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Abstract—As smart grid technologies are deployed, the many
advantages of new measurement, control, and analysis come with
added technical challenges. Specifically, the digitalization of the
power grid and the increasing dependence on communication
systems makes network real-time monitoring more vulnerable to
cyber-attacks. Cyber-attacks, if not detected and corrected accu-
rately, can lead to misinformation to the system operator. Current
state-of-the-art models for real-time cybersecurity monitoring
hypothesize that the measurement model is correct, without error.
Although this assumption might be acceptable for systems and
devices that are not dependent on communication networks, this
can be considered a strong hypothesis for real-time monitoring
of power grids. False data injection attacks on the measure-
ment model are also possible. This work presents a parameter
correction model against false data injection attacks. False data
injection attacks on measurements and measurement models are
simultaneously considered. A chi-squared hypothesis test is used
for detection of cyber-attacks, while a normalized composed
measurement error test is used for cyber-attack identification.
The parameter correction model is then used if a modeling error
is identified; otherwise, a measurement correction model is used if
a measurement error is identified. The easy-to-implement model,
built of the classical quasi-static state estimator, without hard-
to-design parameters, suggests potential for real-life applications.

Index Terms—Cybersecurity, Distribution Networks, False
Data Injection, Parameter Error, Measurement Error

I. INTRODUCTION

As distribution systems implement smart grid technologies,
the many advantages of new meters, controls, and analysis
come with added technical challenges. In particular, the in-
creasing digitalization of the power grid and its reliance on
communications systems have heightened its vulnerability to
cyber-attacks. Cyber-attacks, if not detected and accurately
corrected, can lead to misinformation to system operators and
potential collapse of the power system. Although considerable
research has been done to address this concern, significant
gaps remain, especially in real-time resilience and detection,
as the science and technology for smart grid cybersecurity are
still seldom.

One critical area affected by these vulnerabilities is Power
System State Estimation (PSSE), which plays a central role
in the reliable operation of distribution systems [1]. The

Weighted Least Squares (WLS) measurement model is the
most widely used method for PSSE, which depends on ac-
curate sensor measurements and a robust State Estimator (SE)
to provide reliable information about the system conditions.
However, PSSE remains susceptible to False Data Injections
(FDI) attacks and parameter model errors that can compromise
system reliability. The results of the SE are used in many
applications for distribution system operation, such as optimal
power flow and contingency analysis. One of the most impor-
tant applications of the PSSE is its gross error processing ca-
pability [2], where measurements that are obviously incorrect
or inconsistent are discarded in a prefiltering step, followed
by a post-processing bad data analysis phase [3]. Classical
PSSE rely on chi-squared testing for bad data detection and
the normalized residual test for identification [1]. Nevertheless,
the WLS model fails to consider the masked component of the
error, which was addressed in [4]. For False Data Injections
(FDI), [5] developed a correction model built on top of the
classical WLS-based SE.

Beyond measurement issues, parameter errors can also
result from malicious modifications to the parameter model,
whether through malware introduced via trusted software or
through exploited vulnerabilities in third-party hardware, as
noted in [6]. Furthermore, [7] presented analytical proofs and
properties on how parameter model errors spread through the
measurement function, and [8] proposed a per-phase model
for parameter error correction. A complementary approach is
found in [9], which suggested a correction model to mitigate
the effects of unbalanced parameter errors on the measurement
model. Although, a key limitation of the model in [9] is that
it neglects the influence of parameter error during the two-
step SE process described in [10]. As a result, the model
may require an unnecessarily high number of iterations and,
sometimes, can converge to physically incorrect solutions,
since it performs correction without considering the potential
parameter error effect.

Toward overcoming the mentioned limitation, this work
presents a parameter correction model that explicitly incor-
porates the effect of the parameter error into the measurement
model during the correction phase. The proposed model is
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validated using the 9-bus IEEE test system and compared with
results from the one presented in [9] under different cyber-
attack scenarios. Results demostrate a significant reduction
in the number of iterations required to converge and achieve
statistically valid parameter estimations. The remainder of this
paper is presented as follows: Section II presents a theoretical
review on false-data correction modeling. Section III details
the proposed parameter correction model. Section IV outlines
the case study. Final conclusions are presented in Section V.

