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 A B S T R A C T

This study analyzes spatial–temporal deforestation patterns in Amazonas using 36 years of land use and land 
cover changes . We identified contiguous deforestation patches for each year and characterized their evolution 
using two geometric metrics: compactness, related to the shape of the patch and equivalent radius, proportional 
to the deforested area. These metrics enabled the aggregation of deforestation patches into four distinct regions 
within the Amazon, each exhibiting unique yet consistent characteristics with different temporal evolution. 
Typical distributions were found for these two metrics that allow to characterize space and time evolution of 
the deforestation for different land-use. Pasture patches showed a gamma distribution, while agricultural lands 
followed a lognormal distribution. Over time, pastures exhibited a trend towards lower compactness values, 
whereas agriculture and silviculture demonstrated shifts towards higher compactness. The equivalent radius 
distribution showed increased frequency of larger deforested areas over time. These findings underscore the 
utility of simple geometric metrics in understanding deforestation’s spatial and temporal evolution, offering 
valuable insights into land-use dynamics estimation in the Amazon and providing a foundation for more 
effective monitoring and conservation strategies.
1. Introduction

The Amazon rainforest, occupying just 0.5% of Earth’s surface 
area, is a remarkably diverse ecosystem, harboring over 10% of all 
known plant and vertebrate species (Albert et al., 2023). The rainforest 
critically regulates global climate (Shukla et al., 1990), water and 
carbon cycles, contributing to about 16% of all terrestrial photosyn-
thetic productivity (Artaxo et al., 2022). However, human activities 
such as agriculture and ranching have resulted in a significant change 
in land use, affecting biogeochemical cycles and ecosystem services 
related to climate regulation, biodiversity, and carbon storage (Lovejoy 
and Nobre, 2019; Lawrence et al., 2022; Xu et al., 2022). Recent 
studies suggest that land use change, forest degradation, and climate 
change have turned carbon sink forest areas into carbon sources to 
the atmosphere, especially in the Southeastern Amazonia (Gatti et al., 
2021).

Between 2005 and 2012, Brazil significantly reduced deforestation 
rates in the Amazon rainforest, marking an 84% decrease compared 
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to the peak in 2004. However, since 2013, deforestation rates have 
been increasing (PRODES/INPE, 2022). For example, in 2019, 10.129 
km2 of the forest was cleared, a 34% increase from the previous 
year (Silva Junior et al., 2021). This situation indicates that Brazil has 
failed to meet its targets for reducing deforestation, with the 2020 rate 
being 182% higher than the established target. This high deforestation 
rate compromises the greenhouse gas (GHG) reduction goals and is 
associated with increased biomass burning emissions, negatively im-
pacting respiratory health and vulnerable communities (Ometto et al., 
2011; Reddington et al., 2015).

The relationships between deforestation, climate change, and bio-
physical feedback are complex. Positive feedback mechanisms amplify 
perturbations. One example is deforestation which leads to less tree 
cover, which diminishes evapotranspiration and precipitation and feed-
backs to decrease less tree cover. As such, deforestation is one of 
the five systemic tipping points beyond which the stability of the 
Amazon is threatened, causing large-scale forest dieback (Lovejoy and 
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Nobre, 2019). Projections show consistent warming in the Amazon 
Basin due to global changes and deforestation, based on general circula-
tion models coupled with land surface models (Nobre et al., 2009, e.g.). 
However, long-term predictions for changes in precipitation associated 
with deforestation show diverse results without a consensus on the sign 
of perturbations (Guimberteau et al., 2017; Li et al., 2022).

Monitoring, characterizing, and predicting deforestation patterns 
play a crucial role in anticipating the impact of deforestation on cli-
mate and may assist policymakers on the formulation of prevention 
measures. The relevance of accurate land use and land cover (LULC) 
prediction in climate models is exemplified by the works of Nobre 
et al. (2009) and Swann et al. (2015). More than the characterization 
of the size of deforested areas, it is important to characterize spatial 
patterns since they influence the ecosystems’ resilience and the impacts 
on local and regional climate. Therefore, the shape and the isolation of 
deforestation patches, as well as their extension, must be characterized.

One of the first steps to model deforestation is to characterize the 
temporal evolution of its spatial patterns based on the large amount of 
land use land cover data currently available. The Amazon Basin is large 
and heterogeneous, so that spatial patterns and drivers of deforestation 
may differ from one place to another (Kalamandeen et al., 2018; 
Dang et al., 2019). Previous studies focused on the characterization of 
forest fragmentation in selected areas of Amazonia, analyzing metrics 
integrated into the landscape, such as proportion of deforested area, 
patch density and edge density (Frohn and Hao, 2006; Cabral et al., 
2018; Lima et al., 2020). The current study takes a different approach, 
characterizing geometric features of contiguous deforestation patches 
in the Brazilian Amazonia.

The main objective of this work is to characterize the temporal 
evolution of deforestation in Amazonia based on simple geometric fea-
tures of contiguous deforestation patches. Unlike most previous works 
on deforestation in the Amazon rainforest, which investigated small 
areas or limited periods (Michalski et al., 2008; da Silva et al., 2021) 
this study covers 36 years and an area of approximately 3 × 106 km2. 
Deforestation patches were characterized by metrics related to shape, 
size and rate of deforestation, investigating regional differences within 
the Amazon Basin.

This paper is organized as follows: Section 2 introduces the informa-
tion sources, techniques and concepts used in this work. In particular, 
we describe the metrics and how we divided the Brazilian Amazon 
region for this study. Section 3 shows the results for the whole and 
the subdivided Amazon region, highlighting the peculiarities of each 
region. Finally, in Section 4, we present our conclusions and enumerate 
directions for further research.

