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Abstract
We study some compactness properties of the set of conformally flat singular metrics
with constant, positive sixth order Q-curvature on a finitely punctured sphere. Based
on a recent classification of the local asymptotic behavior near isolated singularities,
we introduce a notion of necksize for these metrics in our moduli space, which we use
to characterize compactness.More precisely,we prove that if the punctures remain sep-
arated and the necksize at each puncture is bounded away from zero along a sequence
of metrics, then a subsequence converges with respect to the Gromov–Hausdorff met-
ric. Our proof relies on an upper bound estimate which is proved using moving planes
and a blow-up argument. This is combined with a lower bound estimate which is a
consequence of a removable singularity theorem. We also introduce a homological
invariant which may be of independent interest for upcoming research.
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1 Introduction

In recent years, there has been active research into analogs of the Yamabe problem
and its singular counterpart. In each of these problems, one seeks a representative
of a conformal class with constant curvature of some type, scalar curvature in the
classical case, and some σk-curvature or one of Branson’s higher order Q-curvatures
in more modern examples. Conformal invariance often complicates these problems,
leading to singular solutions and the lack of compactness in the space of solutions.
For this reason, it is always appealing to characterize which geometric properties in
the solution space imply compactness.

In the present paper,we study themoduli space of complete, conformallyflatmetrics
with constant sixth order Q-curvature on a finitely punctured sphere. Our main result
generalizes a theoremof Pollack [29] in the scalar curvature setting, stating that so long
as the punctures remain separated and certain geometric necksizes bounded away from
zero, the corresponding subset of moduli space is compact in the Gromov–Hausdorff
topology.

Let n � 7 and denote the n-dimensional sphere by S
n . For N ∈ N, we let � =

{p1, . . . , pN } ⊂ S
n be a finite subset and seek complete metrics on � := S

n\� of
the form g = U 4/(n−6)g0, where g0 is the standard round metric. The fact that g is
complete on � forces lim inf p→pi U (p) = ∞ for each i ∈ {1, . . . , N }. Furthermore,
we prescribe the resulting metric to have constant sixth order Q-curvature normalized
to be

Qn = n(n2 − 4)(n2 − 16)

32
, (1.1)

which is the sixth order Q-curvature of the standard round sphere (Sn, g0).
The sixth order Q-curvature behaves well under a conformal change of metric.

More precisely, the condition that g = U 4/(n−6)g0 satisfies Q6
g = Qn on � = S

n\�
is equivalent to the PDE

P6
g0U = cnU

n+6
n−6 on �, (Q6,g0,N )

where cn = n−6
2 Qn is a normalizing constant. The operator on the left-hand side is

the sixth order GJMS operator on the sphere defined by

P6
g0 =

(
−�g0 + (n − 6)(n + 4)

4

)(
−�g0 + (n − 4)(n + 2)

4

)
(

−�g0 + n(n − 2)

4

)
, (1.2)

and after a conformal change of metric g = U 4/(n−6)g0, it transforms as

P6
g φ = U− n+6

n−6 P6
g0(Uφ) for all φ ∈ C∞(�). (1.3)
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Compactness of solutions to the GJMS equations 4883

For more details on this subject, we refer the interested reader to [9, 13, 15, 23].
The operator P6

g is one of a family of geometrically natural, conformally covariant
differential operators defined on a Riemannianmanifold. This family includes the con-
formal Laplacian, which is described below and plays an important role in the study
of scalar curvature. In [17] Graham, Jenne, Mason and Sparling constructed confor-
mally covariant differential operators P2m

g on a compact n-dimensional Riemannian
manifold (Mn, g) for any m ∈ N such the leading order term of P2m

g is (−�g)
m . One

can then construct the associated Q-curvature of order 2m by n−2m
2 Q2m

g = P2m
g0 (1).

In the special case m = 1, one recovers the conformal Laplacian

P2
g = −�g + n − 2

4(n − 1)
Rg with Q2

g = 1

2(n − 1)
Rg,

where �g is the Laplace–Beltrami operator of g and Rg is its scalar curvature. More
generally, in [6, Theorem 2.8] Branson constructed a conformally covariant (nonlocal)
operator Pσ

g0 of any order σ ∈ (0, n/2) in the case that the background metric is the
round metric g0 on the sphere S

n . Subsequently, Graham and Zworski [18] and Chang
and González [11] extended Branson’s construction to any compact manifold that is
the conformal infinity of a Poincaré–Einsteinmetric. Once again, the leading order part
of P2σ

g0 is (−�g0)
σ , understood as the principal value of a singular integral operator.

We write the formulae for P2
g , P4

g and P6
g explicitly in Appendix A. Nevertheless, the

expressions for P2σ
g and Q2σ

g for a general σ ∈ R+ are more complicated (see for
instance [14, 15, 23]).

We remark that the nonlinearity on the right-hand side of (Q6,g0,N ) has critical

growth with respect to the Sobolev embedding W 3,2(Rn) ↪→ L2# (Rn), where 2# =
2n

n−6 . It is well known that this embedding is not compact, reflecting the conformal
invariance of the PDE (Q6,g0,N ).

It will be convenient to transfer the PDE (Q6,g0,N ) to Euclidean space, which we
can do using the standard stereographic projection (with the north pole in �, and thus
a regular point of any of the metrics we consider). After stereographic projection, we
can write

g0 = u
4

n−6
sph δ and usph(x) =

(
1 + |x |2

2

) 6−n
2

,

where δ is the Euclidean metric. In these coordinates our conformal metric takes
the form g = U 4/(n−6)g0 = (U · usph)

4/(n−6)δ. Thus, u ∈ C∞(Rn \ 	) given by
u = U · usph is a positive singular solution to the transformed equation

(−�)3u = cnu
n+6
n−6 in R

n \ 	, (Q6,δ,N )

where � is the usual flat Laplacian and 	 is the image of the singular set � under the
stereographic projection.

As a notational shorthand, we adopt the convention that U refers to a conformal
factor relating the metric g to the round metric, i.e. g = U 4/(n−6)g0, while u refers to
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4884 Andrade et al.

a conformal factor relating the metric g to the Euclidean metric, i.e. g = u4/(n−6)δ,
with the two related by u = Uusph.

Remark 1.1 In this Euclidean setting, the transformation law (1.3) in particular implies
the scaling law for (Q6,δ,N ), namely if u solves (Q6,δ,N ) then so does uλ(x) :=
λ

n−6
2 u(λx) for any λ > 0.

We study the compactness properties of both the unmarked and the marked moduli
spaces of admissible constant sixth order Q-curvaturemetrics.Wedefine the unmarked
moduli space as

M6
N =

{
g ∈ [g0] : g is complete on S

n \ � with #� = N and Q6
g ≡ Qn

}
, (1.4)

and the marked moduli space as

M6
� =

{
g ∈ [g0] : g is complete on S

n \ � and Q6
g ≡ Qn

}
.

Intuitively, in the unmarkedmoduli spacewefixonly the number of punctures,whereas
in the marked moduli space we fix the punctures themselves. We place the Gromov–
Hausdorff topology on both the marked and unmarked moduli spaces.

