
Adv. Geom. 10 (2010), 587–602 Advances in Geometry
DOI 10.1515 / ADVGEOM.2010.033 c© de Gruyter 2010

Triply periodic minimal surfaces which converge
to the Hoffman–Wohlgemuth example

Plinio Simões and Valério Ramos Batista∗

(Communicated by K. Ono)

Abstract. We get a continuous one-parameter new family of embedded minimal surfaces, of which
the period problems are two-dimensional. Moreover, one proves that it has Scherk’s second surface
and Hoffman–Wohlgemuth’s example as limit-members.

1 Introduction

A continuous family F of complete embedded minimal surfaces can play an important
role in the development of their global theory. One of the most beautiful examples is
the genus one helicoid, which turned out to be a second example of complete minimal
submanifold of R3 with only one end, besides the helicoid. To date, one has not found
any further examples of this kind yet. For details, see [2], [8] and [18].

Sometimes, one can find F enclosing all surfaces of a certain class. For instance, in
2005 Pérez, Rodrı́guez and Traizet proved that any doubly periodic minimal torus with
parallel ends is an interior point of a cube F (see [14]). Such families are essential to
understand the moduli space of minimal surfaces.

At this point, we remark that the above references deal with two-dimensional period
problems. By this concept we do not count López–Ros parameters, and that dimension
has been the highest in which one succeeds in finding a non-trivial explicit F . To date,
there still remain only few such examples, while many F’s were obtained from one-
dimensional period problems (see [3], [5], [7], [6] and [16]).

By the way, [16] builds a strong parallel to this present work, for there one proves
that Scherk’s second surface and Callahan–Hoffman–Meeks’ [1] are limit-members of a
unique F , in the sense that it encloses all the examples presented therein. In this paper
we show that handle addition is possible for that whole F , with one limit-member being
an example from Hoffman and Wohlgemuth (see [4] and [17]).

∗This work was supported by FAPESP grant numbers 00/07090-5, 01/05845-1 and 05/00026-3.
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If one seeks after a new isolated surface with less than three period problems, then
handle addition is an old and widely known technique, though not always successful.
In this work, however, we not only present a full study of a continuous family of new
surfaces, but also do it practically without computations. Instead, geometric arguments
are intensively used, many of them profiting from former results like [10] and [16]. By
studying periods, one takes homotopic curves based on a best-choice procedure, detailed
in Section 6.

Figure 1. Fundamental piece of a triply periodic Costa surface with handles.

Let us first consider Figure 1. The main goal of this paper is then to prove the follow-
ing:

Theorem 1.1. There exists a one-parameter family of complete triply periodic minimal
surfaces in R3 such that, for any member of this family the following holds:

(a) The quotient by its translation group G has genus 7.
(b) The whole surface is generated by a fundamental piece, which is a surface with

boundary in R3. The boundary consists of eight planar curves of vertical reflectional
symmetry and four planar curves of horizontal reflectional symmetry. The funda-
mental piece has a symmetry group generated by two vertical planes of reflectional
symmetry and two line segments of 180◦-rotational symmetry.
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(c) By successive reflections in the boundary of the fundamental piece one obtains the
triply periodic surface.

(d) All members in the family are embedded in R3. Moreover, it has two limit-members:
the Hoffman–Wohlgemuth example of genus 5 and two side-by-side copies of Scherk’s
doubly periodic surface.

Now we state a consequence of Theorem 1.1:

Corollary 1.1 (Hoffman–Wohlgemuth surface). There exists an embedded singly peri-
odic minimal surface in R3 with the following properties:

(a) The quotient by its translation group has genus 5.
(b) This quotient has two planar ends, and a symmetry group generated by two vertical

planes of reflectional symmetry and two straight lines of 180◦-rotational symmetry.

The proof of Corollary 1.1 will be discussed at the end of Section 8. Such a result will
follow in a much easier fashion than in [17], due to Theorem 1.1.