2. Methods

The methodology can be divided into three main steps. First, a spa-
tial pattern analysis identified contiguous deforestation areas (patches) 
based on Mapbiomas land use maps (MapBiomas Project, 2023). Sec-
ond, geometric features of the deforestation patches were character-
ized. Third, a cluster analysis was applied to identify regions with 
similar deforestation patterns, described by geometrical features.

2.1. Land use and land cover data

We used LULC maps of the Brazilian Amazon rainforest provided 
by MapBiomas Project (2023), covering the period 1985 to 2021 (Col-
lection 7) that comprise 37 maps with a resolution of 30 m. The 
imagery was obtained from Landsat sensors, including Thematic Map-
per (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational 
Land Imager and Thermal Infrared Sensor (OLI-TIRS) onboard Landsat 
5, Landsat 7, and Landsat 8, respectively.

MapBiomas algorithms based on random forest and U-Net con-
volutional neural networks classify Landsat annual time series into 
28 classes to monitor native forest changes (such as deforestation), 
2 
Table 1
Land use and land cover groups considered in this work and their correspondence with 
MapBiomas original categories. The percentage values are the prevalence of the group 
related to the total area of study by the year 2021.
 Forest and Natural 
Formations (ForNat)
83%

Pastures 
13%

Agriculture and
Silviculture (AgrSilv) 
3.1%

Other areas 
0.2%

 

 Forest Pasture Cotton Mining  
 Grassland Forest Plantation Other non 

Vegetated
 

 Mangrove Mosaic of Uses Urban  
 River Other Perenial Crop  
 Rocky Outcrop Other Temp. Crops  
 Savanna Soybean  
 Wetland Sugar cane  
 Rice  

secondary forest regrowth, and the evolution of land use and land cover 
classes (such as pasture, agriculture, forest plantations, mining, and ur-
ban areas) over time. Further details on their methodology can be found 
in the algorithm theoretical basis document of MapBiomas (MapBiomas 
Project, 2023).

The study area, within the Brazilian Legal Amazon, was divided into 
29 regions of interest (ROIs), each covering approximately 104,000 
square kilometers (Fig.  1). The division into ROIs allowed for more 
efficient processing of the 37 images, and ROI’s size was chosen based 
on the spatial scale of mesoscale processes such as convective clouds 
in the Amazon region (Machado et al., 2018) and to investigate the 
relationships between land use and climate variables (Franco et al., 
2024).

The exported geotiff  images were post-processed to distinguish be-
tween contiguous areas of natural formations and contiguous areas 
of anthropogenic LULC change. For that, the original MapBiomas 28 
categories were aggregated into four classes, as seen in Table  1. The 
first, ‘forest and natural’, included forests, savannas, grasslands, rivers, 
and other natural formations. The other classes representing defor-
estation were ‘pasture’, ‘agriculture and silviculture’, which includes 
plantations, crops, and planted forests, and the last class, ‘others’, which 
comprised less than 1% of the overall area of study. The LULC maps 
were converted to binary maps containing two classes: natural and 
non-natural formations, representing deforestation.

Using eight-pixel connectivity, we identified areas of contiguous 
deforestation, which hereafter will be called as deforestation patches. 
Processing of MapBiomas images created a dataset of 4.7 GB of data 
with 52.4×106 patches observed over 37 years, each one uniquely iden-
tified so that one can track its evolution. Additionally, we quantified 
their geometric features, which will be further discussed in Section 2.2.

2.2. Characterization of deforested areas

The following information was collected for each deforestation 
patch identified: year, ROI number, centroid coordinates, and land use 
type. Geometric properties such as area (in pixels) and perimeter were 
obtained using the Matlab function regionprops (Mathworks, 2023). 
While various metrics are available to characterize image shapes, we 
focused on two specific ones in this study: the equivalent radius (𝑅𝑒𝑞), 
directly related to the deforested area, and compactness (𝑅𝑐), which 
measures the contour regularity of the patch and is scale-free. Other 
works, such as Jiao et al. (2012), explored ten different metrics, many 
being combinations of area and perimeter measurements.

The equivalent radius is defined as the radius of the equivalent circle 
that would enclose the area 𝐴, i.e., 

𝑅𝑒𝑞 =
√

𝐴
𝜋

. (1)

The equivalent radius provides a convenient and intuitive way to 
compare the spatial extent of deforestation patches, regardless of their 
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Fig. 1. The region of deforestation study within the Brazilian legal Amazon in 2021 showing the land uses grouped according to the categories listed in Table  1. The dashed 
rectangles are the selected 29 ROIs. The continuous colored lines show the limits of the aggregated ROIs into regions A, B, C and D (see Section 3.2).
irregular shapes. By calculating the equivalent radius, it is possible 
to standardize the size of patches with varying shapes and express 
them in a single, standard metric. This allowed us to gain insights into 
the spatial characteristics and patterns of the study area, contributing 
to a more comprehensive understanding of the phenomenon under 
investigation.

The second quantity of interest is the compactness, which is used 
in computer vision and general pattern recognition. Because of its 
properties, it is also used in landscape ecological research and is often 
used for shape quantification (Bogaert et al., 2000). It measures the 
relative amount of area within an object’s boundary. Compactness is an 
adimensional quantity defined as the ratio of the area of the deforested 
region to its squared perimeter or 

𝑅𝑐 = 4𝜋 𝐴
𝑃 2

. (2)

The factor 4𝜋 makes the compactness equal to one for a perfect 
circle (Gonzalez and Woods, 2007). A higher compactness value indi-
cates that an object has a larger area relative to its perimeter, which 
suggests that it is more tightly packed with a regular shape. Conversely, 
a lower compactness value indicates that an object has a smaller area 
relative to its perimeter, which suggests that it has more protrusions 
or irregularities in its shape, like a fishbone deforestation pattern. 
Compactness has multiple definitions in literature (Bribiesca, 2008) and 
Eq. (2) is one of them.