The first step to understanding the properties of either of these moduli spaces is to
study the conformally flat equation

(−�)3u = cnu
n+6
n−6 in B

∗
R, (P6,R)

where B
∗
R := {x ∈ R

n : 0 < |x | < R} is the punctured ball for R < +∞. Allowing
R → +∞ turns (P6,R) into the following PDE on the punctured space

(−�)3u = cnu
n+6
n−6 in R

n \ {0}. (P6,∞)

On this subject, the classification of non-singular solutions to (P6,∞) is provided
in [33]. Later on, in [22] it is proved that blow-up limit solutions do exist. Recently,
based on a topological shootingmethod, the first and last authors classified all possible
solutions to this limit equation [3].

One can merge these classification results into the statement below

Theorem A Let u ∈ C6(Rn \ {0}) be a positive solution to (P6,∞).

(a) If the origin is a removable singularity, then there exists x0 ∈ R
n and ε > 0 such

that u is radially symmetric about x0 and, up to a constant, is given by

ux0,ε(x) =
(

2ε

1 + ε2|x − x0|2
) n−6

2

. (1.5)

These are called the (sixth order) spherical solutions (or bubbles).
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Compactness of solutions to the GJMS equations 4885

(b) If the origin is a non-removable singularity, then u is radially symmetric about the
origin. Moreover, there exist ε0 ∈ (0, ε∗

n] and T ∈ (0, Tε0 ] such that

uε,T (x) = |x | 6−n
2 vT (ln |x | + T ). (1.6)

Here ε∗
n = K (n−6)/6

0 , Tε ∈ R is the fundamental period of the unique T -periodic
bounded solution vT ∈ C6(R) to the following sixth order IVP

{
v(6) − K4v

(4) + K2v
(2) − K0v = cnv

n+6
n−6

v(0) = ε0, v(2)(0) = ε2, v(4)(0) = ε4, v(1)(0) = v(3)(0) = v(5)(0) = 0,

where K4, K2, K0, ε
∗
n are dimensional constants (see (3.2)) and ε2, ε4 depend on

ε0. These are called (sixth order) Emden–Fowler solutions.

In [22], it is shown that solutions to (P6,R) with R < +∞ satisfy a priori bound
near the isolated singularity, which implies that they behave like the solutions to the
limit equation near the isolated singularity

Theorem B Let u ∈ C6(B∗
R) be a positive singular solution to (P6,R). Suppose that

−�u � 0 and �2u � 0. Then

u(x) = (1 + o(1))uε,T (|x |) as x → 0, (1.7)

where uε,T belongs to the family (1.6).

These two results combined motivate the following definition

Definition 1.2 Let g ∈ MN with a singular set� ⊂ S
n , #� = N , and let p j ∈ �. Let

g = U 4/(n−6)g0 = u4/(n−6)δ where we choose stereographic coordinates centered at
p j . By (1.7) we know u(x) = uε j ,Tj (|x |)(1 + o(|x |)) for some ε j ∈ (0, ε∗

n]. This ε j

is the asymptotic necksize of the metric g at the puncture p j .

Now we have conditions to state our main compactness theorem for the unmarked
moduli space

Theorem 1.3 Let N � 3 and let 0 < δ1, δ2 < 1 be positive real numbers. Then the
set

Q6
δ1,δ2

=
{

g ∈ M6
N : dg0(p j , p�) � δ1 for each j �= � and ε j (g) � δ2

}
.

is sequentially compact with respect to the Gromov–Hausdorff topology.

Remark 1.4 Notice that as a consequence of Theorem A (a), it follows thatM1 = ∅.
Also, from Theorem A (b), we have that Mp1,p2 = (0, ε∗

n] for any p1 �= p2, where
ε∗

n ∈ (0, 1). Moreover, it follows that M2 = (0, ε∗
n] × ((Sn × S

n\diag)/SO(n +
1, 1)), where the group SO(n + 1, 1) of conformal transformations acts on each S

n

factor simultaneously. These metrics are called the Delaunay metrics. Furthermore,
by moving the singular points around via its conformal group, they all correspond to
a doubly punctured sphere and are rotationally invariant.
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∗

(p1, ε1)

∗

(p4, ε4)

∗

(p2, ε2)

∗

(p3, ε3)

∗∗
p1 → p2

∗∗

∗ ∗

∗◦

ε4 → 0

Fig. 1 The two possible degenerations in the moduli spaceM6
4

Remark 1.5 It is worthwhile to now describe the possible degenerations of a sequence
ofmetrics inM6

N . Let {gk = (Uk)
4/n−6g0}k∈N ⊂ M6

N be a sequence that leaves every
compact subset. We denote the singular set of gk by �k = {p1,k, . . . , pN ,k} and the
asymptotic necksize of gk at the puncture p j,k as ε j,k . Then either limk→∞ ε j,k = 0
for some j or limk→∞ p j,k = limk→∞ p j ′,k for some j �= j ′. We sketch these two
degenerations in Fig. 1 (It is possible that both degenerations happen simultaneously).
In either case, in the limit one obtains a metric g∞ ∈ M6

N ′ for some N ′ < N . In this
way, one can compactify the moduli spaceM6

N by gluing copies ofM6
N ′ for N ′ < N

to ∂M6
N . We speculate that this compactification would not give a smooth manifold

with boundary, but rather that ∂M6
N is in general a stratified space.

Let us compare our main results with the second and fourth order analogs. In the
same spirit as our main result, it was proved in [29] and [2] that the moduli sets

Q2
δ1,δ2

⊂ M2
N =

{
g ∈ [g0] : g is complete and Rg ≡ 2−1(n − 4)

}
(1.8)

and

Q4
δ1,δ2

⊂ M4
N =

{
g ∈ [g0] : g is complete and Q4

g ≡ 2−3n(n2 − 4)
}

(1.9)

are also sequentially compact.
Based on classification results like Theorem A and Theorem B, much more is

known about the moduli spaces in (1.8) and (1.9). In fact, some classical works of
Mazzeo and Pacard [25] used gluing techniques to prove that there exists a family
of solutions in (1.8). Furthermore, Mazzeo, Pollack, and Uhlenbeck [26] proved that
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Compactness of solutions to the GJMS equations 4887

this space turns out to be a finite-dimensional analytic submanifold furnished with a
natural Lagrangian structure.

On the moduli space (1.9), less is known. Some of the authors in [1] proved that
the moduli space contains a family of metrics with finitely many Delaunay-type ends
attached when the background manifold is non-degenerate and has a suitable higher
order derivative vanishing of the Weyl tensor. However, the standard round sphere is
not included in this class. Notice that if the singular set is empty, a recent result of
Gursky, Hang, and Lin [20] proves that the moduli space is non-empty.

Inspired by the arguments in [29], the proof of Theorem 1.3 is divided into three
parts that we describe as follows. First, we need to introduce the so-called sixth order
geometric Pohozaev invariant, which is related to the Hamiltonian energy of the limit-
ing ODE [28, 31]. Second, we obtain an apriori upper bound and for positive singular
solutions to (Q6,g0,N ), estimates which are accomplished by combining a sliding
method, a blow-up argument, and a Harnack inequality. From this, we obtain uniform
bound on certain Hölder norms, which by compactness, allows us to extract a limit,
up to subsequence. Third, we use the first order asymptotic expansion for the Green
function of the sixth order GJMS operator near the pole and the fact the necksizes are
away from zero shows that this limit is non-trivial. Finally, one can apply a removable
singularity theorem to conclude the proof.

