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SUMMARY

The years 2023 and 2024 were characterized by unprecedented warming across the globe, underscoring the
urgency of climate action. Robust science advice for decision makers on subjects as complex as climate
change requires deep cross- and interdisciplinary understanding. However, navigating the ever-expanding
and diverse peer-reviewed literature on climate change is enormously challenging for individual researchers.
We elicited expert input through an online questionnaire (188 respondents from 45 countries) and prioritized
10 key advances in climate-change research with high policy relevance. The insights span a wide range of
areas, from changes in methane and aerosol emissions to the factors shaping citizens’ acceptance of climate
policies. This synthesis and communications effort forms the basis for a science-policy report distributed to
party delegations ahead of the 29th session of the Conference of the Parties (COP29) to inform their positions
and arguments on critical issues, including heat-adaptation planning, comprehensive mitigation strategies,
and strengthened governance in energy-transition minerals value chains.

INTRODUCTION dustrial levels, surpassing the record-breaking temperatures of

2023." Consecutive record-breaking monthly temperatures
Early in 2025, the World Meteorological Organization (WMO)  continued well into 2024 for both surface air (June 2023 to
confirmed that 2024 was the warmest year on record, with an  June 2024) and sea surface (May 2023 to June 2024).” Underly-
average global temperature of 1.55°C (+0.13°C) above pre-in-  ing this trend, atmospheric concentrations of greenhouse gases
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(GHGs) continued their steady increase throughout 2023 and
2024.%° The extraordinary level of warming has fueled a cascade
of extreme weather events worldwide, including intensified heat-
waves, wildfires, droughts, heavy rainfall, and floods.*> Mean-
while, the projected global emissions by 2030 based on current
policies would have to be reduced by 30% to be consistent with
a 2°C warming limit (45% reductions for 1.5°C), with a 66%
chance.®

Against this backdrop, the United Nations Framework
Convention on Climate Change (UNFCCC) 29th session of the
Conference of the Parties (COP29) took place in Baku,
Azerbaijan. Important outcomes of COP29 included the adop-
tion of the New Collective Quantified Goal (NCQG), an agree-
ment on the framework for international carbon markets (Article
6 of the Paris Agreement) as well as progress of various aspects
of adaptation governance and planning, including technical
guidance on indicators and a support program for the implemen-
tation of National Adaptation Plans (NAPs) for the least devel-
oped countries.” Despite these advances, COP29 had major
shortcomings, including the decision on an NCQG climate
finance goal of $300 billion annually by 2035° (a figure much
lower than the identified needs®'?), as well as lack of consensus
on the implementation of fossil fuel transition commitments and
minimal substantive progress on loss-and-damage negotia-
tions.®"" The mobilization of sufficient financial resources is
crucial to enable more ambitious mitigation and adaptation tar-
gets in the new round of Nationally Determined Contributions
(NDCs). Worryingly, only 13 parties submitted their updated
NDCs before the original deadline in February 2025."° An
extended deadline for September 2025 was announced, given
that this is the cutoff date for inclusion in the UNFCCC’s annual
NDC synthesis report, which will be presented at COP30 in
Belém, Brazil, to offer the official assessment of global progress
toward the Paris Agreement goals.'* This pressing context un-
derscores the need for the upcoming negotiations in the run up
to and at COP30 to be firmly grounded in the latest research
on climate change, including natural and social sciences, a prin-
ciple that the United Nations (UN) system has made central to
climate action.''®

Robust science advice for decision makers on subjects as
complex as climate change requires deep cross- and interdisci-
plinary understanding.'”"'® However, navigating the expansive
body of peer-reviewed literature on climate change and identi-
fying key insights from this vast landscape represents a signifi-
cant challenge. This challenge stems from the sheer amount of
new research being published every year,'®° as well as the ex-
panding range of disciplinary perspectives, broadening of
research topics, and diversification of research fields.?'° Since
the late 1990s, the number of scientific publications referring to

climate change has grown exponentially: by 2021, an average
of 135 papers on climate change were published daily.'® A rapid
search on Web of Science Core Collection for the term “climate
change” as a “topic” (i.e., title, keyword, abstract) shows that
the number of articles published per year has more than doubled
in the past 10 years: from an annual average of almost 16,000/
year between 2014 and 2018 to over 33,000/year for 2019-2023.

Within the UNFCCC, the Subsidiary Body for Scientific and
Technological Advice (SBSTA) provides an ongoing interface be-
tween science and policy, working closely with the Intergovern-
mental Panel on Climate Change (IPCC), organizing regular
research dialogues, and requesting submissions on specific sci-
ence topics.?*?° The IPCC is the most authoritative voice on the
state of scientific knowledge on climate change. It is responsible
for periodically assessing the peer-reviewed literature and syn-
thesizing it to provide a foundation for international climate nego-
tiations under the UNFCCC and for national policies. The legiti-
macy of the IPCC assessment reports stems from the rigor
and transparency of its process involving multiple rounds of
expert and governmental review, building on the volunteer con-
tributions of thousands of scientists worldwide, as well as its pol-
icy-neutral stance. Through this process, the IPCC fulfills a
fundamental task of both generating and reflecting the scientific
consensus.”®?” The last assessment cycle of the IPCC (AR6)
began in 2015 and concluded in 2023. Work toward the seventh
assessment cycle (AR7) formally began this year (IPCC-60 in Is-
tanbul, Turkiye, and IPCC-61 in Sofia, Bulgaria). Although time-
lines have not been set yet (as of September 2024), publication
of these Working Group reports is expected between 2028 and
2029, with additional approved reports expected for 2027.%82°
The fact that there are only 6-7 years between the publication
of the synthesis report from one assessment cycle and the
conclusion of the preceding cycle is a remarkable collective
achievement, given the thematic breadth and procedural de-
mands of these assessments. Yet, it is also true that, given the
volume of research conducted and published every year and
the gravity of the decisions at stake, more frequent updates of
the advances in climate-change research are needed to better
inform the work of negotiators and policymakers.

Update reports are published every year by UN agencies,
intergovernmental organizations, and independent research in-
stitutes and networks, complementing the knowledge basis
that the IPCC can only update every 6-7 years, making them
a crucial component of the science-policy landscape. This
constellation of reports and interdisciplinary academic papers
also addresses topics not covered by IPCC reports, particularly
regarding climate action. Key reports in this space include the
WMO State of Global Climate® and the United Nations Environ-
ment Programme’s (UNEP) “Gap Reports” (on emissions® and
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adaptation®®) and the Stockholm Environmental Institute (SEI)-
led report on production of fossil fuels.>" The United in Science
report® is a multi-organization effort led by WMO that offers a
high-level synthesis of the state of the climate and climate action
and compiles the key outcomes from several of the reports listed
above. Several reports produced by multilateral organizations
also play an important role in international climate negotiations,
including Climate Finance Provided and Mobilised by Developed
Countries (OECD),** World Energy Outlook (IEA),** World Energy
Transitions Outlook (IRENA),*°> and State of Carbon Pricing
(World Bank).*® Other reports, led independently by researcher
groups and academic institutions, have also gained prominence
over the years, including the Global Carbon Budget,®” Net Zero
Stocktake,*® and State of Carbon Dioxide Removal,*® in addition
to several groups of researchers who have endeavored to
generate annual overviews of key climate indicators, published
in academic journals.*%*?

Given the abundance of institutional reports and the numerous
academic reviews and syntheses published every year in peer-re-
viewed journals, what justifies the 10 New Insights in Climate Sci-
ence initiative? Each report listed above is an important resource
for negotiating delegations, but their contribution is to provide up-
dates on key indicators of the state of the climate and of climate ac-
tion. However, they are not assessments of the science on climate
change, nor are they syntheses of scientific advances or the
evidence on specific issues. The IPCC is the only source in the sci-
ence-policy interface for climate change with the mandate and ca-
pacity to provide comprehensive assessment and synthesis of
climate-change research. While essential as the cornerstone of
the science-policy interface, the focus on scientific consensus
has limitations, including a tendency to downplay uncertainties
and extreme possibilities*>** and the filtering out of perspectives
that might be valuable for decision makers.?®*> Numerous synthe-
ses and literature review papers on specific climate-related topics
are published yearly in academic journals (another rapid search on
Web of Science Core Collection shows over 600 such papers
published in 2023). However, policymakers (and individual re-
searchers) face significant challenges navigating this broad and
diverse body of academic literature, especially as this literature
can be less accessible for non-experts.*®~*8 This is the gap in the
science-policy landscape that the 10 New Insights aims to
contribute to fill.

The 10 New Insights initiative aims to identify recent advances
in climate-change research across the natural and social sci-
ences, prioritize a set of 10, and synthesize them on a yearly ba-
sis: more frequently than can be done by large assessments, and
more accessible than common academic synthesis or review
papers. This is not an exhaustive assessment or systematic re-
view but an annual prioritization of key research advances. It is
based on a bottom-up process to collate suggestions from ex-
perts, highlighting recent developments and emerging science
that may not be reflected entirely on prior IPCC reports. The pur-
pose of this work is 2-fold: (1) to foster cross- and interdisci-
plinary understanding among climate-change researchers (this
paper), and (2) to inform negotiating teams and policymakers
about new insights in climate-change research and their implica-
tions for ongoing negotiations and policy debates (the science-
policy report* launched ahead of COP29, which is grounded
on a preliminary version of this paper). Ultimately, the science-
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policy report aims to elevate the voice of a diverse community
of climate-change researchers in the lead-up and during the
UN climate COPs.

Over the past 8 years the 10 New Insights team has refined a
bottom-up process to elicit expert views across global research
networks to identify, prioritize, and synthesize recent advances
in climate-change research with high policy relevance (see
Methods section). The report itself has gained recognition in
climate diplomacy circles, and both the former and current Exec-
utive Secretary of the UNFCCC have publicly expressed their
appreciation and support for this annual collective effort of sci-
ence synthesis and science communication. In this paper, we
present a synthesis of the 2024 10 New Insights. A New Insight
is defined as a key, recent development or advance in a partic-
ular area of climate-change research. By "key advance" we
mean new evidence or analyses that significantly update our un-
derstanding of the patterns or processes of climate change, its
impacts on societies, and the possible means and barriers to
address them. A “key development” refers to novel research
topics, fields, and approaches gaining recognition or becoming
decisively established among climate-change research commu-
nities, as well as other emerging important issues on the horizon
of climate change. To be considered recent, these develop-
ments or advances must be anchored in peer-reviewed literature
published in 2023 and 2024 (references from 2022 and before
can be included, but not as the sole foundation for the featured
insight). It is important to note that this is not a top-10 list; the se-
lection aims to reflect the thematic breadth of climate-change
research, and the ordering of the insights does not indicate their
relative importance. This year’s insights focus on the following:

(1) Methane: increasing levels, and likely sources of
emissions

(2) Aerosols: short-term climate challenges of reduced air
pollution

(3) Heat extremes: extensive impacts on habitability and
livelihoods

(4) Maternal and reproductive health (MRH): overview of
recent evidence

(5) Ocean changes: economic costs of an intensifying El
Nifio-Southern Oscillation (ENSO) and potential weak-
ening of the Atlantic Meridional Overturning Circula-

tion (AMOC)

(6) Amazon'’s resilience: the role of ecological and biocultural
diversity

(7) Critical infrastructure: vulnerability of interconnected
systems

(8) Climate-resilient development in cities through a social-
ecological-technical systems (SETS) approach

(9) Energy-transition minerals (ETMs): closing governance
gaps for responsible value chains

(10) Acceptance of (and resistance to) climate policies

The policy implications derived from this year’s insights
include elements for more comprehensive mitigation planning
strategies that incorporate a more refined understanding of
short-lived climate forcers and the interactions between individ-
ual pollutants (1 and 2), and the urgent need to prioritize heat-
adaptation planning, particularly in vulnerable tropical areas,
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Figure 1. Annual methane emissions by source (average for the period 2010-2019)
Estimate based on top-down integrative methods (top left) and bottom-up integrative methods (top right). Uncertainty ranges are indicated in square brackets.

Data adapted from Saunois et al.**

attributed.

and with specific provisions to protect high-risk groups (3 and 4).
The insights underscore the urgency for significantly more ambi-
tious and effective emissions reductions to mitigate the effects
on the climate but also on the stability of other Earth system pro-
cesses in the ocean and the biosphere (5 and 6). The importance
of holistic, system approaches to enhance resilience in the face
of changing climate are highlighted across several insights, most
explicitly for the development of cities and planning around crit-
ical infrastructure (7 and 8). Finally, two domains with implica-
tions for just transitions are featured, one hinging on governance
and international trade (8) and the other on political economy
consideration for more effective climate policies (10).

THE 10 NEW INSIGHTS IN CLIMATE SCIENCE

Insight 1: The likely causes of rising methane levels
Methane levels have surged since 2006, driven primarily
by human activities

Methane is a potent but short-lived greenhouse gas (GHG);
increased emissions of methane account for 0.5°C global warm-

Bottom: trends 1983-2024 in global atmospheric methane.*® Shaded area indicates decade over which emissions sources are

ing since the late 1800s. To limit warming within the Paris Agree-
ment goals and prevent severe climate impacts, rapid and deep
cuts in methane emissions are crucial.”® As natural sources are
hard to control, significant reductions in anthropogenic methane
emissions, which may now contribute two-thirds of global emis-
sions, are essential to meet global targets.”’