II. THEORETICAL BACKGROUND

Consider a system with the following measurement model:
z=h(z)+e (1)

where z € R™ is the measurement vector, h(z) : R"® —
R™, (m > N) is a continuously differentiable nonlinear
algebraic function that relates the state to the measurement
vector, = € RY is the state vector, e € R™ is the measurement
residual vector with a Gaussian probability function, zero
mean and known standard deviation o, N = 2n — 1 is the
number of state variables, and n is equal to the number of
buses.

One can solve (1), through the WLS model, as:

J(x) = (z = h(x))" R~ (z — h(x)) )

where R is the covariance matrix of the residuals. J(z)
is effectively a weighted Lo-norm in the measurement vector
space R™. The solution of (2) is typically obtained by using
the Newton-Raphson method.

Linearizing (1) via a first-order Taylor series expansion
gives the following:

Az=HAzx +e 3)

where H is the Jacobian matrix of A in the current estimated
state variable vector &, Az = z — h(&) is the correction of the
measurement vector and Az = x — Z is the correction of the
state vector.

The WLS solution can be seen geometrically as the pro-
jection of Az onto the Jacobian space by a linear projection
matrix P, that is, A2 = PAz. The projection matrix P is the
idempotent matrix that has the following expression:

P=HHTR'H)'HTR™! 4)

The general problem of the previous equations is that they
consider the measurement model to be correct, without errors.
In [10], it was shown that in the gross error analysis process
a two-step approach should be adopted. In the first step, all
measurements should be weighted equally proportional to the
magnitude of the measurement and the gross error analytic
performed. After processing of gross error, in the second step,
the meter precision can be restored and the state estimation
executed. The fundamental limitation of this process is that
it considers the model free of error. Toward solving this
limitation, [9] presented a parameter correction model.

The conjugate of the complex power flow (Sk,,) is ex-
pressed in (5).

Stm = Eilim = Yrm Vie 7% (V! — Viue?om) + jbile, Vi2
4)
where £k = 1,...,n and n is the number of buses in the
system, m is the bus adjacent to the bus k, yi,, is the line
admittance, b;" is the shunt susceptance between buses k and
m, and V and 6 are the magnitude and angle of the voltage
at a given bus.
From the real and imaginary components of the aforemen-
tioned equation, the expressions for active (Py,,) and reactive
(Qxm) power flows can be derived as follows.

Pkm = VkQka — Vkagkmcos(ka) — Vkabkmsin(ka)
(6)
Qrm = — sz (bk'm + bszn) + Vkabk,,ncos(ka)
— Vkagkmsin(ka)
where gy, and by, are the conductance and the suscep-
tance, respectively, between buses k and m.

The active power 1088 (P (10ss)) 18 defined as the sum of
the active power at both ends, it can be expressed as (8).

Prm(loss)y = Prm + Pk
Prm(ioss) = Gem (V2 + V2 — 2V, V,c08(0km)
As presented in [9], the power flow equations can be
arranged in matrix format and by applying a Taylor series
expansion, the parameter correction model relates the identi-

fied measurement with error to the parameter errors, as shown
in (9).

)

®)

n
Agrm ZPym(ioss) — " Pepm(ross)
—1
Abpm, | =T 2Py — B 9)
sh n
Abkm ZanL - thm

where 7 is given by (10), and n represents the iteration at
which the estimated values are used.

Vé + V2 — 2V Vi cos(0xrm) O . 0
V2 — Vi Vin cos(Orm) — Vi Vin sin(0gim ) 0
—ViVin sin(ka) —V,? + ViV COS(ka) _sz
10)

Deviations between the true values of the line parameters
and those used in their parameter model may arise from
intentional cyber-physical attacks or modeling inaccuracies.
These discrepancies often appear as unbalanced parameter
errors, as described in (11).

Jkm = gkmtrue + Agkm
bk)m = bkmtrue + Abkm

b, = bih "+ ABE,

km

where g, b, and bsh e R, and p equal to the number of
parameters of the measurement model.

It is important to emphasize, however, that the estimated
state variables are derived from measurements without errors.
Toward solving this, the next section presents a parameter
correction model that explicitly accounts for the propagation
of parameter errors within the measurement model.