2 Preliminaries

In this section we state some basic definitions and theorems. Throughout this work, sur-
faces are assumed to be connected and regular. Details can be found in [6], [9], [12] and
[13].

Theorem 2.1. Let X : R → E be a complete isometric immersion of a Riemannian
surface R into a three-dimensional complete flat space E. If X is minimal and the total
Gaussian curvature

∫
R
K dA is finite, then R is biholomorphic to a compact Riemann

surface R punched at a finite number of points.

Theorem 2.2 (Weierstrass representation). Let R be a Riemann surface, g and dh mero-
morphic function and 1-differential form on R, such that the zeros of dh coincide with the
poles and zeros of g. Suppose that X : R→ E, given by

X(p) := Re
∫ p

(ϕ1, ϕ2, ϕ3), where (ϕ1, ϕ2, ϕ3) :=
1
2

(g−1 − g, ig−1 + ig, 2) dh,

is well-defined. Then X is a conformal minimal immersion. Conversely, every confor-
mal minimal immersion X : R → E can be expressed as above for some meromorphic
function g and 1-form dh.

Definition 2.1. The pair (g, dh) is the Weierstrass data and ϕ1, ϕ2, ϕ3 are the Weierstrass
forms on R of the minimal immersion X : R→ X(R) ⊂ E.

Theorem 2.3. Under the hypotheses of Theorems 2.1 and 2.2, the Weierstrass data
(g, dh) extend meromorphically on R.
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The function g is the stereographic projection of the Gauss map N : R → S2 of the
minimal immersion X . It is a covering map of Ĉ and

∫
S
KdA = −4π deg(g). These

facts will be largely used throughout this work.

3 The symmetries of the surface and the elliptic Z-function

Let us consider Figure 1, which represents the fundamental piece of a triply periodic
surface S. If G denotes its translation group, then S/G is a compact Riemann surface
of genus 7 that we call S̄ (see Figure 2(a)). Let ρ be the map from S̄ to its quotient
by 180◦-rotation around the x3-axis. Then, the Euler–Poincaré characteristic of ρ(S̄) is
given by χ(ρ(S̄)) = 1

2χ(S̄) + 6 = 0. Because of this, ρ(S̄) is a torus that we call T . This
torus must be rectangular because of the following argument. The horizontal reflectional
symmetries of S̄ are inherited by T through ρ, and there are two curves which remain
invariant under any of these symmetries. Then, the fixed-point set has two components
and this only happens for the rectangular torus.

(a) (b)

Figure 2. (a) Half of S̄; (b) the torus T .

The surface S̄ has two other 180◦-rotational symmetries, namely the ones around the
x1- and x2-axes. The torus T has these two symmetries as well. Let r be the 180◦-
rotational symmetry around the x1-axis. The quotient of T by r is conformally S2. After
we fix an identification of S2 with Ĉ, we finally obtain an elliptic function Z : T → S2.

Consider Figure 2(b) and the points of the torus T represented there. These correspond
to special points of S̄, indicated in Figure 2(a) (they were given the same names). Let Z :
T → S2 be the elliptic function with Z(e1) = 1/Z(e2) = 0 and Z(v1) = 1/Z(v2) = a,
where a is a real value in (0, 1) (these functions coincide with cosα ·℘+ sinα described
in [6, p. 40]).

Now we summarize some important properties of the function Z (see Figure 3). It is
real on the bold lines (and nowhere else), and |Z| = 1 on the dashed lines (and nowhere
else). It has exactly four branch points, marked with × in Figure 3. At the points A and
B the function Z takes the value 1 and at the points C (center) and D, the value −1.
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Figure 3. The torus T with values of Z at special points on it.

