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Abstract 

Objectives: To identify risk-prone areas for the spread of tuberculosis, analyze spatial variation and temporal trends 
of the disease in these areas and identify their determinants in a high burden city.

Methods: An ecological study was carried out in Ribeirão Preto, São Paulo, Brazil. The population was composed of 
pulmonary tuberculosis cases reported in the Tuberculosis Patient Control System between 2006 and 2017. Sea-
sonal Trend Decomposition using the Loess decomposition method was used. Spatial and spatiotemporal scanning 
statistics were applied to identify risk areas. Spatial Variation in Temporal Trends (SVTT) was used to detect risk-prone 
territories with changes in the temporal trend. Finally, Pearson’s Chi-square test was performed to identify factors 
associated with the epidemiological situation in the municipality.

Results: Between 2006 and 2017, 1760 cases of pulmonary tuberculosis were reported in the municipality. With 
spatial scanning, four groups of clusters were identified with relative risks (RR) from 0.19 to 0.52, 1.73, 2.07, and 2.68 to 
2.72. With the space–time scan, four clusters were also identified with RR of 0.13 (2008–2013), 1.94 (2010–2015), 2.34 
(2006 to 2011), and 2.84 (2014–2017). With the SVTT, a cluster was identified with RR 0.11, an internal time trend of 
growth (+ 0.09%/year), and an external time trend of decrease (− 0.06%/year). Finally, three risk factors and three pro-
tective factors that are associated with the epidemiological situation in the municipality were identified, being: race/
brown color (OR: 1.26), without education (OR: 1.71), retired (OR: 1.35), 15 years or more of study (OR: 0.73), not having 
HIV (OR: 0.55) and not having diabetes (OR: 0.35).

Conclusion: The importance of using spatial analysis tools in identifying areas that should be prioritized for TB 
control is highlighted, and greater attention is necessary for individuals who fit the profile indicated as “at risk” for the 
disease.
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Background
Tuberculosis is one of the oldest diseases in the world 
and is still the cause of illness for millions of peo-
ple each year. It is estimated that in 2020 there were 
approximately 10 million cases of tuberculosis in the 
world, with 56% of these cases affecting males, 33% 
females, and 11% children under 15  years of age [1]. 
In addition to these alarming statistics, the WHO still 
estimates 1.3 million deaths from tuberculosis and 
more than 214,000 deaths caused by co-infection with 
tuberculosis and human immunodeficiency virus (TB-
HIV) [1].

Brazil remains among the 30 countries with a high 
burden for TB and TB-HIV co-infection, being consid-
ered a priority for disease control globally by the WHO 
[2]. In 2020, Brazil recorded about 67,000 new TB cases, 
presenting an incidence coefficient of 31.6 cases per 100 
thousand inhabitants, also, in 2019, about 4500 deaths 
from the disease, was presented with a coefficient of 
mortality of 2.2 deaths per 100 thousand inhabitants [2].

It is known that the incidence of any disease changes 
over time and that the time trend also varies accord-
ing to the geographic region. Thus, the importance of 
monitoring the emerging spatial patterns and temporal 
risk trends for tuberculosis is emphasized to provide 
additional information which helps prevent the disease, 
implement control measures and address new health 
risks within a geographical region [3].

In scientific literature, many studies have analyzed 
the behavior of the disease in a territory under study 
and sought to identify areas of risk. However, few stud-
ies have addressed the temporal behavior of tuber-
culosis and concomitantly placed variations in the 
temporal trends in each territory at risk. Therefore, this 
study aimed to identify risk-prone areas for the spread 
of tuberculosis, analyze spatial variation and tempo-
ral trends in these areas, and their determinants in a 
municipality with high endemicity due to the disease.

Methods
Research design and scenario
An ecological study [4] was carried out in Ribeirão 
Preto, a city in the interior of the state of São Paulo 
(SP)—Brazil. Located 314 km from the capital, Ribeirão 
Preto has an area of approximately 650  km2 and a high 
population density of 995.3 inhabitants/km2. It also had 
an estimated population of 711,825 inhabitants in 2020, 
of which 99.7% live in urban areas [5].

The unit of ecological analysis used in the study is the 
census sector. Ribeirão Preto is composed of 972 census 
sectors, of which 956 were considered in the present 
study because they are urban areas of the municipality.