Eventually, a deforested patch can show 𝑅𝑐 > 1, mostly due to 
the perimeter calculation algorithm used by Matlab (Vossepoel and 
Smeulders, 1982). Patches with compactness greater than 1 were con-
centrated mostly in smaller areas (Supplementary Material, Fig.  A.11). 
Therefore patches with less than 250 pixels (or 0.225 km2) and patches 
with 𝑅𝑐 > 1 were discarded. This cutoff reduced the original 17.6 × 106

deforestation patches to 2.7 × 106. Although this significant reduction 
occurred, it represents a decrease of approximately 6% of the total 
deforested area. 
3 
2.3. Geographic cluster aggregation

A cluster analysis was applied to aggregate the 29 ROIs into similar 
groups concerning the temporal evolution of the deforestation patch 
features. Cluster aggregation is a powerful approach for grouping land 
use land cover patterns based on their features, offering valuable 
insights into the distribution and dynamics of different land use land 
cover types. Among various clustering algorithms, k-means is one of 
the most widely used. It partitions a dataset into k clusters, where k is 
defined by the user. The algorithm iteratively assigns each data point to 
the cluster with the nearest centroid. It updates the centroids based on 
the mean of the points in each cluster, continuing until convergence is 
reached and assignments stabilize (MacQueen, 1967). The algorithm’s 
performance can be influenced by the initial centroid selection and the 
choice of the number of clusters.

Two of the features discussed in Section 2.2 were used to charac-
terize each ROI: 𝑅𝑒𝑞 , related to the deforested area, and 𝑅𝑐 , related to 
the shape of the patches. These quantities were aggregated as yearly 
averages for each ROI to capture temporal patterns. Additionally, we 
included as attributes for the cluster analysis the annual deforestation 
rate of each ROI, calculated as the difference between the sum of 
deforested areas in consecutive years and the percentage of forested 
areas.

Using the gap criterion (Tibshirani et al., 2001), we estimated four 
clusters to aggregate the ROIs (see Supplementary Material, Fig.  A.14). 
Therefore, the 29 ROIs were grouped into four regions: A, B, C and 
D, as illustrated in Fig.  1. The characteristics of these regions will be 
discussed in Section 3.2.

2.4. Probability distributions and evolution

Due to the significant number of patches identified in this work, 
it is advisable to characterize the compactness and equivalent radii as 
probability distributions. For each year of observation, we tested the 
following distributions to fit the data: gamma, inverse gaussian, lo-
gistic, loglogistic, lognormal, Nakagami, normal, Rayleigh, Rician, and 
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Fig. 2. Sum of the deforested area (left axis) and deforestation rate (right axis) for the 29 ROIs in the Brazilian Legal Amazon over 37 years. For details on the selection of these 
ROIs, please refer to Section 2.1.
Fig. 3. Compactness (a) and equivalent radius (b) distributions of deforested patches for the Brazilian Legal Amazon considering the whole period of study (1985–2021). The most 
frequent compactness value for the study area is around 0.27.
Weibull. Using the aggregated categories shown in Table  1and based 
on the minimum value of the log-likelihood (Theodoridis, 2020), we 
found that the best-fitting distribution for the compactness of pastures 
was the gamma. At the same time, for croplands, it was the lognormal 
distribution. The gamma distribution is given by 

𝑓 (𝑥|𝑘, 𝜃) = 1
𝜃𝑘𝛤 (𝑘)

𝑥𝑘−1𝑒−
𝑥
𝜃 , (3)

where 𝜃 and 𝑘 are the scale and shape parameters respectively. The 
Lognormal distribution has the form 

𝑓 (𝑥|𝜇, 𝜎) = 1

𝑥𝜎
√

2𝜋
exp

(

−
(ln 𝑥 − 𝜇)2

2𝜎2

)

(4)

with 𝜇 and 𝜎 representing the mean and the standard deviation of data 
and 𝑥 > 0.

The parameters of each distribution are related to the mean 𝑚 and 
the variance 𝑣 by

𝑘 = 𝑚2

𝑣
; 𝜃 = 𝑣

𝑚
;

and

𝜇 = log 𝑚2
√

; 𝜎 =
√

log(𝑣∕𝑚2 + 1) .

𝑣 + 𝑚2

4 
3. Results and discussion

3.1. Characterization of deforested areas - Brazilian Amazon rainforest

Although natural formations still dominate the land cover in the 
study area (see Table  1), this is changing fast, as shown in Fig.  2. Here 
we observe that the deforestation rates reached alarming levels of up 
to 25,000 square kilometers per year. Except for 2005 and 2012, the 
rates have shown no signs of receding. The reduction in deforestation 
in 2005 can be largely attributed to government initiatives such as the 
Action Plan for the Prevention and Control of Deforestation in the Legal 
Amazon (PPCDAm) and international pressures (Ministério do Meio 
Ambiente, 2016; Silva Junior et al., 2021; West and Fearnside, 2021). 
This comprehensive program implemented measures such as establish-
ing preservation areas and demarcating native lands in the Amazon 
region, effectively curbing deforestation. Throughout the observation 
period, the average deforestation rate stood at 11,152 km2 yr−1. This 
pattern was consistently observed across the 29 selected ROIs with 
varying intensities, and it is consistent with data for the entire Ama-
zon region despite of the differences in methodology (PRODES/INPE, 
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2022). Irrespective of the deforestation rate, one undeniable trend 
remains: the deforested area continues to expand.