4 The z-function on S̄ and the Gauss map in terms of z

In this section we start by studying the necessary conditions for the existence of a minimal
surface like in Figure 1. They will lead to an algebraic equation for the compact Riemann
surface S̄, together with Weierstrass data on it. From this point on, our problem will
be concrete. We shall have to prove that the algebraic equation really corresponds to
S̄ in terms of its genus and symmetries. Afterwards, we shall have to prove that the
Weierstrass data really lead to a minimal embedding of S̄ in R3/G with the expected
properties: symmetry curves, periodicity, etc.

Let us call S the surface represented in Figure 1 and suppose that it is a minimal
immersion of S̄ in R3/G. In this case, we make use of the previous section and consider
the functions ρ : S̄ → T and Z : T → C. Let us define z := Z ◦ ρ. Both functions Z
and ρ have degree 2, z is a function on S̄ of degree 4 (see Figure 4(a)). In this picture one
sees that z takes on special values b ∈ (a, 1) and −x ∈ (−1, 0) on S̄.

(a) (b) (c)

Figure 4. (a) Values of z at special points; (b) The corresponding normal vector at these
points; (c) the corresponding values of Z on T .

We are supposing that S is a minimal immersion of S̄ in R3/G. In this case, the
Gauss map on S must lead to a meromorphic function g on S̄, as Figure 4(b) suggests.
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We are going to define multiplicity as the branch order plus one. Then, the expected
correspondence between the values of z and g (including their multiplicities) is indicated
in Figure 4(a) and 4(b). Therefore, one establishes the following relation:

g4 = z

(
1− az
z − a

)(
b− z
bz − 1

)2(
z + x

xz + 1

)2

. (1)

From now on we define S̄ as a general member of the family of compact Riemann
surfaces given by (1). These surfaces have genus 7, because of the following argument:
each value z ∈ {a±1, 0±1} represents 1 branch point of multiplicity 4 on S̄, and each
value z ∈ {−x±1, b±1} represents 2 different branch points of multiplicity 2 on S̄. This
function is a four-sheet branched covering of the sphere. Therefore, by the Riemann–
Hurwitz formula, the genus of S̄ is

4 · 1 · (4− 1) + 4 · 2 · (2− 1)
2

− 4 + 1 = 7. (2)

Some involutions of S̄ are summarized in Table I. This table includes the differential dh
which will be discussed in the next section.

Table I: Involutions of S̄.

involution z-values g ∈ dh(ż) ∈
1 (z, g)→ (z̄, ḡ) −1 < z < −x R R
2 (z, g)→ (z̄,−ḡ) −x < z < 0 iR R
3 (z, g)→ (z̄,±iḡ) 0 < z < a ±

√
iR iR

4 (z, g)→ (z̄,−ḡ) a < z < b iR R
5 (z, g)→ (z̄, ḡ) b < z < 1 R R
6 (z, g)→ (1/z̄, 1/ḡ) z ∈ S1 S1 iR

We have just proved that the values of g on all special curves of S̄ are consistent with
the expected unitary normal on the minimal surface S in R3/G.

5 The height differential dh in terms of z

Now we need an expression for the differential form dh. The surface has no ends and
because of this dh is holomorphic. Its zeros are exactly the ones where g = 0 or g = ∞
and all have multiplicity 1 (i.e., branch order 0). If we consider the differential form dz,
then it would be sufficient to divide it by a function on the surface with double zeros at
z ∈ {0, a±1} and a pole of multiplicity 6 at z = ∞. This function will turn out to be the
pull-back by ρ of another function, that we call V , on the torus T .

Since 0±1 and a±1 are the only branch values of Z, all of them of order one, the torus
T can be algebraically described by the equation

V 2 = Z(Z − a)(Z − 1/a). (3)
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Now, V ◦ ρ has exactly the zeros and poles on S̄ with the expected multiplicities. We
can take v := V ◦ ρ. This means that v is a well-defined square root of the function
z(z − a)(z − 1/a) on S̄. For instance, v/z =:

√
z + 1/z − a− 1/a.

