Family of quadratic differential systems with irreducible invariant

hyperbolas: a complete classification in the space R

Regilene D. S. Oliveira
Instituto de Ciéncias Matematicas e de Computacao
Universidade de Sao Paulo (regilene@icmec.usp.br)

Alex C. Rezende
Instituto de Ciéncias Matematicas e de Computagao
Universidade de Sao Paulo (alexcrezende@gmail.com)

Nicolae Vulpe
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Abstract

In this article we consider the class QS¢ of all quadratic systems possessing a finite number
of singularities (finite and infinite). A quadratic polynomial differential system can be identified
with a single point of R!? through its coefficients. In this paper using the algebraic invariant
theory we provided necessary and sufficient conditions for a system in QSg to have irreducible
invariant hyperbolas in terms of its coefficients. We also considered the number and multiplicity
of such irreducible hyperbolas. We give here the global bifurcation diagram of the class QS¢ of
systems with invariant hyperbolas. The bifurcation diagram is done in the 12-dimensional space
of parameters and it is expressed in terms of polynomial invariants. The results can therefore be
applied for any family of quadratic systems in this class, given in any normal form.

1 Introduction and statement of main results

We consider here differential systems of the form

dx d

dat - P(xvy)7 6% = Q(xay)v (1)

where P, Q € Rz, y], i.e. P, @ are polynomials in x, y over R and their associated vector fields of
a vector field

X = Pla) . + Qo) &)

We call degree of a system (1) the integer m = max(deg P, deg ). In particular we call quadratic
a differential system (1) with m = 2. We denote here by QS the whole class of real quadratic
differential systems.

Quadratic systems appear in the modelling of many natural phenomena described in different
branches of science, in biological and physical applications and applications of these systems became



a subject of interest for the mathematicians. Many papers have been published about quadratic
systems, see for example [19] for a bibliographical survey.

Here we always assume that the polynomials P and @) are coprime. Otherwise doing a rescaling
of the time systems (1) can be reduced to linear or constant systems. Quadratic systems under this
assumption are called non—degenerate quadratic systems.

Let V be an open and dense subset of R?, we say that a nonconstant function H : V — R is a first
integral of a system (1) on V' if H(x(t),y(t)) is constant for all of the values of ¢ for which (x(¢),y(t))
is a solution of this system contained in V. Obviously H is a first integral of systems (1) if and only
i 0H OH

X(H)= P% + oy
for all (z,y) € V. When a system (1) has a first integral we say that this system is integrable.

0, (3)

The knowledge of the first integrals is of particular interest in planar differential systems because
they allow to draw their phase portraits.

On the other hand given f € C[z,y| we say that the curve f(x,y) = 0 is an invariant algebraic
curve of systems (1) if there exists K € C[z,y| such that

of of

Py + Qg =K1 (4)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. When K =0, fis a
polynomial first integral.

Quadratic systems with an invariant algebraic curve have been studied by many authors, for
example Schlomiuk and Vulpe in [14, 16] have studied quadratic systems with invariant straight
lines; Qin Yuan-xum [11] have investigated the quadratic systems having an ellipse as limit cycle
was investigated, Druzhkova [8] presented the necessary and sufficient conditions for existence and
uniqueness of an invariant algebraic curve of second degree in terms of the coefficients of quadratic
systems and Cairo and Llibre in [3], they have studied the quadratic systems having invariant
algebraic conics in order to investigate the Darboux integrability of such systems.

The motivation for studying the systems in the quadratic class is not only because of their useful-
ness in many applications but also for theoretical reasons, as discussed by Schlomiuk and Vulpe in
the introduction of [14]. The study of non—degenerate quadratic systems could be done using normal
forms or applying the invariant theory.

The main goal of this paper is to investigate non—degenerate quadratic systems having irreducible
invariant hyperbolas and this study is done applying the invariant theory. More precisely, denoting
by QS¢ the class of all quadratic systems possessing a finite number of singularities (finite and
infinite), in this paper we provided necessary and sufficient conditions for a quadratic system in QS¢
to have irreducible invariant hyperbolas. We also determine the invariant criteria which provide the
number and multiplicity of such hyperbolas.

Definition 1. We say that an invariant conic ®(z,y) = p + ¢z + ry + sz? + 2txy + uy? = 0,
(s,t,u) # (0,0,0), (p,q,7,s,t,u) € CO for a quadratic vector field X has multiplicity m if there exists
a sequence of real quadratic vector fields X converging to X, such that each X} has m distinct



(complex) invariant conics @,{: =0,...,97" = 0, converging to ® = 0 as k — oo, and this does not
occur for m + 1. In the case when an an invariant conic ®(z,y) = 0 has multiplicity one we call it
simple.

Our main results are stated in the following theorem.

Main Theorem. (A) The conditions n > 0, M # 0 and y1 = 72 = 0 are necessary for a quadratic
system in the class QSg to possess at least one irreducible invariant hyperbola.

(B) Assume that for a system in the class QS¢ the condition v1 = o = 0 is satisfied.

e (B1) If n > 0 then the necessary and sufficient conditions for this system to possess at least
one irreducible invariant hyperbola are given in DIAGRAM 1, where we can also find the number
and multiplicity of such hyperbolas.

e (B2) In the case n = 0 and M # 0 the corresponding necessary and sufficient conditions for
this system to possess at least one irreducible invariant hyperbola are given in DIAGRAM 2,
where we can also find the number and multiplicity of such hyperbolas.

e (Bg3) In the case of the existence of a family (F) (F € {F1,...,Fs}) of irreducible invari-
ant hyperbolas we give necessary and sufficient conditions which characterize the geometric
properties of this family (including the number of singularities) (see Remark 2).

(C) The DIAGRAMS 1 and 2 actually contain the global bifurcation diagram in the 12-dimensional
space of parameters of the systems belonging to family QSg, which possess at least one irreducible
mwariant hyperbola. The corresponding conditions are given in terms of invariant polynomials with
respect to the group of affine transformations and time rescaling.

Remark 1. In the case of the existence of two hyperbolas we denote them by HP if their asymptotes
are parallel and by H if there exists at least one pair of non-parallel asymptotes. We denote by Hy,
(k = 2,3) a hyperbola with multiplicity k; by H5 a double hyperbola, which after perturbation splits
into two HP; and by H% a triple hyperbola which splits into two HP and one H.

Remark 2. (i) Consider the three families ®4(x,y) =2s—r(r—y)+2zy =0, s € {—1,0,1}, r e R
of hyperbolas. These are three distinct families (see FIGURE 1) which we denote respectively by Fi,
Fo and F3. We observe that for each one of the three families, any two hyperbolas have distinct
parallel asymptotes.

(ii) Consider the two families ®s(z,y) = (4 — 5)/2 + qz + sy + 22y = 0, s € {0,1}, (g € R) of
hyperbolas. These families are distinct and we denote them respectively by Fy, F5 (see FIGURE 2).
We observe that for each family, any two hyperbolas have only one common asymptote.

The invariants and comitants of differential equations used for proving our main result are obtained
following the theory of algebraic invariants of polynomial differential systems, developed by Sibirsky
and his disciples (see for instance [17, 18, 13, 1, 4]).
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DiaGRAM 1: The existence of irreducible invariant
2 Preliminaries

Consider real quadratic systems of the form:

B1#0
17é M 3 1H<:>’Y3:0, 7217&0
B2=0
B3=0
670 5a=0, J1H & 13=0, R2#0
B27#0 B . 5140 = 14, or
Be#0[ 3>1 < v =0, R3#0 and either 5120 = 2%
/62—:0’ J1H & 75=0,R4#0
At fr 70 B2+ 6340 = 1H, or
= V5 , R5#0 and either B =6y 0 = 2H
=0
. Bo#0 037#0 = 1H, or
ﬁ7:0_9 +~ 3> 14 75=0,R5#0 and either { §,=0, B3 #0 = 2H, or
- 63=Ps=0 = 3H
69—0’317{@76:077257&0 3=P%
0
n=0] BG#OM J1H < v7=0, R #0
Pro =0, F1H < 74=0, B2R3#0
pr 70 - . 047#0 = 1H, or
N#£0 Ba#0 3> 14 98=0, f10R7#0 and either 50— 2H
pr=0 — : 05#0 = 1H, or
3>1< 99=0, Rs#0 and either Sam0 = 2H
f1070, . B2+ 6240 = 1H, or
Fs=0 51070, 35 1 & e =0 R5£0 and eith
6 > Y778 =0,R5#0 and either & = = 2%
— Y7 #0,710 >0 = 2H?, or
0=0 0. T om 192
Ba=0 B10=0 951 R340 Y7 #0,710 2, 0r
=1 < and either | 77=0,710 <0 = 1%, or
N7 =0,7v10 >0 = 1H + 2HP
@, J2He ~v7=0, Rg#o
B2#0 J1H < B1=711=0, Rg #0
Al Y12=0, Rg#0 = 1H, or
= 3> 1% ;=0 and either Ro<0 = (F1);
Y13=0=00: { Rg=0= (F2);
Rg >0$(]:3)

hyperbola: the case n > 0

dx

prial +pi(z,y) + pa(2,y) = P(z,y),
dy

gl (s a(z,y) + @r,y) =Q

4
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B1=0

Ba#0

00

52—:0> 11H & 61:714:(), Rm#oi {

n=0 Ba#0 J1H < B3=3=0, 737;&0:{
(M#0) N£0
[51=0, 5 >1 & Bs=0, BuiR1#0
9—0 and either
P13 #0
——— J1H Sv0=m7=0,R
N=0 Y10 =17 1
=0 N -
£13=0, 3 0 & Yo =Y18="719=

J1H < =0, Ry #0: {

5140 = 1H;
61:0 = 17‘[2

BrPs #0 = 1H;

Br=pPs =0=1H,
(547&0:> 1H;
(54:0:> 1%2

2 | 52
. et A0 =1H;
br2#0, ms =0 {716 =06=0 :>17-l20r
P12 = v16 =0, M7 < 0= 2H" or

Biz = v16 = 117 = 0 = 1M}

170
0:{

Y770 = (Fa1);
17=0= (F5)

DiaGrAM 2: The existence of irreducible invariant hyperbola: the case n = 0

\_

_J

ﬂ

Fi(s=-1) Fo(s=0

FIGURE 1: The families of irreducible invariant hyperbolas ®.(x,y) = 2s—r(x—y)+ 2ry=0

(reR, se {—1,0,1}).

W,
G

3 (5:1)

L

1)

2y =0 (g € R, s € {0,1}).

F5 (s =0)

FIGURE 2: The families of irreducible invariant hyperbolas ®,(z,y) = (4 — s5q)/2 + qz + sy +



with homogeneous polynomials p; and ¢; (i =0, 1,2) of degree i in z,y:

Po = aoo, pi(z,y)=ar+any, p2z,y)= agox’ + 2a117y + a02y2,
9 =boo, qi(x,y) =bioxr +bory, qa(z,y) = baox® + 2b117Yy + boay®.

Such a system (5) can be identified with a point in R'2. Let @ = (aqo, a10, ao1, a20, a11, oz, boo, b10, bo1, b20,
b11, bo2) and consider the ring R[ago, a1o, - - - , @02, boo, b10, - - - , bo2, x,y] which we shall denote R[a, x, y].

2.1 Group actions on quadratic systems (5) and invariant polynomials with
respect to these actions

On the set QS of all quadratic differential systems (5) acts the group Aff(2,R) of affine transforma-
tions on the plane. Indeed for every g € Aff(2,R), g : R? — R? we have:

o ()u)en o () ()

where M = ||M;;|| is a 2 x 2 nonsingular matrix and B is a 2 x 1 matrix over R. For every S € QS
we can form its transformed system S = ¢S:

di dij

o= P,), o = Q@) (%)
where -
P(#,9) \ _ (Pog™")(,9)
( 0(a.9) ) ‘M< (Qog71)(@.9) >
The map

Aff2,R)x QS — QS
(9, §) — S=g8

verifies the axioms for a left group action. For every subgroup G C Aff(2,R) we have an induced
action of G on QS . We can identify the set QS of systems (5) with a subset of R'? via the embedding
QS — R!2 which associates to each system (5) the 12-tuple (ago, - -, bo2) of its coefficients.

On systems (S) such that max(deg(p),deg(q)) < 2 we consider the action of the group Aff(2,R)
which yields an action of this group on R'2. For every g € Aff(2,R) let r, : R'? — R!2 be the
map which corresponds to g via this action. We know (cf. [17]) that r4 is linear and that the map
r: Aff(2,R) — GL(12,R) thus obtained is a group homomorphism. For every subgroup G of
Aff(2,R), r induces a representation of G' onto a subgroup G of GL(12,R).

We shall denote a polynomial U in the ring R[a, z,y| by U(a, z,y).
Definition 2. A polynomial U(a,z,y) € Rla,z,y| is a comitant for systems (5) with respect to a

subgroup G of Aff(2,R), if there exists x € Z such that for every (g, @) € G x R'?2 and for every
(z,y) € R? the following relation holds:

U(’I"g(fl), g('x’y)) = (det g)—X U(a,x,y).

If the polynomial U does not explicitly depend on x and y then it is an nvariant. The number
X € Z is the weight of the comitant U(a,z,y). If G = GL(2,R) (or G = Aff(2,R)) then the
comitant U(a, z,y) of systems (5) is called GL-comitant (respectively, affine comitant).



Definition 3. A subset X C R'? will be called G-invariant, if for every g € G we have ry(X) C X.

Let T'(2,R) be the subgroup of Aff(2,R) formed by translations. Consider the linear representation
of T'(2,R) into its corresponding subgroup 7 C GL(12,R), i.e. for every 7 € T(2,R), 7 : = =
4+ a, y =17 + B we consider as above r; : R1? — R!2,

Definition 4. A GL-comitant U(a, x,y) of systems (5) is a T'—comitant if for every (7, a) € T'(2,R) x
R'2 the relation U(r,(a), &, §) = U(a, &, 9) holds in R[Z, 7].

Consider s homogeneous polynomials U;(a, z,y) € Rla,z,y], i =1,...,s:
d;
Ui(a, z,y) = Y U(a)a®™ Iy, i=1,...s,
j=0

and assume that the polynomials U; are G L—comitants of a system (5) where d; denotes the degree
of the binary form U;(a, z,y) in « and y with coefficients in R[a]. We denote by

U={Uj(a)eRla |i=1,...,s, j=0,1,....d; },

the set of the coefficients in R[a] of the GL—comitants U;(a,z,y), i =1,...,s, and by V(U) its zero
set:
Viu)y={aeR? | Uj@a) =0, VU;@eu}.

Definition 5. Let Uy, Uy, ...,Us be GL-comitants of a system (5) . A GL-comitant U(a,x,y)
of this system is called a conditional T —comitant (or C'T—comitant) modulo the ideal generated by
Uij(a) i=1,...,s;5=0,1,...,d;) in the ring R[a] if the following two conditions are satisfied:

(i) the algebraic subset V(i) C R!2 is affinely invariant (see Definition 3);

(ii) for every (1,a) € T(2,R) x V(U) we have U(r-(a),z,9) = U(a,z,y) in R[z,g].

In other words a CT—comitant U(a, x,y) is a T—comitant on the algebraic subset V (/) C R'2.

Definition 6. A homogeneous polynomial U(a,z,y) € R[a,x,y] of even degree in x, y has well
determined sign on V C R'? with respect to x, y if for every @ € V, the binary form u(z,y) =
U(a,z,y) yields a function of constant sign on R? except on a set of zero measure where it vanishes.

Remark 3. We put attention into the fact that if a C'T—comitant U(a,z,y) of even weight is a
binary form of even degree in x and y, of even degree in a and has well determined sign on some
affine invariant algebraic subset V', then its sign is conserved after an affine transformation and time

rescaling.

2.2 The main invariant polynomials associated to invariant hyperbolas

We single out the following five polynomials, basic ingredients in constructing invariant polynomials
for systems (5):

Ci(a, z,y) = ypi(x,y) — zqi(z,y), (i=0,1,2)
Op; | Og; (6)

+ S8 (i=1,2).