Since 2006, observations have shown a resumed growth in at-
mospheric methane levels®>>* with unprecedented high growth
rates within the last 5 years®'*° (Figure 1). Isotopic and remote-
sensing evidence point to increasing biogenic emissions since
2006, likely from livestock, waste, and tropical wetlands as pri-
mary contributors.’>°® Reductions in methane’s atmospheric
removal (via reaction with the hydroxyl radical, OH) may also
contribute significantly, modified by changes in reactive gases
that affect the atmospheric content of OH (OH is difficult to mea-
sure directly).”>°” Furthermore, if natural methane sources
continue to grow, deeper reductions in anthropogenic emissions
will be necessary to compensate.

Understanding the main factors behind the long-term increase
is crucial for developing an adequate mitigation strategy. Recent

One Earth 8, June 20, 2025 5




¢? CellPress

OPEN ACCESS

advances in remote sensing, the expanding ground network,
and modeling progress have improved the characterization of
methane sources and sinks. Expanded satellite capabilities
improve estimation of anthropogenic emissions over large areas
and now allow detection of large emissions from individual facil-
ities.®*°" Combined with atmospheric modeling, these capabil-
ities improve quantitative understanding of emissions from more
diffuse anthropogenic emissions from sources like rice paddies,
landfills, and livestock.?®®> Measurements of atmospheric trace
constituents and isotopic analysis, combined with modeling,
help constrain methane budgets and their balance between
sources and sinks. Together, these capabilities provide the
knowledge needed to design methane-emission mitigation stra-
tegies and evaluate their efficacy.

Here, we present recent evidence explaining the causes of at-
mospheric methane acceleration since 2006 and opportunities
for enhanced mitigation.

Over the 2010-2019 decade, anthropogenic sources ac-
counted for, on average, 63%-68% of total methane emis-
sions,®* depending on the approach for estimating emissions.
However, uncertainties across sources and locations remain
large, with varied methods yielding different results.>* For
example, estimates of fossil fuel methane emissions differ be-
tween activity-based bottom-up inventories, remote sensing,
and isotopic analysis.>*°%%* Another well-recognized source of
uncertainty in inventories is that they do not sufficiently capture
unintended emissions such as those associated with process
excursions or equipment failures in the fossil fuel sector.””%*
Despite these uncertainties and discrepancies, estimates for
categories of anthropogenic sources and sinks are relatively
well constrained (natural sources and sinks much less so) and
generally converge.®':%°

Evidence from global measurements of the 13C/12C methane
isotope ratio, which differentiates fossil from biogenic sources,
shows a steady increase beginning in the late 19th century,
consistent with rising fossil energy emissions.’” That trend
reversed in the early 2000s, reflecting increases in the relative
portion of biogenic sources.>” This biogenic increase may
stem from rises in anthropogenic sources such as livestock,
and possibly waste emissions,>*°° in addition to rising emissions
from natural systems®® (Figure 1). Recent attribution studies
examining the causes of methane growth point to rises in anthro-
pogenic methane emissions as the main driver, with highly vari-
able natural sources modifying the trend in the short term.>’

Emissions from natural systems, estimated from remote
sensing, flux-site measurements and modeling, increased by
about 4% from the 2000s to the 2010s, particularly from tropical
wetlands.>*®® From 2020 to 2022, a persistent La Nifia pattern
was implicated in the recent accelerated methane growth rate,
driving enhanced fluxes from tropical wetlands, and a reduced
growth rate in 2023 when La Nifia switched to EI Nifio.®® For
Arctic regions that are less covered by remote sensing, a study
using in situ observations suggests a 9% rise in emissions
from the boreal-Arctic region since 2002, driven by warming
and greening, with the highest emissions during heatwaves.®’
However, observing capacities (both surface and remote) are
not yet sufficient for drawing conclusions on trends of circum-
Arctic methane releases.”® Climate feedback mechanisms, pri-
marily from warming and precipitation changes, are expected

6 One Earth 8, June 20, 2025
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to further amplify emissions from natural systems in a warming
climate, with the largest contribution expected from wetlands.®®
Representing these feedbacks in models in order to make pro-
jections at a global scale is hugely challenging. The feedbacks
that relate to the impact of climate change on natural methane
emissions are often poorly constrained in representations of
the climate system (models and model emulators), with the result
that substantial uncertainty in the potential impact remains. This
risks an underestimate of the future biogenic contributions to at-
mospheric methane rise in a warming world.%°-%%:7°

Effective mitigation strategies must consider present-day
sources and sinks of methane and the risk that methane-climate
feedbacks will likely increase methane emissions, implying the
need for additional reductions in anthropogenic emissions in
the near term.®®

Deep cuts to methane emissions from the fossil fuel industry
and waste management sectors are most feasible, many of
which are cost-effective or even cost-negative, through
improved efficiencies and deployment of existing technolo-
gies.”" Across both sectors, recently developed and rapidly
improving satellite monitoring capabilities can enable detection
of large emissions at a facility level to alert the need for action
on the relatively small number of emitters that have an outsized
impact on total emissions.??5"-¢4

The agricultural sector, the largest anthropogenic methane
source, has lower technical potential for reduction, but is not
without options.”""? Significant cuts are possible through a
range of mitigations including livestock feed and manure man-
agement, removal of straw in rice paddies and non-continuous
flooding, diet change away from dependence on livestock, and
reduction of food waste.”*"*

Emerging technologies for in situ methane removal or oxida-
tion to CO, present a complementary opportunity to slow
near-term warming but require significant development, scaling,
and incentivization to be cost-effective. While CO, direct air cap-
ture and carbon storage technologies are small-scale but at least
operational (~2 MtCO,/year removed),”* methane removal
exploration has only recently begun.”®

Despite uncertainties in the methane budget, sufficient infor-
mation about the spatiotemporal distribution of sources is known
to take action. Monitoring capacity is rapidly advancing and can
improve emission inventories through reconciliation with activity-
based national inventories and track the effectiveness of emis-
sion mitigation efforts through independent emissions observa-
tion. Methane-emissions reductions are tractable and have
been demonstrated. However, methane emissions are still rising,
which is incompatible with IPCC Assessment Report 6 mitigation
scenarios that stay below 1.5° warming® which assume deep
reductions in methane emissions. This represents a significant
implementation gap in meeting global commitments. Given the
current carbon budget, pursuing inadequate methane-emissions
reductions puts achievement of the Paris Agreement tempera-
ture limit out of reach.”® With only about 13% of methane emis-
sions covered by mitigation policies,”” more stringent and
consistent action is needed to reverse the growth in atmospheric
methane, slow near-term warming, and minimize the impact of
stronger natural climate-methane emissions feedbacks. These
actions are essential to maintaining the targets outlined in the
Global Methane Pledge (GMP) and Paris Agreement.
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Figure 2. Recent changes in aerosols, related sources, and examples of remote effects

Recent changes in aerosol amounts (difference between 2014-2023 and 2004-2013 period averages), quantified as aerosol optical depth (AOD) observations
from MODIS Terra and Aqua. Main sources of aerosol emissions, responsible for the observed AOD changes (icons on map), and examples of remote impacts
(local not show here for simplicity) of changes in aerosol loadings over Europe, East Asia, and South Asia are depicted in the top and bottom windows (including

Walker circulation, at the bottom). Modified from Persad et al.*°.

The GMP, signed by 158 country participants, has pushed
the institutionalization of methane science and reporting for-
ward. It aims for a collective reduction of methane emissions
of at least 30% from 2020 levels by 2030. Key to achieving
this pledge is for countries’ mitigation action plans submitted
to UNFCCC—NDCs—to be separated for each GHG gas. This
would unlock the door to more transparent and accurate
quantification of methane sources and greater policy strin-
gency. Enforceable policies, such as legally binding regula-
tions and differentiated markets, are needed to drive mitiga-
tion actions, with regional regulations emerging such as the
US Environmental Protection Agency (EPA), which has a su-
per-emitter program for the use of remote sensing to detect
methane releases or leaks,”® and the European Union (EU)
Commission’s regulation on methane emissions, which re-
quires the fossil fuel industry in Europe to measure and report
emissions.””

Insight 2: Implications of declining aerosol emissions
Reductions in air pollution have implications for global
warming and regional patterns of precipitation

Aerosols, minute liquid or solid particles suspended in the air and
major components of air pollution worldwide, have strong influ-
ences on the climate. Aerosol emissions and atmospheric load-
ings have been declining globally (though not in every region),
especially in the past two decades (Figure 2), and recent insights
show that this is influencing observed climate change via path-
ways distinct from GHGs.

Anthropogenic aerosol particles mainly stem from road traffic,
domestic and commercial energy generation, agriculture,
managed fires, and a range of other sources. Natural aerosol
sources include volcanic eruptions, wildfires, deserts and
oceans.?! This airborne particulate matter is considered to be
the world’s largest environmental health threat: 58% of the total
8.1 million premature deaths attributed to air pollution in 2021 are
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attributed to ambient PM, 5.5’ Beyond premature deaths, it is
worth noting that air pollution, including ambient particulate mat-
ter, impacts health across the entire life course,®” and almost the
entire global population (99%) lives in areas where air quality
does not meet WHO guidelines.®*** In addition to their impacts
on human health, aerosols from both natural and anthropogenic
sources have an important impact on global and regional
climate.

Broadly, GHGs have warmed the climate over the industrial
era, while the net effect of aerosol changes on global climate
over the historical era is cooling,®® thereby partly “masking”
anthropogenic warming from GHGs, and also reducing precipi-
tation change.®® Due to the variety of emission types, physical in-
teractions, and chemical reactivities, however, aerosols affect
the climate through different pathways and with different effi-
cacies than GHGs. For instance, unlike CO,, aerosols are
short-lived climate forcers (SLFCs), thereby influencing climate
on different spatial and temporal scales, as compared to well-
mixed GHGs with their influence on the global mean temperature
and total precipitation.

Aerosol emissions, properties, and climate effects are hetero-
geneously distributed across regions and time evolving
(Figure 2), which adds complexity to describing them in climate
models. Recent studies provide details on the complex role
ongoing changes in aerosol emissions are having in observed
climate change, both near to and far from emission sources.
These effects transcend the often-discussed influence on global
mean temperature, and they differ in strength and geographic
distribution from the effects of concurrent increases in
GHGs.® Critically, the short-term local and global impacts of
aerosol changes are strongly dependent on the location of the
emission changes; depending on where the aerosol change oc-
curs, the resulting global and local temperature and precipitation
impacts and associated societal damages can span orders of
magnitude.®”%°

One key insight relates to the pattern of recent emission
changes (Figure 2). GHG and aerosol emissions share similar
sources, and mitigation policies for GHG are highly intertwined
with those for air pollution. The efforts in recent decades to
reduce aerosol emissions have, while also partly mitigating
GHG emissions, successfully improved air quality in many re-
gions of the world. Particularly, Europe, North America, and
East Asia have already experienced a notable decline in anthro-
pogenic aerosol loadings as a result of successful air quality pol-
icies in the past decades.”®®' To the contrary, while aerosol
emissions have begun declining globally, they continue to rise
in South Asia and, to a lesser degree over parts of South Amer-
ica, and the trajectory of future African emissions is particularly
uncertain.®>?° Hence, the local effects of aerosol changes
have been co-located with many of the world’s most populated
areas from South and East Asia to South America,®"%> ampli-
fying shifts in climate risks. However, heterogeneous aerosol
emission changes also have and will continue to produce remote
effects on atmospheric circulation, air temperature, and precip-
itation and thus are not only a concern for currently polluted
regions.509%:94

These changes can be robustly detected from satellite data,
and the overall corresponding decline in negative effective radia-
tive forcing by aerosols over the period of 2000-2019 is estimated
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to be 0.1 to 0.3 W m~2.%° This corresponds to 15%-50% of the
increase in effective radiative forcing caused by CO,*° in the
same time period. Concurrently, many studies have documented
a recent step up in the rate of global warming,”® and, recently,
aerosol cleanup has been implicated as a contributing factor.%®
These recent findings support expectations that future aerosol re-
ductions will significantly contribute to climate warming, and aero-
sol impacts are expected to outweigh those of GHGs under the
carbon-neutrality scenario.®*°”

The climate implications of the current trends in aerosol emis-
sions are not fully quantified. Aerosol-cloud-precipitation inter-
actions remain a persistent uncertainty,’® and aerosol-cloud
interactions (ACls) dominate the radiative forcing from anthropo-
genic aerosol emissions and its uncertainty.®>°%1%° Persistent
ACI uncertainty limits our understanding of both the total influ-
ence of aerosols on surface temperature and the transient
climate sensitivity'®" and, therefore, must continue to be a focus
of research efforts. Further areas requiring research investment
include the many pathways that connect aerosol radiative and
microphysical effects to precipitation,®” how global warming in-
fluences emissions of natural aerosol types, '° and aerosols’ in-
fluences on extreme and compound events. One complicating
factor is that, due to the climate system’s thermal inertia and
the non-linearity of ACls, the additional warming arising from
air-pollution mitigation can be delayed by two or three decades
in heavily polluted locations.'®® Adding to this concern, recent
studies suggest a potential underestimation of the anthropo-
genic aerosol loadings in the past decades.'’" Given the ex-
pected decline in aerosol loadings, these recent findings and
persistent aerosol-related uncertainty further underline the
need for immediate climate-change mitigation and adaptation
measures.