Population
The study population was composed of cases of pulmo-
nary tuberculosis reported through the Tuberculosis 
Control System (TBWeb) [6] from 2006 to 2017. Data 
were obtained from the Municipal Tuberculosis Control 
Program of the Ribeirão Preto Municipal Secretariat. 
Only pulmonary tuberculosis cases were selected since 
it is the unique contagious form of the disease and with 
chances of spreading in the territory.

It was adopted as a selection criterion that the notifica-
tion was carried out between 2006 and 2017, with only 
one registration per person, the most current registra-
tion being selected if there was more than one entry in 
the system and only residents in urban area of the city of 
Ribeirão Preto were included. It is noteworthy that only 
pulmonary tuberculosis records were considered so that 
extrapulmonary or concomitant forms (pulmonary and 
extrapulmonary forms together) were excluded as part of 
the exclusion criteria.

Analysis plan
Time series analysis
Initially, monthly time series of tuberculosis cases were 
constructed, spanning between January 2006 to Decem-
ber 2017. To verify the behavior of the time series over 
the study period and also its trend, the decomposition 
method called Seasonal Trend Decomposition using 
Loess (STL) was used, based on a locally weighted regres-
sion [7]. This analysis was performed using RStudio soft-
ware through the forecast package [8].

Identification of clusters
The georeferencing of pulmonary tuberculosis cases were 
performed using the Google Earth  Pro® software in order 
to obtain the geographical coordinates (latitude and lon-
gitude) of the residential addresses of the notified cases.

In order to identify areas at higher risk for pulmonary 
tuberculosis, the spatial analysis technique called scan-
ning statistics, developed by Kulldorff and Nagarwalla [9] 
was used.

It is considered as a null hypothesis if there is no high 
or low-risk cluster, which means, the entire population 
has the same probability of contracting pulmonary tuber-
culosis, regardless of its location; while the alternative 
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hypothesis predicts the existence of clusters that are 
areas in which the population would be more or less 
likely to contract the disease [10].

Unlike the purely spatial scan that is based on circles, in 
the space–time scan, cylinders are created around each 
centroid, incorporating time as a variable of interest, it is 
possible to verify the existence of clusters in a given area, 
and also prove that in a specific period of time, there was 
a greater or lesser proportion of cases when compared to 
the other areas that were analyzed [11].

Still referring to the analysis of cluster detection, the 
SVTT technique was also performed, which differs from 
the other analyses presented by calculating the tempo-
ral trend of the clusters [3]. The time trend is calculated 
inside and outside the scan circle, we call the internal 
temporal trend (ITT) the change in the time trend of 
the event within a cluster and the external temporal 
trend (ETT) is called the trend of all other areas that do 
not belong to the cluster in question. Therefore, what 
is statistically significant in this analysis are the tempo-
ral trends and not the cluster formation as in spatial and 
space–time scanning [3, 11].

SVTT is considered a null hypothesis when there is no 
difference in the temporal trends in the analyzed areas 
while we have as an alternative hypothesis the occurrence 
that the temporal trends are statistically different.

In addition, the relative risk (RR) and 95% confidence 
interval (95%CI) of each cluster was calculated, allowing 
the comparison of information in different areas, with 
the exception of SVTT, because, as explained above, it 
is emphasized that what is significant in this analysis are 
ITT and ETT, so that the RR of the identified cluster may 
not be within the CI. Clusters with p < 0.05 were consid-
ered statistically significant. The analyses were performed 
using SaTScan software 9.3, and thematic maps were cre-
ated using ArcGis software 10.5.

Descriptive and association analysis
In order to identify factors associated with the epidemio-
logical situation in the municipality, an exploratory anal-
ysis was carried out (absolute and relative frequencies), 
and then the association of these variables with the fact 
of living in a risk area was identified by means of Pear-
son’s chi-square analysis (χ2) and for the variables that 
were statistically significant (p < 0.05), the Odds Ratio 
(OR) and 95%CI were calculated using the IBM SPSS ver-
sion 25 software.

We emphasize that the χ2 test will be used to identify 
whether there is an association between the variables and 
the OR to quantify this association and classify whether 
it characterizes risk or protection.