The rest of the paper is divided as follows. In Sect. 3, we define the logarithmic
cylindrical change of variables and we use the conformal invariance between the
punctured space and the cylinder to transform (Q6,g0,N ) into a PDE on the cylinder.
In Sect. 4, we describe all singular solutions on a doubly punctured sphere. These
Delaunay metrics are especially important because they provide asymptotic models
for the metrics inM6

N near a given puncture point. In Sect. 5, we define the sixth order
Pohozaev invariants associated with (Q6,g0,N ). In Sect. 6, we prove a priori upper and
lower bound estimates for positive singular solutions to (Q6,g0,N ). In Sect. 7, we prove
the compactness statement in Theorem 1.3.

Remark 1.6 Several of our supporting results below generalize to the Paneitz operators
and Q-curvatures of any order σ ∈ (0, n/2), at least in the conformally flat setting. In
particular, the convexity result of Lemma 6.1 and the upper bound of Proposition 6.2
both generalize and may be of independent interest. On the other hand, some parts
of the proof of Theorem 1.3 do not carry over. In particular, at this time we cannot
classify all two-ended constant Q2σ -curvature metrics on the sphere, which is very
important for our proof.

2 Notation

Let us establish some standard terminology and definitions. In what follows, we will
always be using Einstein’s summation convention.

• δ = gRn denotes the standard Euclidean metric;
• g0 = gSn denotes the standard round metric;
• (ei )

n
i=1 denotes a local coordinate frame;

• Tr
s(M) denotes the set of (r , s)-type tensor over M with T0

0(M) = C∞(M);
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4888 Andrade et al.

• Rmg ∈ T4
0(M) (or Rmg ∈ T3

1(M)) denotes the (or covariant) Riemannian curva-
ture tensor,

• Ricg = trgRmg ∈ T2
0(M) denotes the Ricci curvature tensor, which can be

expressed as Ric jk = ◦
Rmi

i jk = gi�Rmi jk�;

• Rg = trgRicg ∈ T0
0(M) denotes the scalar curvature given by Rg = gi jRici j ;

• �g = gi j∇i∇ j denotes the Laplace–Beltrami operator;
• δg = divg denotes the metric divergence;
• ∇g denotes the Levi–Civita connection;
• trg : Tr

s(M) → Tr−2
s (M) denotes a trace operator;

• a1 � a2 if a1 � Ca2, a1 � a2 if a1 � Ca2, and a1 � a2 if a1 � a2 and a1 � a2.
• u = O( f ) as x → x0 for x0 ∈ R ∪ {±∞}, if lim supx→x0(u/ f )(x) < ∞ is the
Big-O notation;

• u = o( f ) as x → x0 for x0 ∈ R ∪ {±∞}, if limx→x0(u/ f )(x) = 0 is the little-o
notation;

• u � ũ, if u = O(̃u) and ũ = O(u) as x → x0 for x0 ∈ R ∪ {±∞};
• C j,α(M), where j ∈ N and α ∈ (0, 1), is the classical Hölder space; we simply
denote C j (M) when α = 0;

• γn = n−6
2 is the Fowler rescaling exponent;

• 2# = 2n
n−6 is the critical Sobolev exponent.

It is also convenient to define some operations involving two tensors.

Definition 2.1 Let (Mn, g) be a closed Riemannian manifold with n � 7. We define
the following operations with tensors

(a) cross product × : Sym2(M) × Sym2(M) → Sym2(M) given by

(h × k)i j := gm�himk j� = h�
i k� j .

(b) dot product · : Curv2(M) × Sym2(M) → R given by

h · k := trg(h × k) = gi j gm�himk j� = h jmk jm .

(c) Kulkarni–Nomizu product ©∧ : Sym2(M) × Sym2(M) → T4
0(M) given by

(h ©∧ k)i jm� := hi�k jm + h jmki� − himk j� − h j�kim .

(d) dot operator · : Sym2(M) → Sym2(M) given by

(Rm · h) jm := Ri jm�hi�.

(e) L2-formal adjoint of the Lie derivative δg : Sym2(M) → R given by

(
δgh

)
i := − (

divg h
)

i = −∇ j
g hi j ,

where Sym2(M) is the set of nondegenerate symmetric bilinear forms and Curv2(M)

is the set of algebraic curvature operators.
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Compactness of solutions to the GJMS equations 4889

3 Cylindrical coordinates

This section is devoted to constructing a change of variables that transforms the local
singular PDE (P6,R) problem into a nice ODE problem with constant coefficients.
This is the conformally flat problem associated with (Q6,g0,N ).

Definition 3.1 We define the sixth order autonomous Emden-Fowler change of vari-
ables as follows. Let R > 0 and T = − ln R and CT = (T ,∞) × S

n−1. We then
define

F : C∞(B∗
R) → C∞(CT ), F(u)(t, θ) = e−γn t u(e−tθ) = v(t, θ), (3.1)

where γn = n−6
2 .

It is easy to show the inverse transform is given by

F−1 : C∞(CT ) → C∞(B∗
R), F−1(v)(x) = |x |−γn v(− ln |x |, x/|x |) = u(x).

Using F and performing a lengthy computation we arrive at the following sixth
order nonlinear PDE on CT :

−P6
cylv = cnv

n+6
n−6 on CT . (CT )

Here P6
cyl is the sixth order GJMS operator associated to the cylindrical metric gcyl =

dt2 + dθ2 on R × S
n−1, and it is given by

P6
cyl := P6

rad + P6
ang,

where

P6
rad := ∂

(6)
t − K4∂

(4)
t + K2∂

(2)
t − K0

and

P6
ang := 2∂(4)

t �θ − J3∂
(3)
t �θ + J2∂

(2)
t �θ − J1∂t�θ + J0�θ + 3∂(2)

t �2
θ − L0�

2
θ + �3

θ

with

K0 = 2−8(n − 6)2(n − 2)2(n + 2)2

K2 = 2−4(3n4 − 24n3 + 72n2 − 96n + 304)

K4 = 2−2(3n2 − 12n + 44)

J0 = 2−3(3n4 − 18n3 − 192n2 + 1864n − 3952)

J1 = 2−1(3n3 + 3n2 − 244n + 620)

J2 = 2n2 + 13n − 68

123



4890 Andrade et al.

J3 = 2(n + 1)

L0 = 2−2(3n2 − 12n − 20) (3.2)

dimensional constants. For more details on these computations, we refer to [4,
Appendix A] (see also [10] for a general computation in product manifolds).

Remark 3.2 The following decomposition holds

P6
rad = Lλ1 ◦ Lλ2 ◦ Lλ3 ,

where Lλ j := −∂2t + λ j for j = 1, 2, 3 with

λ1 = (n − 6)2

2
, λ2 = (n − 2)2

2
, and λ3 = (n + 2)2

2
.

We refer the reader to [3, Proposition 2.7] for the proof.

4 Spherical and Delaunaymetrics

In this section, we present some particular model metrics on the moduli space. Let
p1, p2 ∈ S

n , which without loss of generality can be chosen such that p1 = en is the
north pole and p2 = −p1 is the south pole. The conformal factor U : S

n\{p1, p2} →
(0,∞) determines a metric g ∈ Mp1,p2 and after composing with a stereographic
projection it corresponds to a singular solution to (P6,∞)

Applying the cylindrical transform (3.1) to this PDE in turn yields

−P6
cylv = cnv

n+6
n−6 on C∞ := R × S

n .