Another key recent insight concerns the climate impact of
emissions of soot, or black carbon aerosols. Dark aerosols
such as soot absorb sunlight and act to warm the climate
much like GHGs. Until recently, soot was considered a strong
contributor to observed global warming, but recent studies
have found that this effect is counteracted by atmospheric ef-
fects (so-called rapid adjustments) therefore underlining the
importance of mitigating dangerous climate change through
GHG reduction. The total effect of present-day black carbon
emissions was assessed by the IPCC to be around 0.1°C
only.®® Later studies have, however, emphasized the potential
role soot has in driving precipitation change and influencing
climate phenomena, making it a highly relevant contributor to
regional climate change.®%%":1%°

Recently, there has also been discussion of a potential role of
reductions in sulfur content in ship fuels in the 2023 record-high
surface temperatures.'%®"'"° The recent regulations from the In-
ternational Maritime Organization (IMO), in effect from 2020,
have drastically reduced sulfate aerosol loading resulting from
shipping emissions, and this is expected to lead to some addi-
tional global warming. The magnitude of this effect has been esti-
mated by a number of studies, but no consensus has yet been
reached. Most estimates lie around 0.1°C, though some studies
point out that the effect is also, as yet, indistinguishable from
year-to-year variability."'°

A consensus among recent studies is, however, that aerosol
emission changes are key in differentiating the rate and nature
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of climate change experienced by different regions, which leads
to a differentiation in loss and damage and adaptation pres-
sure."”" While this is evident from the discussed findings on
aerosols’ impacts on temperature, precipitation, and circulation,
decision-making support generally suffers from a lack of knowl-
edge, which needs to be addressed by differentiating the effects
of aerosols, starting with the distinction between different aero-
sol types. For instance, regional climate models, as important
suppliers of climate information, should be equipped to better
reproduce the detected effects.®%%%"2

The latest findings on anthropogenic aerosols make it clear
that the necessary phase-out of fossil fuels to stay within the
Paris Agreement warming limit range®® will also bring about
considerable co-benefits for human health via aerosol reduc-
tions, yet these aerosol reductions also increase the urgency of
GHG mitigation.

Cleanup of anthropogenic aerosol emissions is having, and
will continue to have, massive benefits for human and ecosystem
health and on clean energy from solar and wind."'® Itis, however,
also unavoidably strengthening the ongoing global warming, and
adding complexity to the regional evolution of temperature, pre-
cipitation, and rates and magnitudes of extreme events.

Insight 3: Losing habitability due to extreme heat

A growing fraction of the planet is now under climate
conditions outside the historical range of habitability
Extreme heat is one of the major factors making parts of the
planet less habitable. It is one of the leading causes of
weather-related mortality across the world"'*'"> due to the
many ways it imparts physiological strain on the human
body."'® Recent epidemiological studies have shown that
extreme heat is not only associated with increases in all-cause
mortality''""'"® but also with case-specific causes such as car-
diovascular.'''?° Notable heatwaves like those that affected
the North American Pacific Northwest in 2021 and western Eu-
rope in 2022'?" resulted in a large number of excess deaths
and heat-related illnesses, including heat stroke and severe
headaches. Extreme heat events like these that were associated
with excess mortality are occurring more frequently, a trend that
will continue with climate change.''®

Is there a limit to the heat conditions that the average human
can withstand? Put another way, are there combinations of tem-
perature and humidity at which the human body is no longer able
to physiologically compensate for prolonged environmental heat
stress leading to core temperature increases that put a person’s
internal organs at risk of function failure?'%? Over the past year,
new studies have focused on the limits of human thermal habit-
ability under future climate change based on both previous
epidemiological as well as new empirical physiological literature.
We synthesize these latest developments and how they fit within
the context and definition of human habitability.

Although habitability can encompass other factors such as
drought, wildfires, and infectious diseases, thermal habitability
is emphasized more in recent literature (and is the focus here)
as it is one of the key factors currently contributing to uninha-
bitability due to climate change.'®® Thermal habitability can
be considered in terms of the overall concept of habitability.'**
However, here, we specifically refer to it as the suitability of an
environment’s temperature for human comfort, and survival,
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considering the range of temperatures that humans can
tolerate and thrive in and taking into account factors such as
temperature and humidity level, which affect how the human
body maintains its core temperature and performs daily
tasks.125,126

One way to evaluate habitability is via the “human climate
niche,” the climatic conditions (and specifically temperature
conditions for this insight) where people have historically settled.
Archaeological records and climate reconstructions reveal that,
since neolithic times (~6,000 years ago) humans have concen-
trated in a surprisingly narrow subset of Earth’s available cli-
mates, with mean annual temperatures ~13°C and mean annual
precipitation ~1,000 mm."?” In present-day societies, most peo-
ple, and most agricultural and economic output, are still within
this same human climate niche.'?” The human-induced climate
changes (and specifically warming) we are currently facing are
pushing areas outside habitable climatic conditions.'?*'?®
A recent study estimates that, at the current ~1°C warming
level, >600 million people already live outside the human climate
niche, while projections presented in this study show that every
degree of future warming could further push >10% of the world’s
population outside the niche, assuming no massive migrations
due to climate'?® (Figure 3). It is important to note that the human
climate niche describes where most humans, not all humans,
have lived and continue to live. Conditions outside the ranges
of the human climate niche are not necessarily uninhabitable
and have been made more habitable thanks to modern adapta-
tion technologies like irrigation and air conditioning.

While the human climate niche describes the average condi-
tions most conducive to human habitability, heat extremes expe-
rienced during heat waves are also an important consideration
for habitability. In the future, most regions of the world will likely
experience an increased frequency, duration, and magnitude of
extreme heat.’”® Heat extremes impact human health in
numerous ways. The most directly fatal impact is heat stroke—
though this only constitutes a small percentage of heat-related
deaths. Other heat-related ilinesses include severe headaches,
vital organ damage, decreased metabolic activity, preterm
births, kidney and urinary tract complications, and mental disor-
ders.''® Although the occurrence of heatwaves and dry condi-
tions can be dangerous to human health, it is particularly the
occurrence of heatwaves alongside humid conditions that is
dangerous for health. This is because such conditions hinder
evaporative cooling and reduce the ability to regulate core tem-
perature (Figure 3). Recent empirical studies indicate that young,
otherwise healthy humans are unable to thermoregulate in con-
ditions of minimal metabolic activity beyond a wet-bulb temper-
ature of ~31°C in humid conditions, ~4°C less than previously
theorized."*® Especially vulnerable groups, whose thermoregu-
latory limits would likely be even lower, include the elderly and
young children; people with chronic cardiovascular conditions,
respiratory conditions, cerebrovascular conditions, pre-existing
mental illness, and with cognitive and/or physical impairments.
Without other infrastructural or technological adaptive measures
(e.g., air conditioning), prolonged exposure of a few hours to
these conditions would drastically increase the risk of morbidity
and mortality in wide swaths of the population.

Extreme heat impacts extend beyond direct harms to human
health. Heat also causes reduced work capacity,'*° especially
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Figure 3. Increasing exposure to prolonged heat at different levels of global warming

Implications of global warming for the proportion of the population exposed to heat. Map of present heat-humidity risks to humans with inset projections of the
heat-humidity changes for West Africa as well as a plotted projection of the percentage of humanity exposed to unprecedented temperatures, both under
different warming scenarios. Annual hot-hours global map (under 1.5°C warming) and West Africa and South Asia projections (under 1.5°C, 2°C, 3°C, and 4°C
warming).'® Bottom left plot: projection of fraction of humanity exposed to unprecedented temperatures.'>® Population (%) exposed to unprecedented heat
(mean annual temperature >29°C) for the different population distributions: 6.9 billion (green), 9.5 billion (blue), and 11.1 billion (gray).

for outdoor workers. "> Communities with a greater proportion of
outdoor and informal sector workers, such as farm workers, con-
struction workers, waste pickers, and street vendors, are partic-
ularly affected. Non-direct impacts to health also occur, such as
that climate warming may amplify the risk of algae blooms,
increasing human exposure to cyanotoxins.'** Increased global
temperature increases the burden of vector-borne diseases,
including malaria. With warmer temperatures, vectors, including
mosquitos and ticks, which can survive in more regions and for
longer timescales.'®®

Beyond the specifics of the limits of thermoregulation in hu-
mans, heat extremes affect different regions and population
groups differently. The world is not warming evenly, with some
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regions becoming exposed to extreme heat more rapidly
(Figure 3, inset of West Africa in particular). Powis et al.'®
show that many regions across the world already experience
hot and humid conditions beyond the physiologically determined
thermoregulatory thresholds. Ramsay et al.’®* find that humid-
heat risk is underestimated in some of the most vulnerable re-
gions due to the numbers of people living in informal settlements,
limiting their adaptive capacity. As the world approaches 1.5°C
warming, potentially lethal temperature and humidity levels are
expected in India, Pakistan, and Bangladesh.'*>'* Global-scale
analyses suggest that heat extremes will be concentrated in low-
latitude regions, which disproportionately includes many Global
South countries.'®*
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Habitability is not only an individual, physiological concept but
also one dictated by the suitability of the surrounding environ-
ment to live and thrive in, including the availability of food.
Drought-heatwave and humid-heatwave events are increasingly
occurring and are impacting agriculture and food security glob-
ally.®®"%"” Extreme heatwave-drought events significantly impact
staple crop yields, like maize.'*® During growing seasons that
coincide with El Nifio events, areas like southern Africa and
Australia, more frequent and intense heat coincide with drier-
than-normal conditions, substantial impacts on crop and live-
stock production’®”'%%; this was observed in many parts of
southern Africa during the 2023/2024 EI Nifio event.'*°

Understanding when, and by what margin, heat extremes are
likely to occur is vital for adaptation planning. For example, the El
Nifo superimposed on global warming trends can exacerbate
record-breaking heat, especially humid heatwaves.'° A variety
of climate modeling methods can be used to investigate the
physical characteristics of possible unprecedented extremes in
current and future climates, allowing plausible adaptation levels
to be determined. Better understanding of the plausible ex-
tremes allows prioritization of adaptation measures, implement-
ing measures such as expanding air conditioning, creating green
urban spaces, and improving heat action plans in the regions
where they will have most impact. It is important to push adap-
tation efforts to be based on future models because current
levels of heat adaptation are typically aligned only with past
(if recent) record temperatures.'*! Instead adaptation needs to
be based on what models are anticipating in the future.'*?

As we described, multiple lines of new evidence are showing
that large parts of the globe are at increasing risk of becoming
uninhabitable due to warming. This is occurring due to higher
average temperatures and/or discrete periods of extreme heat,
both of which test the limits of what humans can physiologically
tolerate. 2024 has seen a series of extreme heat events globally.
For example, over 1,000 fatalities at the Hajj pilgrimage were
linked to a heatwave, while, in India, early-season heat over-
whelmed hospitals.’*® Other climatic extremes, such as intensi-
fied storms, droughts, and wildfires, can also render regions un-
inhabitable, though these fall outside the scope of this Insight.

While environmental indicators show a shift toward uninhabit-
able conditions, there is substantial heterogeneity in adaptive
capacity across populations. Physiological adaptation appears
to occur in populations continuously exposed to warmer condi-
tions, reducing health impacts.'** On the other hand, vulnerable
populations, such as the elderly or those with underlying medical
conditions, have different, lower, physiological thresholds for
extreme heat."“® This shows that it is not possible to empirically
determine a single level of human tolerance for heat. The limited
empirical studies on heat and humidity tolerance do not yet
cover this full range. Vecellio et al.,'?® for example, looked at in-
dividuals from a population with generally low exposure to heat),
and this inhibits the ability to adapt appropriately for the local
context. It is also important to note that heat sickens and kills
at values well below the habitability thresholds discussed here
and regardless of ambient humidity.’*®'*" All these factors
may contribute to the disconnect between the epidemiological
and the physiological results around heat and humidity.'*®
Higher-income countries within vulnerable regions (e.g., United
Arab Emirates and Singapore) can afford the required technolog-
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ical adaptations and lifestyle changes to withstand the worst
effects of extreme heat. In contrast, poorer households, even
within affluent regions, will endure higher heat exposure due to
limited access to cooling.'*® Greatly expanding access to such
adaptive measures will be critical in responding to the increasing
inhabitability due to heat.

Insight 4: Impacts on MRH

Climate change is increasing risks for pregnant women,
fetuses, and newborns, threatening progress in MRH
Changing climate patterns have been exacerbating health prob-
lems worldwide, increasing heat-related deaths, infectious dis-
eases, respiratory illnesses, and more.'*° Recently, there has
been rising concern over the growing impacts of climate change
on MRH, an important element in tackling the existing gendered
impacts of climate change.

While it has been shown that pregnant women can thermoreg-
ulate effectively in situations of acute, short-term heat stress
(typically several hours or less from exercise in heat, for
example),'*" it is less well known as to how effective thermoreg-
ulation is with prolonged excess heat exposure (days to weeks),
especially in light of the multi-system adaptation taking place
across pregnancy to accommodate the demands of a growing
fetus.’®? Indeed, excess heat exposure and other extreme
weather events have been directly and indirectly linked to hyper-
tensive complications of pregnancy, increased pregnancy
loss, preterm births, severe maternal morbidity, and more
(Figure 4)."5%"%® Impacts are worse in climate-vulnerable regions
where pregnant populations are less able to adapt to increasing
heat and other extreme weather events due to their prevailing so-
cio-economic conditions and limited access to resources.’'**
Climate-change impacts to MRH may also be intergenerational.
Some studies associate pregnancy exposure to extreme
weather events with long-term behavioral and cognitive impacts
on offspring.'>®

However, there is still need for further research. For example,
while it is clear that excess heat exposure results in adverse
pregnancy outcomes, exact pathophysiological pathways have
not yet been determined. Hypotheses include overwhelmed
physiological thermoregulatory systems; decreased placental
blood flow resulting in fetal growth restriction and/or placental
abruption; premature labor resulting from direct heat-related
uterine hypercontractility or enhanced oxytocin and prosta-
glandin release as well as increased uteroplacental inflammation
and dehydration; and hypercoagulability.'®® The exact size and
scale of impacts on MRH also remain unclear, particularly in
the most climate-vulnerable regions, where there is a gap in
research. In addition, policies and practices in place to prepare
for these impacts remain insufficient'®’; for example, only 27
out of 119 NDCs make reference to maternal and newborn health
and sexual reproductive health.'*®

Recent global movements such as the “Protecting maternal,
newborn and child health from the impacts of climate change”
call to action aim to raise urgency over this matter.'® Without
effectively addressing the direct and indirect impacts from
climate change on MRH, we risk reversing progress made in
the field over the recent decades.