(1)
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III. PARAMETER CORRECTION MODEL

The parameter correction model presented by [9] fails to
model the effect of parameter errors within the measurement
model. A critical consideration is that parameter errors do
not only affect the set of measurements associated with the
attacked line parameter. As highlighted in [10], the intercon-
nected nature of power system equations causes such errors to
propagate to other measurements that are functionally linked
to the affected state variables. For instance, a conductance
term gk, may be present in multiple measurement model
equations. This propagation effect can significantly magnify
the impact of the original error, potentially compromising the
stability and accuracy of the state estimation process if not
properly mitigated. As a result, the measurement model in
(1) neglects the contribution of parameter errors and can lead
to multiple unnecessary iterations and/or convergence to a
physically incorrect solution. To overcome this limitation, the
model is extended to include an additional error term, e,, as
shown in (12).

z=h(z)+e+e, (12)

where e, € R’ that is the residual vector of parameters
with a Gaussian probability function, zero mean and known
standard deviation o,.

Gross errors in measurements can be effectively identified
using the largest normalized error test as demonstrated by
[10]. When a gross error is added to a measurement z;, such
that 2" = z; 4+ bjo; (with b; as the gross error scalar
and o; the standard deviation), the Normalized Composed
Measurement Error (CMEY) increases, clearly identifying the
measurement with gross error. This result can be extended to
include an additional unbalanced parameter error, e,, giving
28 = z; + bjo; + e,. Even in this case, CMEY remains
effective in isolating the affected set of measurements.

Once an unbalanced parameter error and its corresponding
affected set of measurements have been identified, a localized
parameter correction strategy can be applied. Unlike previous
methods that augment the state vector by introducing addi-
tional variables (i.e. X = {z} — X' = {«, p}), the approach
presented in this work retains the original dimensionality
and focuses exclusively on correcting the line parameters
associated with the measurements with the highest error in the
descending CMEN list. Therefore, the parameter error is incor-
porated in the corresponding equation h™(&). Consequently,
the power flow equations (6)-(8) are adjusted as shown in (13)-
(15), and the updated equations are used in the correction step

9.

n

2
Pim =Vi gkm — Vi Vi Gkmcos(Orkm)

13
_ Vkabkmsm(Okm) + €ppkm ( )

ey == Vi bk + i) + ViVinbimcos (B (14
= ViVingrmsin(Orm) + €pq,
?ka(zoss) :gkm(vk? + Vv?n — 2V, Vincos(0km))

+ €ppy,, + €pp,,,

15)

To ensure accurate and efficient correction of unbalanced
parameter errors, it is essential to update the state variables
after each correction step. As previously discussed, parameter
errors can propagate across the system through the estimated
state variables, affecting measurements beyond the initially
compromised data. Therefore, rerunning the state estimator
after every adjustment to the parameter model is critical for
capturing the updated system dynamics. This iterative and
localized correction process enhances the overall efficiency
by concentrating on the specific measurements and line pa-
rameters most impacted by the error. As a result, it promotes
faster convergence and yields more reliable state estimates.
To systematically implement this approach, the procedure
illustrated in Fig. 1 is proposed.

1) Read the data input, which includes the network param-
eters and the set of measurements.

2) Perform WLS estimation using the two-steps procedure
proposed in [10], where the weight matrix is constructed
with o; = 1'230.

3) Perform the detection of gross error by applying the x?
test to the CMEN. If the test is true, proceed to Step 4.
Otherwise, proceed to Step 8.

4) Identify the gross error by constructing a descending list
of the measurements based on |C'M E™|. If an isolated
measurement with the highest |[CME”| exceeds the
threshold value (f3), proceed to step 5. If a set of
measurements with the same pair of buses and high
|CME™N| exceeding 3 is identified, proceed to step 6.

5) Correct the measurement error using (16) proposed in
[10], where C N E; is the Composed Normalized Error
of the measurement 7. Then, return to Step 2.

new old
Z; = Zz; — CNEZ‘O'Z‘

(16)

6) If a set of measurements with the same pair line is identi-
fied with a parameter error, a variable z,,),. is created and
stored. 2, € R™ is the affected measurement with the
highest [C M E™|. If 2, has an associated stored line
and is in the descending |CME™| list, the procedure
continues with this line until it has a value lower than
(. In both cases, proceed to Step 7.

7) Using the state variable vector from the output of Step
2, perform the parameter correction in z,p. using (9)
while applying (13)-(15). Then, return to step 2.

8) Proceed to step two of the two-step procedure suggested
by [10].