As it was shown in [17] these polynomials of degree one in the coefficients of systems (5) are GL—
comitants of these systems. Let f, g € R[a,z,y] and

k
k o f kg
(k) — E : 1)
(f7g) h:o( 1) (h) &Ck—hayh axhayk—h'

The polynomial (f, g)*) € R[a,z,y] is called the transvectant of index k of (f,g) (cf. [9], [12])).

Theorem 1 (see [18]). Any GL-comitant of systems (5) can be constructed from the elements (6)
by using the operations: +, —, x, and by applying the differential operation (x, *)(’“).

Remark 4. We point out that the elements (6) generate the whole set of GL—comitants and hence
also the set of affine comitants as well as the set of T-comitants.

We construct the following G L—comitants of the second degree with respect to the coeflicients of
the initial systems

Ty = (Co, O, Ty = (Co, Co)V |, Ty = (Co, Do)V,
Ty = (C,C)P, Ty = (C,C)W, Te=(Cr,C)?, (7)
Ty = (C1, Do)V, Ty = (Cy, o), Ty = (Cy, Do)V

Using these GL-comitants as well as the polynomials (6) we construct the additional invariant
polynomials. In order to be able to calculate the values of the needed invariant polynomials directly
for every canonical system we shall define here a family of T—comitants expressed through C; (i =
0,1,2) and D; (j = 1,2):

A= (Cy, Ty — 2Ty + D)) /144,

D= [QCO(TS — 8Ty — 2D3) + C1 (6> — Tg — (C1, T5)™Y + 6D (C1 Dy — Ts) — 9D%Oz} /36,

E = |Di(2Ty — Ty) - 3(C1, )" = Do(3T; + DiDy)| /72,

F = [6D}(D? — 4Ty) + 4Dy Do(Ts + 6T%) +48Cy (Do, Tp)\Y) — 9D3Ty+288D, E

-\ (2) ~\ (1)
— 2 <C'2,D) +120 (DQ,D) 3601 (Do, T5) D +-8Dy (D2,T5)(1>} /144,
B= {16D1 (D5, Ts)V (3C1 Dy — 20y D5 + 4T5) + 32Cq (Do, To)M (3D1 Dy — 5T + 9T%)
+2(Dy, Ty)W (27C1 Ty — 18C1D? —32D1 Ty + 32 (Co, T5) ™M)
+ 6 (Do, TH) WV [8Cy(Ts — 12Ty) — 12C1 (D1 Do + T5) + D1 (26C5 D1 + 32T5) +Co (9T + 96T3)]
+ 6 (Dy, Tg) [32C5 Ty — C1 (12T + 52Dy D) —32C5D?] + 48D5 (Do, 1)V (2D3 — Ty)
— 32D, T (D2, To)") + 9D3Ty (T — 2T7) — 16D; (Cy, Ts) Y (D + 4T3)
+ 12D (Cl, Tg)(2) (ClDQ — 202D1) 4+ 6D1Ds5T)y (Tg — 7D% — 42T9)
+12D; (Cr, T) ) (T + 2D1D3) + 96D3 [ Dy (C1, Te) ™V + Dy (Co, T) V| -

—16D1 DT (2D3 + 3Ty) — 4D Dy (D3 + 3Ts + 6Ty) + 6D D3 (TTs + 2T7)
—252D1 Dy Ty Ty} /(2833),
K =(Ts + 4Ty + 4D3)/72, H = (8Ty — Ts + 2D3)/72.

8



These polynomials in addition to (6) and (7) will serve as bricks in constructing affine invariant
polynomials for systems (5).

The following 42 affine invariants A1, ..., A4 form the minimal polynomial basis of affine invariants
up to degree 12. This fact was proved in [2] by constructing Ay, ..., A4o using the above bricks.

A = A, Agy = ﬁ[@, A)(”,DQ)“),DQ)(”,DQ)(UD2)(1),
Ay = (Cy, D)® /12 Agg = [F,H)D, K)? /38,
Ag = [Cy, D2)W, Do) Do)V a8, Ay = [Co, D), KV )P /32,
Ay = (H,H)®, Ay = [D,D)®,E)? /16,
A5 = (H,K)® /2, Asg = (B,D)®/36,
Ag = (B, H)? /2, Agr = [B, Dy)®, H)? 24,
A = [Cy, B)®, Dy) W8, Agg = [Cy, K)®, DYV E)?) /16,
As = [D,H)® Dy) Vs, Agy = [D,F)M, DY? /96,
Ag = [D, D)V, D)) Dy) M /a8, Agy = [Co, D)@, D)V DYP) /288,
Ay = [ﬁ’ A)(2)7D2)(1)/& Ay = [575)(2)71?)(1)71@)(2)/64’
Ay = (F,K)®/4, Asy = [D,D)®, D), 7)Y, Dy)Y 64,
A = (F,H)? /4, Ass = [D, D)V, F)V D)W Dy)M /128,
Az = [C’g, A)(l)J}) (2),D2)(1)/24, Agy = [ﬁ,ﬁ)@),Dg)(l),IA{)(I),Dg)(l)/M,
A = (B, C5)® /36, Ags = [D, D)@, E)Y D,)M Dy) M /128,
Ars = (B, F)® /4, Ase = [D,E)®,D)M H)® /16,
A = [B,Dy),C)N BY® 16, Ag; = [D, D)@, D), DYP /576,
Ay = [ﬁ,ﬁ)(2),D2)(1),D2)(1)/64, Agg = [027ﬁ)(2)7f))(2)713)(1)’1?_,)(2)/647
Ais = [D,F)® Dy) V16, Asg = [D, D), F)Y H)® /64,
Ay = [D, D)@, H)? /16, Ay = [D, D)@, F)V K)® /64,
Aoy = [C’g,ﬁ)@),ﬁ)@)/lﬁ, Ay = [0275)(2)713)(2)’?)(1)713 )(1)/64,
Ay = [D,D)®,K)? /16, Agp = [D,F)® F)Y D)V /16

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to

five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct the affine invariant
polynomials

y1(a@) =A2(3A6 + 2A47) — 246(As + A1),

Yo(@) =9A% A5(23252A3 4 23689A4,) — 1440A5A5(3A10 + 13A11) — 1280A13(2417 + Ag
+23A19 — 4A50) — 320A24(50Ag + 3A10 + 45411 — 18A12) + 1204, Ag (6718 Ag
+ 4033 A9 + 3542411 + 2786 A1) + 3041 A15(14980 A3 — 20294, — 48266A5)
— 3041 A7(76626 A7 — 15173 Ag + 11797 A1 + 16427A1; — 30153 A1)
+ 845 A7(75515A¢ — 32954 A7) + 245 A3(33057Ag — 98759A15) — 6048042 Ayy
+ Ay A4 (6860545 — 131816 Ag + 131073 A0 + 129953 A11) — 2A5(141267 A2
— 20874145 A15 + 320042 A413),



v3(@) =843696 A5 Ag A1 + A1 (—27(689078 Ag + 41917249 — 2907149419 — 2621619A11) A3
— 26(21057 A3 Aoz + 4900544 Aoz — 166774 A3 A0, + 1156414, A94)).

v4(a@) = — 9A3(14A17 + Agy) + AZ(—560A17 — 518 A + 881419 — 28 Agy + 509451 )
— A4(171A2 + 3A5(367Ag — 107A1g) + 4(99A2 + 9349 A11 4+ As5(—63A15 — 69419
+ TAg + 24A21))) + T2A23 A4,

v5(@) = — 488 A3 Ay + Ap(12(4468A2 + 3242 — 91542, + 32049 A1 — 389841041 — 333142,
+ 2A45(78Ag + 199410 + 2433 A11)) + 2A45(25488A15 — 60259 A19 — 16824 A1)
+ T79A4A21) + 4(7380A10A31 — 24( Ao + 41A11) Az + As(33453 431 + 19588 A3
— 468A33 — 19120A34) + 96 Ag(—Aszs + Azy) + 556 A4 Aq1 — A5(27773Azs + 41538 A9
— 2304 A41 + 5544 A42)),

v6(@) =2A20 — 33421,

v7(a) =A1(64A3 — 541A4) A7 + 86Ag A1z + 12849 A3 — 54A190A13 — 128 A3 Agy + 256 A5 Aoy
+ 10143454 — 27T A4 Aoy,

v(d) =3063A4 A% — 42A2(304Ag + 43(Ag — 11A10)) — 6A3A49(159As + 28 Ag + 409A410)
4 210045 A9 A13 + 315045 A7 A1 + 24A%(34A19 — 11 A90) + 840A2 Ayy — 93245 A3 Aoy
+ 525 A9 Ay Agy + 84442, — 630A13A33,

Y9(a) =2As — 6Ag + Ao,
Y10(@) =3As + An1,
v1(a) = — 5A7Ag + A7 Ag + 10A3A14,
Y12(@) =25A3 A3 + 1843,
Y13(a) =Az,
y14(@) =AgA4 + 18A3 A5 — 236 A2z + 188424,
y) =144 T7 — T3 (Tha + 2T13) — 4(ToT11 + ATrTis + 50T Tos + 2TuTog + 2T5To4 + 4Ty Ths),
y) =T1s,
a,z,y) =T,
y) =C1(Ca, C2)?) — 2C5(Cy, C9) @,
,y) =D1(C1,C2)?) — ((Ca, C2)®, )Y,
d1(a) =9A4s + 31A9 + 6410,
55(@) =41Ag + 4449 + 32410,
03(a) =3A19 — 4417,
54(a) = — 5As Ay + 3As Ay + Ags,
35(a@) =62A5 + 10249 — 12541,
56(@) =2T + 3Ty,
Bi(a) =3A% —2Ag — 2415,
Ba(a) =2A7 — 94,
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Bs(a) =As,
Ba(a) = — 5A4 + 845,
Bs(a) =Aq,
Be(a) =4,
Br(a) =843 — 3A4 — 445,
Bs(a) =24A3 + 11A4 + 2045,
Bo(a) = — 8A3 + 11A4 + 445,
Bio(a) =8As 4+ 27A4 — 54 As,
Bi1(a, x,y) =T% — 20Ty — 8T,
Bia(a, z,y) =11,

Bis(a,r,y) =Ts,

)

+ A6<9A8 + 7A12>,

Ra(a) =Ag + Ag — 2410,
R3(a) =Ag,
Ry(@) = — 3A2A1; + 4A4A ,

Rs(a, z,y) =(2Co(Ts — 8Ty — 2D3) + C1(6T% — Tg) — (C1, Ts) D + 6D, (CLDy — Ts) — 9D3Ch),
Re(@) = — 21349 A + A1(2057Ag — 1264 A9 + 677 A1g + 1107 A1o) + T46( Aoy — Agg),
Ro(d) = — 642 — AgAg + 2A3A9 — 5A4Ag + 444 A1 — 245 A3,

Rsg(a) =Ao,

Ro(@) = — 5Ag + 3A,

Rio(a) =TAg + 5Ai0 + 11411,
Ru(a,z,y) =T

2.3 Preliminary results involving the use of polynomial invariants

Considering the G L—comitant Cs(a, x,y) = ypa(a, z,y) — xqg2(a, x,y) as a cubic binary form of z and
y we calculate
n(a) = Discrim[Cy,&], M(a,z,y) = Hessian[Cy],

where £ = y/x or £ = x/y. Following [17] we have the next assertion.

Lemma 1. The number of distinct roots (real and imaginary) of the polynomial Co(a,x,y) Z 0 is
determined by the following conditions:

(1) 3 real if n > 0;

(74) 1 real and 2 imaginary if n < 0;

(7i1) 2 real (1 double) if n =0 and M # 0;
(iv) 1 real (triple) if n = M = 0.
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Moreover, for each one of these cases the quadratic systems (5) can be brought via a linear transfor-
mation to one of the following canonical systems (Sy) — (Srv):

i = a+cx+dy+gr®+ (h— 1)y, (s))
v = bter+ fy+ (g —Day+ hy% !
& = a+cx+dy+gx®+ (h+ 1)y, (Sp)
y = b+ex+ fy— x>+ gry + hy’; .
& = a+cx+dy+ gx®+ hay, (Sur)
g o= btexr+ fy+(g—Day+hy o
& = a+cx+dy+ gx®+ hay, (S
y = b+ex+ fy—a®+ gry + hy?, v

Proof: We consider the polynomial Cy = yps(z,y) — xg2(x,y) # 0 as a cubic binary form. It is
well known that there exists ¢ € GL(2,R), q(z,y) = (u,v), such that the transformed binary form
qCs(a, r,y) = Co(a@,q ' (u,v)) is one of the following 4 canonical forms:

(i) ay(z —y);  (64) o(@® +y?); (i) 2°y;  (iv) 2.

We note that each of such canonical forms corresponds to one of the cases enumerated in the
statement of Lemma 1. On the other hand, applying the same transformation ¢ to an initial system
(5) and calculating for the transformed system its polynomial Co(a(q),u,v) due to Definition 2 the
following relation holds:

Ca(a(q), u,v) = det(q) Ca(a, z,y) = det(q) Ca(@, ¢~ (u,v)) = ACa(@, ¢~ " (u,v)),

where we may consider A = 1 (via a time rescaling). Therefore considering the expression for
Co(z,y) = ypa(z,y) —xq2(x,y), we construct the canonical forms of quadratic homogeneous systems
having their polynomials Cy the indicated canonical forms (i) — (iv) and we arrive at the systems
(Sr) — (Srv), respectively. This completes the proof of Lemma 1. B

Lemma 2. If a quadratic system (9) possesses a non-parabolic irreducible conic then the conditions
Y1 =72 = 0 hold.

Proof: According to [5] a system (9) possessing a second order non-parabolic irreducible curve as an
algebraic particular integral can be written in the form

&= a®(z,y) + Oy (gz + hy + k), §=0®(x,y) — Py (g + hy + k),
where a, b, g, h, k are real parameters and ®(x,y) is the conic
®(z,y) = p + qz + ry + sz* + 2ty + uy® = 0. (8)

A straightforward calculation gives v; = 2 = 0 for the above systems and this completes the proof
of the lemma.
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Assume that a conic (8) is an affine algebraic invariant curve for quadratic systems (5), which we
rewrite in the form: p
d—f = a+ cx + dy + gz* + 2hay + ky? = P(z,y),
o o)
t

o =b+ex+ fy+ 12+ 2may + ny? = Q(x, y).

Remark 5. Following [10] we construct the determinant

s t q/2
A=t u /2],
q/2 /2 p

associated to the conic (8). By [10] this conic is irreducible (i.e. it could not be presented in Clz,y]
as a product of lines) if and only if A # 0.

In order to detect if an invariant conic (8) of a system (9) has the multiplicity greater than one,
we shall use the notion of k-th extactic curve &;(X) of the vector field X (see (2)), associated to
systems (9). This curve is defined in the paper [6, Definition 5.1] as follows:

U1 V2 c.. U]
£4(X) = det X(.vl) X(.vg) . X(.vl) |
Xl_i(vl) Xl_i(vg) . Xl_.l(vl)
where v1,v9,...,v; is the basis of C,[x,y], the C-vector space of polynomials in C,[z,y| and | =

(k+1)(k +2)/2. Here X%(v;) = v; and X7 (v1) = X (X7 1(v1)).
Considering the Definition 1 of a multiplicity of an invariant curve, according to [6] the following
statement holds:

Lemma 3. If an invariant curve ®(x,y) = 0 of degree k has multiplicity m, then ®(x,y)™ divides

Er(X).
We shall apply this lemma in order to detect additional conditions for a conic to be multiple.

According to definition of an invariant curve (see page 2) considering the cofactor K = Uz + Vy+
W € Rz, y] the following identity holds:
0P 0P
This identity yields a system of 10 equations for determining the 9 unknown parameters p, q, r, s,
t, 2, u, v, wW:
Eq =s(2g—-U)+20t =0,

Eq =2t(g+2m—-U) +s(4h—V)+2lu=0, (10)
Eqs =2t2h+n—-V)+u(dm —U) + 2ks =0,
Eqs =u2n—V)+ 2kt =0,
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Eqgs =q(g—U)+s(2c— W) +2et +Ir =0,

Eqg =r(2m—-U)+q2h=V)+2t(c+ f—W) +2(ds + eu) =0,
Eq: =r(n—=V)+u2f — W)+ 2dt + kq =0,

Eqs = qlc— W)+ 2(as+ bt) + er —pU =0,

Eqy =r(f—W)+2(bu+at)+dg—pV =0,

Eqio = aq+br —pW =0.