To address some research gaps, multiple studies were pub-
lished last year, such as on the impact of extreme weather events
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Figure 4. Direct and indirect pathways of climate-change impacts on MRH
Impacts are further amplified by socio-economic factors in a given setting. To strengthen preparedness and protect MRH in a changing climate, solutions must
address existing challenges in climate adaptation plans, data, education, and gender and socio-economic norms and be driven by gender equity and repro-

ductive justice.

on MRH in low- and middle-income nations. Rekha et al.'®*
explore the impact of occupational heat stress on 800 pregnant
women in India. Results show that nearly 50% of the women re-
ported excess heat stress exposure (beyond wet-bulb globe
temperatures of 27.5°C and 28°C for heavy and moderate work-
loads, respectively), with the risk of miscarriage was found to be
doubled when compared to pregnant women not exposed to
heat stress. These results have strong implications for tropical
nations where millions of working women risk facing exposure
to occupational heat stress.'®® In their study of over 400,000
pregnancies in southern California, Jiao et al.,'®° showed signif-
icant associations between long-term heat exposure and in-
creases in severe maternal morbidity (unexpected conditions
during birth). These health risks were identified to be higher
across patients with lower levels of education and green-space
exposure. Another recent large cohort study from Australia
also found significant interactions between green spaces, heat
exposure, and odds of preterm births."®" Analyzing urban green
infrastructure combined with social determinants of health adds
to our understanding of prevention options. Bonell et al.”®’ link
heat to changes in epigenetics and gene imprinting; congenital
abnormalities; and alterations in placental circulation, growth,
and function as pathways of harm that can lead to increased
stillbirth risk.

But it is not only heat stress that negatively affects MRH. A
large-scale study across 33 low- and middle-income countries
covering parts of Asia, Africa, and South and Central America
found a significant correlation between gestational flood expo-
sure and increased pregnancy loss risk, with this risk being
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more pronounced for women dependent on surface water,
with lower income or education levels. The study also estimated
that, between 2010 and 2020, over 107,500 excess pregnancy
losses annually could be attributed to maternal exposure to
gestational floods across the studied regions, with the highest
losses in South Asia.'®?

Through indirect pathways, climate change can magnify these
direct impacts (for instance, by affecting health systems and
infrastructures; see Insight 7: Critical infrastructure under pres-
sure) and exposing societal weaknesses.'*® For example,
increased heat can reduce food and water availability. New
mothers have to travel long distances in the heat to secure water,
which delays their recovery. Food insecurity can result in inade-
quate nutrition during pregnancy, which may increase the risks
of low birth weight and reduce breast milk production.'®®
Research from Kenya and Burkina Faso show that extreme
heat discourages important behaviors to MRH. Examples
include a decline in breastfeeding frequency, mother-child
bonding (e.g., “kangaroo mother care), traveling for antenatal
and postnatal care, and use of mosquito nets, which is an
additional factor increasing exposure to vector-borne dis-
eases.'®*'% Impacts are further heightened in migrating preg-
nant women as access to reproductive care services and health
care in general is disrupted and can remain absent. Climate-
related displacement has been linked to inadequate prenatal
care visits, lack of proper nutrition, insufficient rest, unsanitary
conditions, loss of social support networks, disrupted breast-
feeding, and insufficient neonatal support.’®® Increasing
gender-based domestic violence is also another indirect impact
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Box 1. Definitions

The ENSO is a climate pattern characterized by interannual variations in sea-surface temperatures and atmospheric pressure
across the equatorial Pacific Ocean, leading to substantial global weather extremes. ENSO alternates between two phases: El
Nifio, associated with warmer ocean temperatures in the central and eastern equatorial Pacific and often resulting in wetter
conditions in the Americas and drought in many parts of South Asia, Australia, the Maritime Continent, and southern Africa;
and La Nina, marked by cooler ocean temperatures in the central and eastern equatorial Pacific and typically causing opposite
weather patterns.

The AMOC is a large system of ocean currents, including the Gulf Stream, in the Atlantic Ocean. The AMOC transports and
distributes relatively warm and salty surface water in the upper ocean from the subtropical South Atlantic across the Equator
toward high latitudes in the North Atlantic where it becomes denser and sinks to return back south as deep cold water from the
North Atlantic back south. The AMOC is a crucial element in the climate system regulating global climate by the storage and
redistribution of heat, salt, and other properties around the globe. Disruptions or slowdowns in the AMOC can significantly

impact regional weather and climate patterns, water cycle, sea levels, and marine ecosystems.

of climate change on MRH. A study by Zhu et al.'®” in three South
Asian countries found that a 1°C increase in the annual mean
temperature was associated with a 4.5% increase in intimate
partner violence. Women also face increased risk of sexual
violence during climate-related migration.'>*16°

Existing justice and gender discrimination further exacerbate
these challenges to MRH. Scorgie et al.’®* in Kenya report
that, in areas where heat is normalized and behavioral changes
conflict with gender norms, pregnant women often continue their
physical activities (for example, collecting firewood and water)
during extreme heat events. Globally, it is also well known that
women of color, low income, and low education levels are
exposed to harsher environments, face more impacts of climate
change, and have limited access to healthcare services.'®® As a
result, they face disproportionate challenges to their MRH.
These disparities highlight the importance of addressing the
intersection of social and economic inequalities with climate vul-
nerabilities and recognize the need for a reproductive gender
and justice lens. 657165168

To strengthen efforts to protect MRH from climate change,
more research from regions highly vulnerable to climate change
is needed to fill in existing epidemiological data gaps and better
understand the direct and indirect pathways that amplify risks to
MRH. At the national level, policy makers should integrate MRH
in the NDCs, increase low-emission cooling across health care
facilities, '®® or use low-tech solutions to reduce heat (such as
painting maternal and neonatal buildings in light colors and relo-
cating from the top floors). %8 Other solutions include, but are not
limited to, awareness campaigns to warn pregnant women to
avoid peak heat hours (for example, in Andhra Pradesh),
increased access to hydration points within a city, disseminating
information around nearby air-conditioned public spaces, and
providing financial assistance to low-income families to reduce
costs of air conditioning (for example, in the states of New
York and California)'®®"%® while prioritizing low-energy cooling.
Integrating education around climate change across medical
higher-education programs and training can help increase med-
ical community preparedness to climate-change impacts on
health.'*>""° Community-level education campaigns on the
risks of heat to MRH, including early signs of dehydration, should
be carried out in collaboration with community members, such
as local leaders, women support groups, traditional birth atten-
dants, and other health care members.”®”"®*1"" This can

contribute toward dispelling harmful gender norms that increase
risks to MRH.'®® Regulations around occupational safety for
pregnant women can help set in place best practices to reduce
heat stress in workplaces. It is crucial that solutions implemented
consider gender equity and justice to avoid further discrimination
and to ensure equitable access to health resources to all preg-
nant women.

While the focus of the current update is on heat and flooding
impacts to pregnancy, it is important to mention that other
climate-change-driven impacts, such as air pollution and wild-
fire, continue to be a major concern due to significant associa-
tions with several adverse pregnancy outcomes, including
preterm birth, low birth weight, hypertensive disorders of preg-
nancy, placental abruption, and other complications.'”? Policies
and actions should account for all manner of climate-change-
related harms.

Insight 5: Concerns over ENSO and AMOC

Concerns about ENSO and the AMOC in the context of
unprecedented ocean warming

Changes in oceanic conditions can significantly impact global
climate patterns through mechanisms such as teleconnections
and the redistribution of heat and moisture, posing substantial
risks to ecosystems and human societies. We focus on the
ENSO and the AMOC due to their profound influence on global
climate variability and their critical roles in modulating weather
extremes, unlike other phenomena such as the Pacific Decadal
Oscillation (PDO) or regional monsoon systems. ENSO is an
ocean-atmospheric phenomenon primarily occurring in the cen-
tral and eastern Pacific Ocean, influencing global weather pat-
terns (Box 1). The AMOC is a system of ocean currents in the
Atlantic Ocean, crucial for redistributing heat and regulating
climate (Box 1).

We will consider ENSO from an economic perspective
because new research shows that the global economic costs
of El Nifio are orders of magnitude larger than previously under-
stood, implying considerable societal vulnerability. In contrast,
we will examine AMOC from a physical perspective because
new research suggests that the AMOC, a climate-essential sys-
tem of global ocean currents regulating and redistributing heat,
is exhibiting behavior that could mean its slowdown and/or
collapse at lower global-warming thresholds than those pre-
dicted by earlier assessments. Together, these two insights
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suggest that human well-being is highly sensitive to ocean vari-
ations and that large-scale oceanic changes are more likely over
the near term, with substantial potential societal costs.

ENSO

Unprecedented ocean warming since the beginning of 2023
broke various sea-surface temperature (SST) records not just
in the tropical Pacific but also in the North Atlantic, Gulf of
Mexico, the Caribbean, and large areas of the Southern Ocean.
Even as the EI Nifo dissipated in the Pacific, the unusual warm-
ing of nearly 0.5°C above the reference average period (1991-
2020) remained long after the event, as the first quarter of 2024
has persistently been warmer than the respective months in
2023 (Figure 5A). ENSO events are intricately related to long-
term changes in SST: warming in the eastern equatorial Pacific
can trigger and amplify an El Nifio event, whereas warming in
the western equatorial Pacific is conducive to strong La Niha
events.'”® ENSO SST anomalies driving weather and climate ex-
tremes have direct social and economic impacts. New research
on large-scale climate features such as the ENSO reveal
increasing evidence that natural climate variations are more
than two orders of magnitude costlier to the global economy
than previously understood, independent of any impacts from
global warming.'”*'”> While it has long been understood that
climate variability can generate socio-economic impacts, the
true costs of El Nifio events and how those costs evolve along-
side warming were unknown. Two scientific issues require reso-
lution to address the question of historical and future ENSO
costs: (1) whether and for how long the economic impacts of El
Nifio events persist, and (2) how projected changes to ENSO
will shape the wider costs from global warming. The first striking
finding was that historical El Nifio events have persistently
reduced country-level economic performance of US$4.1 trillion
and US$5.7 trillion in global income losses attributed to the
1982-1983 and 1997-1998 El Nifio events, respectively'’*
(Figure 5B). Similar startlingly large estimates of US$2.1 trillion
and US$3.9 trillion global loss due to the 1997-1998 and
2015-2016 extreme ElI Nifio events were found based on
different estimations'”® (Figure 5B). Economic loss grows
dramatically with increased ENSO variability from global warm-
ing. Projected potential economic losses due to increases of
ENSO amplitude (under current mitigation pledges and high-
emissions scenarios) have been estimated at US$84 trillion, or
an additional median loss of US$33 trillion to the global economy
over the remainder of the 21st century, at a 3% discount rate in
the high-emission scenario. The opposite ENSO phase, La Nifa,
has statistically insignificant impact and the cumulative global
gross domestic product (GDP) benefits gained were negligible.
These studies'”*'"® reveal how poorly adapted our economies
are to natural climate variability, despite the fact that they do
not represent novel climate states.

AMOC

Emerging research highlights that AMOC is weakening under
climate change and is expected to decline further over the
course of the 21st century.’”®"'8" Beyond the lack of effective
climate adaptation over interannual timescales, there is also indi-
cation of warming-driven changes to other large components of
the climate system operating over longer timescales. The sixth
assessment report of the IPCC suggested, with medium confi-
dence, that an AMOC collapse is not likely during the 21st cen-
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tury.'®? New insights question this IPCC statement and indicate
that the AMOC is on tipping course, and the tipping point will
possibly be reached within this century.”””'”® The 20-year-
long observation record of AMOC is at the moment too short
to detect any long-term trend.'®® The observational AMOC re-
cord may be complemented by reconstructions'®* and model
output where these results show early warning signals of a po-
tential AMOC collapse (Figure 5C). However, it should be noted
that there are still remaining uncertainties in predicting tipping
point due to modeling assumptions, the representativeness of
time series data, and gaps in observational coverage. Substan-
tial AMOC weakening by the end of this century'®>'86 or a full
AMOC shutdown'”® would have profound and complex effects
on global climate, weather patterns, sea levels, marine ecosys-
tems, and human societies, necessitating comprehensive
monitoring and mitigation efforts to address these potential
impacts.'®”

What changes to impactful climate features—and the associ-
ated climate risks —can we expect this century? Answering this
question requires an assessment of the trustworthiness of
models and the sufficiency of observations for responsibly inter-
preting the projections. For example, the majority of latest
Coupled Model Intercomparison Project (CMIP6) models indi-
cate that ENSO amplitude will likely increase even under strict
mitigation targets,'®® while some large ensemble simulations
suggest nonlinear and time-dependent changes.'®*'%° Biases
in climate models’ inability to reproduce observed SST patterns
lead to underestimating climate sensitivity and future warm-
ing,’®" indicating that actual climate sensitivity could be higher
than previously thought. Multicentury climate simulations and
single-model large ensembles forced with pre-industrial GHG
conditions can answer the question, helping to represent the
spectrum of internal variability consistent with and without
anthropogenic forcing. It remains, however, that model interpre-
tations will be tethered to the short observed record in addition to
persistent model biases in simulating SST mean state and large
inter-model and inter-ensemble spreads in projected changes in
ENSO SST variability. "% '°21°3 Going forward, a key focus for
research is to close the gap between models and observations
in both ENSO and AMOC, which would constrain uncertainty in
their potential state changes over the near-term decades.'”®
For example, while climate models consistently show AMOC
decline during the 215' century from climate models,'’® they
also reveal a wide range of weakening rates. This uncertainty
needs to be addressed with improved models with longer obser-
vational records, including more accurate SST records, to help
to sort the signal from the noise.