We also emphasize that the dichotomized depend-
ent variable was having tuberculosis and residing in an 

identified cluster (0 and 1) and this variable was crossed 
with all the independent variables that were also dichoto-
mized (0 and 1) and that category analyzed was consid-
ered as a reference. Only for variables with two categories 
(HIV, diabetes, alcoholism, mental disease, drug addic-
tion and smoking) we adopted as a reference category not 
having the comorbidity or not using substances.

By observing the association between two independent 
dichotomous categorical variables, the Chi-square test 
can be used to generate a traditional p-value that verifies 
the existence or not of association. However, within the 
applied statistics, the chi-square p-value is of little value 
due to the loss of precision, accuracy and variance that 
comes with categorical variables and, in this way, the use 
of the Odds Ratio calculation is indicated with a confi-
dence interval of 95% for a more accurate measurement.

Additionally, a binary logistic regression was also con-
ducted because it is a more robust analysis. Initially, from 
the variables present in the TBWeb notification form, the 
variables that could explain the variable of interest were 
chosen. All selected variables were dichotomized (0 and 
1) and the dependent variable (having TB and residing in 
the risk cluster) was also dichotomized.

Then, the selected variables were tested for multicol-
linearity based on the variance inflation factor (VIF), and 
those with an index greater than ten were excluded [12] 
(Additional file 1). After the selection process of the inde-
pendent variables was completed, logistic regression was 
conducted using the RStudio 4.0.4 program.

The backward selection was used to insert the variables 
in the model. This method incorporates all the variables 
in the model and one by one it is removed and the indi-
vidual contributions of the variables to this model are 
investigated, and the worst performing variable is elimi-
nated, comparing the complete model with the reduced 
model, by removing such variable. After exhausting all 
the possibilities of the analysis, the best model was cho-
sen based on the lowest values of the Akaike Informa-
tion Criterion (AIC) [13]. It is also noteworthy that for 
the final model with the best comparison parameter, 
the Odds Ratio (OR) and their respective 95%CI were 
calculated.

Results
Between 2006 and 2017, 2,259 tuberculosis cases were 
reported in Ribeirão Preto, of which 1760 (77.9%) were 
pulmonary tuberculosis. The minimum age of the cases 
was two months, and the maximum was 102  years old, 
with an average of 42 years old and a standard deviation 
of 17.3.

Figure 1 shows the behavior of the pulmonary tubercu-
losis time series and its time trend over the study period. 
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It is possible to observe the presence of peaks and falls in 
specific periods of the years.

In the spatial analysis stage, 112 cases were excluded 
because they lived in a rural area, the address field 
on the notification form was not valid (wrong, blank, 

incomplete address or address of government agen-
cies—hospitals, health units, prisons), making geo-
referencing impossible. Therefore, 1648 cases (93.6%) 
were georeferenced and integrated into the following 
analyses.

Fig. 1 Series and time trend of pulmonary tuberculosis cases, Ribeirão Preto-SP, Brazil (2006–2017)

Fig. 2 Areas of spatial risk for the occurrence of pulmonary tuberculosis, Ribeirão Preto, SP, Brazil (2006–2017)
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With the application of the purely spatial scanning 
technique, it was possible to identify four groups of sta-
tistically significant clusters (p < 0.01) (Fig.  2). Spatial 
cluster 1 (SC1), considered as protection for the event, 
presented RR: 0.19–0.52 (95% CI: 0.09–0.69), composed 
of 238 census sectors in the eastern, western, and central 
districts of the municipality. Spatial cluster 2 (SC2) with 
RR: 1.73 (95%CI: 1.49–1.99) composed 60 census sectors 
in the west district, two census sectors in the central dis-
trict, and two census sectors in the north district.

Spatial cluster 3 (SC3), presented RR: 2.07 (95%CI: 
1.70–2.32), was composed of 52 census sectors in the 
north district and two census sectors in the central dis-
trict, and finally, spatial cluster 4 (SC4) with RR: 2.68 to 
2.72 (95%CI: 2.00–3.77), was composed of 24 census sec-
tors in the southern district.

With the space–time scan, it was possible to identify 
four statistically significant clusters (p < 0.01), one being 
protective and three at risk for pulmonary tuberculosis 
(Fig. 3).