The next plots, Figs.  3 and 4, show the distribution of the defor-
estation patches regarding the compactness and the equivalent radius, 
considering the whole study region and the 37 years of observations. 
Fig.  3(a) shows the distribution of compactness values, with a mode 
of 𝑅𝑐 ≈ 0.27. Note that in this histogram, the classes are binned 
logarithmically. Fig.  4(a) shows the compactness distribution separated 
by LULC type. While the mean compactness for pasture and sugar cane 
culture is around 0.24, rice and soybean show compactness values 
of 0.42 and 0.27, respectively. Compactness tends to be greater for 
cultured lands, as observed by Jiao et al. (2012). Pasture accounts 
for 13.7% of observed deforestation while cultures are 3.06% with a 
prevalence of soybean (2.3%). The median equivalent radii typically 
span between 0.35 and 0.57 km.

Fig.  3(b) shows the equivalent radius distribution for the entire 
region over the 37 years of observation in a log–log plot. The 𝑅𝑒𝑞
distribution follows a power-law, with an exponential decrease in the 
number of patches as the equivalent radius increases. The equivalent 
radius distribution shows a slope of −1.75 for the region. Therefore, 
extensive deforestation areas are more scarce, and small-scale defor-
estation dominates. The maximum equivalent radius is circa 100 km, 
meaning that the most extensive deforestation area identified had, on 
average, 31,416 km2. Fig.  4(b) shows the 𝑅𝑒𝑞 distribution separated 
by LULC type. Cultures like soybeans and rice showed the greatest 𝑅𝑒𝑞
median values, followed by sugar cane, pastures, and urban areas.

The 𝑅𝑒𝑞 distribution showed a characteristic slope 𝛼 = −1.75 for 
the whole study area in a log–log plot. It is interesting to compare 
our result with those obtained by Taubert et al. (2018) for forest 
fragments that show a slope of −1.90 for tropical and sub-tropical 
forests in the Americas. These are values close to the slope of −2, 
which is an interesting property independent of patch size. In this 
scenario, each size contributes equally to the total deforested area, since 
𝐴(𝑟) = 𝑁(𝑟).𝜋.𝑟2, and 𝑁(𝑟) ∝ 𝑟−2, therefore A(r) is constant.

3.2. Characterization of deforested areas — per region

As previously explained (Section 2.3), ROIs were aggregated into 
four regions: A, the westernmost, and D, the easternmost (Fig.  1). Fig. 
5 depicts the prevalence of land use and land cover categories in each 
cluster compared to the base year of 1985. The results reveal that 
regions B, C, and D exhibit a noticeable substitution of the natural 
landscape in favor of pasture and agriculture.

It is worth noting that since 2019, deforestation rates have in-
creased in all study regions, even in the most preserved ones. Region 
B showed the highest rates after 2019, which is an alarming indication 
of the advance of the arc of deforestation towards the most preserved 
northwestern Amazonian forests.

Each region exhibits a unique LULC pattern and temporal evolution, 
with a discernible deforestation trend observed from west to east, from 
Region A to D. To assess spatial distribution of the morphological 
characteristics of the deforestation patches, our analysis examines the 
geometric characteristics in each region. Fig.  6(a) shows each region’s 
compactness distribution. The compactness distribution was very sim-
ilar in Regions B and C. Moving from the east (Region D) to the west 
(Region A), the most frequent compactness value (i.e., the mode of 
the distribution) increased from 0.22 to 0.32 and then receded to 0.27 
in Region A. Increasing compactness is related to smoother contours 
of deforestation patches, so that this may indicate the influence of 
monocultures in the compactness distribution. In the Supplementary 
Material (Fig.  A.12), soybean, the predominant crop, shows an increase 
in compactness from Region A through Region C, followed by a decline 
in Region D. As deforested patches increase in size, they may reach 
conservation zones or natural boundaries, such as rivers, lakes, or 
even other deforested areas. This suggests that while an increase in 
compactness indicates ongoing deforestation, a decrease could reflect 
5 
Table 2
The distribution of pasture and agriculture and silviculture patches per region of study.
 Pasture Agriculture and Silviculture
 Region  Patches (%)  Area(%)  Patches (%)  Area(%)  
 A 8.6 2.1 1.9 1.8  
 B 14.3 11.4 0.6 0.2  
 C 13.9 34.7 7.8 3.7  
 D 63.2 51.8 89.7 94.2  

a saturation point, where fewer areas remain available for expansion 
compared to more preserved regions in the Amazon.

The distribution of equivalent radius (Fig.  6(b)) shows significant 
differences among regions, noting that the scales are logarithmic. A 
and B have maximum 𝑅𝑒𝑞 values of 20 km and 40 km, respectively, 
while in Regions C and D, they can reach 100 km. Therefore, as we 
move towards the east (from Region A to D), the overall extent of 
deforestation increases and the deforestation patches tend to be larger, 
as seen by the rising slope values shown in Fig.  6(b). The exception 
is Region D, where the slope decreases. This reinforces our hypothesis 
that Region D, even being the most deforested of them all, is reaching 
a saturation of expanding areas. It is worth noticing that most radii are 
concentrated below 2 km (see Supplementary Material, Fig.  A.13). This 
figure also shows how the sugar cane culture stands out in Region A, 
with interquartile ranges (IQR) approximately between 1.3 and 1.6 km 
compared to most of the deforestation patches, which show IQR under 
1.

3.3. Modeling the temporal evolution of compactness and equivalent radii

To assess how the temporal evolution affects the morphological 
characteristics of the deforestation patches, our analysis examines tem-
poral evolution of the geometric characteristics in each region. There 
is evidence that there has been conversion of natural forest areas to 
pasture and, to a lesser extent, to agriculture and silviculture (Fig.  5). It 
is also evident that Regions C and D have experienced a consistent and 
high rate of natural landscape conversion to pasture for nearly 20 years, 
reaching rates of up to 1% per year. However, after 2005, these rates 
decreased by a factor of three. A significant difference between Regions 
C and D has been observed since 2010, with cultures becoming an 
important cause of deforestation in Region D.