Recent research underscores the significant economic and
societal impacts of climate phenomenon like ENSO, which is
particularly notable given the recent evidence suggesting alter-
ations of natural climate variability and potential rapid state
changes by possible further global warming. El Nifo and its tele-
connections are well understood, societies have experienced
them for centuries, and yet there is a large latent vulnerability
to them. ENSQO’s economic costs are far greater than previously
estimated and persist at least 6 years after an El Nifo event,
while AMOC may be closer to a critical slowdown or collapse
than earlier predicted. The large macroeconomic impacts of El
Nifio suggest potential consequential costs associated with an



WIIC Edl Ul

A

Temperature (°C)

20 1

19.8 1

19.6 1

¢? CellPress

OPEN ACCESS

Daily sea surface temperature for 60°S - 60°N

2024
24 Aug 2024
o
1991-2020 20.89°C
2023 average
1979-2022
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Cumulative global GDP change (USS$ tril)

Economic damages across years from most recent El Nifio events

81 e EINif01982
. EINifio1997 -—====-- Liu et al. (2023)
7101 ® ElNifio 2015 Callahan & Mankin (2023)
4 @ EINifio 2023
-12 , . : . . . . . - )
0 1 2 3 4 5
Years since El Nifio event
(o AMOC strength
20
15 4 o
N RN
2 e
S ‘~\
B 104 S~
c S—_
o So
k7 Teao_
< Historical AMOC T
————— AMOC tipping scenario
0 -
1900 1950 2000 2050 2100 2150 2200
Year

Figure 5. Unprecedented SST, El Nifno costs, and potential weakening of AMOC

(A) The mean daily SST across the globe, collected from January 1979 to August 24, 2024 from ERA5.'7®

(B) Economic damages calculated as GDP change for the 3-5 years after noteworthy El Nifio events with the center line indicating the mean of the projection and
shading showing the 95% confidence intervals across regression bootstrap samples.'”*'”> Global GDP change is only calculated for countries with statistically
significant marginal effects.

(C) The historical AMOC strength based on a combination of annually averaged SST observations and reconstructions (red)

(black solid) indicating

"7 shown with 11-year running means

potential AMOC tipping scenario from 2021 to 2200 (gray dashed) with shading of interannual variability and uncertainty.'”®
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AMOC slowdown or other rapid climate changes. It is also impor-
tant to address uncertainties in predicting climate processes and
understand the impact of rising sea-surface temperatures. This
will help refine estimates of future warming and guide effective
strategies to protect society from environmental changes over
time. The findings emphasize the importance of closing gaps be-
tween climate models and observations to better predict and
mitigate future risks. Addressing these uncertainties is crucial
for developing effective climate-adaptation strategies alongside
rapid decarbonization to protect society from potential large-
scale environmental changes and risks.

Insight 6: Protecting diversity for the Amazon’s
resilience

Biocultural and ecological diversity can bolster the
Amazon’s resilience against climate change

The Amazon is a heterogeneous and complex system composed
of various types of interconnected aquatic and terrestrial eco-
systems, shaped over tens of millions of years. It hosts ~10%
of the Earth’s terrestrial biodiversity and more than 400 ethnic-
ities of Indigenous peoples and local communities.'®* By recy-
cling a tremendous amount of water, it substantially affects the
planetary energy balance through the cooling effect that evapo-
transpiration promotes.'®* Moreover, it currently stocks as much
carbon as has been released as CO, from global land-use
change since 1850.%"

A multitude of human-related drivers have simultaneously
altered the vegetation cover throughout the Amazon system. '
Habitat fragmentation, the extraction of timber and other goods,
forest fires, and climate-change-induced extreme droughts have
increased degradation to about 40% of the remaining forest.'®®
The conversion to farmland (e.g., cattle ranches), infrastructure
construction, mining, and an increasing urbanization within the
Amazon ecosystems have reshaped its landscapes after defor-
esting 18% of the total Amazon forest system.’?° These distur-
bances are not only reducing biodiversity but are synergistically
transforming the Amazon ecosystems.

While, under increasing disturbances, the permanent changes
in climate and vegetation may not be immediately apparent, so-
cieties are already experiencing the early signs of declining
ecosystem services, such as reduced water quality and avail-
ability.’®” Some parts of the Amazon system have switched
from carbon sink to carbon source, effectively reinforcing climate
change.'®® Contrasting events such as the 2020-2022 floods
and the subsequent 2023-2024 extreme drought have substan-
tially affected social-ecological systems throughout the Amazon
region.'”® Impacts were observed on both people (e.g.,
displacement, transportation shortages) and ecosystems (e.g.,
reduced productivity).'®® The repercussions extend far beyond
the region, threatening water, energy, and food sovereignty
locally and globally and jeopardizing the stability of the system
itself. Despite some uncertainty, growing concern centers on
the possibility of a systematic collapse of the Amazon forest sys-
tem triggered by self-reinforcing feedback loops induced by cli-
matic and human-driven disturbances. While local or regional
tipping points are expected to occur first, a large-scale and sys-
temic tipping of the Amazon forest system may soon follow.?°°
These disturbances are unevenly distributed in space and time
and are pushing the system toward different thresholds (temper-
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ature, rainfall, seasonality, dry season length, and deforestation)
at different times.?°° Recent studies have shown that tempera-
ture thresholds can significantly influence photosynthesis effi-
ciency, pushing the forests closer to their physiological limits.?""

The presence of a richer functional diversity enhances resil-
ience of the Amazon to climate change.*°? A richer functional di-
versity —the range of roles species play within an ecosystem—
supports resilience by stabilizing ecosystem functions in the
face of disturbances. For example, diverse plant communities
with varying tolerances to heat and drought can maintain forest
productivity under climatic stress, reducing the risk of forests
tipping into degraded states.?®>*°® This relation suggests that
conserving biodiversity is essential for bolstering forest resil-
ience.?9%:2042% |ndigenous ecological knowledge and practices
can help in this regard. Evidence shows that the creation of
nutrient-rich soils and food forest by Indigenous communities
has enhanced the diversity of soils and plant communities,
improving the forest’s resilience.”°® These practices illustrate
the potential of Indigenous knowledge to maintain forest resil-
ience and mitigate the risk of an Amazon forest systemic tipping
point.”%°

Maintaining the diversity and resilience of the Amazon system
extends beyond preserving its biophysical integrity but must also
consider strengthening its biocultural diversity. This includes
safeguarding traditional knowledge, governance systems, and
ways of life that contribute to the Amazon’s resilience (Figure
6).2°” The participation of Indigenous peoples and local commu-
nities in decision making and law enforcement,°® as well as the
transformation toward a new socio-bioeconomy—an economic
model that values and sustains the region’s biodiversity while
supporting local livelihoods—is key to maintaining and
rebuilding healthy standing forests.?%*'° Restoration of diver-
sity from degraded forests,?°” incorporating local socio-ecolog-
ical conditions, and co-developing reforestation plans locally
can potentially grow rural economies, empower local commu-
nities and Indigenous people, and improve livelihood in the
long term.”®” The transition toward a sustainable use of its so-
cio-biodiversity can not only ensure the continued provision of
ecosystem services but also offer significant opportunities to
improve the living conditions of rural, forest, and urban popula-
tions, currently facing poverty and inequality.?'® The foundation
for this sustainable use is broad and diverse, encompassing
traditional activities of forest communities, biodiversity-rich fam-
ily farming, and all stakeholders within rural landscapes.?'’

Social-ecological “hopespots” demonstrate successful cases
of biocultural conservation, such as the Xingu hopespot??®?'"
and protected areas in the Cerrado-Amazon ecotone.?’%?'" So-
cial-ecological hopespots are defined as areas that can enhance
social-ecological resilience, where Indigenous and local com-
munities are integrated with science and technology for the con-
servation of biodiversity and cultures. Community-based con-
servation initiatives for sustainable-use protected areas, where
local communities are empowered to protect their own territories
against illegal fishers, loggers, and poachers and have a large
degree of autonomous decision making, have proved effective
to not only maintain biocultural diversity and conservation but
also enhance the livelihoods in rural Amazonia.?'? These areas
are crucial for maintaining the multiple dimensions of biocultural
diversity and their interactive functions.”'® By acting as buffers
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Figure 6. Amazon’s biological and cultural diversity enhance its resilience to climate change

A high biodiversity landscape, both biological and biocultural, has higher resilience to climate-change impacts, compared to less diverse landscapes. Climate
change and forest degradation are self-reinforcing feedbacks reducing the diversity of the Amazon system. Reforestation, a transformation toward a new socio-
bioeconomy, embracing the knowledge of Indigenous people and local communities as well as protecting and establishing sustainable-use protected areas can

increase diversity, effectively disrupting the self-reinforcing feedback loop.

against large-scale deforestation and degradation, Indigenous
territories and protected areas play a critical role in preserving
the Amazon’s resilience and biodiversity.?

In addition to the largely local efforts discussed above, a
concerted global effort to reduce GHG emissions is also neces-
sary to curb the influence of climate change on different forms of
Amazon forest degradation, such as via extreme droughts
and fire.'%®

Insight 7: Critical infrastructure under pressure
Critical infrastructure is exposed to climate hazards,
with risk of cascading disruption across interconnected
networks
Energy, transportation networks, telecommunications, and envi-
ronmental technologies and water infrastructure provide essen-
tial services—powering, connecting, and sustaining livelihoods
in schools, homes, hospitals, and economic services—and are
vital for the functioning of society. Should these critical infra-
structures suffer damage, even briefly, the functionality of
society could be notably disrupted. When impacted by
climate-change hazards, the impacts can lead to billion-dollar-
level damages to infrastructure-related assets alone, not to
mention their broader socio-economic repercussions. These
vulnerabilities are heightening®'* due to extreme weather events,
increasing the risk of significant disruptions.?'®

Various types of climate-related hazards from creeping
droughts and wildfires to heatwaves to supercharged storms
and deadly floods and landslides impact lives and livelihoods
through their interactions with critical infrastructure. Energy sys-
tems—an example of a critical infrastructure system—contain a

network of facilities to produce, convert, transmit, distribute, and
provide access to the multiple uses of energy in society. Most of
its components, particularly power lines that link the supply and
demand of electrical energy for grid-wide connectivity, interact
with other services, including mobility and sanitation, and pose
risks for wide-ranging impacts. Table 1 highlights interactions
between hazards in energy systems that are found to be more
severe and likely due to human-induced climate change.

Risks to critical infrastructure arise as single or multiple haz-
ards or as compound or coincident weather events, with
cascading impacts through interconnected systems.?? Interde-
pendencies between critical infrastructure systems like energy
distribution and healthcare, or food supply and transport, can
intensify these risks, causing a domino effect where one system
failure disrupts others.??® There can be three stages of effects,
starting from a single isolated disruption of a facility/asset, in
which direct local impacts disrupt physical infrastructure, such
as a drought interrupting hydroelectric power or wildfire affecting
transmission systems.?”* Managing such disruptions locally is
vital as it reduces the wider-scale impact. In the next stage,
spreading disruptions can take place through the specific sys-
tem (within the sector), beyond a local issue, if poor local
management, and/or vulnerable design and operation of infra-
structure®®* conditions exist. Especially when extending to
interconnected systems, multi-dimensional impacts on society
require more time before full or partial recovery.?*> Thus, wide-
spread infrastructure or major transportation network disrup-
tions need to be reduced,??° requiring local containment.