<

3 The proof of the Main Theorem

Assuming that a quadratic system (9) in QS¢ has an invariant hyperbola (8), we conclude that this
system must possess at least two real distinct infinite singularities. So according to Lemmas 1 and
2 the conditions n > 0, M # 0 and v; = 92 = 0 have to be fulfilled.

In what follows, supposing that the conditions v = 9 = 0 hold, we shall examine two families
of quadratic systems (9): systems with three real distinct infinite singularities (corresponding to
the condition 1 > 0) and systems with two real distinct infinite singularities (corresponding to the
conditions n = 0 and M # 0).

3.1 Systems with three real infinite singularities and 6 # 0

In this case according to Lemma 1 systems (9) via a linear transformation could be brought to the
following family of systems

— =a+cx+dy+ gz® + (h — 1)y,
; ()
—y:b+ex+fy+(g—1)a3y+hy2.

For this systems we calculate

Co(z,y) =ay(x —y), 0=—(g—1)(h—1)(g+h)/2 (12)
and we shall prove the next lemma.
Lemma 4. Assume that for a system (11) the conditions 6 # 0 and v1 = 0 hold. Then this system
via an affine transformation could be brought to the form
dx

d
E:a+cx+g:c2+(h—l)xy, d—g:b—cy—i-(g—l)xy—khyQ. (13)

Proof: Since 0 # 0 the condition (g — 1)(h — 1)(g + h) # 0 holds and due to a translation we may
assume d = e = 0 for systems (11). Then we calculate

1
m= a(g —1)*(h — 1)*D1 D5 Ds,

where

Ds =c(1—2g+h) + f(dg+ h —1).
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So due to 8 # 0 (i.e. (g—1)(h—1) # 0) the condition v; = 0 is equivalent to D1DyD3 = 0. We claim
that without loss of generality we may assume Dy = ¢+ f = 0, as other cases could be brought to
this one via an affine transformation.

Indeed, assume first D; # 0 and Dy = 0. Then as g+ h # 0 (due to 6 # 0) we apply to systems
(11) with d = e = 0 the affine transformation

o =y—az—(c—f)/lg+h), ¥=-a (14)
and we get the systems
dx’ dy’
dfi _ a/+clx/+g/x/2 (W — 1)2'y/, C% =V + 'y + (¢ — 1)m'y’+h'y’2. (15)

These systems have the following new parameters:

a =1[h—fPg+cflg—h)—(a—Db)(g+h)?]/(g+h)
V' =—a, ¢ =(cg—2fg—-ch)/(g+h), (16)
ff=(c—f—cg+2fg+fh)/(g+h), ¢d=h Nh=1-—g—h

A straightforward computation gives
Di=c+ [ =elg+4h—1)+ f(L+g—2h)]/(g+h)=Da2/(g+h) =0

and hence, the condition Dy = 0 we replace with D; = 0 via an affine transformation.

Suppose now D; # 0 and D3 = 0. Then we apply to systems (11) the affine transformation

' =—y, Y =x—y+(c—f)/(g+h)

and we get the systems

d.’L’H dy//
dt — (I” _|_ C,/CL',/ + gl/$/12 + (h// _ 1)x1/y1/’ % — b// + f//yl/ + (g// _ 1)m//y1/ + h,/yHQ,

having the following new parameters:

a"=-b, V' =[f'g—ch+cf(—g+h)+(a—b)(g+h)*]/(g+h)?
"=(c—f—cg+2fg+ fh)/(g+h),
f'=(cg—2fg—ch)/(g+h), ¢"=1-g—h, K=y

We calculate
D ="+ f"=[c(l =29 +h)+ f(4g+h—1)]/(g+h) = Ds/(g +h) = 0.
Thus our claim is proved and this completes the proof of the lemma. ]

Lemma 5. A system (13) possesses an irreducible invariant hyperbola of the indicated form if an
only if the respective conditions are satisfied:

I. ®(z,y)=p+qgr+ry+2zy < B =b2h—1)—a(2g—1)=0, (2h—1)2+(29—1)2#0,
a’ + b2 # 0;
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II. &(z,y) =p+qr+ry+2z(x—y) <&  either

(i) ¢ =0, B =b(1 — 2h) +2a(g+2h —1) =0, (2h —1)2 + (g +2h — 1)2 # 0, a® + b* # 0;
(ii) h =1/3, By = (1 + 39)%(b — 2a + 6ag) + 6¢*(1 — 3g) = 0, a # 0;

III. ®(z,y)=p+qr+ry+2ylx—y) <&  either

(i) c=0,B3=a(l —29) +2b(2g+h—1)=0, (29— 1)+ (29g+h—1)2#£0, a®> + b #0;
(i) g =1/3, By = (1 + 3h)%(a — 2b + 6bh) + 6c2(1 — 3h) =0, b # 0

Proof: Since for systems (13) we have Cy = zy(xz — y) (i.e. the infinite singularities are located at
the “ends” of the lines x = 0, y = 0 and x —y = 0) it is clear that if a hyperbola is invariant for these
systems, then its homogeneous quadratic part has one of the following forms: (i) kxy, (ii) kx(z —
y), (iit) ky(x — y), where k is a real nonzero constant. Obviously we may assume k = 2 (otherwise
instead of hyperbola (8) we could consider 2®(x,y)/k = 0).

Considering the equations (10) we examine each one of the above mentioned possibilities.
(i) ®(x,y) = p+ qv + ry + 2zy; in this case we obtain
t=1,g=r=s=u=0,U=29—-1, V=2h-1, W =0,
Eqs = p(1 —2g) +2b, Eq9 = p(1—2h)+ 2a,
Eq = Eq = Eq3 = Equ = Eqs = Eqs = Eq7 = Eqio = 0.
Calculating the resultant of the non-vanishing equations with respect to the parameter p we obtain

Resy, (Eqs, Eqo) = a(l —2g) + b(2h — 1) = B;.

So if (2h — 1)2 4 (29 — 1)? # 0 then the hyperbola exists if and only if B; = 0. We may assume
2h — 1 # 0, otherwise the change (x,y,a,b,¢,g,h) — (y,z,b,a,—c, h,g) (which preserves systems
(13)) could be applied. Then we get

2a
2h —1

p=2a/(2h—1), b=a(29—1)/(2h—1), ®(z,y) = +2zy =0

and clearly for the irreducibility of the hyperbola the condition a?+b% # 0 must hold. This completes
the proof of the statement I of the lemma.

(i) ®(x,y) =p+ qx + ry + 2x(z — y); since g+ h # 0 (due to 0 # 0) we obtain
s=2,t=—-1, r=u=0, g=4¢/(9+h), U=2g, V=2h—-1, W = —hq/2,
Eqs = 4a — 2b — 2gp + 4c*(g — h) /(g + h)?,
Eq9 =p(1 —2h) —2a, FEqo = 2c¢(2a —hp)/(g +h),
Eq = Eqy = Eq3 = Equ = Eqs = Eqs = Eq7 = 0.

1) Assume first ¢ # 0. Then considering the equations Fqg = 0 and Fq19 = 0 we obtain p(3h—1) =
0. Taking into account the relations above we get the hyperbola

O(x,y) =p+4dex/(g+h)+2z(x—y)=0
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which evidently is reducible if p = 0. So p # 0 and this implies h = 1/3. Then from the equation
Eq9 = 0 we obtain p = 6a. Since § = (g — 1)(3g + 1)/9 # 0 we have

Eqy = Eqo =0, Eqs=—2B,/(3g+ 1)

So the equation Eqg = 0 gives B} = 0 and then systems (13) with h = 1/3 possess the hyperbola

¢ x+2zx(x —y) =0,

) =6

which is irreducible if and only if a # 0.

2) Suppose now ¢ = 0. In this case it remains only two non—vanishing equations:
Eqs =4a—2b—2gp=0, FEq =p(l—2h)—2a=0.
Calculating the resultant of these equations with respect to the parameter p we obtain
Resy, (Eqs, Eq9) = b(1 — 2h) 4+ 2a(g + 2h — 1) = Bs.

If (1 —2h)%+ (g +2h—1)2 # 0 (which is equivalent to (1 —2h)? + g2 # 0) then the condition B, = 0
is necessary and sufficient for a system (13) with ¢ = 0 to possess the invariant hyperbola

®(z,y) =p+2z(x—y) =0,

where p is the parameter determined from the equation Eq9 = 0 (if 2h — 1 # 0), or Eqg = 0 (if
g # 0). We observe that the hyperbola is irreducible if and only if p # 0 which due to the mentioned
equations is equivalent to a® + b% # 0.

Thus the statement IT of the lemma is proved.

(i1i) ®(x,y) = p+ qx + ry + 2y(x — y); we observe that due to the change (z,y,a,b,c,g,h) —
(y,x,b,a,—c, h,g) (which preserves systems (13)) this case could be brought to the previous one and
hence, the conditions could be constructed directly applying this change. This completes the proof
of Lemma 5. ]

In what follows the next remark will be useful.
Remark 6. Consider systems (13). (i) The change (x,y,a,b,c,g,h) — (y,z,b,a,—c, h,g) which
preserves these systems replaces the parameter g by h and h by g. (ii) Moreover if ¢ = 0 then having
the relation (2h — 1)(2g — 1)(1 — 29 — 2h) = 0 (respectively (4h — 1)(4g — 1)(3 — 4g — 4h) = 0) due
to a change we may assume 2h — 1 =0 (respectively 4h —1 =0).

To prove the statement (i¢) it is sufficient to observe that in the case 2g — 1 = 0 (respectively
49 — 1 = 0) we could apply the change given in the statement (i) (with ¢ = 0), whereas in the case
1 —2g — 2h = 0 (respectively 3 — 4g — 4h = 0) we apply the change

(x,y,a,b,g,h) = (y—x,—x,b—a,—a,h,l—g—h),

which conserves systems (13) with ¢ = 0.

Next we determine the invariant criteria which are equivalent to the conditions given by Lemma 5.
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Lemma 6. Assume that for a quadratic system (9) the conditions n > 0, 8 # 0 and y1 = y2 =0
hold. Then this system possesses at least one irreducible invariant hyperbola if and only if one of the

following sets of the conditions are satisfied:

(i) If p1 # O then either
(i.1) Ba #0, Ry # 0;
(i.2) B2 =0, B3 #0, 73 =0, R1 #0;
(i.8) Ba = B3 =0, B1PBsRa # 0;
(i.4) Bo=P3=P1=0,v3=0, Ro #0;

(ii) If By = O then either
(i4.1) B #0, B2 #0, 74 =0, R3 # 0;
(1.2) Be #0, B2 =0, v5 =0, Ry #0;
(i4.3) Be =0, Br #0, 75 =0, Rs # 0;
(ii.4) Be =0, B7 =0, By # 0, 15 =0, R5 #0;
(ii.5) B =0, B7 =0, Bo =0, 76 = 0, R5 # 0.

Proof: Assume that for a quadratic system (9) the conditions n > 0, 6 # 0 and y; = 0 are fulfilled.
According to Lemma 4 due to an affine transformation and time rescaling this system could be
brought to the canonical form (13), for which we calculate

Yo = — 1575¢%(g — 1)%(h — 1)*(g + h)(3g — 1)(3h — 1)(3g + 3h — 4)By,
Bi=—c(g—1)(h—1)(3g — 1)(3h — 1) /4, (17)
Ba=—clg—h)(3g+3h—4)/2.

3.1.1 The case 51 #0

According to Lemma 2 the condition 9 = 0 is necessary for the existence of an irreducible hyperbola.
Since 61 # 0 in this case the condition v, = 0 is equivalent to (3g + 3h — 4)B; = 0.

3.1.1.1 The subcase 3, # 0. Then (3g + 3h —4) # 0 and the condition v = 0 gives B; = 0.
Moreover the condition B # 0 yields g—h # 0 and this implies (2h—1)2+4(2g—1)? # 0. According to
Lemma 5 systems (13) possess an invariant hyperbola, which is irreducible if and only if a? 4 b? # 0.

On the other hand for these systems we calculate
Ri = — 3e(a—b)(g — 1)*(h — 1)*(g +h)(3g — 1)(3h — 1)/8

and we claim that for B; = 0 the condition R; = 0 is equivalent to a = b = 0. Indeed, as the equation
B1 = 0 is linear homogeneous in a and b, as well as the second equation a — b = 0, calculating the
respective determinant we obtain —2(g + h) # 0 due to 6 # 0. This proves our claim and hence the
statement (i.1) of Lemma 6 is proved.

3.1.1.2 The subcase 3 = 0. Since 51 # 0 (i.e. ¢#0) we get (g —h)(3g+ 3h —4) = 0. On the
other hand for systems (13) we have

Pz =—clg—h)(g—1)(h—1)/4

and we consider two possibilities: 83 # 0 and 83 = 0.
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3.1.1.2.1 The possibility 3 # 0. In this case we have ¢ — h # 0 and the condition Sy = 0
implies 3g +3h —4 =0, i.e. ¢ =4/3 —h. So the condition (2h —1)? + (29 —1)2 # 0 for systems (13)
becomes (2h — 1)2 + (6h — 5)2 # 0 and obviously this condition is satisfied.

For systems (13) with g = 4/3 — h we calculate

v3 =22971c(h — 1)3(3h — 1)3B1, Ry = (a —b)e(h — 1)3(3h — 1)3/6,
Br=—cA(h—1)2Bh—-1)%/4, B3 = —c(h—1)(3h—2)(3h—1)/18.

So due to 51 # 0 the condition v3 = 0 is equivalent to B; = 0. Moreover if in addition Ry = 0 (i.e.
a—b=0) we get a =b =0, because the determinant of the systems of linear equations

3B, = a(5—6h) —3b(2h —1) =0, a—b=0

with respect to the parameters a and b equals 4(3h — 2) # 0 due to the condition 33 # 0. So the
statement (4.2) of the lemma is proved.

3.1.1.2.2 The possibility 53 =0. Due to 51 #0 (i.e. ¢(¢g—1)(h—1) #0) we get g = h and
for systems (13) we calculate

Yo =6300c2h(h — 1)*(3h — 2)(3h — 1)?By,
0 =—hh—1)>2 g =-ch—1)%*3h—-1)%/4,
B1=2h(3h—2), B5=—2h%(2h—1).

So due to the condition #3; # 0 we obtain that the necessary condition 9 = 0 is equivalent to
B1(3h —2) = 0 and we shall consider two cases: 4 # 0 and 54 = 0.

1) The case B4 # 0. Therefore 3h — 2 # 0 and this implies B; = 0. Considering Lemma 5 the
condition (2h —1)?+ (29 —1)? # 0 for g = h becomes 2h — 1 # 0. So for the existence of an invariant
hyperbola the condition £5 # 0 is necessary. Moreover this hyperbola is irreducible if and only if
a® +b? # 0. Since for these systems we have

Ro = (a+0b)(h—1)*(3h—1)/2, By =—(2h—1)(a—D)

we conclude, that when B; = 0 the condition Ry # 0 is equivalent to a? 4+ b% # 0 and this completes
the proof of the statement (i.3) of the lemma.

2) The case B4 = 0. Then due to § # 0 we get h = 2/3 and arrive at the 3-parameter family of

systems

d d
d—f:a+cx+2x2/3—xy/3, d—z:b—cy—xy/3+2y2/3, (18)

For these systems we calculate

3 =7657c¢B1/9, B1 = —c*/36, Ry = (a+b)/18,

where By = (b — a)/3. Since for these systems the condition (2h — 1) + (29 — 1)? = 2/9 # 0 holds,
according to Lemma 5 we conclude that the statement (i.4) of the lemma is proved.
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3.1.2 The case 51 =0

Considering (17) and the condition 6 # 0 we get ¢(3g — 1)(3h — 1) = 0. On the other hand for
systems (13) we calculate

Be = —clg—1)(h—1)/2

and we shall consider two subcases: g # 0 and Gg = 0.