Region B shows a constant change of natural landscapes to pastures 
at a slower rate of approximately 1% every four years. Unlike Regions 
C and D, rates did not decrease after 2005. Following this trend, by the 
year 2050, it can reach the level of deforestation compared to Regions 
C and D.

The results show that compactness exhibits distinct distributions 
characterized by varying peaks and averages contingent upon the spe-
cific region under investigation (denoted as Regions A, B, C, or D). 
Previously, as depicted in Fig.  5, it was established that land types
Pasture and AgrSilv are primarily accountable for deforestation in the 
Amazon region — consequently, our focus shifts to examining the 
evolving distributions of patches about these two categories.

Table  2 presents the distribution of pasture and cropland patches 
across different regions. Region D accounts for 63.2% of the identified 
pasture patches in the Amazon, in stark contrast to Region A, which 
contains only 8.6%. The concentration of cropland in Region D is 
even more pronounced, with 89.7% of the cropland patches located 
there. Region C is also noteworthy for pastures: although it represents 
only 13.9% of the total patches, it covers a substantial 34.7% of the 
deforested areas.

Fig.  7 illustrates the compactness probability distributions for pas-
tures (Fig.  7(a)) and for cultivated lands (Fig.  7(b)) in four observations 
from 1985 to 2021. Notably, compactness distribution for agricultural 
lands is moving towards higher values. Conversely, an opposite trend 
is observed for pastures, wherein they tend to concentrate in the lower 
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Fig. 4. Boxplots showing compactness (a) and equivalent radius (b) distribution for deforested patches by land use classes in the Brazilian Legal Amazon. Note that we removed 
outliers from this plot for clarity.
compactness range. This reflects that agricultural lands increasingly 
adopt mechanization, thereby imprinting more regular landscape pat-
terns and higher compactness. On the other hand, pastures tend to 
exhibit ‘‘fishbone’’ patterns, typically characterized by lower compact-
ness values. This suggests a coherent evolution in the compactness 
distributions based on land use.

As mentioned earlier, we identified four regions with distinct char-
acteristics in the Amazon rainforest. In this section we will study how 
the compactness and equivalent radii evolve.

For each year of observation, we fitted gamma distribution for pas-
tures and lognormal distribution for agricultural and silviculture land 
uses. These fits are within a confidence interval of 95%, meaning that 
the parameters 𝑘, 𝜃, 𝜇, and 𝜎 of the gamma and lognormal distributions 
fall within a minimum and maximum range, Eqs.  (3) and (4). We will 
show how to quantify this change based on the observed compactness 
shifts, Fig.  7.

Fig.  8 shows this evolution. The dots are the average (mean) com-
pactness while the red dotted lines are the confidence interval of our fit. 
We used data from 1985 to 2010 to get the linear fit trendlines. Figs. 
8(c) and 8(d) confirm our findings that compactness is increasing, in 
average, for cultured lands. The relative large confidence interval of 
Fig.  8(c) reflects that we have less than 10% of these patches in Region 
C (cf. Table  2). Nevertheless, both show a growing trend.

For pastures, Region D shows a clear decreasing trend (Fig.  8(b)). 
This region is where most of the deforested patches are located, both 
in area and quantity.

At first sight, Region C, Fig.  8(a) might contradict our findings. 
Before 2010, the average compactness for pastures was growing, but 
at a slower rate, almost 50%, compared, for example, to cultured 
lands (Table  3). Then this pattern reverses in 2010, and the average 
compactness for pastures starts decreasing at −3.75 × 10−3, about six 
times faster than Region D (Fig.  9). The compactness change reflects a 
6 
Table 3
The parameters for the linear fits discussed in Fig.  8. For the Region D, the most 
deforested, it shows clearly the decreasing compactness for pastures and the increasing 
values for cultivated lands. For Region C it is shown also the fit of the reversed trend 
after 2010.
 Pasture Agriculture and 

Silviculture

 Region  Linear fit: 
Slope

 Linear fit:
Intercept

 Linear fit: 
Slope

 Linear fit:
Intercept

 

 C 1.25E−03 −2.18 2.61E−03 −4.98  
 C (after 2010) −3.75E−03 7.86 – –  
 D −6.18E−04 1.50 3.53E−03 −6.87  

critical change in land use patterns in Region C after 2010. A possible 
reason for this is that pastures were not competing with cultured lands, 
which were well delimited, i.e., in regular shapes. As pastures expand 
in Region C, land use changes, and they show the typical fishbone 
patterns. The reason for the change in the evolution of compactness 
cannot be concluded from the data available for this study. However, 
we can see that Region C now has a decreased compactness pattern, 
similar to the typical deforestation pattern in Region D.

It is also possible to derive how the distribution of equivalent radii 
evolves by region and land use land cover. The 𝑅𝑒𝑞 distribution is 
highly concentrated at lower values, so logarithmic binning was applied 
to both axes, revealing a power-law pattern. This can be observed in 
Fig.  3(b) for the entire Amazon region and in Fig.  6(b) for each region. 
Each region exhibits a characteristic slope, with steeper slopes indicat-
ing a predominance of larger deforestation patches, while shallower 
slopes reflect a more pronounced presence of smaller patches. Thus, 
this distribution can be characterized by its slope 𝛼 and intercept 𝛽.