Next, using that these solutions to (Q6,g0,N ) are radially symmetric with respect to the
origin, Theorem A reduces (CT ) to a sixth order ODE problem

−v(6) + K4v
(4) − K2v

(2) + K0v = cnv
n+6
n−6 in R. (O6,∞)

From this last formulation, we quickly compute the cylindrical solution

vcyl(t) =
(

K0

cn

) 12
n−6 =

(
K0

cn

) 6
γn = ε∗

n > 0,

which is the only constant solution. Transforming back from the cylinder to R
n\{0}

we see

ucyl(x) = F−1(vcyl) =
(

K0

cn

) 12
n−6 |x |−γn , gcyl = u

4
n−6
cyl δ.
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Compactness of solutions to the GJMS equations 4891

We have already encountered the spherical solution, given by

usph(x) =
(
1 + |x |2

2

)−γn

and gsph = u4/(n−6)
sph δ, (4.1)

which is the particular case of (1.5) with ε = 1 and x0 = 0. Applying the Emden-
Fowler change of variables to usph we obtain

vsph(t, θ) = F(usph)(t, θ) = (cosh t)−γn .

In this setting, Theorem A classifies all positive solutions vε0 ∈ C6(R) to (O6,∞)
in terms of the necksize ε0 ∈ (0, ε∗

n], where ε0 = minR v ∈ (0, ε∗
n]. Varying the

parameter ε from its maximal value of ε∗
n to 0, we see that the Delaunay solutions

in Theorem A (b) interpolate between the cylindrical solution vcyl and the spherical
solution vsph. We denote the minimal period of vε by Tε.

Definition 4.1 For each ε ∈ (0, ε∗
n] the Delaunay metric of necksize ε is

gε = v
4

n−6
ε (dt2 + dθ2) = u

4
n−6
ε δ,

where uε = F−1(vε). Observe that we have equivalently defined gε as a metric on
C−∞, using vε as the conformal factor, and on R

n\{0}, using uε = F−1(vε) as the
conformal factor.

We can reformulate the expansion (1.7) to read

Proposition 4.2 Let g ∈ M6
N with the singular set � and let p ∈ �. Then there

exists a Delaunay solution uε such that in stereographic coordinates centered at p the
asymptotic expansion

g = ((1 + o(|x |))uε,R(x))
4

n−6 δ, uε,R(x) = uε(Rx).

We can restate this asymptotic expansion as

g = ((1 + o(|x |))F−1(vε(· + T ))(x))
4

n−6 δ = ((1 + o(e−t ))vε(t + T ))
4

n−6 (dt2 + dθ2).

In other words, any admissible metric is asymptotic to a translated Delaunay metric
near a puncture. In the formulae above R and T are related by R = − ln T .

5 Pohozaev invariants

We now turn to a discussion of the existence and specific form of a family of homo-
logical integral invariants of solutions of equation (Q6,g0,N ). These homological
invariants were discovered in their simplest form by Pohozaev [28], and general-
ized by Schoen [31] to the Riemannian setting. Later, Gover and Ørsted [16] defined
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Pohozaev invariants for general conformally variational invariants, which includes
higher order Q-curvature operators.

As a starting point, we define the Hamiltonian energy by

Hcyl(v) := Hrad(v) + Hang(v) + F(v), (5.1)

where

Hrad(v) := 1

2
v(3)2 + K4

2
v(2)2 + K2

2
v(1)2 − K0

2
v2 + v(5)v(1) − v(4)v(2) − K4v

(3)v(1),

is the radial part,

Hang(v) := −J4
(
∂

(3)
t ∇θ v∂t∇θ v − |∂(2)

t ∇θ v|2
)

− J2
2

∣∣∣∂(2)
t ∇θ v

∣∣∣2 − J1
2

∣∣∣∂(2)
t ∇θ v

∣∣∣2

− J0
2

|∇θ v|2 + L2

2

∣∣∣∂(2)
t �θv

∣∣∣2 + L0

2

∣∣∣∂(2)
t �θv

∣∣∣2 + 1

2

∣∣∣�θv

∣∣∣2.
is the angular part and

F(v) := cn(n − 6)

2n
|v| 2n

n−6

is the nonlinear term.
Evaluating a derivative, one can easily verify Hcyl(v) is constant for any solution

v of the PDE (CT ). We further observe that the last term F in (5.1) is homogeneous
of degree 2n

n−6 while the remaining terms are all homogeneous of degree 2.

Definition 5.1 Let v ∈ C6(CT ) be a positive solution to (CT ). We define its cylindrical
Pohozaev invariant as

Pcyl(v) :=
∫

{t}×Sn−1
Hcyl(v)dθ for any t > T .

Observe that this integral does not, in fact, depend on t .

In light of the cylindrical transformation from Definition 3.1, we can define this
invariant in spherical coordinates

Definition 5.2 Let u ∈ C6(B∗
R) be a positive solution to (P6,R). We define its spherical

Pohozaev invariant as

Psph(u) := (Pcyl ◦ F−1)(u) =
∫

{t}×Sn−1
Hcyl(F

−1(u))dθ.

Finally, in terms of conformal metrics, we have the following definition of an
invariant associated with metrics in the moduli space.
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Definition 5.3 Let g ∈ M6
N and p j ∈ �. We define its radial (or dilational) Pohozaev

invariant at the puncture p j as follows. Choose stereographic coordinates sending p j

to the origin and write g = u
4

n−6 δ in these coordinates. Then define

Prad(g, p j ) := Psph(u) =
∫

{t}×Sn−1
Hcyl(F

−1(u))dθ.

The most important result of this section states that bounding the radial Pohozaev
invariants away from zero is equivalent to bounding the necksizes of the Delaunay
asymptotes away from zero.

Proposition 5.4 Let g ∈ M6
N and p j ∈ �. Then Prad(g, p j ) is well-defined, negative

and depends only on the necksize ε j of the Delaunay asymptote at p j ∈ �. Moreover,
decreasing ε j will increase Prad(g, p j ) and if ε j ↘ 0 then Prad(g, p j ) ↗ 0.

Proof By construction, the integral defining Prad(g, p j ) does not depend on which
sphere {t} × S

n−1 we choose, so long as t is sufficiently large, and therefore Prad is
well-defined. By the asymptotics in Theorem B we know that the conformal factor is
asymptotic to a Delaunay solution uε, and so letting t → ∞ we see

Prad(g, p j ) = lim
t→∞

∫
{t}×Sn−1

Hcyl(F
−1(u))dθ = lim

t→∞

∫
{t}×Sn−1

Hcyl(vε)dθ < 0.

The remaining properties follow directly from the energy ordering of the Delaunay
solutions as described in [3, Lemma 4.14]. ��
Remark 5.5 One often finds integral invariants in geometric variational problems. For
more details on a class of general higher order conformally invariant locally conserved
tensors,we cite [16]. These invariants arise from the conformal invariance of (Q6,g0,N ),
by Noether’s famous conservation theorem.

For our later applications, we will need a slight refinement of Proposition 5.4.