3.1.2.1 The subcase 5 # 0. Then ¢ # 0 and the condition 8; = 0 implies (3g—1)(3h—1) = 0.
Therefore due to Remark 6 we may assume h = 1/3 and this leads to the following 4-parameter
family of systems

d
ax =a+cx + gz? — 2xy/3,

d
dt Y b—ey+ (g - Day+y?/3, (19)

dt

which is a subfamily of (13). According to Lemma 5 the above systems possess an irreducible
hyperbola if and only if either By = a(l — 2g) — b/3 = 0 and a® + b # 0 (the statement I), or
By = (1+39)%(b—2a+ 6ag) +6¢*(1 —3g) = 0 and a # 0 (the statement IT). We observe that in the
first case, when a(1 — 2g) — b/3 = 0 the condition a? + b* # 0 is equivalent to a # 0.

On the other hand for these systems we calculate
v4=—16(g — 1)*(3g — 1)*°B1B/81, Bs=c(g—1)/3,
Ba=c(g—1)(3g—1)/2, Ry =a(3g—1)*/18.

So we consider two possibilities: G2 # 0 and By = 0.

3.1.2.1.1 The possibility f2 # 0. In this case (¢ — 1)(3g — 1) # 0 and the conditions 4 = 0
and R3 # 0 are equivalent to BB, = 0 and a # 0, respectively. This completes the proof of the
statement (47.1).

3.1.2.1.2 The possibility 5, = 0. Due to the condition 35 # 0 we get g = 1/3 and this leads
to the following 3-parameter family of systems:

d d
d—?za+cw+x2/3—2xy/3, d—zt/:b—cy—2xy/3+y2/3. (20)

Since ¢ # 0 (due to g # 0) according to Lemma 5 these systems possess an irreducible invariant
hyperbola if and only if one of the following sets conditions are fulfilled:

Bi=(a—b)/3=0, a®>+b*#0;
By,=4b=0, a#0; B;=4a=0, b#0.

We observe that the last two conditions are equivalent to ab = 0 and a? + b? # 0.

On the other hand for systems (20) we calculate
vs =16B1B4B5 /27, R4 = 128(a® — ab + b?)/6561.

It is clear that the condition R4 = 0 is equivalent to a? + b* = 0. So the statement (74.2) is proved.
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3.1.2.2 The subcase s = 0. Since § # 0 (i.e. (9 —1)(h —1) # 0) the condition g = 0 yields
¢ = 0. Therefore according to Lemma 5 systems (13) with ¢ = 0 possess an irreducible invariant
hyperbola if and only if one of the following sets of conditions holds:

Bi=b(2h—1)—a(2g—1)=0, (2h —1)2 + (29 — 1)> #0, a® +b* # 0;
By =b(1—2h)+2a(g+2h—1)=0, (2h—1)2+ (g+2h—1)2#0, a®+b*#0;
Bs=a(l—-29)+2b(29+h—1)=0, (29—1)2+(29+h—1)2#0, a®>+b>#0.
Considering the following three expressions
ap=29g—1, as=2h—-1, a3=1-29—2h
we observe that the condition (2h — 1)% + (29 — 1)? # 0 (respectively (2h — 1)2 + (g + 2h — 1) # 0;
(29 — 1)2 + (29 + h — 1)2 #£ 0) is equivalent to a2 + a3 # 0 (respectively a2 + a3 # 0; a2 + a3 # 0).
On the other hand for these systems we calculate
V5 = — 288(9 — 1)(h — 1)(g + h) B1B2B3,
0=—(g—1)(h—1)(g+h)/2
Br =2c1asa3, By = 2(a1a2 + araz + azas),
Rs =36(bz — ay) [(g — 1222 +2(g+h+gh —Day + (h— 1)2y2].
We observe that if oy = ag = 0 (respectively as = a3 = 0; a; = ag = 0) then the factor B;
(respectively Ba; Bs) vanishes identically. Considering the values of the invariant polynomials (7

and 9 we conclude that two of the factors «; (i=1,2,3) vanish if and only if 5; = B9 = 0. So we
have to consider two subcases: ﬁ% + ﬁg # 0 and ﬁ% + 53 = 0.

3.1.2.2.1 The possibility 82 + 82 # 0. In this case due to 6 # 0 the conditions 75 = 0 and
Rs # 0 are equivalent to B1BaB3 = 0 and a? + b? # 0, respectively. So by Lemma 5 there exists at
least one hyperbola and hence the statements (ii.3) and (ii.4) are valid.

3.1.2.2.2 The possibility 82 + 82 = 0. As it was mentioned above, in this case two of
the factors «; (i=1,2,3) vanish. Considering Remark 6, without loss of generality we may assume
a1 = g = 0.

Thus we have g = h = 1/2 and we get the family of systems

d d
dit“":a+x2/2—wy/2, df‘lt/:b—xy/2+y2/2- (21)

Since ¢ = 0 and the conditions of the statement I of Lemma 5 are not satisfied for these systems,
according to Lemma 5 the above systems possess an irreducible invariant hyperbola if and only if
a® +b? # 0 and either By = a = 0 or B3 = b = 0. For systems (21) we calculate

Y6 = — 9BaBs, Rs=9(bx — ay)(z +y)?

and we conclude that the statement (i7.5) of the lemma holds.
As all the cases are examined, Lemma 6 is proved. B

The next lemma is related to the number of the invariant hyperbolas that quadratic systems with
1n > 0 and 6 # 0 could have.
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Lemma 7. Assume that for a quadratic system (9) the conditionsn >0, 0 #0 and y1 = v2 =0 are
satisfied. Then this system possesses:

(A) two irreducible invariant hyperbolas if and only if either
(A1) if B1 =0, Bs #0, B2 #0, 14 =0, Rg # 0 and 61 = 0, or
(A2) if B1 =0, B =0, f7 #0, 75 =0, R5 # 0 and s = d2 =0, or
(As) if B1 =0, Be = Br =0, By #0, 75 =0, Rs # 0 and §3 =0, B3 # 0;

(B) three irreducible invariant hyperbolas if and only if f1 = 0, B = B7 = 0, By # 0, 75 = 0,
R5750 andég,:ﬂgzo.

Proof: For systems (13) we have

Bo=—clg—1(h-1)/2, 0=—(g—-1)(h-1)(g+h)/2,
Br=—cg—1)(h—1)(3g - 1)(3h — 1) /4.

3.1.3 The case 5 #0

Then ¢ # 0 and according to Lemma 5 we could have at least two hyperbolas only if the conditions
given either by the statements I and II; (i7) (i.e. By = B, =0 and h = 1/3), or by the statements I
and III; (i) (i.e. By = By = 0 and g = 1/3) are satisfied. Therefore the condition (3g—1)(3h—1) =0
is necessary. This condition is governed by the invariant polynomial 5. So we assume $; = 0 and
due to Remark 6 we may consider h = 1/3. Then we calculate

4 =—16(g — 1)*(3g — 1)*B1B,/81, B =0,
0=(g—1)(1+39)/9#0, B2=c(g—1)(3g—1)/2.

Solving the systems of equations B h=1/3 = B}, = 0 with respect to a and b we obtain
=1
6c%(3g — 1 18¢%(2g — 1)(3g — 1
_ 67y Q)EA()’ po 18729 )(29 ) _p,
(1+3g) (14 3g)
In this case we get the family of systems
du 2 dy 2
5 = Aotertgat=2wy/3, —0=Bo—cy+(9-Vay+y’/3, (22)
which possess two irreducible invariant hyperbolas:
36c2(3g — 1)
O(x,y) =— ——F—5— + 22y =0,
36c?(3g — 1 12
D(ey) = DI L L gaa g =0,

(1+ 3g)? 1+ 39

where ¢(3g — 1) # 0 due to a # 0. Thus for the irreducibility of the hyperbolas above the condition
¢(3g — 1) #0 (i.e. P2 # 0) is necessary.
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Since the condition v4 = 0 gives B, = 0 it remains to find out the invariant polynomial which
in addition to 74 is responsible for the relation B; = B, = 0. We observe that in the case By = 0
(i.e. b=3a(1 —2g)) we have

&1 =(3g —1)[a(l +3g)* — 6c*(3g — 1)] /18 = (3g — 1)B}/18.

It remains to observe that in the considered case we have R3 = a(3g — 1)3/18 # 0 and that due to
the condition 2 # 0 (i.e. ¢(3g — 1) # 0) by Lemma 5 we could not have a third hyperbola of the
form ®(x,y) = p+ gz + ry + 2y(xz — y) = 0. This completes the proof of the statement (.A;) of the
lemma.

3.1.4 The case g =0

Then ¢ = 0 and we calculate for systems (13)
b7 =213, [y = 2(0&1&2 + aras + 042043), Bs = 2(4g - 1)(4h — 1)(3 —4g — 4h),
where a1 =29 — 1, as =2h — 1 and a3 = 1 — 2g — 2h.

3.1.4.1 The subcase 87 # 0. Then ajasasg # 0 and we consider two possibilities: s # 0 and
Bs = 0.

3.1.4.1.1 The possibility s # 0. We claim that in this case we could not have more than
one hyperbola. Indeed, as ¢ = 0 we observe that all five polynomials B; (i = 1,2, 3), B, and B5 are
linear (and homogeneous) with respect to a and b and the condition a? + b # 0 must hold. So in
order to have nonzero solutions in (a,b) of the equations

Z/{:V:07 u)ve{817827837[5§’6§}’ U#V

it is necessary that the corresponding determinants det(U/, V) = 0. We have for each couple, respec-

tively:
(w1) det(By,By) = —(2h —1)(4h —1) = 0;
(wa) det(By,Bs) = —(2g—1)(4g—1) = 0;
(ws) det(Bg,Bs) = (1 —2g—2h)(3—4g —4h) =0;
(wa) det(By,By)|,_y s = (39+1)%/3;
(ws) det(Br.By)| _, ,= (3h+1)%/3; (23)
(wo) det(By, Bs)| g yyjq = (1+39)%(6g —1)(129 —5)/3 = 0;
(wr) det(Ba, Bg)\{c:(),g:l/g} = (14 3h)%*(6h —1)(12h —5)/3 = 0;
(ws) det(Bé,Bg)‘{hzl/&gzlw} = —16#0.

We observe that the determinant (wg) is not zero. Moreover since 57 # 0 and g # 0 we deduce that
none of the determinants (w;) (¢ = 1,2, 3) could vanish.
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On the other hand for systems (13) with ¢ = 0 we have § = (¢ — 1)(3g + 1)/9 in the case h =1/3
and 0 = (h—1)(3h+1)/9 in the case g = 1/3. Therefore due to § # 0 in the cases (w4) and (ws) we
also could not have zero determinants.

Thus it remains to consider the cases (wg) and (w7). Considering Remark 6 we observe that the
case (wy) could be brought to the case (wg). So assuming h = 1/3 we calculate

Br=2(2g —1)(6g —1)/9, Bs=—2(4g—1)(129 -5)/9, 0= (9—1)(3g+1)/9

and hence the determinant corresponding to the case (wg) could not be zero due to 63783 # 0. This
completes the proof of our claim.

3.1.4.1.2 The possibility 83 = 0. In this case we get (4g — 1)(4h — 1)(3 —4g — 4h) = 0 and
due to Remark 6 we may assume h = 1/4. Then det(B, B2) = 0 (see the case (w1)) and we obtain
Bi = (2a — b —4ag)/2 = —By = 0. Since in this case we have

62 =2(29 — 1)(4g — 1)(b — 2a + 4ag), Br= (29 —1)(49 —1)/2

we conclude that due 87 # 0 the condition 2a — b — 4ag = 0 is equivalent to do = 0. So setting
b = 2a(1 — 2g) we arrive at the family of systems

d d
dit; = a+ gz? — 3xy/4, dit/ =2a(1 —29) + (g — Day + y*/4. (24)

These systems possess the invariant hyperbolas
O (z,y) = —4a+ 22y =0, ®5(z,y) =4a+ 2x(x —y) =0,
which are irreducible if and only if @ # 0. Since for these systems we have
R5 = 9a(2z — 4gx — y) [16(g — 1)*z® + 8(5g — 3)zy + 9y°] /4
the condition a # 0 is equivalent to R5 # 0. On the other hand for these systems we calculate
Bs = —2a(2g — 1)(4g — 1), Bg\hzw = 49a/24

and due to f7Rs # 0 we get BsB4 # 0, i.e. systems (24) could not possess a third hyperbola. This
completes the proof of the statement (As).

3.1.4.2 The subcase 7 = 0. Then (29 — 1)(2h — 1)(1 — 2g — 2h) = 0 and due to Remark 6
we may assume h = 1/2. Then by Lemma 5 we must have g(2g — 1) # 0 and this is equivalent
to B9 = —4g(2g — 1) # 0. Herein we have det(B;,B2) = 0 and we obtain By = a(1 — 2g) = 0 and
By = 2ag = 0. This implies a = 0, which due to B9 # 0 is equivalent to d3 = 16a¢>(2g — 1)?> = 0.
So we get the family of systems

dx 2 dy 2
= = — 2. 2L =} -1 2 25
o = ort = ay/2, oo =b+ (g Day+y’/ (25)
which possess the following two hyperbolas
Dy (x,y) 20 +2 0, ®a(z,y) b + 2x( )=20
€T e €T = €T = — T\ — - .
1T,y 2g 1 Y 3 2\, Y g Yy
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These hyperbolas are irreducible if and only if b # 0 which is equivalent to R5 = 9bx [4(9 —1)%2% +
4(3g — V)zy + y?] # 0.

For the above systems we have B3 = b(4g — 1) and B = 25b/4. Since b # 0 only the condition
B3 = 0 could be satisfied and this implies ¢ = 1/4. It is not too hard to find out that in this case
we get the third hyperbola:

O3(z,y) = —4b+ 2y(x —y) = 0.

We observe that for the systems above g = —2(4g — 1)? and hence the third hyperbola exists if and
only if B3 = 0. So the statements (Asz) and (B) are proved.

Since all the possibilities are examined, Lemma 7 is proved. ]

3.2 Systems with three real infinite singularities and 6 = 0

Considering (12) for systems (11) we get (¢ — 1)(h — 1)(g + h) = 0 and we may assume g = —h,
otherwise in the case g = 1 (respectively h = 1) we apply the change (z,y,9,h) — (—y,x —y,1 —
g — h,g) (respectively (z,y,g,h) — (y —x,—x,h,1 — g — h)) which preserves the quadratic parts of
systems (11).

So g = —h and for systems (11) we calculate N = 9(h% —1)(x —y)?. We consider two cases: N # 0
and N = 0.

3.2.1 The case N #0

Then (h —1)(h+ 1) # 0 and due to a translation we may assume d = e = 0 and this leads to the
family of systems

Z—i:a—i—cx—th—l—(h—l)my, %:b—i—fy—(h—i—l)xy—i—hgf. (26)

Remark 7. We observe that due to the change (x,y,a,b,c, f,h) — (y,z,b,a, f,c,—h) which con-
serves systems (26) we can change the sign of the parameter h.

Lemma 8. A system (26) with (h — 1)(h + 1) # 0 possesses at least one irreducible invariant
hyperbola of the indicated form if and only if the following conditions are satisfied, respectively:

I. ®(z,y)=p+qr+ry+22y < c+f=0,& =al2h+1)+b2h—1)=0,a®+b>#0;
II. ®(z,y) =p+qr+ry+2z(x—y) < c— f=0 and either

(i) (2h —1)(3h —1) #0, & = 2c¢*(h —1)(2h — 1) + (3h — 1)%(b — 2a + 2ah — 2bh) = 0, a # 0;
(ii) h=1/3,¢c=0,a#0, 4a —b > 0;
(iii) h =1/2, a =0, b+ 4c? # 0;

III. ®(z,y)=p+qr+ry+2y(x—y) < c— f=0 and either

(i) 2h+1)(Bh+1) #0, & =2c*(h+1)(2h + 1) + (3h + 1)*(a — 2b — 2bh + 2ah) = 0, b # 0;
(ii) h=-1/3,¢=0,b#0, 4b —a > 0;
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(iii) h = —1/2, b =0, a + 4c® # 0.

