for the quadratic
terms, f, were negative,
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iii) the percentages of rejection of the null hypothesis Hy: B, = £ = 0, considering the
significance levels 5%, 10% e 20%, of the estimates over the 10,000 samples.

4 Results

The results of the simulation study are summarized in Figure 1, showing that as the
coefficient of variation increases:
i) the mean absolute bias percentage of parameter estimates increases,

ii) the percentage of times that the signs of the parameter estimates for the quadratic
terms, 4, ..., P25, Were negative decreases,

iii) the percentage of rejection of the null hypothesis Hy: 17 = - = B15 = 21 =
-+ = B,5 = 0, considering 5%, 10% and 20% significance levels, decreases.

‘ /
<

0/
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|

T T T
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CV(%)

Figure 1 - Mean absolute bias percentage of parameter estimates (---), percentage of times that the
sign of the parameter estimates for the quadratic terms, S5, ..., 25, were negative (---)
and percentages of rejection of the null hypothesis Hy: 11 = - = 15 = o1 =+ =
B2s = 0, considering 5% (---), 10% (---) and 20% (---) significance levels, as a function
of the coefficient of variation (CV). Each point of the graphics was based on a 10,000
size simulation.

Then, for example, for a 5% coefficient of variation we can have around 40%
absolute bias percentage of parameter estimates and 70% of rejection of the null
hypothesis Hy: 11 = *** = 15 = 21 = =+ = Bys = 0, for the 10% significance level.

From these results it is important to note that when the coefficient of variation is
small, although there is bias on the estimation of the linear and quadratic regression
parameters, due to confounding with some two-factor and higher interactions, there is a
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good chance of having negative sign for the parameter estimates of the quadratic terms,
B21, -, B25 what is an indication of a maximum for the surface. The biggest advantage of
this type of experiment, in general used as a preliminary trial, is that it uses only 25
treatments instead of 3125 treatments that would be required for the full factorial
experiment.

5 Concluding remarks

The proposed design may be ideal to use to choose the dosages of fertilizers to be
applied in poor soils like the “cerrado” ones where the poorness of the nutrients is a
permanent situation. It could also be adopted for experiments in physiology, forestry and
horticulture, or with perennial crops, as well as in physic-chemical complex ones,
provided that interactions do not exist or have little influence on the responses. In
experiments with fertilizers the main objective is to get the maximum production and the
economical analysis.

For a study of four factors like N, P, K and Ca, the 5** design is the appropriate
choice. In the case of more factors, for example, to study additionally the importance of
the population size of individuals the factors may be N, P, K, Ca and population density,
the 5>~ must be chosen.

The use of the 57 design with only 25 treatments, instead of 3125 for five factors
with five levels each, is subject to have bias in the estimation of linear and quadratic
regression coefficients due to confounding with two-factor and higher interactions, but
has a good chance of having negative sign for the parameter estimates of the quadratic
terms, what is an indication of a maximum, for a low coefficient of variation.

If the levels of nutrients are chosen in a suitable range it is normally true that the
crops will develop favorably with no or very small two factor interaction. In this favorable
situation it is reasonable to suppose that there is no interaction in the model and the
important points to consider are to estimate the value of the regressions to get a practical
decision in the analysis viewing the maximum and the best economical dosage of the
fertilizer utilized.

To get designs with low coefficient of variation it is always important to care about
time of planting, soil preparation, adequate choice of factor dosages and excellent
management of the field experiments. In greenhouse experiments, for which the water
supply is adequate, the experiments exhibit always, low coefficient of variation and then
the results will produce more accurate regression estimates; if samples of soil are used,
physiological responses to each soil will be of great value for a posterior choice of the
places to be included in a set of field experiments with fertilizers.

The performance of this type of experiment could be improved by the use of
replicates of the central point (33333) and using different fractions of the full factorial in
different experiments.

CONAGIN, A.; BARBIN, D.; ZOCCHIL S. S.; DEMETRIO, C. G. B. Fatoriais

fracionados com 25 tratamentos em solos pobres. Rev. Bras. Biom., Sdo Paulo, v.32, n.2,
p-180-189, 2014.
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= RESUMO: Neste artigo, sao discutidos alguns aspectos dos delineamentos fatoriais fracionados
Sk’(k’z), em que k é o nimero de fatores, com somente 25 tratamentos envolvendo de dois a seis
fatores, com o propésito de usa-los em experimentos em solos pobres, como aqueles do cerrado.
Eles sdo, especialmente, desenvolvidos a fim de acessar a resposta nutricional da adi¢do de
fertilizante no solo. E avaliada, também, a performance do delineamento, usando simulagdes,
considerando informag@o prévia.

= PALAVRAS-CHAVES: Fatoriais fracionados; interagdes de alta ordem, estrutura “alias”;
confundimento, simulacdo; viés.
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