Finally, we need to establish a proportional constant to determine dh by means of
dz/v. On the straight lines of the surface, where 0 < z±1 < a, the coordinate x3 =
Re
∫
dh must be constant. Then Re{dh} is zero there. Because of this we choose the

proportional constant to be i, namely

dh =
idz

v
=

idz/z√
z + 1/z − a− 1/a

. (4)

At this point we have reached concrete Weierstrass data (g, dh) on S̄, defined by (1) and
(4), with x, a and b satisfying

0 < a < b < 1 and 0 < x < 1. (5)

Now our task will be the demonstration of the following: let S be the minimal immer-
sion of S̄ given by these Weierstrass data. Then S leads to the expected surface whose
fundamental piece is represented in Figure 1. In other words, we need to show that S re-
ally has all the symmetry curves and lines of our initial assumptions, and the fundamental
piece of S has no periods, as indicated in Figure 1. This second task will be discussed in
the next section. Now we analyze the symmetries of S.

From (1) and (4) we see that all the z-curves listed in Table I are geodesics, because
g(z) is contained either in a meridian or in the equator of S2, and dh(ż) is contained in
a meridian of S2. Moreover, the geodesics are straight lines if 0 < z±1 < a, because in
this case dg(ż)

g(z) · dh(ż) ∈ iR. Otherwise we have dg(ż)
g(z) · dh(ż) ∈ R and the corresponding

geodesics will be planar. Therefore, S has all the expected symmetries.

6 Solution of the period problems

The triply periodic minimal surface S is generated by its translation group G applied to
a fundamental piece. Its right half is shown in Figure 5(a). The fundamental domain
for the full symmetry group of the minimal surface is the shaded region represented on
Figure 5(a).

Since S has no ends, we need to analyze the period vector given by Re
∮

(ϕ1, ϕ2, ϕ3)
on the curves of the homology of S̄. This task is very similar to the analysis done in [16,
pp. 80–81] and will be skipped here. We conclude that just two period problems remain
to be solved, namely

Re
∫
γ

ϕ2 = 0 and Re
∫
δ

ϕ2 = 0, (6)

where γ and δ are represented in Figure 5(a). The branches of the square root need to be
chosen in accordance with Figures 5(a) and 5(b). This choice is indicated in Figure 6.

The curve γ can be explicitly given by z(t) = z ◦ γ(t) = eit, 0 < t < π. If we define
Γ := ρ ◦ γ, then Z ◦ Γ(t) = z ◦ γ(t). We establish the 4th-root on z(t) of each factor in
(1) as indicated in Figure 7.
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(a) (b)

Figure 5. (a) The right half of the fundamental piece; (b) Its corresponding image under ρ.

Figure 6. The images of |z| < 1 < 1 + Im{z} under g and v/z.

The condition Re
∫
γ
ϕ2 = 0 will then be equivalent to

1
2

∫ π

0
(g + g−1) |dh| =

∫ π

0
Re(g) |dh| = 0, (7)

where

dh =
idt√

a+ 1/a− 2 cos t
and g = g(z(t)) ∈ S1. (8)

It is not difficult to see that Re(g(t)) is increasing with x and decreasing with b. Let
us now vary b in the interval (a, 1). From Lebesgue’s dominated convergence theorem, at
the extremes we have the following equalities for Iγ :=

∫ π
0 Re(g) |dh|:

Iγ |b=a =
∫ π

0
Re
{

4
√
z · 4

√
z − a
1− az

·
√

z + x

xz + 1

}
dt√

a+ 1/a− 2 cos t
(9)

and

Iγ |b=1 = −
∫ π

0
Im
{

4
√
z · 4

√
1− az
z − a

·
√

z + x

xz + 1

}
dt√

a+ 1/a− 2 cos t
. (10)
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Figure 7. The 4th-roots on z(t) of the factors in (1).