Cascading impacts on critical infrastructure around the world
are already happening as various hazards are increasing in
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Table 1. Climate-related hazards, interactions within energy systems, and recent findings

Hazards Interactions within energy systems Related recent findings

Drought water stress and cooling-water shortages less generation and exceedance of plant design temperature®'®

Flood flood-water inundation of power plants damage to infrastructure®'”

Heatwave power outages from high cooling loads, average of 41 days of additional dangerous heat in 2024 and
curtailment due to operating conditions more than 130 days in the small island developing states®'®

Storm transmission and distribution network power losses equal to billions of customer hours per cyclone”'®
infrastructure damage and power outages

Wildfire sedimentation from wildfire-induced runoff in sediment concentrations multiple times above pre-fire levels®°

reservoirs for hydroelectricity generation

Sea-level rise exposure of critical coastal infrastructure

impacts on livelihoods®?’

frequency and severity, and the damages are significant. In
Southeast and East Asia alone, the total expected annual dam-
age of tropical cyclones and coastal floods on power infrastruc-
ture is projected to reach up to US$105 billion.?'® Hurricane Ma-
ria also damaged 80% of Puerto Rico’s electrical power system
and disrupted essential services for several months, including
water distribution, which led to impacts on access to clean drink-
ing water, waterborne diseases, and water treatment.”'” In addi-
tion, thermal power plants are prone to chronic physical hazards
related to water temperatures and water stress impact. Reduced
cooling-water accessibility of thermal power plants due to
drought already accounts for power-generation losses. In wet-
cooled plants, sustained water temperature rises could increase
the exceedance probability of design temperatures by up to 27%
and lead to an additional loss in power generation, including 2.1
TWh in 2030 across a sample of power plants.”'®

In the context of these challenges with disruptions to networks
and services, there are emerging solutions to increase the resil-
ience of critical infrastructure through mitigation, adaptation, and
their synergies at various scales of implementation from local to
system-level options. Integrated microgrid planning using local
decentralized renewable energy systems?®?”-?* can increase ac-
cess to clean energy and basic services, enabling improved miti-
gation and adaptation. Microgrids and cross-sector interopera-
bility over distributed microgrids with large-scale renewable
energy®? can also increase equity and sustainable development
when there is integrated microgrid planning and decision mak-
ing. For example, power outages during major storms and hurri-
canes can pose greater risks in communities and households
with social vulnerabilities, so site-specific microgrid planning,
enabling equal development opportunities, integrated with sus-
tainable urban development, is important for emergency pre-
paredness. The need to ensure the availability of critical services
for relief, health, and security across microgrids has also led to
new approaches for urban-resilient microgrid districting, such
as for solar photovoltaics and energy storage.”*°

Highly targeted interventions to preserve safety”” and grid
hardening®” can also greatly increase network and supply-
chain resilience. In the case of a Texas power grid, for example,
identifying and protecting critical transmission lines, which rep-
resented only 1% of the total, significantly reduced hurricane-
induced power outages by a factor of 5-20.°°* The range of
solutions®®? to address climate-related hazards in the energy
sector (discussed elsewhere®?’2???%") including underground-
ing the distribution network, increasing distributed energy sour-
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ces, and regional energy grids, can also benefit multiple sectors
and systems. Smart grids, supported by artificial intelligence (Al),
machine learning (ML), and predictive analytics, are other
emerging advances available as part of adaptations to a rapidly
changing climate and to building resilience in the energy infra-
structure.”®® These technologies can increase the efficiency of
predictive maintenance systems, the accuracy of renewable-en-
ergy forecasting models, and the robustness of cybersecurity
algorithms. In short, they can fundamentally upgrade the capac-
ity to monitor grid operations and respond to climate-induced
disruptions in a timely manner. Al/ML tools can also facilitate en-
ergy storage optimization and management, thereby optimizing
energy distribution, reducing costs, and enhancing energy effi-
ciency while ensuring reliable energy supply in a constantly
evolving environment. Advanced analytical and predictive capa-
bilities are also relevant for other sectors while providing efficient
resource management.

Frameworks to address the complex nature of cascading im-
pacts are also important.>**?%° For example, the urban heat-is-
land effect”*®?*” can exacerbate the impacts of extreme heat
events and further strain energy grids.?*® Moreover, the under-
served and marginalized communities often require more atten-
tion due to vulnerabilities.?*%?*° Infrastructure service disrup-
tions, including due to floods, cyclones, and landslides, often
affect the most vulnerable disproportionately. Low-income com-
munities already have higher hazard exposure and lower access
to services, such as health centers, education facilities, and elec-
tricity substations.”*! Policies for protecting lives against the
widespread impacts of climate change may include loan provi-
sions to vulnerable households.?** Co-optimizing urban func-
tions, urban form, urban infrastructure, and networks could sup-
port urban areas.”*® Increasing attention is also being paid to
nature-based solutions with the potential to reduce some of
the climate impacts on critical infrastructure. For example, urban
green infrastructure such as vegetation and increased soil cover
can reduce local temperatures®** and mitigate flood risk, exhib-
iting both social and ecological benefits.>*°

While there is a high level of privatization in many sectors,
climate action requires engagement from both private and public
sectors, within which perceptions of risks and capabilities for risk
assessments can vary.?*® Other examples of targeted interven-
tions in infrastructure span transportation networks, drinking wa-
ter supply and irrigation, waste management systems, and their
interconnections that require greater attention to climate-resil-
ient and decarbonized planning and implementation.”*” As a
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lllustrated solutions to urban heat using a SETS approach®>* compared to conventional approaches, to guide planning and integrate policies with co-benefits.

result, these insights can be useful to address cascading disrup-
tions across interconnected networks in critical infrastructure
and consider potential solution areas to reduce these risks.

Insight 8: Climate-resilient development in cities
Systems approach to climate-resilient development in
cities can help decision makers to identify co-benefits
Cities are home to the majority of the world’s population®*® and
account for major sources of GHG emissions,'“® biodiversity
loss, and degraded ecosystem functions.?*° They often expand
into high-risk areas, especially those with informal settlements,
where recurring disasters such as floods are enforcing the
poverty gap,>*° requiring significant disaster-risk-reduction ef-
forts.”>" These issues are often treated as silos in conventional
development models, leading to undesirable trade-offs and
injustices.”*?

Research highlights a need to facilitate transitions for climate-
resilient development with an open and dynamic SETS
approach®>*?%* (Figure 7). Climate-resilient development is a
process to implement local-level climate action together with
developmental and sustainability concerns.?*>?°® The SETS
framework helps to accommodate different strategies and mini-
mize trade-offs (e.g., inequality and adaptation) that may emerge
when isolated or bilateral social, ecological, or technological
measures are taken.?*>*°7 |t allows decision makers to integrate
social, ecological, and technology measures for climate risk(s). It
further allows for an evaluation of co-benefits and trade-offs, for

example, among highly competing sectors, such as environ-
mental protection, transportation and housing, as well as sub-
systems both within cities and cross-boundaries (e.g., with
nature-based solutions°?).

Emerging, rapidly growing, established, and shrinking cities
across the globe are facing different challenges from climate-
change impacts. Each requires tailored development strategies
that reflect their unique development stages and SETS.?>%250
For example, development legacies and current planning deci-
sions exacerbate socio-economic disadvantages.®®2°"%%? Cit-
ies have recorded higher heat-related deaths and illnesses in
minority neighborhoods that contain less greenery,?®>2%° yet
new green infrastructure can give rise to gentrification, further
intensifying inequality in adaptation.?*> Additionally, migration
in some rapidly growing cities has drawn poor households to
informal settlements in flood-prone areas,”®® and recurrent
floods lead to a poverty trap,”*° increasing vulnerability. In
shrinking cities, socio-demographic change, such as a declining
population, reduces residents’ ability to withstand and adapt to
shocks.”” These issues collectively call for caution in address-
ing the multiple deprivations affecting both society and the envi-
ronment in cities’ resilient development. They urge broader
action to mitigate and adapt using innovative institutional strate-
gies to reduce anticipated loss and damage. However, few cities
combine mitigation and adaptation in their action plans. Among
those that do, most show only a moderate level of integration.?®®
Based on data from the Carbon Disclosure Project collected
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from 776 cities located in 84 different countries, the most
frequently identified mitigation actions in cities were building en-
ergy-efficiency measures (1,444 actions) and on-site renewable
production (644), while the most common actions for adaptation
were tree planting (283) and flood mapping.2®° Furthermore, one
meta-analysis focused on mitigation found that many interven-
tions were not as effective as planned for,?’° calling for a need
to rethink approaches.

To illustrate the effectiveness of the SETS approach, extreme
heat is selected as a climate-induced issue. SETS allows for
addressing heat without compromising climate-change mitiga-
tion, public health, and social justice. While air conditioning is
the most common technological solution for heat, it presents
drawbacks. Air conditioning creates positive-feedback loops
through heat exhaust®”" and is energy intensive, emissions pro-
ducing, and often unaffordable for many residents.?’* To over-
come the limitations of isolated technological interventions like
air conditioning, SETS allows for the integration of ecological
and social measures. Ecological approaches, such as green
and blue infrastructure, can help mitigate the heat-island effect.
Social measures, including awareness campaigns and behav-
ioral changes (e.g., promoting natural ventilation, incentivizing
passive buildings, and adapting cultural norms like relaxed of-
fice dress codes), are equally important.>”® However, individu-
ally, ecological or social interventions also have limitations.
Behavioral changes alone may have insufficient adaptation po-
tential and could potentially lead to health risks if not properly
implemented. Similarly, bilateral approaches that only consider
two dimensions of the SETS framework may fall short. For
example, while green roofs (ecological) on air-conditioned
buildings (technological) can reduce cooling demand, they
may not be financially viable for all (socially). Therefore, a
comprehensive SETS approach is necessary to address heat
effectively. By simultaneously considering and integrating so-
cial, ecological, and technological dimensions, planners and
policymakers can develop more holistic, sustainable, and equi-
table solutions to heat challenges. This integrated approach
minimizes trade-offs and maximizes co-benefits, ultimately
leading to more resilient and livable cities.”*’

The integration of smart solutions and technologies with
various conventional social, ecological, and technological sys-
tems can help for the adoption of the SETS approach. Decision
makers can rely on advancements in information and communi-
cation technologies and big-data analytics to develop optimal
solutions using SETS. Some cities have experimented with
such approaches, such as in Guangzhou, where a systems
approach to collaborative decision making showed promising
results for nature and human health.?”*

Overall, innovative mechanisms that encompass all compo-
nents of SETS are better suited to deal with trade-offs and
conflicts. In the absence of SETS approaches, adopting non-
comprehensive and obsolete frameworks can lead to an over-
sight of critical emerging issues in the planning process,
impeding cities’ ability to achieve multiple benefits from
climate-action implementation and reducing long-term trade-
offs and conflicts.?®® In doing so, cities can move toward
climate-resilient development based on transformative deci-
sions.?”® Rapidly growing cities in low- and middle-income
countries may need more support to develop such approaches
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because of a lack of socio-economic capabilities,”’® especially
cities classified as high risk or when dealing with informality.

Insight 9: ETM governance

Closing governance gaps in the ETM global value chain
is important for a just and equitable energy transition
The transition to clean energy is driving demand for minerals and
metals for manufacturing advanced technology-based equip-
ment and machinery. These materials, essential for low-carbon
development as well as for meeting economic and national-se-
curity objectives, are termed ETMs.?’” Although the criticality
of a specific mineral to a particular country may depend on the
vulnerability of that country to supply-chain risks and price
shocks, the materials essential for the energy transition remain
universally important. ETMs include, but are not limited to, co-
balt, copper, graphite, lithium, nickel, and some rare-earth ele-
ments used for various applications, including battery storage,
wind-turbine magnets, and solar-panel technologies.

Mineral demand forecasts show a significant gap between
future needs and current reserves. By 2050, lithium demand
may surpass 25% of global reserves, reaching 12 times the cur-
rent production. Cobalt demand could range from 6,000 tonnes
to 3.6 million tonnes annually, depending on scenario assump-
tions, compared to reserves of 8.3 million tonnes.”® Similarly,
global consumption of rare earth elements is expected to in-
crease 5-fold by 2030 compared to 2005 levels, and that de-
mand may exceed global reserves by 2050.%"°

An additional burden is the substantial rise in waste generation
posed by the extraction, processing, and disposal of ETMs. Un-
der a business-as-usual scenario, projections indicate that, by
2050, 953 gigatonnes (Gt) of dry waste will be produced just
from the extraction of copper, nickel, manganese, and lithium,
contributing to 2,000 Gt of global mining waste.?*° Therefore,
examining the impacts of the ETM value chain is crucial as it
highlights how extraction in resource-rich nations, processing
elsewhere, and consumption in different regions contribute
to a global distribution of benefits and burdens. With the
surge in ETM demand driven by decarbonization initiatives,®’
understanding the value chain is essential for assessing how
increased mining activities may strain planetary boundaries
and exacerbate existing challenges related to waste manage-
ment, water scarcity, biodiversity, land use, governance, and so-
cial vulnerability.?®?

The value chain refers to the various stages of a product’s life
cycle, from inception and design, delivery to end-users, and ul-
timately end-of-life management.?®® In the mining and minerals
sector, attention is often centered on extraction, processing,
and refining,?®** which are closely tied to economic and techno-
logical factors to ensure cost-effective ETM supplies (Figure 8).
Given the urgent call to transition to a low-carbon energy system,
it is equally important to prioritize factors such as environmental
protection, circular economy principles, social justice, and equi-
table distribution of benefits.”®° The concept of “just energy tran-
sition,” which encompasses various perspectives, including la-
bor rights, justice, socio-technical aspects, governance, and
political dimensions, captures this. Emerging frameworks like
planetary just transitions broaden the discussion beyond West-
ern-centric and national approaches, incorporating decolonial
perspectives.”®® These approaches are key to addressing the
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Figure 8. Addressing challenges of ETM value chain to achieve a just and equitable energy transition
The ETM value chain and the challenges different stages present across environmental, social, economic, and technological domains.

multiscalar challenges in value chains and linking them to just-
transition®®” discussions. Creating a governance system that
balances these elements is essential for ensuring a just transition
to a sustainable energy future.