Proposition 5.6 Let v ∈ C6(CT ) be a positive solution to the following rescaled equa-
tion

−P6
cylv = Av

n+6
n−6

for some constant A and let

HA
cyl(v) = Hrad(v) + Hang(v) + (n − 6)A

2n
|v| 2n

n−6 .

Then
∫

{t}×Sn−1
HA

cyl(v)dθ

is independent of t .
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Proof The proposition follows from taking the derivative with respect to t and inte-
grating by parts. ��

6 Uniform estimates

This section is devoted to proving uniform upper and lower estimates near the singular
set for positive singular solutions to (Q6,g0,N ).

We begin by quoting a superharmonicity result of Ngô and Ye [27]. We also remark
on a similar superharmonicity result for a related integral equation Ao et al. [5].

Proposition A Let u ∈ C∞(Rn\	) be a positive solution to (Q6,δ,N ). Then additionally
−�u � 0 and �2u � 0 in R

n \ 	.

Proof Following [27, Proposition 1.5] we see that u is both weakly superharmonic and
weakly superbiharmonic inR

n . In other words, for a smooth test function φ compactly
supported in R

n\	, we have
∫
Rn

u(−�)φdx � 0 and
∫
Rn

u(−�)2φdx � 0.

Standard elliptic regularity then implies u is superharmonic and superbiharmonic
where it is smooth, namely in R

n\	. ��
The first step is a sixth order version of the convexity result [30, Proposition 1],

which is proved using the Alexandrov’s moving planes (see also [12, Theorem 4.1]
for a fourth order version).

Lemma 6.1 Let g = U 4/(n−6)g0 be a complete metric on � = S
n\� which is con-

formal to the round metric, such that Q6
g is a positive constant. Then the boundary

of any (spherically) round ball in � has a non-negative definite second fundamental
form with respect to g.

Proof We letB be a geodesic ball with respect to the roundmetric such thatB ⊂ � and
choose a stereographic projection that sendsB to the half-space {x ∈ R

n : x1 < 0}. As
before, we denote the image of the singular set � under this stereographic projection
by 	. With respect to these stereographic coordinates the metric takes the form g =
u4/(n−6)δ where u ∈ C∞(Rn \ 	) satisfies (Q6,δ,N ), namely u : R

n \ 	 → (0,∞)

satisfy

(−�)3u = cnu
n+6
n−6 in R

n \ 	.

Furthermore, the boundary of our round ball is ∂B = {x ∈ R
n : x1 = 0} and is

oriented by the outward unit normal ηg = u−2/(n−6)∂x1 . It follows that the second
fundamental form II and mean curvature H of ∂B are given by

IIi j = 〈∇∂x j η, ∂xi 〉 = 2

n − 6
δi j u

8−n
n−6 ∂x1u, H = 2n

n − 6
u

8−n
n−6 ∂x1u.
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Therefore, (weak) convexity of ∂B follows once we show ∂x1u � 0 along the hyper-
plane {x1 = 0}.

By Proposition A, we have

−�u � 0 and (−�)2u � 0 in R
n \ 	.

We now rewrite (Q6,δ,N ) as a second order system, namely letting

u0 = u, u1 = −�u, and u2 = (−�)2u,

we obtain that ui : R
n \ 	 → (0,∞) for i = 0, 1, 2 satisfy

⎧⎪⎨
⎪⎩

−�u0 = u1 � 0
−�u1 = u2 � 0

−�u2 = cnu
n+6
n−6
0 � 0.

(6.1)

It follows from [32, Theorem 2.7] that the Newtonian capacity of the singular set
vanishes, i.e. cap(	) = 0. As a consequence, one can find a0 > 0 and a j ∈ R for
j = 1, . . . , n such that

⎧⎪⎨
⎪⎩
u0(x) = a0|x |6−n + ∑n

j=1 a j x j |x |4−n + O (|x |4−n
)

∂xi u0(x) = −(n − 6)a0xi |x |4−n + O (|x |4−n
)

∂2xi x j
u0(x) = O (|x |4−n

)
,

(6.2)

which, by differentiating further, yields

⎧⎪⎨
⎪⎩
u1(x) = b0|x |4−n + ∑n

j=1 b j x j |x |2−n + O (|x |2−n
)

∂xi u1(x) = −(n − 4)b0xi |x |−n + O (|x |2−n
)

∂2xi x j
u1(x) = O (|x |2−n

) (6.3)

and

⎧⎪⎨
⎪⎩
u2(x) = c0|x |2−n + ∑n

j=1 c j x j |x |−n + O (|x |−n
)

∂xi u2(x) = −(n − 2)c0xi |x |−n + O (|x |2−n
)

∂2xi x j
u2(x) = O (|x |−n

) (6.4)

as |x | → 0, where b0, c0 > 0 and b j , c j ∈ R for j = 1, . . . , n.
We are now ready to set up the method of moving planes applied to the triple

of functions (u0, u1, u2). For any λ ∈ R, we let �λ = {x ∈ R
n : x1 > λ} and

Tλ = ∂�λ = {x ∈ R
n : x1 = λ}. We also set �′

λ = �λ \ 	. For any x ∈ �′
λ, we let

xλ = (2λ − x1, x2, . . . , xn)
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be the reflection of x across the hyperplane Tλ = {x1 = λ}. Finally, our goal in moving
planes is to show that for any λ � 0 and i = 0, 1, 2, we have

wλ
i (x) > 0 for i = 0, 1, 2, (6.5)

where wλ
i : �′

λ → R is given by

wλ
i (x) = ui (x) − ui (xλ).

Once we establish (6.5), letting λ ↗ 0 the first inequality implies ∂x1u � 0 on
T0 = ∂B, completing our proof.

Observe that the expansion (6.4) implies u2 is not identically zero. Thus, using the
strong maximum principle and the last equation in (6.1), we see that u2 > 0 on R

n\	.
Working backwards, the inequality u2 > 0 and the same reasoning implies u1 > 0 on
R

n\	, which then in turn gives us u0 > 0 on R
n\	.

The singular set	 is compact, so there exists R0 > 0 such that	 ⊂ BR0(0). We use
the extended maximum principle [24, Theorem 3.4] to conclude there exists δ > 0,
depending on R > R0, such that

u0|BR(0)\	 � δ, u1|BR(0)\	 � δ, and u2|BR(0)\	 � δ. (6.6)

Combining our expansion (6.4) with [7, Lemma 2.3] there exists R1 > 0 and
λ1 � λ0 such that for each λ < λ1 we have

wλ
0(x) > 0, wλ

1(x) > 0, and wλ
2(x) > 0 for x ∈ �λ and |x | > R.

Using this inequality together with (6.6) then implies that there exists λ2 � λ1 such
that

wλ
0(x) > 0, wλ

1(x) > 0, and wλ
2(x) > 0 on �′

λ for each λ � λ2.