Both functions in (9) and (10) are still increasing with x. Let us analyze the integrand
of (10). It is easy to prove that

tanArg
{
z · 1− az

z − a

}
=

2 sin t · (a cos t− 1)
a+ 1/a

. (11)

Hence, at x = 1 the integrand of (10) will be always positive. Therefore, Iγ |(b,x)=(1,1) >

0 for any a ∈ (0, 1). It is not difficult to see that a−1/2Iγ |(b,x)=(1,0) is negative for a
close to zero, while it diverges to +∞ when a approaches 1. Notice that the factor Im{·}
is monotonely decreasing with a. For any fixed a ∈ (0, 1), it changes sign at a certain
unique ta ∈ (0, π). Now consider a value a = α where Iγ |(b,x)=(1,0) vanishes. If one
takes p := (1/α − α)/(1/α + α − 2 cos tα), then an easy computation shows that the
derivative of a−p/2Iγ |(b,x)=(1,0) with respect to a is positive at α. This means that α is
the unique value of a that makes Iγ |(b,x)=(1,0) equals zero. Since the integral at (10) is
increasing with x, we have just proved the following:

For any a ∈ (0, α), there exists a unique x = xa such that Iγ |(b,x)=(1,xa) = 0. If
a ∈ (α, 1), then Iγ |b=1 is always positive. Moreover, lima→αxa = 0.

Let us now analyze the integral at (9). For x = 0, it diverges to +∞ when a ap-
proaches 1. Take a compact K ⊂ C \ {0, a±1} such that S1 ⊂ K. One easily sees
that our data (1/g, dh) converge uniformly in K to the Weierstrass pair (g, gη) from [10,
pp. 452–453], for the following choice of parameters defined there: a = 1/a,A = 1 and
B = i

√
a. Therefore, Iγ |(b,x)=(a,0) coincides with 1

2

∫
γ2
φ2, where γ2 is described in [10,

p. 455]. There one proves that
∫
γ2
φ2 6= 0 for any a > 1. Consequently, Iγ |(b,x)=(a,0) > 0

for all a ∈ (0, 1). Since Iγ |b=a is increasing with x, then Iγ |b=a > 0 on the whole square
(0, 1)2 3 (a, x).

We recall that Re{g(t)} is increasing and decreasing with x and b, respectively.
Hence, there is a function b(a, x), defined in the regionR := {(a, x) ∈ (0, 1)2 : x ≤ xa},
such that Iγ |b=b(a,x) = 0 and non-zero elsewhere. Moreover, b(a, x) can be continuously
extended to ∂R and lim(a,x)→(0,0)b(a, x) = 0. Henceforth in this section, the parameter
b will always represent this function.

One easily sees that ϕ2 is purely imaginary for −1 < z < −x and b < z < 1.
From Figure 5(b) we get Re

∫
δ
ϕ2 + Re

∫
γ
ϕ2 = Re

∫
σ
ϕ2. From the above paragraph,

the second integral is zero. Therefore, it remains to prove that either Re
∫
δ
ϕ2 or Re

∫
σ
ϕ2

vanishes for a suitable choice of (a, x) ∈ R. In order to do it, we shall make use of the
following result:
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Lemma 6.1. The above defined α is bigger than 1/2.

Proof. Let us take x = 0 at (10) and study the imaginary part of the function z3(1 −
az)/(z − a), for z = eit, 0 ≤ t ≤ π. A simple reckoning shows that

Im
{
z3(1/a− z)
z/a− 1

}
=

sin(2t)/a2 − 2 sin(3t)/a+ sin(4t)
(cos t/a− 1)2 + sin2 t/a

. (12)

If a < 1/2, the derivative of (12) at either t = 0 or t = π is positive. Although it
vanishes at both extremes for a = 1/2, one still concludes that Im{·} is increasing there.
For a = 1/2, one rewrites the numerator of (12) as 4 sin t(1 − cos t)(2 cos t − cos 2t).
Since sin t(1 − cos t) never vanishes in (0, π), in this interval there is a single zero at
t = t0 := arccos((1−