Key concerns surrounding ETM value chains are multifaceted,
encompassing trade dynamics in raw materials, processing and
refining, end-use application, and end-of-life management. The
projected global increase in ETM demand, along with potential
supply disruptions and price fluctuations, are shaping new
geopolitical dynamics in international relations,?’” such as the
emergence of geopolitical trade blocs,?®® and triggering stra-
tegic responses from governments, such as offering tax credits,
imposing mineral import bans, and forming alliances to preserve
supply security. The surge in demand for ETMs is also expected
to prompt the expansion of mining operations worldwide,
including deep-sea mining.®? Despite expanding mining opera-
tions, a mineral-intensive energy transition could lead to supply
risk for some minerals,”®° potentially causing shortages or dis-
ruptions. While ensuring resource security and strengthening
resource inventories are well within national interests, aligning
these with the global goal of a just and equitable energy transi-
tion is critical.>®" This is particularly important given the immedi-
ate and long-term impacts of the ETM value chain on biodiversity
loss, land degradation, water scarcity, pollution, resource deple-
tion, and cultural ecosystems, which require a coordinated
approach to mitigate environmental harm and promote sustain-
able development. For example, mining could impact 50 million
km2 of global land, overlapping with 8% of protected areas, 7%
of biodiverse regions, and 16% of wilderness areas.”®” Technical
challenges related to suboptimal processing and recycling
methods could also exacerbate environmental impacts. Ad-
dressing these challenges requires not only improved recycling
and processing methods but also prioritizing reductions in en-
ergy and material consumption, designing technologies with
lower material demands, and enhancing the durability and life-
span of components. To this end, policy and regulatory frame-
works, beyond market mechanisms, are essential.**°

These impacts are especially pronounced in Indigenous lands
and resource-rich Global South countries, such as Chile, Peru,
and Mexico, which together account for 40% of global copper
production, and Chile and Argentina, which contribute 35% of
the world’s lithium production.>®® This can exacerbate socio-
economic disparities and further strain agri-food systems, public
health, and local livelihoods. A recent study surveying 5,097 ETM
projects found that 54% are located on or near Indigenous peo-
ples’ lands, with 29% of these projects on or near lands under
Indigenous management or influence for conservation pur-
poses.?* Additionally, 33% of these projects are located on or
near peasant lands, with 69% of ETM projects surveyed being
on or near Indigenous people’s or peasant land.”®* These host
communities, often located in the Global South, may bear a
disproportionate burden while enabling others to access re-
sources to advance the energy transition elsewhere.

Another key challenge in the ETM value chain is that, even
when many of these minerals are located in the Global South,
ownership of operations is largely concentrated in the Global
North. For instance, while cobalt mines are predominantly
located in the Democratic Republic of Congo (DRC), only less
than 5% of production is controlled by DRC-owned com-
panies.?”” This dynamic extends to the production of high-value
products (e.g., electric-vehicle batteries) and the final consump-
tion of end-use products, exacerbating geopolitical tensions
over securing ETM access and at times leading to the fast-
tracking of projects without proper due diligence.?’” A related
challenge is promoting equitable benefit sharing to address is-
sues such as limited economic diversification, inadequate tech-
nological capacity, and dependence on low-value extractive
sectors while ensuring that mineral-rich Global South countries
fully benefit from the energy transition.

The rising demand for these minerals is prompting unilateral
actions from countries. Mineral stockpiling, especially by Global
North countries, while intended to mitigate supply risks, could
worsen market constraints, drive up prices, and contribute
to an inequitable energy transition.”’” Several Global South
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The UN Secretary-General’s Panel on Critical Minerals for the Energy Transition has put forward seven voluntary guiding princi-
ples,*°? drawing upon established norms, commitments, and legal obligations outlined in UN documents:
(1) Principle 1: human rights must be at the core of all mineral value chains.
(2) Principle 2: the integrity of the planet, its environment, and biodiversity must be safeguarded.
(3) Principle 3: justice and equity must underpin mineral value chains.
) Principle 4: development must be fostered through benefit sharing, value addition, and economic diversification.
5) Principle 5: investments, finance, and trade must be responsible and fair.
6) Principle 6: transparency, accountability, and anti-corruption measures are necessary to ensure good governance.
(7) Principle 7: multilateral and international cooperation must underpin global action and promote peace and security.

countries with significant mineral reserves (such as Indonesia,
Namibia, and Zimbabwe) are imposing export restrictions and
requiring domestic processing to capture more value. In
response, Global North actors have turned to multilateral institu-
tions like the World Trade Organization (WTO) to protect their
interests by promoting market openness without pushing for re-
forms that would enable fairer trade and increase value addition
in these countries.

Given the differences in regulatory frameworks and market
infrastructure between the Global North and Global South,
developed nations stand to benefit more from the energy tran-
sition, while impacts in the Global South are uncertain. Under
current conditions, ensuring a responsible mineral value chain
is a central step to minimize unequal benefits from the energy
transition. A responsible mineral value chain involves a contin-
uous, people-centered approach that upholds high labor stan-
dards; prioritizes well-being; actively engages local commu-
nities through all stages; minimizes environmental impacts
and resource use; ensures transparency; and addresses envi-
ronmental, social, and governance (ESG) risks throughout
extraction, processing, and distribution.?°>?°¢ Mainstreaming
responsible mineral value chains emerges as an important pol-
icy step for just energy transition and emission reduction
goals.??” These steps must be complemented by managing de-
mand-side and reduction policies such as promoting technol-
ogy transfer agreements between the Global North and South,
advancing circular economy technologies and practices for
ETMs, supporting innovations that minimize mineral use, and
fostering research and development (R&D) to develop alterna-
tive materials and substitutions enable producer countries to
advance their just-transition process and address development
challenges.

Despite several initiatives aimed at improving transparency,
community participation, and due diligence across the supply
chain at multiple levels (e.g., International Council on Mining
and Metals, Extractive Industries Transparency Initiative, Initia-
tive for Responsible Mining Assurance, EU Corporate Sustain-
ability Due Diligence Directive, UN Guiding Principles on Busi-
ness and Human Rights, UN Declaration on the Rights of
Indigenous Peoples, UN Declaration on the Rights of Peasants
and Other People Working in Rural Areas), comprehensive
and coordinated governance mechanisms that effectively bal-
ance geopolitical interests, address the security-sustainability
nexus,’®® harmonize trade rules and planetary boundaries,?®°
and ensure civil society’s involvement remain limited.?*® In the
context of heightened competition and a geopolitical race to
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control mineral resources,’”*?%® alongside increasing commu-

nity opposition to mining operations,”’”*°° there is an urgent
need for governance frameworks that uphold social equity and
environmental stewardship, leverage technological innovation
across the value chain,®°" and provide long-term, context- and
mineral-specific solutions rather than blanket approaches.?®’
To improve coordination and advance equity and justice on the
road to decarbonization and clean energy, the UN Secretary-
General’s Panel on Critical Energy Transition Minerals has put
forth a set of guiding principles (Box 2).°%

Governance mechanisms across the ETM value chain must be
people centered, proactively addressing environmental, social,
economic, and technological risks throughout the value
chain—from extraction in the DRC, processing in China or
Indonesia, and electrical vehicle use in the US. Such mecha-
nisms should prioritize international collaboration and a circular
economy,?’® by integrating transformative circularity measures
that involve steps such as significantly reducing demand, incor-
porating durable designs and component reuse, and implement-
ing efficient recycling processes, countering the tendency of
national interest policies, such as domestic mining encourage-
ment and friend-shoring, which often lead to unjust and inequi-
table energy transitions.*°® The responsible mineral value chain
underscores the need for ethical sourcing, transparency, and
traceability from extraction to end-use to ensure that the energy
transition benefits are maximized globally.

Insight 10: Resistance and acceptance of climate policy
Public’s acceptance of (or resistance to) climate policies
crucially depends on perceptions of fairness

A successful climate transition, including instruments targeting
private consumption of fossil fuels and local-level climate adap-
tation, cannot be achieved through top-down implementation.
Policies must mirror the values and sentiments of the populace,
both from a normative (democratic) perspective and from a prag-
matic one, to allow the adoption of climate policy instruments. In
some cases, lack of public support can trigger violent political
opposition, social mobilization, and civil unrest. Examples
include the Yellow Vests in France, 2024 European farmer’s pro-
tests, and “quiet” resistance by disadvantaged populations
worldwide.®** Failure to understand resistance, including its
agents, motives, repertoires, and consequences, may hamper
urgent climate action. Moreover, the political costs associated
with introducing or advocating climate policy initiatives without
public support can be considerable for politicians. Certain polit-
ical parties have also been fueling and shaping public opinion for
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a backlash against climate politics to align with perceived senti-
ments in the general public.®°%3%°

Diverse evidence on climate acceptance and resistance has
allowed for the advancement of knowledge and new theory
building. Resistance to climate policies is influenced by various
societal conditions, including individual beliefs, social norms,
cultural identities, and economic conditions.®°* Considerations
of cultural factors should also include country-specific politi-
cal-economic factors, which are crucial elements for the suc-
cess of climate policies.307 Across this evidence, the issue of
(un)fairness emerges as a central determinant of acceptance
and resistance (Figure 9). A recent meta-analysis of climate in-
struments found that perceptions about the fairness implications
of policies were the strongest determinants among 15 individual-
level factors.*°® Resistance can stem from a perceived unfair dis-
tribution of economic costs, job insecurity, cultural identity, and
social justice concerns resulting from climate policy,**° but also
be based on perceived unfair procedures: that decisions are
taken “from above” and that citizens or affected groups are
excluded and do not have a fair possibility to voice their con-
cerns or have a say in the policy process.®'® Resistance can
also come from discourses of climate delays that argue about
the negative social impacts of climate policies.*""

Hence, both distributional aspects of specific policy instru-
ments and the procedural elements of policy adoption are
important for acceptability and resistance formation. In the en-
ergy sector, for example, establishing transition areas as
collaborative spaces that promote stakeholder involvement,
transparency, and public trust, while addressing social, political,
and economic challenges, particularly in coal-dependent com-
munities, and fostering adaptability and gender equality, is
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Figure 9. Interaction factors leading to
climate policy resistance or acceptance
The interaction between political-economic con-
texts and policy designs can either lead to exclu-
sion, injustice, and vulnerability—resulting in
popular resistance—or to inclusion, fairness, and
development—resulting in popular acceptance.

essential for achieving socially sup-
ported, inclusive, and sustainable energy
transitions.®'? Public support for low-car-
bon energy transitions requires address-
ing broader social factors, such as
combating corruption and ensuring fair
practices through appropriate laws. For
instance, introducing carbon taxes or
removing subsidies on fossil fuels ap-
pears to generate a similar level of
public resistance.®'®> However, earmark-
ing revenues or public savings increases
acceptability by offsetting impacts
perceived as unfair with targeted invest-
ments in well-being, reducing inequality
and alleviating poverty —so-called reve-
nue recycling. Some research suggests
that people prefer revenues from carbon
pricing to be spent on environmental
measures,*'* while other recent studies conducted in the Global
South support cash transfers to poor or vulnerable groups®'®
and investments in social programmes.®'®

People’s perceptions of fairness vary, including concerns
about higher fuel prices, freedom, and living standards, affecting
not only vulnerable groups.®’” Additionally, fairness beliefs
encompass the recognition of wrongdoing by countries and in-
dustries that continue to harm the environment: justice cannot
be achieved unless they take responsibility. Regarding proce-
dural and distributional aspects, resistance can shed light on
marginalized groups’ overlooked needs and aspirations. In a
recent review of resistance to climate adaptation plans or inter-
ventions, people’s motives for resistance uncovered stories
about local needs and aspirations often overlooked in UN polit-
ical and scientific climate debates.*>’® Examples include reloca-
tion programs from risk zones that do not consider people’s so-
cial networks or livelihoods. The climate transition will impose
short-term costs on particular groups, making them more vulner-
able and requiring a balance between specific workers (e.g.,
farmers and truck drivers) and the common good.

Understanding how to pursue fairness in climate policies re-
quires adopting new analytical lenses. Research has repeatedly
shown that what works in one region may not be applicable in
another; however, there are emerging traits. While people may
oppose a new climate law or policy, their resistance is often
culturally learned, historically entangled, and linked to issues
beyond climate policies, such as lack of trust in the state.*** Cit-
izens who lack political power can adopt quiet resistance, such
as false compliance or foot dragging, to undermine policies that
they consider illegitimate or unresponsive to local needs.*
Across countries, concerns about distribution and income

One Earth 8, June 20, 2025 23




¢? CellPress

OPEN ACCESS

inequality affect public support for policies that require the pop-
ulation to bear the economic costs, such as carbon taxes.*'®
However, standard macro- and microeconomic analysis
methods need to be complemented with the mesoeconomic an-
alyses of sectors®*®*'® and social groups.®’® The ability to
design policies that consider the interests of influential social
and industrial groups is key to reconciling the success of climate
policies with their fairness. For example, the successful lobbying
activity by the auto and motorcyclist lobbies in Indonesia played
a decisive role in protests to stop fuel-subsidy withdrawal at
various stages in the last two decades. Fishermen and farmers
repeatedly took similar actions in Ghana to obtain an exemption
from the subsidy withdrawal on kerosene, while labor unions
advocated for exemptions on public-transport fare increases.*"’

Maintaining a balance between specific and general interests
within countries has proved increasingly difficult in recent years.
Previous national reforms, such as liberalization and privatiza-
tion, as well as the degree of integration into the global economy,
in some countries have increased inequality and exposed
several social groups to deteriorated life conditions. These
have led to weak social-security nets, job instability, increasing
living costs, deterioration of public-service quality, and political
underrepresentation.®®”

The underrepresentation of women in decision making and the
prevalence of gender-blind energy policies, coupled with cultural
norms that limit women’s participation, lead to women'’s roles
and opposition in energy transitions being overlooked. This high-
lights the need for more inclusive, gender-sensitive approaches
and more research on women’s resistance to low-carbon energy
transitions.®'> Compared to mitigation, the discussion on resis-
tance is much more nascent regarding adaptation, which has
been seen mainly as an apolitical approach, hiding the winners
and losers of adaptation processes.’***'9%20 There are also
perception gaps: studies have highlighted widespread public
support for climate action, with nearly 70% of respondents
from a large-scale global study willing to allocate 1% of their in-
come and almost 90% desiring increased government efforts,
but they often underestimate their fellow citizens’ willingness to
contribute.®*" Failure to understand the broad spectrum be-
tween acceptance and resistance, and conflating opposition to
negative consequences of climate policy with climate “denial,”
neglects that diverse groups of people are ready to embrace
radical change if it is perceived as fair.®**

Overcoming resistance requires inclusive, democratic pro-
cesses and bottom-up approaches that involve local commu-
nities and authorities in decision making.*°®*'? Climate policies
must be tailored to societal conditions, addressing social norms,
cultural identities, and economic factors. Their success depends
on the policymakers’ ability to maintain a balance among social
and industrial interests while at the same time considering spe-
cific socio-economic fragilities that often derive from previous
economic and political reforms.*®” However, not all resistance
should be overcome, as it can represent an alternative form of po-
litical participation.®°® One viable perspective is to recognize and
utilize resistance as a means to highlight and debate potentially
overlooked needs in society, particularly those of marginalized
and vulnerable groups. Consequently, efforts to understand,
debate, and address resistance can significantly contribute
to more effective and tailored climate policymaking. Without
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considering everyday citizens’ needs, resistance will continue
to hinder transformative climate laws and policies. There are
today a number of innovative solutions to this, with, for example,
(climate) citizen assemblies, and there is an ongoing academic
and political debate on whether that increases legitimacy and im-
proves democracy (see, for example, Wells et al.>*).