The space–time cluster 1 (STC1), considered protec-
tion for the event, presented RR: 0.13 (95%CI: 0.03–0.26) 
between 2008 and 2013, was composed of 87 census 
sectors in the eastern district. The space–time cluster 2 
(STC2) presented RR: 1.94 (95%CI: 1.77–2.11) between 
2010 and 2015; it was composed of 58 census sectors in 
the west, north, and central district.

The space–time cluster 3 (STC3), with RR: 2.34 
(95%CI: 1.67–2.94) and the period from 2006 to 2011, 
was composed of 44 census sectors in the northern dis-
trict and the space–time cluster 4 (STC4) (p < 0.01) pre-
sented RR: 2.84 (95%CI: 2.50–3.90) between the years 
2014 and 2017, it was composed of 20 census sectors in 
the southern district.

With the application of SVTT, it was found that the 
cases of pulmonary tuberculosis in Ribeirão Preto 
showed an average decrease of 0.12% per year, mak-
ing the findings presented in Fig.  1 in which periods 
of peaks and falls were more evident. Still, with this 
analysis, it was possible to identify a cluster with a sta-
tistically significant variation in the temporal trend 
(p < 0.01) (Fig. 4).

The cluster with spatial variation in temporal trends 1 
(SVTT1) has RR: 0.11 and was composed of 13 census 
sectors in the eastern district of the municipality. The 
cluster, classified as protection for the event, presented 
an ITT of growth (+ 0.09%/year), while the ETT indi-
cated a decrease (–0.06%/year).

Table  1 shows the clinical-epidemiological profile of 
all pulmonary tuberculosis cases reported in Ribeirão 
Preto from 2006 to 2017 and the clinical-epidemiological 
profile of patients of pulmonary tuberculosis resident in 
the clusters identified with the techniques of the scan 
applied.

Fig. 3 Space–time risk areas for the occurrence of pulmonary tuberculosis, Ribeirão Preto, SP, Brazil (2006–2017)
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From the analysis of Pearson’s chi-square analysis (χ2) 
and OR, it was possible to identify two risk factors and 
three protection factors for the analyzed event. In the 
identified areas, mixed-race people (brown) are 1.77 
times more likely and people without any studies are 1.16 
times more likely to get sick from pulmonary tuberculo-
sis than people living in other areas of the municipality.

Higher education (15 years or more of study) was iden-
tified as a protective factor for tuberculosis in the identi-
fied areas (OR: 0.73). Also classified as protection against 
the event are HIV-negative people who do not have dia-
betes (OR: 0.55 and 0.35, respectively).

From the logistic regression analysis, the variables that 
showed multicollinearity (VIF value > 10) were excluded 
(Supplementary material), as follows: age (15–59  years 
and 60  years or older) and sex, the other variables 
entered the logistic regression stage and the final model 
was composed of nine variables. Through OR, it was pos-
sible to identify three risk factors and two protective fac-
tors associated with the epidemiological situation in the 
municipality (Table 2). In the identified areas, people of 
race/color brown are 1.26 times more likely to fall ill with 
pulmonary tuberculosis and also people without any edu-
cation (OR: 1.71).

Higher education (8–11  years of study and 15  years 
or more of study) was identified as a protective factor 
against tuberculosis in the identified areas (OR: 0.72 and 
0.26, respectively).

Discussion
The study has evidenced the risk-prone territories for 
TB spread and the changes in the clusters over the years. 
When analyzing the time series of pulmonary tuber-
culosis cases between 2006 and 2017, it was possible to 
observe a series of undulations in its temporal trend, 
which was later classified through the SVTT, which indi-
cated an average decrease of 0.12% per year of pulmonary 
tuberculosis in Ribeirão Preto, SP, Brazil.

With the analysis of purely spatial scanning, it was pos-
sible to verify the formation of clusters in areas that can 
be considered at risk for the occurrence and transmissi-
bility of pulmonary tuberculosis.