√
3)/2). The real part of z3(1− az)/(z − a) has the same sign of

cos(2t)/a2−2 cos(3t)/a+cos(4t), which at t0 takes the value−2
3
2 ·3 1

4 ·(2
√

3−3)
1
2−4
√

3.
This means that the argument of z3(1 − az)/(z − a) varies from 0 to 2π without taking
negative values. Therefore, the integral at (10) is negative at a = 1/2. 2

Now we parametrize the curve δ as z(t) = z ◦ δ(t) = t, a < t < b. If ∆ := ρ ◦ δ,
then Z ◦∆(t) = z ◦ δ(t). From Figure 6 we have

g(δ(t)) = i|g(t)| = it
1
4

(
1− at
t− a

) 1
4
(
b− t
1− bt

) 1
2
(
t+ x

xt+ 1

) 1
2

(13)

and

dh(t) = |dh(t)| = dt/t√
a+ 1/a− t− 1/t

. (14)

Therefore, ϕ2 ◦ δ(t) = (|g|−1 − |g|)|dh|. At the points (a, x) = (a, xa) we have
b ≡ 1. Under this condition and from (13), ϕ2 will be negative providing

a(t4 − 1) + (x2 + 2ax− 1)(t3 − t) < 0. (15)

Since t2 − 1 is always negative in (a, 1), then (15) is equivalent to

t+ 1/t > (1− 2ax− x2)/a. (16)

A sufficient condition for (16) to hold is that 2a > 1− 2ax− x2. Due to Lemma 6.1,
it follows that Re

∫
δ
ϕ2 is negative for a close to α. Now split σ into two stretches, the

first one parametrized as z(t) = z ◦ σ(t) = −t, 0 < t < x, and the second z(t) = t,
0 < t < a. If Σ := ρ ◦ σ, then Z ◦ Σ(t) = z ◦ σ(t). For the first stretch, from Figure 6
we have

g(σ(t)) = i|g(t)| = it
1
4

(
1 + at

a+ t

) 1
4
(
b+ t

1 + bt

) 1
2
(
x− t
1− xt

) 1
2

(17)

and

dh(t) = |dh(t)| = dt/t√
t+ 1/t+ a+ 1/a

. (18)
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For the second stretch,

g(σ(t)) = e
iπ
4 |g(t)| = e

iπ
4 t

1
4

(
1− at
a− t

) 1
4
(
b− t

1− bt

) 1
2
(
x+ t

1 + xt

) 1
2

(19)

and

dh(t) = i|dh(t)| = dt/t√
t+ 1/t− a− 1/a

. (20)

Thus Re
∫
σ
ϕ2 = J1 − J2, where

J1 :=
∫ x

0

(
1
|g|
− |g|

)
|dh| and J2 :=

√
2

2

∫ a

0

(
1
|g|

+ |g|
)
|dh|. (21)

The change t = au shows that lima→0a
−1/2J2 exists and is finite. Regarding J1, from

(17) we shall have 1/|g| > |g| providing (b + t)(x − t) < (1 + bt)(1 − xt). This last
inequality is equivalent to t2 + 2(b − x)t/(1 − bx) + 1 > 0, which holds indeed, since
b−x > bx− 1. Now, an easy computation shows that lima→0a

−1/2J1 = +∞. We recall
that Re

∫
σ
ϕ2 = Re

∫
δ
ϕ2, and the latter is negative on (a, xa), a close to α. These facts

imply that there is a curve C ⊂ graph(b) such that both Re
∫
δ
ϕ2 and Re

∫
γ
ϕ2 vanish

simultaneously for every choice of (a, b, x) ∈ C.

7 Refinements

In this section we study the curve C with more details. First of all, let us prove

Lemma 7.1. There exists lima→0xa = 1.