As we did for compactness, we also computed the evolution of 
equivalent radius distributions for pastures and agriculture lands yearly 
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Fig. 5. Difference of the land use land cover occupation referring to each region’s base year (1985). The LULC groups in this figure are described in Table  1. Regions C and D 
show the highest rate of changing forest and natural formations into pastures or cultures.
Fig. 6. Compactness (a) for each cluster showing the maximum of the distribution (note the bins classes are taken logarithmically). The maxima of compactness values shift from 
0.27 in Region A to 0.32 in Regions B and C, then decrease to 0.22 as we move from the west to the east, suggesting a turning point. The equivalent radius distribution (b) for 
each one of the regions shows a characteristic slope. Increasing slope values indicate the region presents more patches with wider deforesting areas. The shift in the distribution 
of patches reaching a peak at Region C indicates a tipping point similar to the one observed for the compactness.
from 1985 to 2021 in Regions C and D. Fig.  10 shows how 𝛼, the 
distribution slope evolves. The most significant region in terms of the 
7 
number of patches (Region D) shows an increasing trend in 𝛼 until 2010 
both for pastures and cultivated lands, indicating that, on average, the 
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Fig. 7. Compactness distributions for distinct years reveal pasture and agricultural lands distributions and opposite evolution trends. Pastures tend to shift distribution towards 
lower compactness values, while agricultural patch distributions shift in the opposite direction.
Table 4
The parameters for the linear fits of Fig.  10.
 Pasture Agriculture and 

Silviculture

 Region Linear fit: 
Slope

Linear fit:
Intercept

Linear fit: 
Slope

Linear fit:
Intercept

 

 C 1.74E−02 −36.23 −3.20E−02 62.09  
 D 8.62E−03 −19.01 1.70E−02 −35.88  

number of patches with larger areas was increasing (Figs.  10(b) and
10(d)). Pastures in Region C, Fig.  10(a) show the same trend. After 
2010, the value of 𝛼 tends to stabilize. The linear fits in Fig.  10 use data 
from 1985 to 2010. Again, as the number of agriculture and silviculture 
patches is not representative in Region C, results do not show a clear 
trend. Table  4 presents the parameters used for the linear fit of 𝛼
evolution. For Region D, the rate at which 𝛼 increases for cultivated 
lands is approximately two times faster than pastures from 1985 to 
2010. After 2010, both distributions remain stable. This stabilization in 
the values of 𝛼 indicates two distinct periods of deforestation: before 
and after 2010. Any modeling of compactness and equivalent radius 
distribution should account for this change.

3.4. Applications of this methodology

This methodology has diverse applications, particularly in improv-
ing climate prediction models and informing public policy. Climate 
models such as the Community Earth System Model — CESM (Dan-
abasoglu et al., 2020) incorporate land-use modules. Our results can 
be used to predict how deforestation advances in a certain region and 
these results, used as inputs in CESM, can provide more reliable climate 
projections, enabling a better assessment of land-use impacts on climate 
dynamics.

For public policy this methodology can be used to identify changes 
in deforestation trends. Fig.  9 reveals a distinct reversal in the compact-
ness trend of deforested areas, demonstrating that as the number and 
area of pastures increase, compactness tends to decline. Notably, after 
2010, this trend reversal indicates that pasture-driven deforestation 
became the dominant process in Region C. Such insights allow policy-
makers to identify areas undergoing economic shifts, potentially linked 
to illegal land occupation, and to implement targeted interventions to 
mitigate unauthorized land-use changes.

Keil et al. (2015) emphasize the significance of habitat loss
geometry—whether inward, outward, or random—in shaping biodi-
versity decline. The proposed methodology, which analyzes deforesta-
tion patterns, can provide critical empirical data to characterize this 
8 
geometry. By classifying deforestation events based on their spatial 
occurrence—whether at forest edges (inward deforestation), within 
the interior of forested regions (outward deforestation), or distributed 
randomly—this approach can offer valuable input for spatially ex-
plicit models of biodiversity loss. Integrating these empirical classi-
fications into predictive frameworks would enhance the realism and 
applicability of the models, in particular those from by Keil et al. 
(2015).

Predictive modeling of deforestation dynamics can also inform con-
servation strategies by identifying priority areas for intervention. For 
instance, if the model indicates a high probability of inward defor-
estation in a biodiversity hotspot, conservation efforts can be directed 
towards habitat protection or restoration to mitigate the most severe 
biodiversity losses. By integrating spatial deforestation predictions with 
conservation planning, this approach can enhance the effectiveness of 
targeted conservation actions.

4. Conclusions

This study comprehensively analyzed the main characteristics of 
contiguous deforestation patches and their temporal evolution in the 
Brazilian Amazon. A large volume of data was analyzed, comprising 
36 years of LULC data and 3 million km2. The pasture was the most 
frequent land use type in the deforestation patches, representing ap-
proximately 83% of the deforested area, followed by agriculture and 
silviculture together, accounting for 17%.

The extension and shape of deforestation patches were charac-
terized by two simple geometric features: equivalent radii and com-
pactness. Both showed consistent and predictable behavior across the 
Brazilian Amazon. Equivalent radii followed a power-law distribution 
so that the frequency of deforestation patches decreased with size 
with a slope of −1.75 (in a logarithmic plot). Equivalent radii ranged 
between 0.1 and 100 km. Results show that cultures have higher 
equivalent radii than urban areas in Amazonia. Compactness values fol-
lowed gamma and lognormal distributions for pastures and agricultural 
land uses. If we consider all types of deforested patches, compactness 
distribution has a mode equal to 0.27, typical of pastures (see Fig.  4(a)).

A cluster analysis identified four regions in Amazonia with similar 
spatial and temporal deforestation patterns. Each region showed a 
characteristic distribution of compactness, equivalent radius, and a 
particular evolution over time. Notably, patches in the most deforested 
region (Region D) showed greater equivalent radii, but compactness 
values were typically lower than in other regions. This result suggests 
the existence of a critical threshold in the evolution of deforestation 
patterns, reaching a saturation for further patch expansion.