DISCUSSION

The pressing nature of the decisions facing policymakers in the
context of climate change calls for regular and accessible syn-
theses of climate-change research. However, the rapid expan-
sion and diversification of climate-related peer-reviewed litera-
ture makes this increasingly challenging. While the IPCC
assessments are the cornerstone of the science-policy interface,
their 6- to 7-year period between the assessment cycles and the
consensus-based approach necessarily limits the possibility of
reflecting emerging research. Annual reports from UN agencies
and international organizations provide important updates on
climate indicators but are intended to reflect recent scientific ad-
vances. Academic reviews, while plentiful and varied, tend to be
inaccessible for non-experts. The 10 New Insights in Climate
Science series aims to address this gap by leveraging a bot-
tom-up approach to elicit expert views across global research
networks on recent research developments. A diverse group of
leading researchers then prioritizes a set of 10 advances or in-
sights, which are then synthesized by topic experts. In this sec-
tion, we discuss the most salient policy implications of this year’s
insights, focused on the ongoing international negotiations. We
conclude with a reflection on the 10 New Insights in Climate
Change initiative in the broader science-policy context.

Policy implications
Comprehensive mitigation
Recent trends in emissions and atmospheric concentration of
methane and aerosols have important implications for the goals
of the Paris Agreement. First, the surge in atmospheric methane
levels, tracking warming scenarios of 3°C or more,®* underscores
the urgent need for more stringent and enforceable methane
reduction policies (Insight 1). This steady rise further shrinks the
remaining carbon budget consistent with the Paris Agreement.”®
An implication toward the extended September deadline for new
NDCs, ahead of COP30, is the priority of formalizing explicit,
quantifiable methane-reduction targets, supported by mecha-
nisms to assist countries in developing and implementing
adequate strategies. While readily available mitigation measures
exist for the fossil fuel and waste-management sectors, solutions
for the agricultural sector require further development.”""?
Second, the declining aerosol loading in certain regions®° pre-
sents complex challenges for near-term climate-change mitiga-
tion and adaptation (Insight 2). Although the reduction of anthro-
pogenic aerosol emissions has been hugely beneficial for public
health, it has also de-masked the true level of warming caused
by accumulated anthropogenic GHG emissions.?>°® This indi-
cates the need for a more comprehensive approach to climate
action planning that considers multiple pollutants and their inter-
actions.®® The UNFCCC, SBSTA, and delegations at COP30
could consider establishing a specialized task force to provide
recommendations for integrating aerosol considerations into
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future NDCs, ensuring that climate risk assessments and adap-
tation strategies account for the regionally -differentiated im-
pacts on temperature, precipitation, and extreme weather
events. Addressing these issues is important for enabling coun-
tries to develop comprehensive mitigation strategies and adap-
tation plans that address the complex interplay between
different climate forcers and their varied impacts across regions.
These considerations are likely to be reflected in the Methodol-
ogy Report on Short-lived Climate Forcers expected in 2027 as
part of the IPCC AR7. In the meantime, it is important to advance
the development of institutional infrastructure and ensure the
adequate financial and technical support.

Adaptation to heat extremes

Inthe context of a series of record-heat months through 2023 and
2024, we highlight that hundreds of millions of people are already
living in areas outside the historical conditions of temperature and
humidity better suited for human physiology,’'*® making heat-
adaptation planning a top priority, especially for lower-income
tropical countries (Insight 3). Specific provisions for vulnerable
groups, such as pregnant women and newborns facing height-
ened risks from heat extremes,''®'** should be incorporated
into adaptation strategies (Insight 4). Unless comprehensive
adaptation plans are implemented, there is a serious risk of
reversing the progress made in MRH over the recent decades.
Beyond direct impacts on human health, we also highlight econ-
omy-wide costs of heat extremes associated with ENSO, esti-
mated in trillions of US dollars.'”*'"> Considering the potential
intensification of ENSO due to climate change,'®®*** this
research underscores the inadequacy of current adaptation mea-
sures (Insight 5). This further emphasizes the importance of con-
crete financial commitments for adaptation in the Global South,
beyond the formal NCQG agreed at COP29. The Framework for
Global Climate Resilience (FGCR) should incorporate specific
targets and indicators related to extreme-heat preparedness
and emphasize the importance of heat action plans (HAPs) and
early-warning systems (EWSs). The Early Warnings for All Initia-
tive (co-led by the UN Office for Disaster Risk Reduction [UNDRR]
and WMO) needs broad support to fulfill its goal of full global
coverage by 2027.

Extreme heat and other climate-related hazards also under-
score the urgency of addressing the vulnerability of critical infra-
structure to prevent cascading failures that could cause social
and economic disruption (Insight 7). The Global Methodology
for Infrastructure Resilience Review, launched at COP28 by the
UNDRR) offers a holistic approach for countries to assess their
current state and identifying areas for improvement. Enhancing
resilience of interconnected critical infrastructure systems is
closely related to climate-resilient development in the context
of urbanization. Cities are central nodes for climate action, as
major drivers of emissions to be mitigated and as hosts of an
increasing share of the population in need of adaptation. The
heat-island effect further exacerbates the risks of heat stress
and places additional strain on energy grids.?*’**® Few cities
currently have integrated approaches to mitigation and adapta-
tion, but systemic approaches can offer guidance for synergistic
measures (Insight 8). Adopting a SETS approach®*?°7 for urban
climate resilience is aligned with and can help support the
COP29 Presidency’s Multisectoral Action Pathways (MAP)
Declaration for Resilient and Healthy Cities.
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Earth system stability

Following important commitments and declarations at COP26
(Glasgow, UK) and COP28 (Dubai, UAE), forests have consistently
gained prominence in the climate agenda. Ahead of COP30
(Belém), Brazil has proposed the development of a Tropical Forest
Forever Fund (TFFF), aiming to mobilize US$250 billion annually for
tropical forest conservation. Moreover, the host of UN Biodiversity
COP16 (Cali, Colombia) emphasized a synergistic agenda for
climate and biodiversity, further giving momentum to international
efforts to protect and restore forests. Brazil aims to have a fully
operational facility for the TFFF on time for COP30. Recent
research highlights the crucial role of functional and response di-
versity, as well as biocultural diversity, to enhance the resilience
of Amazon forests to climate change®°*2°® (Insight 6). Additionally,
studies suggest a growing risk of Amazon forests nearing critical
thresholds and facing potential large-scale collapse.’%>0%20"
Similar concerns are raised by recent publications about the weak-
ening, and even potential collapse, of the AMOG'""'"® (Insight 5).
While much uncertainty remains regarding the likelihood and rele-
vant timescale of these phenomena, these two cases underscore
the need for rapid and deep reductions to GHG emissions to safe-
guard critical Earth system processes. Clear strides toward closing
the gap between the formal NCQG on climate finance of $300
billion annually by 2035 and the aspirational goal to mobilize
more than $1 trillion will be necessary for enabling more transfor-
mative action leading up to COP30.

Just transition

The first Global Stocktake, concluded at COP28, includes an
important agreed-upon global goal to triple renewable energy
capacity. The transition away from fossil fuels in the energy
sector comes hand in hand with a rise in demand for ETMs,?’®
further bringing to the fore challenges of geopolitical tensions
and supply-chain risks, as well as socio-environmental impacts
in the Global South (Insight 9).?%%29929% The UN Secretary-
General’s Panel on Critical Energy Transition Minerals,*%?
launched in April 2024, underscores these concerns and prior-
ities for closing governance gaps in the ETM value chain,
including through harmonizing regulations and developing bind-
ing agreements that prevent regulatory arbitrage. Benefit sharing
across the entire value chain is an international dimension of the
just transition that deserves explicit attention in the Just Transi-
tion Work Programme (JTWP) framework. Fairness is also crucial
at the national and subnational levels, as the perceived fairness
or unfairness of climate policies, and of the socio-economic
context in which they are implemented, significantly impacts
public acceptance of climate policies®®® (Insight 10). Disregard-
ing citizens’ needs or failing to understand their motives can
deepen resistance, ultimately obstructing effective climate
action.

This year’s 10 New Insights in Climate Science report*® elab-
orates on the points above. It was distributed to all party delega-
tions ahead of COP29 with the aim of informing negotiators’ po-
sitions and arguments. We hope that the implications of the
science advances that the report highlights can also inform the
delegations’ work toward COP30 in Belém, Brazil.
Contributions to the science-policy interface: Looking
forward
The 10 New Insights in Climate Science initiative aims to be an
effective conduit for “knowledge brokerage,”'” contributing to
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richer exchanges of information and ideas between climate re-
searchers and policymakers. The science-policy report, based
on this review paper, fulfills this intermediary function’®“®: pre-
pared by researchers but tailored specifically for policymakers
and negotiators, it provides concise and accessible summaries
and is disseminated through a targeted strategy, primarily to
UNFCCC party delegations. From the researchers’ perspective,
traditional barriers to such intermediary work include a lack of
dedicated institutional resources and limited professional recog-
nition.*?® The 10 New Insights initiative provides a channel to
overcome some of these barriers, providing the role of coordina-
tion and overall project management driving the development of
this peer-reviewed paper and the science-policy report, as well
as functions of communication and policy engagement.

Our vision for the 10 New Insights is to continue building insti-
tutional capacities and networks toward a bi-directional mecha-
nism of knowledge brokerage at the science-policy interface.
This approach transcends the linear view of science-policy inter-
actions, where knowledge flows solely from researchers to
policymakers. Instead, we envision a mechanism that enables
researchers to improve their understanding of the policymakers’
and negotiators’ priorities, time frames, and key information
needs.'”*?% In practice, this could be implemented through
roundtable dialogues at global, regional, and national
levels.®?"~%29 As the initiative grows to include these spaces of
collaboration and knowledge co-production,'”*?° we anticipate
additional challenges in maintaining scientific integrity. Specific
measures will be needed to prevent oversimplification and
biased use of evidence.**%*' We will also aim to enhance trans-
parency about our methodological approach to synthesis,
providing descriptions of remaining uncertainties and scientific
disputes.'”

This vision is the result of continuous self-reflection on the role
of the 10 New Insights initiative within the broader climate-
change science policy, shaped by stakeholder dialogues over
the last 2 years. Ultimately, we aspire to contribute to this land-
scape not just through annual reports but by fostering trusted
networks of scientists and policymakers across the world.

METHODS

Input collection and selection process
Every cycle of the 10 New Insights in Climate Science incorpo-
rates lessons from the previous year, resulting in a progressively
more robust process for the selection and development of in-
sights. The process (see Note S1) described below builds
directly on the one described by Bustamante et al.°® Around
mid-January, an open call for expert input is distributed as an on-
line questionnaire (see Note S2), primarily across the partners’
(Future Earth, The Earth League and World Climate Research
Programme) global-reaching institutional networks. The main
question that respondents answer is “What key recent advance
in climate-change research do you think should be highlighted
for policymakers?”” Respondents are also asked to provide refer-
ences of recent peer-reviewed publications (i.e., 2023 or 2024)
that support their suggested key research advance.

The call for expert input was open between January 15 and
February 10, 2024 (4 weeks), and received responses from 188
individuals(see Note S3), totaling 216 suggestions. The sugges-
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tions or “entries” collected were screened based on predefined
inclusion/exclusion criteria; at least two team members
screened each entry (see Note S4). When necessary, project co-
ordinators conducted one additional round of screening to come
to afinal decision. This year, 84 entries met the inclusion criteria.
After merging the closely related entries, the list was reduced to
43 themes and coded using a thematic framework based on all
previous 10 New Insights reports. This list was complemented
with a literature scan (see Note S5) of impactful papers in
climate-change research published in the same period (2023
and the first months of 2024), which yielded 19 additional
themes.

The final list of 63 themes (see Note S6) was then evaluated ina
three-stage process by our editorial board, consisting of 17 well-
established international climate-change researchers from
various disciplines, who constitute our editorial board. First,
the 63 themes were categorized into four broad categories: (1)
the Earth system, (2) impacts, (3) action needed, and (4) barriers.
The editorial board members then individually prioritized 4-20
themes (1-4 per category) that they considered most relevant
overall. Second, building on the outcomes of the individual prior-
itization of themes, the editorial board members gathered virtu-
ally for a workshop to deliberate and collectively prioritize the
themes, leading to a preliminary set of candidate insights.
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