SC4, classified with the highest RR (2.68–2.72) (95%CI: 
2.00–3.77), was located in the southern district where 
the largest subnormal agglomerate (slums) of residents is 
found in the municipality, and it is noteworthy that Fam-
ily Health Units have not yet been implemented in this 
area [14, 15]. SC3 (RR: 2.07) (95%CI: 1.70–2.32), located 

Fig. 4 Areas with spatial variation in temporal trends for the occurrence of pulmonary tuberculosis, Ribeirão Preto, SP, Brazil (2006–2017)
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mostly in the northern district, is the region with the 
highest population density in the municipality and con-
centrates the largest number of residents per residence. 
It is worthy of note that there is a settlement of rural 
workers in this district, and this region also concentrates 

the most significant number of subnormal agglomerates 
(slums) in the city [15].

The SC2 (RR: 1.73) (95%CI: 1.49–1.99) identified in the 
western district of the municipality has one of the low-
est municipal human development rates in the city, with 
the population receiving mostly two minimum wages. It 

Table 1 Clinical and epidemiological profile of pulmonary tuberculosis cases, Ribeirão Preto, SP, Brazil (2006–2017)

Variables All reported cases 
N (1760)
(%)

Cases residing in 
clusters 
N (680)
(%)

Pearson’s Chi-square 
χ2

(p-value)

Odds ratio
(95%CI)

Age

 0–14 years 74 (4.2%) 32 (4.7) 0.69 (0.41) NA

 15–59 years 1393 (79.1) 541 (79.6) 0.11 (0.73) NA

 60 years or older 277 (15.7) 100 (14.7) 0.89 (0.34) NA

 Ignored 16 (0.9) 7 (1.0) NA NA

Sex

 Male 1229 (69.8) 468 (68.8) 0.53 (0.47) NA

 Female 531 (30.2) 212 (31.2) NA NA

Race

 Yellow 2 (0.1) NA 1.26 (0,26) NA

 White 704 (40.0) 267 (39.3) 0.25 (0,62) NA

 Brown 331 (18.8) 143 (21.0) 3.58 (0,05) 1.77 (1.01–1.86)

 Black 141 (8.0) 50 (7.4) 0.65 (0,42) NA

 Ignored 582 (33.0) 65 (9.6) NA NA

Years of study

 No study 80 (4.5) 36 (5.3) 1.43 (0.23) 1.16 (1.03–1.85)

 1–3 years 160 (9.1) 65 (9.6) 0.29 (0.59) NA

 4–7 years 500 (28.4) 198 (29.1) 0.27 (0.60) NA

 8–11 years 241 (13.7) 77 (11.3) 5.26 (0.06) NA

 12–14 years 51 (2.9) 15 (2.2) 1.88 (0.17) NA

 15 years or more 29 (1.6) 17 (2.5) 4.96 (0.02) 0.73 (0.55–0.98)

HIV

 Positive 313 (17.8) 117 (17.2) NA NA

 Negative 1447 (82.2) 563 (82.8) 4.38 (0.03) 0.55 (0.08–0.63)

Diabetes

 Yes 84 (4.8) 39 (5.7) NA NA

 No 1676 (95.2) 641 (94.3) 2.25 (0.03) 0.35 (0.09–0.73)

Alcoholism

 Yes 365 (20.7) 144 (21.2) NA NA

 No 1395 (79.3) 536 (78.8) 0.12 (0.71) NA

Mental disease

 Yes 34 (1.9) 18 (2.6) NA NA

 No 1726 (98.1) 662 (97.4) 2.99 (0.08) NA

Drug addiction

 Yes 209 (11.9) 91 (13.4) NA NA

 No 1551 (88.1) 589 (86.6) 2.40 (0.12) NA

Smoking

 Yes 123 (7.0) 52 (7.6) NA NA

 No 1637 (93.0) 628 (92.4) 0.73 (0.39) NA
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is the region with the largest number of health units and 
has the highest percentage of exclusive users of the Uni-
fied Health System (SUS) in the city [15].

Finally, SC1 was classified as protection for the event 
(RR: 0.19–0.52) (95% CI: 0.09–0.69) and located in the 
eastern, western, and central districts. It is noteworthy 
that the center of Ribeirão Preto has the lowest density 
of inhabitants per residence and presents mainly com-
mercial properties. In the eastern community, the popu-
lation has the highest municipal income and the highest 
education level. It is noteworthy that this region has areas 
of expansion of high-standard condominiums. How-
ever, there are also population clusters here with lower 
socioeconomic resources that deserve attention because 
although this population is located in a more economi-
cally favored region in the municipality, they do not have 
the same resources and there is risk for other people who 
live in this area and thus can cause outbreak of tuberculo-
sis or other infectious diseases [14, 15].