Proof: As it was mentioned in the proof of Lemma 5 (see page 16) we may assume that the quadratic
part of an invariant hyperbola has one of the following forms: (i) 2zy, (it) 2z(z—y), (iii) 2y(x—y).
Considering the equations (10) we examine each one of these possibilities.

(i) ®(z,y) = p+ qx + ry + 2zy; in this case due to N # 0 (i.e. (h —1)(h+ 1) # 0) we obtain

t=1, g=r=s=u=0,U=-2h—1, V=2h—-1, W=c+ f,
Eqg =p(1+2h) +2b, Eqy=p(l—2h)+2a, Eqo=-plc+[),
Eq = FEq = Eq3 = Eqy = Eqs = Eqs = Eq7 = 0.
Since in this case the hyperbola has the form ®(x,y) = p 4+ 2zy it is clear that p # 0, otherwise we
get a reducible hyperbola. So the condition ¢+ f = 0 is necessary.

Calculating the resultant of the non-vanishing equations with respect to the parameter p we obtain
Res, (Eqs, Eqy) = 2[a(2h + 1) + b(2h — 1)] = 2&;.
Since (2h —1)2 4 (2h+1)% # 0 we conclude that an invariant hyperbola exists if and only if £ = 0.

Due to Remark 7 we may assume 2h — 1 # 0. Then we get

2
p=2a/(2h —1), b=a(2h+1)/(2h—1), <I>(:L‘,y)=2hi1+2xy:()

and clearly for the irreducibility of the hyperbola the condition a # 0 must hold.

This completes the proof of the statement I of the lemma.
(i) ®(x,y) =p+ qx + ry + 2z(x —y); since (h —1)(h + 1) # 0 (due to N # 0) we obtain

s=2,t=—-1, r=u=0,U=-2h, V=2h—-1, W = (4dc+ hq)/2,
Eqs =2(c— f), Eqg=4a—2b+2hp —cg — hq?/2,
Eqy =p(1 = 2h) —2a, Eqo = —2cp+aq— hpq/2,
Eq = Eq = Eq3 = Equ = Eqs = Eq7 = 0.

(27)

We observe that the equation Fgg = 0 implies the condition ¢ — f = 0.

1) Assume first (2h — 1)(3h — 1) # 0. Then considering the equation Eq9 = 0 we obtain p =
2a/(1 — 2h). As the hyperbola ®(x,y) = p + qx + 2z(x — y) = 0 has to be irreducible the condition
p # 0 holds and this implies a # 0. Therefore from

a(4c — q + 3hq)

E — =
o 2h — 1 0
due to 3h — 1 # 0 we obtain ¢ = 4¢/(1 — 3h) and then we get
28
Eq8 = 2 0.

(2h—1)(3h—1)2

So we deduce that the conditions ¢ — f = 0, & = 0 and a # 0 are necessary and sufficient for the
existence of an irreducible hyperbola of systems (26) in the case (2h — 1)(3h — 1) # 0.
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2) Suppose now h = 1/3. Then considering (27) we have Fqy9 = (p — 6a)/3 =0, i.e. p=6a #0
(otherwise we get a reducible hyperbola). Therefore the equation Eqjo = —12ac = 0 yields ¢ = 0.
Herein the equation Eqg = 0 becomes Fqg = [12(4@ —b)— q2] /6 = 0 and obviously for the existence
of a real solution for the parameter ¢ of hyperbola the condition 4a — b > 0 must be satisfied.

Thus in the case h = 1/3 we have at least one irreducible hyperbola if and only if the conditions
f=¢=0,4a—b>0 and a # 0 hold.

3) Assume finally h = 1/2. In this case we get Fqg = —2a = 0, i.e. a = 0 and we have
Eqs=-2b+p—cq—q°/4=0, Eqo=—-pBc+q)/4=0, ®(z,y)=p+qz+2z(xr—y).

Therefore p # 0 and we obtain ¢ = —8c and p = 2(b + 4c?) # 0. This completes the proof of the
statement II of the lemma.

(iii) ®(x,y) = p+ qx + ry + 2y(z — y); we observe that due to the change (z,y,a,b,c, f,h) —
(y,x,b,a,c, f,—h) (which preserves systems (26)) this case could be brought to the previous one and
hence, the conditions could be constructed directly applying this change.

Thus Lemma 8 is proved. [

We shall construct now the afline invariant conditions for the existence of at least one invariant
hyperbola for quadratic systems in the considered family.

Lemma 9. Assume that for a quadratic system (9) the conditions n > 0, 8 = 0, N # 0, and
Y1 = v2 = 0 hold. Then this system possesses at least one irreducible invariant hyperbola if and only
if one of the following sets of the conditions are satisfied:
(i) If Bs # 0O then either
(i.1) P10 #0, 77 =0, Rg #0;
(i.2) Bro=0, 71 =0, B2R3 # 0;
(ii) If Be = O then either

(i4.1) B2 #0, B7 # 0, 8 =0, B1oR7 # 0;

(ii.2) B2 #0, Br =0, 79 =0, Rg # 0;

(ii.8) B2 =0, Br #0, B1o #0, 778 =0, R5 # 0;

(ii.4) B2 =0, B7 #0, B1o0 =0, R3 #0, 77 #0, 710 > 0;
(ii.5) B2 =0, B7 #0, 1o =0, R3 # 0, y7 = 0;

(ii.6) Bo =0, Br =0, v7 =0, R3 #0.

Proof: Assume that for a quadratic system (9) the conditions n > 0, 8 = 0 and N # 0 are fulfilled.
As it was mentioned earlier due to an affine transformation and time rescaling this system could be
brought to the canonical form (26), for which we calculate

m =(c—f)*(c+ f)(h—1)*(h+1)*(3h — 1)(3h + 1) /64,

fs =(c — F)(h—D)(h+1)/4, fro = ~2(3h — 1)(3h +1).
3.2.1.1 The subcase 5 # 0. By Lemma 2 for the existence of an irreducible invariant hyperbola
of systems (26) the condition 77 = 0 is necessary and this condition is equivalent to (¢ + f)(3h —

1)(3h + 1) = 0. We examine two possibilities: 319 # 0 and 19 = 0.
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3.2.1.1.1 The possibility 519 # 0. Then we obtain f = —c¢ (this implies v2 = 0) and we have
v7 =8(h — 1)(h + 1) &1.

Therefore due to B # 0 the condition 77 = 0 is equivalent to & = 0. So we have a = A(2h — 1),
b= —A(2h + 1) (where A # 0 is an arbitrary parameter) and then we calculate

Re = —632xc(h — 1)(h + 1).

Since g # 0 we deduce that the condition Rg # 0 is equivalent to a? + b?> # 0. This completes the
proof of the statement (i.1) of the lemma.

3.2.1.1.2 The possibility 510 =0. Then we have (3h —1)(3h + 1) = 0 and by Remark 7 we
may assume h = 1/3. Then we get the 4-parameter family of systems

d
d—f =a+cx—2%/3 - 2xy/3,

dy _

0= b+ fy—4zy/3+y?/3, (28)

for which we calculate v; = 0 and

vo =44800(c — f)*(c+ f)(2c — f)/243, Bs = —2(c— f)/9, P2 = —4(2c— f)/9.

Since B # 0 (i.e. ¢ — f # 0) by Lemma 2 the necessary condition 75 = 0 gives (¢ + f)(2¢ — f) = 0.
We claim that for the existence of an invariant hyperbola the condition 2c— f # 0 (i.e. f2 # 0) must
be satisfied. Indeed, setting f = 2c we obtain 5 = 2¢/9 # 0. However according to the Lemma
8 for the existence of a hyperbola of systems (28) it is necessary the condition (¢ + f)(c — f) =0,
which for f = 2¢ becomes —3c¢? = 0. The obtained contradiction proves our claim.

Thus the condition B3 # 0 is necessary and then we have f = —c. By Lemma 8 in the case h = 1/3
we have an invariant hyperbola (which is of the form ®(z,y) = p+ qx + ry + 2zy = 0) if and only if
& = (5a —b)/3 =0 and a® + b* #£ 0.

On the other hand for systems (28) with f = —c¢ we calculate
vy = — 4096¢°E1 /243, B = —4¢/9, Rz = —4a/9.

So the statement (7.2) of the lemma is proved.

3.2.1.2 The subcase 5 =0. Then f = ¢ (this implies 75 = 0) and we calculate

vg =42(h — 1)(h + 1)E3&3, Bo=c(h—1)(h+1)/2, Br = —2(2h —1)(2h + 1),
Bro=—238h—1)(3h+1), Ry =—(h—1)(h+1)U(a,b,c,h)/4,

where U(a, b, c,h) = 2c¢2(h —1)(h+1) = b(h + 1)(3h — 1)® + a(h — 1)(3h + 1)2.

3.2.1.2.1 The possibility 52 # 0. Then ¢ # 0 and we shall consider two cases: 7 # 0 and
B7 = 0.

1) The case 37 # 0. We observe that in this case for the existence of an irreducible hyperbola
the condition 19 # 0 is necessary. Indeed, since f = ¢ # 0 and (2h — 1)(2h + 1) # 0, according
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to Lemma 8 (see the statements IT and III) for the existence of at least one irreducible invariant
hyperbola it is necessary and sufficient (3h — 1)(3h + 1) # 0 and either & =0 and a # 0, or &3 =0
and b # 0.

We claim that the condition a # 0 (when & = 0) as well as the condition b # 0 (when & = 0) is
equivalent to Ul(a, b, ¢, h) # 0. Indeed, as & as well as & and U(a, b, ¢, h) are linear polynomials in
a and b, then the equations & = U(a, b, ¢, h) = 0 (respectively & = U(a, b, ¢, h) = 0) with respect to
a and b gives a = 0 and b = 2c?(h —1)/(3h — 1)? (respectively b = 0 and a = —2c*(h+1)/(3h +1)?).
This proves our claim.

It remains to observe that the condition £E3 = 0 is equivalent to 75 = 0. So this completes the
proof of the statement (%i.1) of the lemma.

2) The case B7 = 0. Then by Remark 7 we may assume h = 1/2 and since f = ¢, by Lemma 8 for
the existence of an irreducible hyperbola of systems (26) (with h = 1/2 and f = ¢) the conditions
a =0 and b+ 4c? # 0. On the other hand we calculate

Y9 =3a/2, Rg = (Ta+b+4c?)/8

and clearly these invariant polynomials govern the above conditions. So the statement (%i.2) of the
lemma is proved.

3.2.1.2.2 The possibility 52 = 0. In this case we have f =c¢ = 0.

1) The case 57 # 0. Then (2h —1)(2h + 1) # 0.

a) The subcase 19 # 0. In this case (3h—1)(3h+1) # 0. By Lemma 8 we could have an invariant
hyperbola if and only if £,E2€3 = 0. On the other hand for systems (26) with f = ¢ = 0 we have

V18 = — 336(h — 1)%(1 + h)*£16283,
R5 =36(bx — ay)(z — y)[(1 + h)*z — (h — 1)%y]

and therefore the condition R5 # 0 is equivalent to a® + b*> # 0. This completes the proof of the
statement (7i.3) of the lemma.

b) The subcase 19 = 0. Then we have (3h — 1)(3h + 1) = 0 and by Remark 7 we may assume
h =1/3. By Lemma 8 we could have an invariant hyperbola if and only if either the conditions I or
IT; (i7) of Lemma 8 are satisfied. In this case we calculate

Yr = — 6451/9, Y10 = 8(4& - b)/27, Rg = —4&/9

and hence, the condition R3 # 0 implies the irreducibility of the hyperbola. Therefore in the case
~v7 # 0 the condition 719 > 0 must hold and this leads to the statement (7i.4) of the lemma, whereas
for v7 = 0 the statement (7.5) of the lemma holds.

2) The case 7 = 0. Then (2h — 1)(2h + 1) = 0 and by Remark 7 we may assume h = 1/2. By
Lemma 8 we could have an invariant hyperbola if and only if either the conditions & = 2a = 0
and b # 0 (see statement I) or a = 0 and b # 0 (see statement II; (ii7) of the lemma) are fulfilled.
As we could see the conditions coincides and hence by this lemma we have two hyperbolas: the
asymptotes of one of them are parallel to the lines x = 0 and y = 0, whereas the asymptotes of the
other hyperbola are parallel to the lines x = 0 and y = .

29



On the other hand for systems (26) (with h =1/2 and f = ¢ = 0) we calculate
V7 =—12a, R3= (ba—10)/16
and this leads to the statement (7.6) of the lemma.
Since all the possibilities are considered, Lemma 9 is proved. ]

Lemma 10. Assume that for a quadratic system (9) the conditions n > 0, § = 0, N # 0 and
Y1 = v2 = 0 are satisfied. Then this system possesses:

(A) three distinct irreducible invariant hyperbolas (1 H and 2 HP) if and only if B = P2 = P10 =
v7 =0, B7R3 # 0 and vy10 > 0;
(B) two distinct irreducible invariant hyperbolas if and only if Bs = 0 and either
(B1) B2 #0, 7 #0, 8 =0, B10R7 #0 and 04 =0 (= 2H), or
(Bz) B2 #£0, B7=0,7% =0, Rsg A0 and 65 =0 (= 2H), or
(Bs) Bo =0, Br #0, B1o#0, 7778 =0, Rs #0 and fs = d2 =0 (= 2°H), or
(By) B2 =0, Br #0, Bio =0, 77 #0, R3 #0 and y10 >0 (= 2 HP), or
(Bs) f2 =0, 7 =0,7%=0,R3#0 (= 2H);
(C) one double (Hg) irreducible invariant hyperbola if and only if Bg = B2 = 0, B7 # 0, B1o = 0,
vr #0, Rg # 0 and 10 = 0.

Proof: For systems (26) we calculate
Bs =(c = f)(h=1)(h+1)/4, fr=—=2(2h+1)(2h - 1),
Bio=—2Bh+1)Bh—1), B2=[(c+ f)(h*—1)—8(c— f)h)]/4.

According to Lemma 8 in order to have at least two irreducible invariant hyperbolas the condition

(29)

¢ — f = 0 must hold. This condition is governed by the invariant polynomial S and in what follows
we assume [ =0 (i.e. f=c).

3.2.1.3 The case (3 # 0. Then we have ¢ # 0 and the conditions given by the statement I of
Lemma 8 could not be satisfied.

3.2.1.3.1 The case ({7 # 0. We observe that in this case due to ¢ # 0 we could have two
irreducible invariant hyperbolas if and only if (3h — 1)(3h + 1) # 0 (i.e 10 # 0), &2 = & = 0 and
ab # 0. The systems of equations & = & = 0 with respect to the parameters a and b gives the
solution 2¢2(1+ h)3(2h — 1) 2c2(h — 1)3(1 + 2h)
a= — = ao, b=— = by, (30)
(3h — 1)2(1 + 3h)? (3h — 1)2(1 + 3h)?
which exists and ab # 0 due to the condition (2h — 1)(2h 4+ 1)(3h — 1)(3h + 1) # 0.

In this case systems (26) with a = ap and b = by possess the following two hyperbolas

2 3
(1) _ 4e (1 + h) B 4e B .
1 (z,y) T(Bh—12(1+3h)?2 3h-1 v+ 2@ —y) =0,
2 3
1) B 4c*(h — 1) B 4e o
O @) =G T e eV T WE W =0
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Since ¢ # 0 by Lemma 8 we could not have a third invariant hyperbola.

Now we need the invariant polynomials which govern the condition & = &5 = 0. First we recall
that for these systems we have yg = 42(h—1)(h+1)&2&3, and hence the condition vg = 0 is necessary.
In order to set & = 0 we use the following parametrization:

c=c1(3h—1)2, a=a1(2h—1)
and then the condition & = 0 gives b = 2(h — 1)(a; + ¢}). Herein for systems (26) with
f=c=c1(3h—1)?2, a=a1(2h—1), b=2(h—1)(ay + )
we calculate
&3 =3[2ci(1+h)® +ai(1+3h)%], ds=(h—1)(2h —1)E;/2

and hence the condition £3 = 0 is equivalent to d4 = 0.