IV. CASE STUDY

The 9-bus test system available in [11] was used to evaluate
both the framework proposed by [9] and the one presented
in this paper under the presence of single and simultaneous
FDLI. In the case of single FDI, an unbalanced parameter error
was introduced in one of the lines. For the simultaneous FDI,
an unbalanced parameter error and a measurement error were
applied to different elements of the system. Finally, a value of
3.0 was used as threshold (3).
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L

Fig. 1. Simultaneous FDI detection, identification, and correction flowchart.

In the case of a single FDI, the element under attack was
Lineyg, with the following unbalanced parameter error of:
g decreased by 5.3%, while b and b*" increased by 7.0%
and 6.8%, respectively. Table I presents the results obtained
from the detection and identification analysis of the first WLS
results. As expected, an attack was detected after applying
the x? test; moreover, in the descending |CME™| list, two
measurements associated with the attacked element are iden-
tified with the highest value. Notably, the error in parameter
b significantly influenced the estimated measurement Qgy.

The performance of [9] is shown in Fig. 2, where it does
not converge. As discussed previously, neglecting the measure-
ment errors e,, ~and e,, in the correction procedure can
lead to suboptimal performance and (9) may not always yield
accurate results.

TABLE I
SE WITH SINGLE FDI. FIRST STEP - GRL = 2.8

Type of error: Parameter error

Element: Linegg
Error: g=-53% b=+7.0% bsh = +6.8%
Detection
X2 test: Jo(2) = 458.3 > x? = 70.2 Attack detected!
Identification
Measurement with II CMEN CNE
|[CMEN| > 3.0
Qo4 3.52 12.89 6.69
Qus 0.07 11.34 79.96
Q75 0.51 7.21 7.90
Qs 2.40 5.43 2.94
Qoo 1.08 461 3.15
Line parameters error correction (p.u.)
" M
Sy 1.181
1.011.068
0.94
—0.8
=]
s
Q0.6
—®— Oliness
0.4 b“:*—’% 0.277
bfine45
0 5 20 25

10 .15
Iteration

Fig. 2. Performance of the parameter error correction using [9] framework.

When the proposed framework is applied, convergence is
achieved after nine iterations with a maximum error of 2.9%
IN Grine,s» @s shown in Fig.3. In each iteration, Step 2 of
the framework updates the state variables, and the X2 test
is subsequently applied to evaluate whether the cost function
Jo (%) falls below 3. Once this condition is satisfied, the
convergence criterion is satisfied. The corresponding results
are summarized in Table II. Afterward, the algorithm proceeds
to Step 8 using the most recently updated line parameters.

Line parameters error correction (p.u.)

1.08
10617 068
51.02 <1.021
Q
2.1.00
0.98 T* Yuinew
bLine45
0.96
0.947 —*~ b,
1 2 3 4 5 6 7 8 9
Iteration

Fig. 3. Performance of the parameter error correction by using framework
proposed during a single FDI.
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TABLE 11
SE WITH SINGLE FDI AFTER CORRECTION. FIRST STEP - GRL = 2.8

Type of error: Parameter error

Element: Lineyg

Error: g=-53% b=+47.0% bl = +6.8%
Detection

X2 test: Jo(#) = 33.2 < x2 = 70.2 No attack detected

For a simultaneous FDI involving both parameter and mea-
surement errors, Table III illustrates the errors introduced in
Lineys and measurement Py, as well as how the detection
step flags a gross error in the estimated state variables through
CME". Consequently, the first two measurements in the
descending list were identified as related to line Lineys. Based
on this, the parameter error correction, corresponding to Step
6 of the prorposed framework, is performed.

TABLE III
SE WITH SIMULTANEOUS FDIS. FIRST STEP - GRL = 2.8

Type of error: Parameter & Measurement error

Parameter error

Element: Lineag
Error: g=+4+71% b=4+87% b%h = +6.7%
Measurement error
Element: Pys
Error: kge = 9093
Detection
X2 test: Jo(2) = 552.86 > x2 = 70.12 Attack detected!
Identification
Measurement with 11 CMEN CNE
|ICMEN| > 3.0
Q64 3.53 12.74 6.61
Qa6 0.07 12.17 85.72
Pys 1.42 7.37 4.72
Qs 0.51 7.02 7.72
Qs 2.40 5.99 3.24

On one hand, Fig. 4 illustrates the performance of the
framework proposed by [9], which continues to exhibit con-
vergence issues. On the other hand, in Fig. 5 can be seen a
smooth parameter error correction, with the final parameters
converging within a range of +1.45% after eight iterations.

Line parameters error correction (p.u.)