With the use of the space–time scanning statistics, four 
statistically significant clusters were identified; one for 
protection against illness from pulmonary tuberculosis 
(STC1; RR: 0.13) (95%CI: 0.03–0.26) between the years 
2008 and 2013 in the eastern district, which may indicate 
that during this period there were improvements in sur-
veillance services in health, such as awareness campaigns 
and active search for respiratory symptoms or probably 
there were fewer diagnoses of the disease in this period 
or no notification of new cases.

In contrast, STC2 (RR: 1.94) (95%CI: 1.77–2.11) in the 
period from 2010 to 2015, mainly in the western region, 
and STC3 (RR: 2.34) (95%CI: 1.67–2.94) in the period 
from 2006 to 2011 in the north district were classified as 
risk, which may indicate that there was intense activity 

of active search for respiratory symptoms, and therefore, 
there were more notifications than other regions of the 
municipality.

STC4 (RR: 2.84) (95%CI: 2.50–3.90) was identified in 
the southern district between the years 2014 to 2017. In 
2014, the diagnosis was implemented in the municipality 
of Ribeirão Preto using the rapid molecular test for tuber-
culosis (RMT-TB) performed through  GeneXpert®MTB/
RIF. The system is commonly used for the detection of 
Mycobacterium tuberculosis and resistance to rifampicin 
(the primary drug used in the treatment) automatically 
[16, 17].

The municipality has two rapid diagnostic devices, 
one in the west and the other in the south, and studies 
[16–19] carried out to compare the RMT-TB with the 
tests commonly performed showed that the sensitivity of 
the RMT-TB for a sputum sample was 72.5% (for three 
samples it reached 90%) and the specificity reached 99%. 
Therefore, the hypothesis is raised that the high number 
of cases diagnosed in this region may be related to the 
implementation of RMT-TB in the municipality.

Through the use of the SVTT, a cluster with RR: 0.11 
(event protection) was identified in the eastern region 
of the municipality, which, in the analysis of purely spa-
tial scanning statistics, was identified as protection for 
the event (RR: 0.19–0.52). The SVTT1 cluster indicated 
a specific area in the east with growth ITT (0.09%/
year), while outside that area, the identified time trend is 
decreasing (0.06%/year).

It is important that municipal managers focus on 
strategies to combat tuberculosis in this region with the 
identification of respiratory symptoms and their commu-
nicants. In addition, aiming at improving the epidemio-
logical indicators of tuberculosis, a very necessary and 
effective tool is the periodic training of health profession-
als not only in the biological sense but also to understand 
the epidemiological and social reality of the territory in 
which they are inserted, so that they can understand the 
relationship between tuberculosis and the social deter-
minants of health in order to fully look at the individual 
[20].

Geography and its sub-areas of knowledge, including 
geoprocessing, have great power to support decision-
making based on the analysis of cases of a given disease, 
uniting their socio-spatial characteristics so that it is 
possible to highlight the disparities between population 
groups and also the delimitation of risk and/or spatial 
protection areas for a given event of interest.

Over the years with the evolution of technology, sev-
eral studies have sought to understand the behavior of 

Table 2 Factors associated with the epidemiological situation in 
Ribeirão Preto, SP, Brazil (2006–2017)

Variable Coefficient (p-value) Odds ratio (CI95%)

Race/color brown 0.23 (0.05) 1.26 (1.10–1.60)

Education: no study 1.26 (0.02) 1.71 (1.53–1.95)

Education: 8–11 years of 
study

0.32 (0.03) 0.72 (0.53–0.96)

Education: 12–14 years 
of study

− 0.45 (0.14) 0.63 (0.33–1.14)

Education: + 15 years of 
study

0.81 (0.03) 0.26 (0.07–0.91)

Diabetes: no − 0.33 (0.13) 0.71 (0.46–1.11)

Mental illness: no − 0.54 (0.11) 0.57 (0.28–1.15)

Use of illicit drugs: no − 0.23 (0.11) 0.79 (0.58–1.06)
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tuberculosis in space in Brazil [21–24], but few stud-
ies used temporal [25, 26] or Spatio-temporal [27, 28] 
approaches, and the numbers of studies that combined 
both techniques are even smaller [29, 30]. Therefore, we 
encourage new studies to be carried out using spatial and 
temporal processes.