It remains to observe that in this case Ry = —3ai(h — 1)*(h + 1)/4 # 0, otherwise a; = 0 and
then the condition and hence the condition 4 = 0 implies ¢; = 0, i.e. ¢ = 0 and this contradicts to
B2 # 0. So we arrive at the statement (B;) of the lemma.

3.2.1.3.2 The case 7 = 0. Then (2h — 1)(2h + 1) = 0 and by Remark 7 we may assume
h = 1/2. In this case by Lemma 8 in order to have at least two hyperbolas the conditions IT; (7i7)
and III; (7) have to be satisfied simultaneously. Therefore we arrive at the conditions

a=0, b+4c2#0, & = (50a — 75b + 24¢?)/4 =0

and as a = 0 we have b = 24¢?/75 and b + 4¢? = 108¢2/25 # 0 due to B2 # 0. So we get the family

of systems

d d
%:cx—x(m+y)/2, d—?z:802/25+cy—y(33}—y)/2 (31)

which possess the following two hyperbolas
' (z,y) = 216¢2/25 — 8cx + 2x(x —y) =0, D (z,y) = —8c2/25 — 8cy/5 + 2y(x — y) = 0.

These hyperbolas are irreducible due to 33 # 0 (i.e. ¢ # 0).

We need to determine the affine invariant conditions which are equivalent to a = & = 0. For
systems (26) with f = ¢ and h = 1/2 we calculate

Yo = 3a/2, &5 = —3(25b— 8¢?)/2

and obviously these invariant polynomials govern the mentioned conditions. It remains to observe
that for systems (31) we have Rg = 108¢?/25 # 0 due to B2 # 0. This completes the proof of the
statement (B3) of the lemma.
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3.2.1.4 The case 53 =0. Then ¢ = 0and by Lemma 8 systems (26) with f = ¢ = 0 could possess
at least two irreducible invariant hyperbolas if and only if one of the following sets of conditions holds:

(¢1) E1=E =0, (2h—1)(Bh—1)#0, a#0;

(o) E1=E3=0, (2h+1)(3h+1)#0, b#0;

(¢3) E2=E3=0, (2h—1)(2h+1)(3h—1)(3h+1) £0, ab#0;

(¢s) E1=0, h=1/3, a#0, 4a—1b>0; (32)
(p5) E1=a=0, h=1/2, b#0;

(pg) E1=0, h=-1/3, b#0, 4b—a > 0;

(p7) E1=b=0, h=-1/2, a#0.

As for systems (26) with f = ¢ =0 we have
Br = —2(2h + 1)(2h —1), puo= —2(3h +1)(3h—1)

we consider two subcases: 87 # 0 and 87 = 0.

3.2.1.4.1 The subcase 7 #0. Then (2h + 1)(2h — 1) # 0 and we examine two possibilities:
P10 # 0 and B19 = 0.

1) The possibility B19 # 0. In this case (3h 4+ 1)(3h — 1) # 0. We observe that due to f = ¢ =0
all tree polynomials & are linear (homogeneous) with respect to the parameters a and b. So each

one of the sets of conditions (¢1)—(¢p3) could be compatible only if the corresponding determinant
vanishes, i.e.

det(£1,&) = —(2h—1)(3h —1)%(4h — 1) =0,
det(£1,&) = (2h+1)(3h +1)%(4h +1) =0, (33)
det(£,83) = —3(3h—1)?2(3h+1)2 =0,
otherwise we get the trivial solution a = b = 0. Clearly the third determinant could not be zero
due to the condition 19 # 0, i.e. the set of conditions (¢3) is incompatible in this case. As regard
the conditions (¢1) (respectively (¢2)) we observe that they could be compatible only if 4h —1 =0
(respectively 4h 4+ 1 = 0).
On the other hand we have 83 = —6(4h — 1)(4h+ 1) and we conclude that for the existence of two
hyperbolas in these case the condition fg = 0 is necessary.

Assuming s = 0 we may consider h = 1/4 due to Remark 7 and we obtain
&1 =(3a—0)/2=-16& = 0.
So we get b = 3a and we arrive at the systems

dy

2
a4 3zy/e, Y=
a—x*/ 3xy/4, p

3a — bxy/4 + y* /4, (34)
which possess the following two invariant hyperbolas

<I>§3) (x,y) = —4a+2zy =0, <I>g3) (z,y) =4a+2z(x —y) = 0.
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Clearly these hyperbolas are irreducible if and only if a # 0.
On the other hand for systems (26) with f = ¢ =0 and h = 1/4 we have

v7 =—15(3a —b), ~s = 15435(3a — 5b)(3a — b))/8192,

do =—6(3a—0b), Rs=9(bx — ay)(25z — Yy)(z — y)/4.
We observe that the conditions & = & = 0 and a # 0 are equivalent to v7 = 0 and R5 # 0.
However in order to insert this possibility in the generic diagram (see DIAGRAM 1) we remark that
these conditions are equivalent to y7ys = d2 = 0 and R5 # 0.

It remains to observe that for the systems above we have & = 147a/8 # 0 and, hence we could
not have the third hyperbola. So the statement (B3) of the lemma is proved.

2) The possibility $10 = 0. In this case (3h+1)(3h — 1) = 0 and without loss of generality we may
assume h = 1/3 due to the change (z,y,a,b, h) — (y,z,b,a,—h), which conserves systems (26) with
f = ¢ =0 and transfers the conditions (¢g) to (¢4).

So h =1/3 and we arrive at the conditions
E1=(05a—-5b)/3=0, 4da—b>0, a#0,

which imply b = 5a and 4a — b = —a > 0. Then setting a = —32? < 0 we get the family of systems

d d
di; = 322 — 22/3 — 22y/3, d—i = —1522 — day/3 + y2/3, (35)

which possess the following three invariant hyperbolas
‘I)g4) (z,y) =182% + 2zy = 0, (I)gg(x, y) = —1822 + 622 + 2z(x — y) = 0.

These hyperbolas are irreducible if and only if z # 0 and the hyperbolas <I>(2g(:n, y) = 0 have parallel

asymptotes, i.e. we have two hyperbolas HP. Since for systems (35) we have &5 = —14022 # 0 we
deduce that these systems could not have an invariant hyperbola with the asymptotes y = 0 and
y==x.

Remark 8. We claim that if the conditions (¢4) are satisfied except the condition & = 0, then the

corresponding systems possess exactly two distinct irreducible invariant hyperbolas if 4a — b > 0 and
a # 0 and these hyperbolas collapse and we get a hyperbola of multiplicity two if 4a — b = 0.

Indeed providing that the conditions of this remark hold and setting a new parameter z as follows:
4a — b = 322 > 0, we arrive at the family of systems

d
— =a—2%/3—2xy/3, d—z:4a—3z2—4xy/3+y2/3. (36)
These systems possess the following two invariant hyperbolas

B (2,y) = 6a % 622 + 2u(x —y) =0,

which are irreducible if and only if @ # 0. We observe that if, in addition, the condition 5a — b =
a+322 =0 (i.e. a = —32%) we get the family of systems (35). We also observe that the two
hyperbolas @273(50, y) = 0 are distinct if z # 0 (i.e. 4a — b > 0) whereas in the case 4a — b = 0 these
hyperbolas collapse and we get a hyperbola of multiplicity two.

Thus we arrive at the following statement:
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e if & #0, 4a — b > 0 and a # 0 we have 2 invariant hyperbolas H?;
e if &, # 0, 4a — b =0 and a # 0 we have one double invariant hyperbola H?5.
e if & =0, 4a — b > 0 and a # 0 we have 3 invariant hyperbolas (two of them being HP);

To determine the corresponding invariant conditions, for systems (26) withc= f =0and h =1/3
we calculate

v7 =—64(5a — b)/27, ~v10 =8(4a —1)/27, Rz = —4a/9.

Considering the conditions above it is easy to observe that the corresponding invariant conditions
are given by the statements (By4), (C) and (\A), respectively.

3.2.1.4.2 The subcase 7 =0. Then (22 + 1)(2h — 1) = 0 and by Remark 7 we may assume
h = 1/2. Considering (33) we conclude that only the case (¢5) could be satisfied and we get the
additional conditions: a = 0, b # 0. Therefore we arrive at the family of systems

dzx

dt

dy

= —2?/2 —xy/2, —
e°/2 —xy/2, —

b—3zy/2+y?/2, (37)
which possess the following two hyperbolas
oY, (w,y) = —b+22y =0, @ (,y) =2+ 20 —y) =0,

We observe that the condition a = 0 is equivalent to v7 = —12a = 0. As regard the condition b # 0,
in the case a = 0 it is equivalent to R3 = —b/16 # 0. Since for these systems we have €3 = 75b/4 # 0
we deduce that we could not have a third irreducible invariant hyperbola. This completes the proof
of the statement (Bs) of the lemma.

Since all the cases are examined, Lemma 10 is proved. ]

3.2.2 The case N =0

As @ = —(g—1)(h—1)(g + h)/2 = 0 we observe that the condition N = 0 implies the vanishing
of two factors of 8. We may assume g = 1 = h, otherwise in the case g+h =0 and g—1#0
(respectively h — 1 # 0) we apply the change (z,y,9,h) — (—y,x —y,1 — g — h,g) (respectively
(x,y,9,h) — (y — z,—x,h,1 — g — h)) which preserves the form of systems (11).

So g = h =1 and due to an additional translation systems (11) become

da 2 dy 2
. 38
dt—a—l—dy—i-a:, 7 b+exr+y (38)

Lemma 11. A system (38) possesses at least one irreducible invariant hyperbola of the indicated
form if an only if the respective conditions are satisfied:

I. (z,y) =p+qgr+ry+2zy < d=e=0anda—b=0;
Il. ®(z,y)=p+qr+ry+2z(x—y) < d=0, My =64a—16b—e? =0, 16a + €% # 0;

II. ®(z,y)=p+q+ry+2yx—y) & e=0, My=64b— 16a —d> =0, 16b+ d* # 0.
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Proof: As it was mentioned in the proof of Lemma 5 (see page 16) we may assume that the quadratic
part of an invariant hyperbola has one of the following forms: (i) 2zy, (i7) 2z(z—y), (iii) 2y(x—y).
Considering the equations (10) we examine each one of these possibilities.

(i) ®(x,y) = p+ qr + ry + 2xy; in this case we obtain

t=1,s=u=0 p=U@b+¢®+q)/2, U=1, V=1 W=—(¢+7)/2,
Eqy = (4a — 4b — ¢* +1%)/2, Eqio = daq + 4b(q + 2r) + q(q + )%,
Eq = Eq = FEq3 = Eqy = Eqs = Eqs = Eqr = Eqs = 0.

Calculating the resultant of the non-vanishing equations with respect to the parameter r we obtain
Res, (Eqg, Eqio) = (a — b)(4b + ¢*)? /4.

If b = —¢%/4 then we get the hyperbola ®(x,y) = (r + 2x)(¢ + 2y)/2 = 0, which is reducible.

Thus b = a and we obtain
Eq=—(q—r)(q+71)/2=0, Eqo=(q+7)(8a+ @+ qr)/4 = 0.

It is not too difficult to observe that the case ¢ + r # 0 (then ¢ = r) leads to reducible hyperbola
(as we obtain b = a = —q?/4, see the case above). So ¢ = —r and the above equations are satisfied.
This leads to the invariant hyperbola ®(z,y) = 2a — rz + ry + 2zy = 0. Considering Remark 5 we
calculate A = —(4a +r%)/2. So the hyperbola above is irreducible if and only if 4a + 72 # 0. Thus
any system belonging to the family

dx 2 Y 2 (39)
possesses one-parameter family of irreducible invariant hyperbolas ®(z,y) = 2a —r(x —y) +2zy = 0,

where r € R is a parameter satisfying the relation 4a 4+ 2 # 0. This completes the proof of the
statement I of the lemma.

(ii) ®(x,y) = p+ qx + ry + 2z(z — y); in this case we obtain

s=2,t=—1, u=0, p=(8a—4b+4de — 2¢* + ¢*) /4,
r=2d-e—q, U=2, V=1 W=—(2¢+q)/2, Eqr=-2d

and hence the condition d = 0 is necessary. Then we calculate

Eq1 = Eq2 = Eq3 = Equ = Eqs = Eqs = Eq7 = Eqs = 0,
Eqy = —4a + b — (2¢* + 6eq + 3¢%) /4,
Eqgio = [16(1(6 +q) — 4b(4de + 3q) + (2¢ + q)(q2 — 262)] /8

and
Res, (Eqo, Eqio) = —(64a — 16b — ?)(4a — 4b — €)% /256.

1) Assume first 64a — 16b — €2 = 0. Then b = 4a — €2/16 and we obtain
Eqy = —3(e 4+ 2¢)(3e +2¢)/16 = 0, Eqio = —(3e + 2¢)(64a + 4 — eq — 2¢*)/32 = 0.
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la) If ¢ = —3e/2 all the equations vanish and we arrive at the invariant hyperbola
O(x,y) = —2a + /8 + e(=3x +y)/2 + 2z(x — y) = 0
for which we calculate A = (16a + €?)/8. Therefore this hyperbola is irreducible if and only if
16a + €2 # 0.
1b) In the case 3e+2q # 0 we have ¢ = —e/2 # 0 and the equation Fqyg = 0 implies e(16a+¢€?) = 0.
Therefore due to e # 0 we obtain 16a + ¢ = 0. However in this case we have the hyperbola
®(z,y) = —(16a + 3¢?)/8 — e(x + y)/2 + 2z(z — y) = 0,

the determinant of which equals (16a + €?)/8 and hence the condition above leads to an irreducible
hyperbola.

2) Suppose now 4a — 4b — €2 = 0, i.e. b= a — €?/4. Herein we obtain
Eqy = —3[4a+ (e +¢)?]/4=0, Eqo = q[da+ (e +¢)*]/8=0
and the hyperbola
O(z,y) =2x(x —y)+qz — (e +qQ)y+ (4a —e* +¢%)/4 =0,

for which we calculate A = —[4a + (e + ¢)*] /4. Obviously the condition Eqg = 0 implies A = 0 and
hence the invariant hyperbola is reducible. So in the case d = 0 and 4a — 4b — e? = 0 systems (38)
could not possess an irreducible invariant hyperbola and the statement IT of the lemma is proved.

(i1i) ®(z,y) = p+ qxr + ry + 2y(x — y); we observe that due to the change (x,y,a,b,d,e) —
(y,x,b,a,e,d) (which preserves systems (38)) this case could be brought to the previous one and
hence, the conditions could be constructed directly applying this change.

Thus Lemma 11 is proved. [
Lemma 12. Assume that for a quadratic system (9) the conditions n > 0 and 6 = N = 0 hold.

Then this system could possess either a single irreducible invariant hyperbola or a family of these

hyperbolas. More precisely, it possesses:
(i) one irreducible invariant hyperbola if and only if f1 = 0, Rg # 0 and either (i.1) By # 0 and

Y11 = 0, or (22) 52 = Y12 = 0;
(ii) a family of such hyperbolas if and only if 51 = B2 = y13 = 0.

Moreover the family of hyperbolas corresponds to (Fi) (respectively (F2); (F3)) (see FIGURE 1) if
Rg < 0 (respectively Rg = 0; Rg > 0).

Proof: For systems (38) we calculate

p1 =4de, [2=—-2(d+e),

y11 =19de(d + e) + eM; + d Mo,
R9‘d=0 =[5(16a + e?) — Mi]/2,
Ro|,_o =[5(16b+ d*) — Ma] /2.

By Lemma 11 the condition de = 0 (i.e. §1 = 0) is necessary for a system (38) to possess an invariant
hyperbola.
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3.2.2.1 The subcase 83 # 0. Then d?>+e? # 0 and considering the values of the above invariant
polynomials by Lemma 11 we deduce that the statement (i.1) of the lemma is proved.

3.2.2.2 The subcase 2 = 0. In this case we get d = e = 0 and we calculate
Y13 :4(a—b), Ro ZS(CL—FZ)), Y12 = —128(&—4[))(4&—6) :M1M2/2.

Therefore by Lemma 11 in the case 12 = 0 we arrive at the statement (i.2), whereas for v13 = 0 we
arrive at the statement (i7) of the lemma.