By construction

�wλ
2(x) = cn

(
u0(xλ)

n+6
n−6 − u0(x)

n+6
n−6

)
< 0 on �′

λ for each λ � λ2. (6.7)

On the other hand, the asymptotic expansion (6.4) implies

wλ
2(x) → 0 as |x | → ∞. (6.8)

Putting together (6.7), (6.8) and wλ
2

∣∣
Tλ

= 0, we see by the maximum principle that

wλ
2(x) � 0 for each x ∈ �′

λ and λ � λ2. However, by the completeness of the metric g
on � we know that wλ

2 is not identically zero on �′
λ, so again the maximum principle

actually implies wλ
2(x) > 0 for each x ∈ �′

λ and λ � λ2. Once again, analogous
arguments imply wλ

1 > 0 and wλ
0 > 0 on �′

λ for each λ � λ2.
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At this point, we define

λ∗ = sup{λ � 0 : wμ
i (x) > 0 for each μ � λ and i = 0, 1, 2}

and prove that λ∗ = 0. Following our definitions, we have

�wλ
0(x) = −�u0(x) + �u0(xλ) < 0

for each x ∈ �′
λ and λ < λ∗, and so �wλ∗

0 � 0 on �′
λ∗ . By similar arguments, we

also have

�wλ∗
1 � 0 and �wλ∗

2 � 0 on �′
λ∗ .

Now suppose λ∗ < 0 and let x∗ ∈ �
′
λ∗ such that wλ∗

i (x∗) = 0 for some i = 0, 1, 2.
If xλ∗ ∈ �′

λ∗ is an interior point then the maximum principle implies wλ∗
i ≡ 0, which

in turn means ui is symmetric about the hyperplane Tλ∗ . This is impossible because
the singular set 	 lies to one side of Tλ∗ . On the other hand, if x∗ ∈ Tλ∗ then by the
Hopf boundary lemma (together with the fact that wλ∗

i may not be constant in �′
λ∗)

we have

0 < ∂x1w
λ∗
i (x∗) = 2∂x1ui (x∗). (6.9)

However, the asymptotic expansions (6.2), (6.3) and (6.4) combined with λ∗ < 0 tells
us

ui (x) − ui (xλ∗
) � δ3 for |x | > R2 and x1 = λ∗ (6.10)

for somepositive numbers δ3 and R2.Combining (6.9) and (6.10) implies the inequality
wλ

i continues to hold for some small value λ < λ∗, contradicting the definition of λ∗.
��

Next, we prove the upper bound estimate. Our proof borrows from Pollack’s proof
of the corresponding upper bound in the scalar curvature case.

Proposition 6.2 Let u ∈ C∞(�) be a positive singular solution to (Q6,g0,N ). There
exists C1 > 0 depending only on n and d satisfying

u(x) � C1dg0(x,�)−γn .

Proof Let p0 /∈ �, and ρ > 0 such that Bρ(p0) ⊂ �, where Bρ(p0) is a geodesic ball
with respect to the round metric. We define the auxiliary function ψρ : Bρ(p0) → R

by

ψρ(x) = (ρ − dg0(x, x0))
γn u(x).
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4898 Andrade et al.

Notice that choosing ρ = 1
2dg0(x0,�), it follows

ψρ(x0) = ργn u(x0) = 2−γndg0(x0,�)γn u(x0).

We claim that there exists C > 0 depending only on n such that ψρ(x) � C for
all admissible choices of λ, u, x0, and ρ. We suppose by contradiction that one can
find sequences {�k}k∈N, {uk}k∈N, {p0,k}k∈N, and {ρk}k∈N of admissible parameters
satisfying

Mk = ψρ(p1,k) = sup
x∈Bρk (p0,k )

ψρ(x) → +∞.

Also, we observe ψρ

∣∣
∂Bρk (p0,k )

= 0, so p1,k ∈ int(Bρk (p0,k)). Next, by taking rk =
ρk − dg0(p1,k, p0,k), and defining be geodesic normal coordinates centered at p1,k ,
denoted by y, we set

λk = 2uk(p1,k)
−γn and Rk = rkλ

−1
k = 2−1rk(uk(p1,k))

−γn = 2−1M1/γn
k .

We now construct a blow-up sequence {wk}k∈N ⊂ C6,α(BRk ) for some α ∈ (0, 1) by
wk : BRk (0) → R is such that

wk(y) = λ
γn
k uk(λy) for all k ∈ N.

Whence, using the conformal invariance inRemark 1.1, one can verify that the function
wk ∈ C6,α(BRk ) satisfies

P6
λgk

wk = cnw
n+6
n−6
k in BRk .

Moreover, by construction, one has

2γn = wk(0) = sup
BRk (0)

wk(x) for all k ∈ N,

which, by Arzela–Ascoli theorem, means there exists a subsequence that converges
uniformly on compact sets.

In addition, it is not hard to check that the rescaled metrics λg0 converge to the
classical Euclidean metric δ as k → ∞. Therefore, by taking the limit of the blow-
up sequence, we obtain a positive function w∞ ∈ C6,α(Rn) satisfying w∞(0) =
supw∞ = 2γn and

(−�)3w∞ = cnw
n+6
n−6∞ in R

n .

By the classification theorem in Theorem A (a), we must have

w∞(x) := 2−γn
(
1 + |x |2

)−γn = 2−γn usph(x).
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Thus each solution uk has a bubble for k � 1 sufficiently large. In other terms, a
small neighborhood of p1,k is close (in C6,α-norm) to the round metric, and hence has
a concave boundary, for k � 1 sufficiently large.

We verify this by computing the mean curvature of a geodesic sphere explicitly.
Using g0 = 4(1 + |x |2)−2δ, a direct computation shows the mean curvature of a
hypersurface is given by H� = − trg〈∇∂�ν�, ∂m〉, where ν� is the unit inward normal
vector of �.

A geodesic sphere centered at p = 0 coincides with a Euclidean round sphere
centered at the origin (with a different radius), and so

ν� = −
(
1 + |x |2
2|x |

)
x�∂x�

.

A straightforward computation yields

H� = −2n|x |(1 + |x |2) + n − 1 + n|x |2
|x | ,

which is negative when |x | > 3. Additionally, since

lim
k→∞ ‖wk − w∞‖C6,α(B3Rk /4(0))

= 0,

it holds that ∂ B3Rk/4(0) is also mean concave with respect to the metric ĝk ∈
Met∞(B3Rk/4(0))definedas ĝk = w

4/(n−6)
k δ�m ,which in turn implies ∂B3|p1,k |/8(p1,k)

is mean concave with respect to the metric gk ∈ Met∞(�) given by ĝk = u4/(n−6)
k δ�m .

This is contradiction with Lemma 6.1, which proves the claim. ��
Second, we obtain a lower bound estimate.

Proposition 6.3 Let u ∈ C∞(�) be a positive singular solution to (Q6,g0,N ). There
exists C2 > 0 depending only on u satisfying

C2 min
j∈IN

dg0(x, p j )
−γn � u(x).

Proof Indeed, notice that by applying [21, Theorem 1.3] in cylindrical coordinates
v = F(u), we obtain that Pcyl(v) � 0 with equality if and only if

lim inf
t→∞ v(t, θ) = lim sup

t→∞
v(t, θ) = lim

t→∞ v(t, θ) = 0.

Otherwise, if Pcyl(v) < 0, there exists C2 > 0, which depends on the solution v, such
that v(t, θ) � C2. This proves the proposition. ��

Third, we have a version of Harnack inequality for our setting, which will be
important in the proof of our main result.
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Proposition 6.4 Let � ⊂ R
n and u ∈ C∞(�). Assume that −�u � 0, �2u � 0, and

(−�)3u = f (u),

where f is either linear or superlinear and f (0) = 0. Then, there exists ρ0 > 0 such
that for ρ ∈ (0, ρ0] and C3 > 0 depending only on �, f , and ρ, it holds

sup
Bρ(0)

u � C3 inf
Bρ(0)

u.