11
1.0711 T
Lol1.067
1.075
0.9
Sog
)
Q.

0.7 —e—
gLine45

0.6 bLine45 0.509
° sh
bLine45
0.5
0 5 10 15 20 25

Iteration

Fig. 4. Performance of the parameter error correction using [9] framework
while a simultaneous FDI.

Line parameters error correction (p.u.)

* gLine45

1.08
1.071L bLine45
10611.06 —— bl

3104
s 1.016
21.02
0.997
1.00
1 2 3 6 7 8

4 . 5
Iteration

Fig. 5. Performance of the parameter error correction by using framework
proposed while a simultaneous FDI.

After the parameter error correction, the x2 test is applied,
followed by the creation of a new descending [CME|N list.
As shown in Table IV, measurements related to Liness no
longer have CME”™ values exceeding 3. However, in this
updated list, the C M E™ value of measurement Py3 surpasses
the threshold as an isolated case. Consequently, Step 5 of the
framework proposed is performed.

TABLE IV
SE WITH SIMULTANEOUS FDIS AFTER PARAMETER ERROR CORRECTION.
FIRST STEP - GRL = 2.8

Type of error: Parameter & Measurement error

Parameter error

Element: Lineas
Error: g=4+71% b=4+87% b*h = +6.7%
Measurement error
Element: Pys
Error: kge = 9093
Detection
x? test: Jo(#) = 104.82 > x2 = 70.12 Attack detected!
Identification
Measurement with 11 CMEN CNE
|[CMEN| > 3.0
Pys3 1.42 7.40 4.73
P39 1.52 3.74 2.23
P3 1.52 3.46 2.07

Finally, the same stopping procedure is applied, in which
another X2 test is performed. The results, shown in Table V,
indicate that the value of Jo(Z) falls below the expected
threshold. Once this condition is satisfied, the framework
proceeds to Step 8, using the last updated parameters.

TABLE V
SE WITH SIMULTANEOUS FDIS AFTER MEASUREMENT ERROR
CORRECTION. FIRST STEP - GRL = 2.8

Type of error: Parameter & Measurement error

Parameter error

Element: Lineyg
Error: g=+71% b=+87% bsh = +6.7%
Measurement error
Element: Pys
Error: kge = 9093
Detection
X2 test: Jo(2) = 40.83 < x2 = 70.12 No attack detected
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The tests of the presented framework, shown in Fig. 1, were
successful in effectively detecting, identifying, and correcting
simultaneous FDI when simultaneous attacks were introduced.
The most significant improvement comes from the incorpora-
tion of the parameter error effect, e, P ? during the correction
process, using the state variable vector obtained from the WLS
estimation. With this enhancement, the framework achieves
faster convergence in fewer iterations, whereas the approach
proposed by [9] fails to achieve accurate results under the
same conditions. This is evident in the corresponding figures
and the 2 test, where the corrections made by the proposed
framework result in a Jo(2) value below the expected thresh-
old.

Although the proposed framework demonstrates strong per-
formance, a notable limitation remains: it relies on sequential
correction. This was observed in the simultaneous attack
scenario, where the unbalanced parameter error was corrected
first, followed by the measurement error. Future research
should explore optimization strategies to avoid sequential
executions of the state estimator during corrections, thereby
improving computational efficiency. Furthermore, under real-
world conditions, on-field testing using medium-voltage ra-
dial networks is recommended to assess the accuracy and
robustness of the proposed framework. Such testing would not
only validate its practical applicability, but would also reveal
potential areas for further refinement.

V. CONCLUSION

This work presents a novel framework and model for
parameter correction in real-time monitoring in distribution
networks. Unlike current state-of-the-art approaches, which
do not consider the impact of parameter errors on the mea-
surement model, the proposed model explicitly incorporates
this effect. Neglecting it can lead to an increased number of
iterations and, in some cases, convergence to physically incor-
rect solutions. By embedding the parameter error within the
measurement model, the proposed framework enhances both
the robustness and accuracy of the correction process. A case
study considering the 9-bus test system is further presented,
highlighting the mitigated modeling error effect the parameter
error correction model has. Easy-to-implement model, without
hard-to-design parameters, built on the classical WLS solution,
highlight potential aspects for real-life applications, particu-
larly in medium-voltage radial networks. Future works will
focus on developing a simultaneous optimization strategy to
jointly address measurement and unbalanced parameter errors.
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