In the scientific literature, there are a large number 
of studies that have analyzed the behavior of the dis-
ease in the territory, and that sought to identify areas of 
risk. However, few studies have addressed the temporal 
behavior of tuberculosis or sought to identify variations 
in the temporal trends in the risk territories.

With the association analysis, it was identified that, 
in the risk areas classified in the municipality, people of 
brown race/color were 1.26 (95%CI: 1.10–1.60) times 
more likely to get sick with pulmonary tuberculosis, cor-
roborating the findings of the χ2 analysis, which indicated 
OR = 1.77 (95%CI: 1.01–1.86) for this population. Other 
studies have shown that people of mixed race/color are 
less likely to be cured [31] and that the mortality rate 
from tuberculosis is growing in this population [32].

No plausible biological justification or relationship was 
found in the literature to justify this difference between 
brown race/color and other classifications, but the con-
struction of Brazilian Society [33] and the social determi-
nants of health [34] must be taken into account.

It was also identified that people without any education 
had 1.71 (95%CI: 1.53–1.95) times more chance, and peo-
ple with high schooling (8–11 years of study and 15 years 
or more of study) have less chance (OR: 0.72 (95%CI: 
0.53–0.96) and 0.26 (95%CI: 0.07–0.91), respectively) of 
falling ill with pulmonary tuberculosis in high-risk areas 
in the municipality, corroborating the results of the χ2 
analysis, which indicated OR = 1.16 (95%CI: 1.03–1.85) 
for people without schooling and OR = 0.73 (95%CI: 
0.55–0.98) for people with 15 years of schooling or more. 
In a literature review[35] conducted with the aim of relat-
ing the level of education to infection with Mycobacte-
rium tuberculosis, it was identified that the educational 
level of people with tuberculosis is directly related to 
income, highlighting the relationship between tuberculo-
sis and social conditions of life.

Additionally, the χ2 analysis also identified not having 
HIV or diabetes as protection for the event (OR: 0.55 
(95%CI: 0.08–0.63) and 0.35 (95%CI: 0.09–0.73), respec-
tively). It is known that HIV is an aggressive virus that 
attacks the immune system, and, in this way, the chances 
of contracting opportunistic infections such as tubercu-
losis increase significantly. The impact of tuberculosis 
co-infection with HIV in the body is bidirectional; as the 
HIV virus grows in the body, the risk and progression of 
other infections, such as tuberculosis, also increases. In 
this way, tuberculosis delays the recovery of CD4 T-cells 

that are also destroyed by HIV, which increases the pro-
gression of the disease to AIDS and, consequently, the 
deaths from tuberculosis in PLHIV [36–38].

The same is true for people with TB and diabetes, so 
TB makes glycemic control difficult, and in turn, high 
blood glucose makes TB worse [39, 40]. It was identi-
fied in studies [39, 40] that people with diabetes had a 
2.44–8.33 times greater chance of developing tuber-
culosis than those without the disease. This is because 
people with diabetes have decreased cellular and 
humoral immunity, in addition to hyperglycemia and 
cellular insulinopenia, which have effects on the func-
tion of macrophages and lymphocytes, thus increasing 
the chance of infections [41–43].

Concerning the limitations of this study, it was an 
ecological study; the so-called ecological fallacy stands 
out in that because variables are used at the aggregate 
level, the results may not represent associations at the 
individual level. It is also worth mentioning the use of 
secondary data sources, which may include incomplete 
data or typos.

We would also like to emphasize the importance and 
also encourage further studies using different meth-
odologies to further explore tuberculosis and also its 
latent and extrapulmonary forms.

Conclusions
In view of the above, using statistical techniques and 
spatial analysis to understand the behavior of the dis-
ease over time and the location of areas in the munici-
pality in which tuberculosis is a problem and using 
the characteristics of its surroundings to estimate the 
population at risk can assist managers in making asser-
tive decisions, so that it becomes easier to understand 
the process about the chain of transmission of the dis-
ease and the entire context in which that population is 
inserted.
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