It remains to observe that if the systems (38) possess the mentioned family of invariant hyperbolas,
then they have the form (39), depending on the parameter a. We may assume a € {—1,0,1} due
to the rescaling (z,y,t) — (|a|'/?z,|a|'/?y,|a|~*/?t). In such a way we arrive at the three families
mentioned in Remark 2.

3.3 Systems with two real distinct infinite singularities and 6 # 0

For this family of systems by Lemma 1 the conditions n = 0 and M # 0 are satisfied and then via
a linear transformation and time rescaling systems (9) could be brought to the following family of

systems:
dz 9
o =a+cx+dy + gz* + hay,
t (40)

d
d—zz =b+exr+ fy+ (g—Vzy + hy’.
For this systems we calculate
Co(w,y) = 2y, 6= —h*(g—1)/2 (41)

and since 0 # 0 due to a translation we may assume d = e = 0. So in what follows we consider the
family of systems

dz 9

— =a+cx + gz° + hay,

a (42)
d—?j:b+fy+(g—1):cy+hy2.

Lemma 13. A system (42) could not posses more than one irreducible invariant hyperbola. And it
possesses one such hyperbola if an only if c+ f =0, G1 = a(1l — 2g) + 2bh =0 and a # 0.

Proof: Since Cy = 22y we may assume that the quadratic part of an invariant hyperbola has the
form 2xy. Considering the equations (10) and the condition 6 # 0 (i.e. h(g — 1) # 0) for systems
(42) we obtain

t=1, s=u=q=r=0,p=a/h, U=29g—1, V=2h, W=c+f,
quz(a—2ag+26h)/hzgl/h, Eqm:—a(c—i—f)/h,
Eq =Eq = Eqs = Equ = Eqs = Eqs = Eq7r = Eq9 = 0.

Since the hyperbola (8) in this case becomes ®(x,y) = a/h+2zxy = 0 the condition a # 0 is necessary
in order to have an irreducible invariant hyperbola. Then the equation Fqi9 = 0 implies ¢+ f =0
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and the condition Egg/h = 0 yields G; = 0. Since h # 0 we set b = a(2g — 1)/(2h) and this leads to
the family of systems

dx 9
a =a+ cx + gz + hxy,
dy _a(29—1) “3)
A T A A -1 h 2
o o cy + (9 — Dy + hy”,
which possess the following irreducible invariant hyperbola
a
O(x,y) = 7 + 22y = 0.
This completes the proof of the lemma. B

Next we determine the corresponding affine invariant conditions.

Lemma 14. Assume that for a quadratic system (9) the conditions n =0, M # 0 and 6 # 0 hold.
Then this system possesses a single irreducible invariant hyperbola (which could be simple or double)
if and only if one of the following sets of the conditions hold, respectively:

(1) B2B1 #0, 71 =72 =0, Ry # 0: simple;
(ii) Ba#0, pr=m1 =7 =0, Ry #0: simple if 61 # 0 and double if 5 = 0;
(ZZZ) /82 = ,31 = Y14 = 0, RIO 75 0: simple ’if 57,88 75 0 and double if ,87,88 =0.

Proof: For systems (42) we calculate

mn=Q2c— f)c+ f)?hHg—1)2/32, B2 =h*(2c— f)/2.

According to Lemma 2 for the existence of an irreducible invariant hyperbola the condition v; = 0
is necessary and therefore we consider two cases: S # 0 and G2 = 0.

3.3.1 The case 2 #0
Then 2¢ — f # 0 and the condition 7, = 0 implies f = —c. Then we calculate

vo =14175¢*h° (g — 1)%(3g — 1)G1, B2 = 3ch?/2,
B1=—3h%(g—1)(3g —1)/4, R1 = —9ach*(g—1)*(3g—1)/8

and we examine two subcases $1 # 0 and ;1 = 0.

3.3.1.1 The subcase 5 # 0. Then the necessary condition 2 = 0 (see Lemma 2) gives G; = 0
and by Lemma 13 systems (42) possess an invariant hyperbola. We claim that this hyperbola could
not be double. Indeed, since the condition 6 # 0 holds we apply Lemma 7 which provides necessary
and sufficient conditions in order to have at least two hyperbolas. According to this lemma the
condition 31 = 0 is necessary for the existence of at least two hyperbolas. So it is clear that in this
case the hyperbola of systems (43) could not be double due to 51 # 0. This completes the proof of
the statement (i) of the lemma.
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3.3.1.2 The subcase §; = 0. Due to 2 # 0 (i.e. ¢ # 0) this implies g = 1/3 and then 2 = 0
and
v4 =16Rh%(a + 6bh)?/3 = 48h°G?, Rz = 3bh3/2.

Therefore the condition 74 = 0 is equivalent to G; = 0 and in this case R3 # 0 gives b # 0 which is
equivalent to a # 0. By Lemma 13 systems (42) possess an irreducible hyperbola. We claim that
this hyperbola is double if and only if the condition a = —12¢? holds.

Indeed, as we would like after some perturbation to have two hyperbolas, then the respective
conditions provided by Lemma 7 must hold. We calculate:

BL =0, B2=3ch?/2, Bs=ch/3, 74=0, 6 =—(a+12¢%)h%/4

and since g # 0 (due to B2 # 0) we could have a double hyperbola only if the identities provided
by the statement (A;) are satisfied. Therefore the condition §; = 0 is necessary and due to 6 # 0
(i.e. h # 0) we obtain a = —12¢%.

So our claim is proved and we get the family of systems

% = —12¢® + cx + 22/3 + hay, % =2¢"/h — cy — 2y /3 + hy?, (44)

which possess the hyperbola ®(z,y) = —12¢?/h + 2xy = 0. The perturbed systems

de  18¢°(2h +¢)(3h +¢)
dt (3h —¢)?
dy 6¢2(3h + ¢)

dt  (3h—¢)?

+cx 4+ 22 /3 4 (h +€)zy,

(45)
—cy —2zy/3+hy?, || <1

possess the following two distinct invariant hyperbolas:

36c*(3h +¢)

36c%(3h +¢)  12ce
(3h—5)2 +23§‘y:0, @g(l‘,y) = -

(3h—¢)2  3h—

Pi(x,y) = 8y+2y(:v+6y) =0.

It remains to observe that the hyperbola ®(z,y) = —12¢2/h + 22y = 0 could not be triple, because
in this case for systems (44) the necessary conditions provided by the statement (B) of Lemma 7 to
have three invariant hyperbolas are not satisfied: we have fg # 0.

Thus the statement (i7) of the lemma is proved.
3.3.2 The case 52 =0
Then f = 2c¢ and this implies 73 = 0. On the other hand we calculate
Yo = — 14175ac%(g — 1)3(1 + 39)h°, B1 = —9c*(g — 1)?h?/16

and since f = 2¢, according to Lemma 13 the condition ¢ = 0 is necessary in order to have an
irreducible invariant hyperbola. The condition ¢ = 0 is equivalent to 51 = 0 and this implies 5 = 0.
It remains to detect invariant polynomials which govern the conditions G; = 0 and a # 0. For ¢ =0
we have

Y14 =80h%[a(1 — 2g) + 2bh] = 80R3G1, Rig = —4ah®.
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So for f1 = B2 = 0, y14 = 0 and Ry # 0 systems (43) (with ¢ = 0) possess the invariant hyperbola
O(z,y) =a/h + 2zy = 0.

Next we shall determine the conditions under which this hyperbola is simple or double. In accor-
dance with Lemma 7 we calculate:

B1 = B6=0,p; = —8(29 — 1)h*.

We examine two possibilities: §7 # 0 and 87 = 0.

3.3.2.1 The possibility 5; # 0. According to Lemma 7 for systems (43) with ¢ = 0 could
be satisfied only the identities given by the statement (A3). So we have to impose the following
conditions:

V5 = PBs = 02 = 0.

We have g = —32(4g — 1)h? = 0 which implies g = 1/4. Then we obtain 75 = do = 0 and we get
the family of systems

d d
d—f = a+ 2%/4 + hay, d—’z = —a/(4h) — 3zy/4 + hy?, (46)
which possess the hyperbola ®(z,y) = a/h + 2xy = 0. On the other hand we observe that the

perturbed systems

dy

o = —a/(4h) = ay /4 + hy?, (47)

dz € 9
E—a—l—%—i-x /44 (h+¢)xy,

which possess the following two distinct invariant hyperbolas:
®i(z,y) =a/h+2xy =0, @3(x,y) =a/h+2y(z+ey)=0.

Since 7 # 0, according to Lemma 7 the hyperbola ®(z,y) = a/h + 2zy = 0 could not be triple.

3.3.2.2 The possibility 87 = 0. In this case we get ¢ = 1/2 and this implies 7§ = d3 = 0.
Hence the identities given by the statement (A3) of Lemma 7 are satisfied. In this case we obtain

the family of systems
dt Todt ’

which possess the hyperbola ®(z,y) = a/h + 2zy = 0. On the other hand we observe that the

perturbed systems
dx 2 dy 2
E:a—kx/2+(h+€)xy, a:—xy/2+hy, (49)

possess the following two distinct invariant hyperbolas:

2a

ot =0 ¥(r.y) =a/h+2y(w +ey) = 0.

Y (x,y) =

Since for systems (48) we have 33 = —32h% # 0, according to Lemma 7 the hyperbola ®(z,y) =
a/h + 2xy = 0 could not be triple.
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It remains to observe that the conditions of the statement (B) of Lemma 7 in order to have three
invariant hyperbolas could not be satisfied for systems (43) (i.e. the necessary conditions for these
systems to possess a triple hyperbola). Indeed for systems (43) we have

Br=—8(29 —1h* fs=—32(4g —1)h* 6=—(g—-1)h*/2

and hence the conditions 7 = 0 and s = 0 are incompatible due to 6 # 0.

As all the cases are examined we deduce that Lemma 14 is proved. ]

3.4 Systems with two real distinct infinite singularities and 6 =0

By Lemma 1 systems (9) via a linear transformation could be brought to the systems (40) for which
we have
0=—-h*g—1)/2, Pu=2h% N =(¢°—1)%"+2h(g - Vay + h’y". (50)

We shall consider to cases: N # 0 and N = 0.

3.4.1 The case N #0

Since § = 0 we obtain h(g — 1) = 0 and (g% — 1)? + h? # 0. So we examine two subcases: 34 # 0
and 54 = 0.

3.4.1.1 The subcase 4 # 0. Then h # 0 (this implies N # 0) and we get g = 1. Applying a
translation and the additional rescaling y — y/h we may assume ¢ = f = 0 and h = 1. So in what
follows we consider the family of systems

d d
—=atdy+a’tay, L =b+eaty’ (51)

Lemma 15. A system (51) possesses an irreducible invariant hyperbola if and only if e =0, L1 =
9a — 18b+d?> =0 and a + d?> # 0.

Proof: Since Cy = 2%y we determine that the quadratic part of an invariant hyperbola has the form
2xy. Considering the equations (10) for systems (51) we obtain

t=1,s=u=0, r=2d, p=2b+2de+dq+q*/2,
U=1, V=2 W=—(q+71)/2, Egs=ce,
Eq = Eqx = Fq3 = Equ = Eqs = Eq7 = Eqs = 0.

Therefore the condition Fqgs = 0 yields e = 0 and then we have
Eqg =2a—4b+2d* — ¢*,  Equo = aq+b(4d + q) + q(2d + q)* /4.

Clearly in order to have a common solution of the equations Eq9 = Fqi9 = 0 with respect to the
parameter ¢ the condition

Res, (Eqo, Equo) = (a + d*)*(9a — 18+ d?)/2 = 0
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is necessary. We claim that the condition a 4+ d> = 0 leads to a reducible hyperbola. Indeed, setting
a = —d? we get Eqg = —(4b+ ¢?) = 0. On the other hand we get the hyperbola
(z,y) = 2b+dq+ ¢*/2 + qx + 2dy + 22y = 0

for which by considering Remark 5 we calculate A = —(4b + ¢?)/2. Therefore the equation Eqg =
—(4b + ¢?) = 0 leads to a reducible invariant hyperbola. This proves our claim.

So a+d? # 0 and we set b = (9a + d?)/18. Then Eqg = 0 gives (4d — 3¢)(4d + 3q) = 0 and we
examine two subcases: ¢ = 4d/3 and ¢ = —4d/3.

1) Assuming ¢ = 4d/3 we get Eqio = 4d(a + d*) = 0. Since a + d?> # 0 we have d = 0 and this
leads to the family of systems

d d

%:a+x2+xy, d—zt/:a/2+y2. (52)
These systems possess the invariant hyperbola ®(z,y) = a + 2zy = 0.

2) Suppose now ¢ = —4d/3. This implies Eq;o = 0 and we obtain the systems

d d
?f:“+dy+w2+wy, d*g;:(9a+d2>/18+y2, (53)

which possess the invariant hyperbola
®1(z,y) = (3a — d*)/3 — 2d(2z — 3y) /3 + 2zy = 0.

Its determinant A equals —(a + d?) and hence, the hyperbola is irreducible if and only if a + d? # 0.

It remains to observe that the family of systems (52) is a subfamily of the family (53) (correspond-
ing to d = 0) and this complete the proof of the lemma. B

3.4.1.2 The subcase 3, = 0. This implies h = 0 and the condition N # 0 gives g2 — 1 # 0.
Using a translation we may assume e = f = 0 and we arrive at the family of systems

dz 5 dy
g 27— — Do, 54
pn a+ cx+dy + gr°, i b+ (g — 1)y (54)

Lemma 16. A system (54) possesses at least one irreducible invariant hyperbola if and only if d = 0,
29 — 1 # 0 and either

(i) 3¢ —1#0, K1 =c*(1-29)+a(3g—1)2=0 and b# 0, or
(15) g=1/3, ¢=0,a<0 andb#0.

Moreover in the second case we have two hyperbolas (HP) if a < 0 and we have one double hyperbola
(HE) if a=0.

Proof: As earlier we assume that the quadratic part of an invariant hyperbola has the form 2zy and
considering the equations (10) for systems (54) we obtain

t=1, s=u=q=0,U=29—-1, V=0, W=c—gr/2
Eq7 =2d, Eqg=2b+p(1—2g), Eqy=2a—cr+gr’/2,
Eqo=br —cp+gpr/2, Eq = Eq = Eq = Eq = Eqs = Eqs = 0.
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Therefore the condition Fq7 = 0 yields d = 0 and we claim that the condition 2g — 1 # 0 must hold.
Indeed, supposing g = 1/2 the equation Egg = 0 yields b = 0 and then

Eqo=2a+r(r—4c)/4=0, Eqo=p(r—4c)/4=0.

Since p # 0 (otherwise we get a reducible hyperbola) we obtain r = 4¢, however in this case Eqg = 0
implies a = 0 and we arrive at degenerate systems. This completes the proof of our claim.

Thus we have 2g — 1 # 0 and then the equation Eqs = 0 gives p = 2b/(2¢g — 1) and we obtain:
Eqio = b(2c+r —3gr))/(1 — 2g).

Since in this case the hyperbola is of the form

(I)(:va) =

22y =0
29_1+1"y+ TY

it is clear that the condition b # 0 must hold and, therefore we get 2¢ + r(1 — 3¢g) = 0.
1) Assume first 3g — 1 # 0. Then we obtain r = 2¢/(3g — 1) and the equation Fqg = 0 becomes

2
(3g — 1)

The condition K; = 0 implies a = ¢?(2g — 1)/(3g — 1)? and we arrive at the family of systems

Eqy = 5 [02(1 —2g) +a(3g — 1)2] = K1 =0.

(3g—1)

dr 229 —1) 5 dy
i~ 3y —1° tertgat, o =b+ (g Day, (55)
possessing the invariant hyperbola
2b 2c
) = 2zy =0
(z,9) 5y 1 3g_1Yt2w=0,

which is irreducible if and only if b # 0.