Proof The proof is a straightforward adaptation of [8, Theorem 3.6]. ��

7 Compactness result

In this section, we prove the main result of the manuscript.
Before proceeding to the proof, we need to obtain the existence of a positive Green

function for the sixth order GJMS of the round sphere with a prescribed asymptotic
rate near a pole given by the fundamental solution to the flat tri-Laplacian.

Proposition 7.1 Let p ∈ � ⊂ (Sn, g0) be a point on the standard round sphere. There
exists a Green function with pole at p, denoted by G p : S

n \ {p} → (0,∞), that
satisfies

Pg0G p = δp,

where Pg0 is the sixth order GJMS operator of the round metric given by (1.2) and δp

is the Dirac function concentrated at p. Furthermore, there exists Cn > 0 depending
only on n such that

G p(x) = Cndδ(x, p)6−n (7.1)

in Euclidean coordinates.

Proof This is a direct application of [13, Proposition 2.1] for the standard round sphere
(Sn, g0). ��
Proof of Theorem 1.3 Let {gk}k∈N = {(Uk)

4/n−6g0} ⊂ M6
N be a sequence of admis-

sible metrics, each of which is a complete, conformally flat metric on �k = S
n\�k

with Q6
gk

≡ Qn = n(n4−20n2+64)
32 . We denote the punctures of gk by

�k := sing(Uk) = {p1,k, . . . , pN ,k} ⊂ S
n .

The proof will be divided into a sequence of steps.
The first stepwill simplify our later analysis since it allows us to assume the singular

points are fixed.
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Step 1. After passing to a subsequence, we may assume that for k � 1 sufficiently
large each Uk is non-singular on the set K1 := S

n \ (∪N
i=1Bδ1/2(p j,i )).

Indeed, for 0 < δ1 � 1 small enough, the set

(Sn)N \
{
(q1, . . . , qk) ∈ (Sn)N : dg0(q j , q�) > δ1 for each j �= �

}

is compact and contains each singular set �k for all k ∈ N. Thus, there exits
{p1,∞, . . . , pN ,∞} ⊂ S

n , and a convergent subsequence such that p j,k → p j,∞
as k → +∞, proving Step 1.

To set notation, we define the compact sets

K� := S
n \

(
∪N

j=1B2−�δ1
(p j,∞)

)
for each � ∈ N.

Notice that by construction the family {K�}�∈N is a compact exhaustion of the limit
singular set

�∞ := S
n \ �∞, where �∞ := {p1,∞. . . . , pk,∞}.

Furthermore, by the convergence p j,k → p j,∞ as k → +∞, for each fixed � ∈ N

there exists k0 � 1 such that k � k0 implies Uk is smooth in K�.
The second step is based on the uniform upper bound and states that we can extract

a limit.
Step 2. The exists U∞ ∈ C∞(�∞) solving (Q6,g0,N ) such that

lim
k→+∞ ‖U∞ − Uk‖C∞

loc(�∞) = 0. (7.2)

In fact, using the upper bound in Proposition 6.2, one has that for each compact subset
K ⊂ �∞, there exists α ∈ (0, 1) and C1 > 0 depending only on n, �, and α such
that

‖Uk‖C6,α(K ) � C1 for all k ∈ N.

Therefore, as a consequence of the Arzela–Ascoli theorem, one can find a limit U∞ ∈
C6,α(K ) solving (P6,∞) and a convergent subsequence, which we again denote the
same, such that

lim
k→+∞ ‖U∞ − Uk‖C6,αloc (�∞)

= 0.

Furthermore, by applying standard elliptic regularity, we directly obtain that (7.2)
holds, and so Step 2 is proved.

The next step is to show that this limit is non-trivial.
Step 3. U∞ > 0 on �∞.
If this step were false, there would exist p∗ ∈ �∞ such that

0 = U∞(p∗) = lim
k→+∞ Uk(p∗).
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For each k ∈ N, we define εk = Uk(p∗) and the rescaled function Ûk ∈ C∞(�k) given
by

Ûk(x) = εk
−1Uk(x) for all k ∈ N.

A direct computation shows that

Pg0Ûk = ε
12

n−6
k cnÛ

n+6
n−6

k in �k for all k ∈ N.

In addition, by construction, the sequence {Ûk}k∈N satisfy the normalization

Ûk(p∗) = 1 for all k ∈ N. (7.3)

By the Harnack inequality in Proposition 6.4 with f (u) = cnu2#−1 and� = K�, there
exists a positive constant C1 depending only on n and � such that

sup
K�

|usphÛk | � C1. (7.4)

However, there is another positive constant C2, again depending only on n and �, such
that

C2 � usph � 2γn . (7.5)

Combining (7.4) and (7.5) there exists a uniform constant C3 such that

sup
K�

Ûk � C3,

and so by the Arzela–Ascoli theoremwemay pass to a subsequence Ûk that converges
uniformly on compact subsets of �∞ to a smooth function Û∞.

This limit function Û∞ : �∞ → R satisfies

P6
g0Û∞ = 0 in �∞

and so it has the form

Û∞ =
N∑

j=1

β j G p j,∞

for some collection of numbers β1, . . . , βN ∈ R. The normalization (7.3) implies that
one of the coefficients β j0 is positive, so after possibly relabeling the punctures we
may assume β1 > 0.
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We now choose a stereographic projection sending p1,∞ to the origin and perform
the Emden-Fowler change of coordinates in Definition 3.1, which yield the functions

vk := F(usphUk) and v̂k := F(usphÛk)

and their respective limits

v∞ := F(usphU∞) and v̂∞ := F(usphÛ∞).

The expansion (7.1) implies

v̂∞(t, θ) = e−γn t (cosh t)−γn (Cne−γn t + O(1))

= Cn + O(e(6−n)t ) as t → +∞. (7.6)

Also, observe that v̂k ∈ C6(CT ) satisfies the PDE

P6
cylv̂k = ε

12
n−6
k cn v̂

n+6
n−6
k in CTk for all k ∈ N,

which we combine with (7.6) and Proposition 5.6 and the convergence v̂k → v̂∞ to
see that for t sufficiently large

∫
{t}×Sn−1

Hε

12
n−6
k cn

cyl dθ =
∫

{t}×Sn−1
Hrad (̂vk) + Hang(̂vk) + n − 6

2n
ε

12
n−6 cn |̂vk | 2n

n−6 dθ

= −C̃nβ2
1 + O(e(6−n)t ). (7.7)

for some C̃n > 0. On the other hand, by our construction we have

Pcyl(vk) =
∫

{t}×Sn−1
Hrad(vk) + Hang(vk) + F(vk)dθ

=
∫

{t}×Sn−1
ε2k

(Hrad (̂vk) + Hang(̂vk)
) + ε

2n
n−6
k F (̂vk)dθ → 0 (7.8)

From (7.7) and (7.8), we find

lim
k→+∞Prad(gk, p1,k) = 0,

which, together with Proposition 5.4, implies limk→+∞ ε1(gk) = 0. This contradicts
the hypothesis that the necksizes are bounded away from zero, that is, ε j (gk) > δ1 for
some 0 < δ1 � 1.