The geometric features of deforestation patches evolved consistently 
over time. An increase in compactness means the deforestation patches 
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Fig. 8. The average yearly compactness for pastures, agri and silviculture lands. The linear model is fitted with data from 1985 to 2010 and then extrapolated. Dashed lines show 
the 95% confidence interval of average 𝑅𝐶 . As shown in Table  2, most of the pasture patches are located in Regions C and D. At the same time, cultured lands remain mostly 
in Region D. This region shows that pastures 8(b) have a decreasing compactness trend while agri and silviculture (8(c) and 8(d)) tend to grow. Pastures in region C showed 
an increasing compactness trend until 2010 and then reversed 8(a), possibly because the pastures encountered preservation zones. The rates of compactness growth are shown in 
Table  3.
Fig. 9. The reversing compactness trend of Region C. After 2010, it decreases at a rate 
of −3.75 × 10−3 per year. The confidence interval for the distributions is not shown.

are evolving to more regular shapes. Evidence shows sugar cane cul-
tures are advancing in the eastern part of the Amazon (Region A, see 
9 
Fig.  A.13), with patches showing equivalent radii IQRs between 1.3 
and 1.6 km. The temporal evolution of equivalent radii distributions 
showed a combination of the emergence of new small deforestation 
patches (𝑅𝑒𝑞 1–2 km) and the growth of former patches. Another 
interesting finding was the trend in compactness to shift towards bigger 
values for agricultural lands and towards lower values for pastures (see 
Tables  3–4 and Figs.  8–10).

The methodology proposed in this work did not consider the whole 
Amazon territory, but 29 regions sampled based on the criteria dis-
cussed in Section 2. When we grouped the land uses in classes (cf. 
Table  1), we grouped different cultures with distinct production cycles. 
A further refinement could be grouping the cultures based on those 
criteria.

While our work was initially designed for macro variations of defor-
estation patterns, it has the potential to be adapted for smaller areas. 
In Section 2.2, we explained that only patches larger than 225,000 m2

were considered in this study due to limitations on the calculus of the 
compactness. However, this methodology can be flexibly adapted to 
smaller regions, provided a sufficient number of patches are maintained 
to derive the probability distribution.

Finally, the current study demonstrated that two simple geometric 
measures, descriptive of the extension and shape of patches, satisfacto-
rily characterized the evolution of deforestation patterns in different 
parts of Amazonia. These metrics showed consistent variability over 
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Fig. 10. Evolution of the slope of the equivalent radii distribution for pastures (Figs.  10(a) and 10(b)) and cultured lands (Figs.  10(c) and 10(d)). The distribution of equivalent 
radii tends to stabilize. The apparent downtrend for agriculture and silviculture in Region C (Fig.  10(c)) is due to the small number of samples (cf. Table  2).
Fig. A.11. Patches with 𝑅𝑐 > 1. The red line shows the cutoff adopted in this work 
i.e., areas below 200 pixels. The remaining 260 points had their compactness changed 
to 1.
10 
space and time, so they have a predictable behavior. Future model 
developments on deforestation prediction could benefit from using 
patch-effective raddi and compactness as features to represent spatial 
patterns of deforestation. Furthermore, the framework developed in the 
current study allows us to follow the evolution of individual patches, 
which could substantially enhance our understanding of deforestation 
dynamics and guide targeted conservation efforts.
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Fig. A.12. Compactness distributions for deforested patches per land use land cover and region. Outliers are not shown for better visualization.
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Appendix A. Supplementary material

A.1. Further considerations regarding compactness and equivalent radii per 
region

In Section 2.2, we discussed the geometric quantities used in this 
work to characterize deforestation patches. We highlighted the limita-
tions of compactness calculations and that they can show compactness 
values greater than 1. Fig.  A.11 is a subset of the data for deforestation 
patches with 𝑅𝑐 > 1. There are approximately 1.07 × 106 observa-
tions with that characteristic. As per our definition of compactness, 
Eq. (2), the maximum compactness value is one for a circle. Smaller 
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Fig. A.13. Equivalent radius distributions for deforested patches per land use land cover and region. Outliers are not shown for better visualization.
patches indeed show inaccurate perimeter calculations (Mathworks, 
2023). Therefore we determined a cutoff of 200 pixels and discarded all 
patches below that limit. The 260 points left, with compactness values 
that ranged from 1.0 to 1.1, were ‘‘normalized’’ and changed to 1.

In the main text, we discussed how the compactness values were 
distributed per LULC identified by MapBiomas (Fig.  4(a)). We show in 
Fig.  A.12 these values per Region. A noticeable characteristic is that 
Region A has, in general, lower median values of compactness. This 
is possibly due to the advance of deforestation patches in the forests, 
which can justify a more ‘‘irregular’’ contour (or lower compactness).

The distribution of equivalent radii per region is presented in Fig. 
A.13, with the outliers removed. We can see the prevalence of large 
soybean plantation areas noticeably in Region D. These deforested areas 
are comparable in size with the urban areas of the ROIs. It also stands 
out that the equivalent radius of sugar cane plantations in Region A 
12 
is significantly larger than in Region D. This is an alarming sign that 
these monocultures might be spreading into the western region of the 
Brazilian Amazon.