2) Suppose now g = 1/3. In this case the equation Fq19 = 0 yields ¢ = 0 and then we get p = —6b
and the equation Eqy = 0 becomes Fqg = (12a + r%)/6 = 0. Therefore for the existence of an

invariant hyperbola the condition a < 0 is necessary. In this case setting a = —32% < 0 we arrive at
the family of systems
dx 2 2 dy
—=-3 3, — =b-—2xy/3 56
dt SHES /3, (56)

possessing the following two invariant hyperbolas
Q1 9(x,y) = —6b+ 62y + 22y = 0,

which are irreducible if and only if b # 0. Clearly these hyperbolas coincide (and we obtain the
double one) if z = 0. B

Lemma 17. Assume that for a quadratic system (9) the conditionsn =0, M # 0,0 =0 and N # 0
are satisfied. Then this system could possess either a single irreducible invariant hyperbola, or two
distinct (HP) such hyperbolas, or one triple invariant hyperbola. More precisely, it possesses:

(i) one irreducible invariant hyperbola if and only if either
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(1.1) Ba#0, fs=v8 =0 and Ry #0 (simple if o4 # 0 and double if 64 =0), or

(i.2) Bs=Ps =0, fr1R11 # 0, P12 # 0 and v15 = 0 (simple if vis + 62 # 0 and double if
Y16 = 66 = 0);
(ii) two distinct irreducible invariant hyperbolas (HP) if and only if B4 = B = 0, f11R11 # O,
P12 = v16 = 0 and y17 < 0 (both simple);

(iii) one triple irreducible invariant hyperbola (which splits into three distinct hyperbolas, two of
them being (HP)) if and only if B4 = Bs = 0, B11R11 # 0, B12 = v16 = 0 and y17 = 0.

Proof: Assume that for a quadratic system (9) the conditions n =0, M # 0, § =0 and N # 0.

3.4.1.3 The case 4 # 0. As it was shown earlier in this case via an affine transformation and
time rescaling the system could be brought to the form (51), for which we calculate

Y1 == 9d€2/87 53 = _6/47

and by Lemma 15 the condition 83 = 0 is necessary in order to have an invariant hyperbola. In this

case we obtain
vg = 42(9a — 18b + d?)? = 42L3, Ry = —L1/8 — (a +d?)/3

and considering Lemma 15 for 53 = y3 = 0 we get systems (53) possessing the hyperbola ®(x,y) =
(3a — d?)/3 — 2d(2z — 3y)/3 + 2xy = 0. To detect its multiplicity we apply Lemma 3 setting k = 2.
So in order to have the polynomial ®(z,y) as a double factor in &, we force its cofactor in &, to be
zero along the curve ®(z,y) = 0 (i.e we set y = (—3a + d° + 4dz)/(6(d + x))). We obtain

& (a + d*)*(81a + 17d?)

- 7d + 152)(3a + d? + 4dx + 62210 = 0
®(z,y) 211312(d + )10 (7d +152)(3a + d” + 4dz + 627)

and since a + d? # 0 (see Lemma 15) we get 8la + 17d? = 0. So we obtain the family of systems
dx

dt

which possess the invariant hyperbola: ®(x,y) = —44d?/81 — 4dx /3 +2dy + 2zy = 0. The perturbed
systems

d
= —17d%/81 + dy + 2° + xy, dii = —4d2/81 + 2, (57)

dx d?(17 — 2¢ + £?) 9 dy 4d? 9
— =— d 1 — = 58
o e S L iy po sy e (58)
possess the two hyperbolas:
4d2(11 — 4e + €2 4d 2d

®5 =— — 2y =0

@Y =@ ogeite o1 T 1red T 0

. 4d?(11 + 4e + €2 4d 6d
5 (x,y) = ( - r— y+2y(z +ey) =0,

(e2-9)2(—1) (1-¢)B—¢) e—3

We observe that for systems (53) we have d; = (81a + 17d?)/6 and 37 = —8. Therefore if §, = 0 the
invariant hyperbola is double and by Lemma 7 it could not be triple due to 87 # 0. This completes
the proof of the statement (i.1) of the lemma.
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3.4.1.4 The case 4 =0. Then we arrive at the family of systems (54), for which we have
Bo =d(g* = 1)/4, N=4(¢*~1)2®, Bu=4(29-1)*" Pfiz= (39—,

So due to N # 0 the necessary conditions d = 0 and 2g — 1 # 0 (see Lemma 16) are equivalent to
Be = 0 and 11 # 0, respectively.

3.4.1.4.1 The subcase 13 # 0. In this case 3g —1 # 0 and then by Lemma 16 an irreducible
invariant hyperbola exists if and only if £; = 0 and b # 0. On the other hand for systems (54) with
d = 0 we calculate

15 = 4(g — 1)3(3g — 1)K12°, Ri1 = — 3b(g — 1)%z*

and hence the above conditions are governed by the invariant polynomials 15 and R11. So we get
systems (55) possessing the hyperbola ®(z,y) = 2b/(2g — 1) + 2¢cy/(3g — 1) + 2zy = 0.

According to Lemma 3 we calculate the polynomial &5 and we observe that & contains the
polynomial ®(z,y) as a simple factor.

In order to have this polynomial as a double factor in &, we force its cofactor in &» to be zero
along the curve ®(z,y) =0 (i.e we set y =b(3g — 1)/((29 — 1)(c¢ — z + 3gx))). We obtain

30— 1)le —1)z]?
@(iz,y) :28%(;?/ - 132(?;(391)161) | [c(29 — 1) + g(3g — )] '

[c*(31 — 87g + 62¢°) + 6¢(3g — 2)(3g — 1)*z + (3g — 1)*(4g — 1)z*] =0

and since (29 —1)(3g — 1) # 0 we get ¢ = 0 and either g = 1/4 or g = 0. However in the second case
we get degenerate systems. So g = 1/4 and we arrive at the family of systems

dx 9 dy

= 4. 2 —p_— 4 59
g T g = e/, (59)

which possess the hyperbola ®(x,y) = —4b + 2xy = 0. On the other hand the perturbed systems

dz 9 dy
- =_9 4, 2L =p-— 4 60
i be + exy + 7 /4, = b— 3zy/ (60)

possess the two invariant hyperbolas
O (z,y) = —4b+22y =0, P5(x,y) =—4b+2y(x +ey) =0.

It remains to determine the invariant polynomials which govern the conditions ¢ = 0 and g = 1/4.
We observe that for systems (55) we have y16 = —c(g — 1)%23/2 and dg = (g — 1)(4g — 1)22/2.

To deduce that the hyperbola ®(x,y) = —4b + 2zy = 0 could not be triple it is sufficient to
calculate & for systems (59):

B 13521
65536

h = ®(z,y)?(5b — 3xy)(17b — Tzy)

and to observe that the cofactor of ®(x,%)? could not vanish along the curve ®(z,y) = 0. This leads
to the statement (i.2) of the lemma.
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3.4.1.4.2 The subcase 512 = 0. Then g = 1/3 and by Lemma 16 at least one irreducible
invariant hyperbola exists if and only if ¢ = 0, @ < 0 and b # 0. On the other hand for systems (54)
with d = 0 and g = 1/3 we calculate

Y16 = —2¢x3/9, 17 = 32a2?/9, Ry = —4bz?/3

Therefore the condition ¢ = 0 (respectively b # 0; a < 0) is equivalent to 716 = 0 (respectively
Ru1 # 0; 77 < 0).

1) The possibility v17 < 0. By Lemma 16 in this case we arrive at systems (56) with z # 0
possessing the two hyperbolas ®1o(x,y) = —6b + 6zy + 22y = 0. We claim that none of the
hyperbolas could be double. Indeed calculating &5 (see Lemma 3) we obtain:

~2560(2 — 92%)°

= 177147

1 Dy(20x — xy — 3y2°)(3ba? — 2Py + 27b2% — 2Txy2?).

So each hyperbola appears as a factor of degree one. Imposing the cofactor of ®; (respectively ®o)
to vanish along the curve ®(x,y) = 0 (respectively ®o(x,y) = 0), i.e. setting z = 3(b — zy)/y
(respectively = 3(b + zy)/y) we obtain

@é = 37324806522 (b F 2y2)'0 /513 #£ 0
1,2

due to bz # 0. This proves our claim and we arrive at the statement (i¢) of the lemma.

2) The possibility y17 = 0. In this case we have z = 0 and this leads to the systems

dx 9 dy
7 x*/3, p” b—2xy/3, (61)

possessing the hyperbola ®(z,y) = —6b + 2zy = 0. Calculating & for this systems we obtain that

®(z,y) is a triple factor of &. According to Lemma 3 this hyperbola could be triple. And it is
indeed triple as it is shown by the following perturbed systems:

d d
o 19022+ 2273, Y = b— 2y/3 + 3bey?, (62)
dt dt
possessing the three invariant hyperbolas:
By = —6b+6bey +2ry =0, ®3=—6b+2y(z — 3bey).

So we arrive at the statement (i7i) of Lemma 17 and this completes the proof of this lemma. B

3.4.2 The case N =0

Considering (50) the condition N = 0 implies h = 0 and g = £1. On the other hand for (40) with
h = 0 we have 13 = (g — 1)22?/4 and we consider two cases: 313 # 0 and 313 = 0.
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3.4.2.1 The subcase (13 # 0. Then g — 1 # 0 (this implies g = —1) and due to a translation
we may assume e = f = 0. So we get the following family of systems

dz 9 dy
i — 2 —ph— . 63
T matet dy — x°, 5 b— 2xy (63)

Lemma 18. A system (63) possesses at least one irreducible invariant hyperbola if and only if d = 0,

16a +3c® =0 and b # 0.

Proof: We again assume that the quadratic part of an invariant hyperbola has the form 2zy and
considering the equations (10) for systems (63) we obtain
t=1, s=u=q=0, p=-2b/3, r=—¢/2, U = -3,
V=0 W=c+1r/2, Eqr=2d, Eqy= (16a+ 3¢?)/8,
Eq =Eq = Eq3 = Eq = Eqs = Eqe = Eqs = Eqio = 0.

Therefore the conditions Eg; = 0 and Eqg = 0 yield d = 0 and 16a + 3¢? = 0. In this case we get

the systems

dx 2 2 dy
s — - 64
7 3¢°/16 + cx — 27, p b —2xy, (64)

which possess the invariant hyperbola
O(z,y) = —2b/3 — cy/2 + 22y = 0.
Obviously this hyperbola is irreducible if and only if b # 0. So Lemma 18 is proved. B

3.4.2.2 The subcase 513 = 0. Then g =1 and due to a translation we may assume ¢ = 0. So
we get the following family of systems

‘%:mdwx?, %=b+ex+fy. (65)

Lemma 19. A system (65) could not possess a finite number of hyperbolas. And it possesses a
family of irreducible invariant hyperbolas if and only if d =e =0 and 4a + f%> = 0.

Proof: Considering the equations (10) and the fact that the quadratic part of an invariant hyperbola
has the form 2xy, for systems (65) we calculate

t=1,s=u=0,U=1, V=0, W=f-r/2
Eqs =2e, Eqr=2d, FEq = Eq =FEq =FEq = FEq¢ =0.

Therefore the conditions Fqs = 0 and Eq; = 0 yield d = e = 0 and then we have
Eqg=2b—p— fq+qr/2, Eq = (4a+1%)/2, Eqqo=aq+br—p2f—71)/2.
The equations Eqg = Fqig = 0 have a common solution with respect to the parameter ¢ only if

Res ,(Egs, Eqio) = —2ab +p(a + %) — fr(b+p) +r*(2b +p)/4 = 0.
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On the other hand in order to have a common solution of the above equations with respect to r the
following condition is necessary:

ResT(qu, Resq(qu,quo)) = (4a + ) (4ab® + f*p?)/4 = 0.

We claim, that the condition 4a + f2 = 0 is necessary for the existence of an irreducible invariant
hyperbola.

Indeed, supposing 4a + f? # 0 we deduce that the condition 4ab® + f?p? = 0 must hold.

1) Assume first f # 0. If b = 0 then we get p = 0 and the equation Eqip = 0 gives ag = 0. In the
case ¢ = 0 we obtain a reducible hyperbola. If a = 0 then the equation Fq9 = 0 implies r = 0 and
we again get a reducible hyperbola.

Thus b # 0 and hence a < 0. We set a = —2% < 0 and then r = +22 and p = +2bz/f. It is not
too hard to convince ourselves that all four possibilities lead either to reducible hyperbolas, or to
the equality 4a + f2 = 0, which contradicts our assumption.

2) Suppose now f = 0. This implies ab = 0 and since b # 0 (otherwise we get degenerate systems)
we have a = 0 and this again contradicts to 4a + f2 # 0. This completes the proof of our claim.

Thus 4a + f? = 0 and setting a = — f2/4 we arrive at the family of systems

dx d
=P ata’ Sh=bfy, (66)

which possess the following family of invariant hyperbolas
(z,y) = (4b— fq)/2+ gz + fy + 22y = 0,

depending on the free parameter gq. Since the corresponding determinant A (see Remark 5) for this
family equals fq — 2b, we conclude that all the hyperbolas are irreducible, except the hyperbola, for
which the equality fq — 2b = 0 holds. Thus the lemma is proved. B

We observe that in the above systems we may assume b = 1. Indeed, if b = 0 then f # 0 (otherwise
we get a degenerate system) and therefore due to the translation y — y + b’/ f with ¥’ # 0 and the
addition rescaling y — b’y we get b’ = 1. Moreover, in this case we may assume f € {0,1} due to
rescaling (z,y,t) — (fxz, fy,t/f) in the case f # 0. This leads to the two families of hyperbolas
mentioned in Remark 2.

Lemma 20. Assume that for a quadratic system (9) the conditionsn =0, M #0860 =0 and N =0
hold. Then this system could possess either a single irreducible invariant hyperbola, or a family of
such hyperbolas. More precisely this system possess

(i) one simple irreducible invariant hyperbola if and only if B13 # 0, y10 = 17 = 0 and Rq1 # 0;
(ii) one family of irreducible invariant hyperbolas if and only if B13 = 9 = Y18 = F19 = 0.

Moreover the family of hyperbolas corresponds to (Fy) (respectively (Fs)) (see FIGURE 2) if y17 # 0
(respectively y17 =0).

Proof: Assume that for a quadratic system (9) the conditions n =0, M # 0 6 =0 and N = 0 hold.
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3.4.2.3 The subcase 313 # 0. In this case we consider systems (63) for which we calculate
Y10 =14d?,  Ryy = —12bz’ + 6day®(cx + dy), vi7 = 8(16a + 3¢*)x? — 4dy(14cx + 9dy).

So for v19 = 117 = 0 and R11 # 0 we get systems (64) possessing the hyperbola ®(z,y) = —2b/3 —
cy/2 + 2xy = 0. We claim that this hyperbola is a simple one. Indeed calculating & we obtain
that the polynomial ®(x,y) is a factor of degree one in &. So setting y = —4b/(3(c — 4x)) (i.e.
O(x,y) =0) we get
&
®(z,y)
due to b # 0. So the hyperbola above could not be double and this proves our claim.

= — 272453 (¢ — 42)3(3¢ — 42)'2 /3 # 0

Thus the statement (i) of lemma is proved.

3.4.2.4 The subcase 513 =0. Then we consider systems (65) and we calculate
Yo =—6d°, 15 =8ex?, F19=4(da+ f*)x.
So the conditions d = e = 0 are equivalent to 79 = ¥13 = 0 and 4a + f2 = 0 is equivalent to J;9 = 0.

Considering Lemma 19 we arrive at the statement (7).

It remains to observe that for systems (65) with d = e = 0 and a = —f?/4 we have 7 = 822>
and this invariant polynomial governs the condition f = 0.

As all the cases are examined, Lemma 20 is proved. ]

To complete the proof of the Main Theorem we remark, that both generic families of quadratic
systems (with three and with two distinct real infinite singularities) are examined and now we could
compare the obtained results with the statements of the Main Theorem.

So comparing the statements of Lemmas 6, 7, 9, 10 and 12 with the conditions given by DIAGRAM 1,
it is not too difficult to conclude that the statement (Bj) of the Main Theorem is valid.

Analogously, comparing the statements of Lemmas 14, 17 and 20 with the conditions given by
DIAGRAM 2 we deduce that the statement (Bgz) of the Main Theorem is valid.

Since the type of each of the five families F; - F5 is determined inside the proof of the respective
lemma, we conclude that the Main Theorem is completely proved. ]
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