At last, we can complete our argument

Step 4. The metric g∞ = U
4

n−6∞ g0 is a complete metric on �∞.
Indeed, suppose by contradiction that is g∞ is incomplete. Then, using that U∞ ∈
C6(Rn \ {0}) satisfies (P6,∞), there exists an index j ∈ {1, . . . , N } such that
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lim infx→p j,∞ U∞(x) < ∞. In this case, the removable singularity result in Proposi-
tion 6.3 implies

Prad(g∞, p j,∞) = 0. (7.9)

However, by construction

0 = Prad(g∞, p j,∞) = lim
k→+∞Prad(gk, p j,k) � δ2,

which, by Proposition 5.4 implies ε j (gk) � δ2, which is contradiction with (7.9).
By putting all these steps together, our main theorem is proved. ��

Appendix A: Higher order curvature tensors

Let (Mn, g) is a Riemannian manifold with n � 7. We define the Schouten tensor,
Weyl tensor, and Bach tensor, respectively, by

Ag := 1

n − 2

(
Ricg − 1

2(n − 1)
Rgg

)

Wg := ◦
Rmg − Ag ©∧ g

Bg := �g Ag − ∇2
g trg Ag + 2

◦
Rmg · Ag − (n − 4)Ag × Ag − |Ag |2g − 2(trg Ag)Ag,

where these expressions are written in an abstract index-free manner.
Based on the last notation, we provide explicit formulas for curvatures of order two,

four, and sixth as follows

Q2
g := 1

2(n − 1)
Rg,

Q4
g := −�gσ1(Ag) + 4σ2(Ag) − n − 4

2
σ1(Ag)

2,

Q6
g := −3!26v6g − n + 2

2
�g(σ1(Ag)

2) + 4�g‖Ag‖2

− 8δg(Ag#dσ1(Ag)) + �2
gσ1(Ag)

− n − 6

2
σ1(Ag)�gσ1(Ag) − 4(n − 6)σ1(Ag)‖Ag‖2

+ (n − 6)(n + 6)

4
σ1(Ag)

3, (A.1)

where

v6g := −1

8
σ3(Ag) − 1

24(n − 4)
〈Bg, Ag〉g.

is the third volume normalized coefficient.
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Associated with these curvatures, we have the following conformally invariant
operators

P2
g := −�g + n − 2

2
Q2

g

P4
g := �2

g − δgT 2
g #d + n − 4

2
Q4

g

P6
g := −�3

g − �gδgT 2
g #d − δgT 2

g #d�g − n − 2

2
�g

(
σ1(Ag)�g

)

− δgT 4
g #d + n − 6

2
Q6

g. (A.2)

Here

T 2
g := (n − 2)σ1(Ag)g − 8Ag,

T 4
g := −3n2 − 12n − 4

4
σ1(Ag)

2g + 4(n − 4)‖Ag‖2g + 8(n − 2)σ1(Ag)Ag

+ (n − 6)�gσ1(Ag)g + 48A2
g − 16

n − 4
Bg,

where σ� denotes the �-th elementary symmetric function for each � ∈ N. Notice that
P2

g is the conformal Laplacian and P4
g , P6

g are their higher order conformally invariant
powers.

Appendix B: Modica estimates

In this appendix, we discuss possible pointwise estimates for positive smooth solu-
tions to (P6,∞). These estimates have strong geometric implications in terms of the
associated conformally flat metric.

In [19, Theorem 1.4], it is proved that positive smooth solutions to

(−�)2u = n(n − 4)(n2 − 4)

16
u

n+4
n−4 in R

n \ {0}

satisfies the following pointwise inequality

−�u − 4

n − 2

|∇u|2
u

�
√

n − 4

n
u

n
n−4 in R

n \ {0}.

This implies in particular that the scalar curvature Q2
g of the conformally flat metric

g = u4/(n−4)δ is positive. These types of results are known in the literature asModica-
type estimates.
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In our situation, we start by writing the metric g ∈ [g0] as g = (u
n−2
n−6 )

4
n−2 δ, we

see

Q2
g = − 2

n − 2
u

−(n+2)
n−6 �

(
u

n−2
n−6

)
= − 2

n − 6
u− n−2

n−6

(
�u + 4

n − 6

|∇u|2
u

)
.

(B.1)

From this, we conclude that Q2
g � 0 implies −�u � 0, and in fact is a stronger

condition. Similarly, writing g = (u
n−4
n−6 )

4
n−4 δ, it follows

Q4
g = 2

n − 4
u− n+4

n−6 (−�)2
(

u
n−4
n−6

)
. (B.2)

Furthermore, a long computation shows

(−�)2
(

u
n−4
n−6

)
= n − 4

n − 6
u

2
n−6 (−�)2u + 8(n − 4)

(n − 6)2
u

8−n
n−6 〈∇u,∇�u〉

+4(n − 4)

(n − 6)2
u

8−n
n−6 |D2u|2 + 8(n − 4)(8 − n)

(n − 6)3
u

−2(n−7)
n−6 D2u(∇u,∇u)

+4(n − 4)(8 − n)

(n − 6)3
u

−2(n−7)
n−6 |∇u|2�u + 2(n − 7)(n − 8)

(n − 6)4
u

20−3n
n−6 |∇u|4,

where

|D2u|2 =
n∑

i, j=1

u2
xi x j

and D2u(∇u,∇u) =
n∑

i, j=1

uxi x j uxi ux j .

Hence, the conditions Q2
g � 0 and Q4

g � 0 are not enough to guarantee that �2u � 0
directly.

Based on this, it is natural to ask whether the following result holds.

Conjecture B.1 The sixth-order Delaunay metrics satisfy Q2
g > 0 and Q4

g > 0. In
other words:

Let u ∈ C∞(Rn \ {0}) be a positive solutions to (P6,∞). Then, the conformally flat
metric given by g = u4/(n−6)δ satisfies the following pointwise estimate

Q2(u) �
√

n − 6

n
u

n
n−6 and Q4(u) �

√
n − 6

n
u

n
n−6 in R

n \ {0},

where

Q2(u) := −�u − 4

n − 6

|∇u|2
u

and

Q4(u) := −(−�)2u − 8

(n − 6)
u

8−n
2 〈∇u,∇�u〉 − 4

(n − 6)
u

8−n
2 |D2u|2
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− 8(8 − n)

(n − 6)2
u7−n D2u(∇u,∇u)

− 4(8 − n)

(n − 6)2
u7−n|∇u|2�u − 2(n − 7)(n − 8)

(n − 6)3(n − 4)
u

20−3n
2 |∇u|4.

In particular, it follows that the curvatures Q2
g and Q4

g associated with the conformally

flat metric g = u4/(n−6)δ are both positive.

Remark B.2 Notice that if u ∈ C∞(Rn \ {0}) is a positive solution to (P6,∞), then by
Theorem A (a) the conformally flat metric given by g = u4/(n−6)δ, which is the round
metric in this case, satisfies that Q2(u) � 0 and Q4(u) � 0. Nevertheless, the last
conjecture asks for an improved estimate of the type

Q̃2(u) � 0 and Q̃4(u) � 0 in R
n \ {0},

where

Q̃2(u) = Q2(u) −
√

n − 6

n
u

n
n−6 and Q̃4(u) = Q4(u) −

√
n − 6

n
u

n
n−6 .
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