A.2. Clustering: choosing the number of regions

Clustering evaluation criteria are used to determine the quality of 
a clustering solution by assessing how well the clusters separate the 
data points. The graphical approach of locating the ‘‘elbow’’ in a plot 
of error measurement versus the proposed number of clusters (Syakur 
et al., 2018) is popular, but this is visual and quite subjective. We used 
four indexes to verify the number of clusters: the Silhouette Coefficient, 
the Gap Statistic, the Calinski–Harabasz (CH), and the Davies–Bouldin 
(DB) indexes.
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Fig. A.14. Cluster analysis. The two upper panel tests (silhouette and gap values) indicate four to five clusters. The CH and DB tests indicate eight clusters. We chose the fewest 
possible clusters, so we decided to work with four in this paper.
Fig. A.15. Yearly deforestation rates per region in the Brazilian Legal Amazon. The most preserved regions, A and B, show lower and relatively constant deforestation rates. 
Regions C and D presented higher rates, but government actions diminished this trend by the second half of the 2010 decade (Ministério do Meio Ambiente, 2016). From 2019 
to 2021, all regions increased deforesting rates. Since 2017, Region B has been leading these rates.
The gap statistic compares the within-cluster dispersion of a cluster-
ing solution with that of a null reference distribution to determine if the 
clustering structure is statistically significant. It can be used to identify 
the number of clusters that maximize the gap between the actual data 
and the null distribution. The silhouette coefficient measures how well 
each data point fits into its assigned cluster compared to other clusters. 
It ranges from −1 to 1, with values closer to 1 indicating better cluster 
assignments. With it, we can identify the number of clusters that max-
imize the average silhouette coefficient across all data points. The CH 
index is a technique based on the ratio of the between-cluster variance 
to the within-cluster variance. It measures the degree of separation 
between clusters and can be used to identify the number of clusters that 
13 
maximize this separation. Finally, the DB index measures the average 
similarity between each cluster and its most similar cluster relative 
to the average dissimilarity between each cluster and its least similar 
cluster. The goal is to identify the number of clusters that minimize this 
ratio.

Fig.  A.14 shows the clustering evaluation for our data. It indicates 
that the optimal number of clusters is five for the silhouette and gap 
criteria and eight for the CH and DB. However, we should combine 
these statistical tests’ indications with expert knowledge. As we are 
interested in building the fewest clusters possible to make our analysis 
more generic, we decided on four clusters because (i) the silhouette 
values are similar for four and five clusters, and (ii) the gap value for 
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Fig. A.16. Difference of the probability distribution of compactness for each one of the regions to the base year of 1985. We observe that compactness shifts from lower to greater 
values, particularly Region B, that peaks at 𝑅𝑐 = 0.6. The shift towards higher values of compactness is indicative of smoother contours in deforestation patches, indicating human 
land changes.
four clusters is significantly bigger than three. As one increases the 
clustering groups, the gap values are similar within the error bars, so 
we chose the lowest possible grouping.

A.3. Deforestation rate in the Amazon per region

The most preserved regions (A and B) showed lower although con-
stant deforestation rates over the years, with smaller fluctuations when 
compared with Regions C and D. The occasional negative deforestation 
rates were most likely due to forest regrowth, for example, when 
pastures are abandoned (Davidson et al., 2012).

Regions C and D closely followed the variability of the deforestation 
rates calculated for the whole study area (Fig.  2), showing that they 
have driven deforestation in Amazonia in the recent past. The defor-
estation increase observed between 2013 and 2016 was led by Region 
D. This rise could be linked to agricultural incentives, as the proportion 
of agricultural lands in the region reached approximately 13% of the 
total area by 2021 (see Fig.  5).

A.4. Land use land cover occupation, compactness and equivalent radius 
— difference from base year

From Fig.  A.15, it is evident that Regions C and D have experienced 
a consistent and high rate of natural landscape conversion to pasture 
for nearly 20 years, reaching rates of up to 1% per year. However, after 
2005, these rates decreased by a factor of three. A significant difference 
14 
between Regions C and D has been observed since 2010, with cultures 
becoming an important cause of deforestation in Region D.

Region B shows a constant change of natural landscapes to pastures 
at a slower rate of approximately 1% every four years. Unlike Regions 
C and D, rates did not decrease after 2005. Following this trend by the 
year 2050, it can reach the level of deforestation compared to Regions 
C and D.

In Fig.  A.16, we present the evolution of the compactness prob-
ability distribution values for each region referring to the base year 
1985. Each line on the graph corresponds to the difference in the 
compactness distribution with respect to 1985, depicted in a gradient of 
blue. This resource helps to visualize the shift in the distribution of the 
quantities of interest. The results indicate a variation in compactness 
values over time. Regions A, B and D show a significant decrease in 
the prevalence of deforestation patches with compactness between 0.1 
and 0.4, shifting towards higher values (0.4 – 0.6). Region B shows 
clearly a peak in 𝑅𝑐 ≈ 0.6. Region C shows a decrease in compactness 
around 0.4, shifting towards upper and lower values. However, the 
relative difference to the base year is smaller in Region C compared 
to other regions. This observed shift provides an excellent opportunity 
for modeling.

As for the compactness, we studied the evolution of the equivalent 
radius over time compared to the first year of observations. In Regions 
A and B, an increase in the number of patches with 𝑅𝑒𝑞 in the range 
1–2 km was observed over time (Fig.  A.17), suggesting a profusion of 
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Fig. A.17. Difference of the equivalent radii of the base year (1985) for each one of the clusters (shown up to 10 km). Region A shows a pronounced increase in patches between 
1 and 2 km of equivalent radius. In Region B, this increase extends up to 4 km. Region D has experienced an increase in the equivalent radius of patches from 1 to 6 km. Region 
C does not show a clear trend compared to the rest of the study areas.
new small deforestation patches. This result indicates that the increas-
ing trend in the number of small clearings observed by Kalamandeen 
et al. (2018) until 2014 was intensified in Regions A and B. Regions C 
and D show a greater proportion of patches with 𝑅𝑒𝑞 > 2 km, with an 
increasing trend. It suggests that in Regions C and D, a combination of 
new small patches and growth occurred over time. This indicates the 
presence of large continuous crops and pastures in Regions C and D, 
contrasting with the smaller patches in Regions A and B. Overall, the 
evolution of 𝑅𝑒𝑞 distribution exhibits consistent trends in each region, 
which can be effectively parameterized to describe the progression of 
deforestation over the years.

Putting together the findings from Figs.  A.16 and A.17, we can infer 
that deforestation is increasing in Regions C and D (from the shift 
in the equivalent radius distribution), and this growth tends to shift 
the compactness distributions to higher values. As mentioned, higher 
compactness values indicate smooth contours, most probably due to 
anthropogenic land use land cover changes.

Data availability

Data will be made available on request.
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