Proof. From (10), an easy computation shows that

lim
a→0

a−1/2Iγ |b=1 = −
∫ π

0
Im
{√

z + x

xz + 1

}
dt. (22)

The integral at (22) is negative for any x ∈ (0, 1), but converges to zero when x
approaches 1. SinceR is exactly the region where Iγ |b=1 is non-positive, the same holds
for this integral re-scaled by a−1/2. Suppose there were a positive ε admitting a sequence
an → 0 with x(an) < 1− ε for all indexes n. In this case, the continuity of a−1/2Iγ |b=1,
together with the fact that it is increasing with x, should give a non-negative limit in (22)
for x = 1− ε. This would be a contradiction. Therefore, we have lima→0xa = 1. 2

In the remainder of this section, we prove that the curve C does not touch graph(xa).
Hence, it connects the point (0, 1, 1) with some point of graph(b) over (0, α) × {0} 3
(a, x). This will give a continuous one-parameter family of minimal surfaces with special
limit-members. We shall describe them in Section 8.
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From (1), if we put b = 1, this gives another family of compact Riemann surfaces R
with algebraic equation

g4 = z

(
1− az
z − a

)(
z + x

xz + 1

)2

. (23)

Of course, (23) cannot be viewed as a limit of (1) for b → 1. The algebraic equations
describe abstract surfaces, not even contained in a metric space. Our only resource is
the study of period integrals, of which some limits can converge to integrals on another
compact surface.

The surfaces in (23) are endowed with the following involution: (z, g) → (z, ig).
Since i4 = 1, there are exactly four points of branch order 3, namely (0, 0), (1/a, 0),
(a,∞) and (∞,∞). Moreover, there remain only four other branch points, (−x,±0) and
(−1/x,±∞), these of order 1. Here the ± signs indicate different germs of functions.
The Riemann–Hurwitz formula gives

4 · 3 + 4 · 1
2

− 4 + 1 = 5.

From now on, our analysis will be strongly based in [16]. There one proves that the
algebraic equations (

G+
1
G

)2

=
4ζ(ζ − y)2(ζ − 1/λ)

(ζ2 − 1)(ζ − κ)(ζ − 1/κ)
(24)

and (
G− 1

G

)2

=
4(1− yζ)2(1− ζ/λ)

(ζ2 − 1)(ζ − κ)(ζ − 1/κ)
(25)

are equivalent if and only if λ(κ+ 1/κ) = 1 + (2λ− y)y, with 2λ− 1 < y < λ < κ < 1
and positive λ. Moreover, the Riemann surfaces M defined by (24-5) have genus 5.
Notice that M is endowed with the involution ı given by (ζ,G)→ (1/ζ, iG).

From [16, pp. 351–353] one has that ζ is the pull-back under ı2 of an elliptic function
Z defined on a rectangular torus T . The parameter λ can freely vary in (0, 1), describing
all rectangular tori. From Section 3 and [16, pp. 352], one sees that the choice a = λ
makes T = T and Z a “shift” of Z . By defining Λ := λ + 1/λ, the following relation
holds: (

Z + 1
Z − 1

)2

=
Z + 1/Z − Λ

2− Λ
. (26)

If we choose Z = κ, a unique Z(κ) ∈ (−1, 0) will be determined by (26). So we take
a = λ and x = −Z(κ) in (23).

Let z be the pull-back of Z under ı2. Therefore, z((1, 0)) = 0, z((1,∞)) = ∞,
z((−1,∞)) = a and z((−1, 0)) = 1/a, while z((κ±1, 0)) = −x and z((κ±1,∞)) =
−1/x. Let `j be a single small loop in C around 0, a, 1/a,−x and−1/x, for j = 1, . . . , 5,
respectively. We take lifts ˆ̀

j of `j by z and notice that the end points of ˆ̀
j differ by ıkj ,

0 ≤ kj ≤ 3, 1 ≤ j ≤ 5.
Let D be the open unitary complex disk at the origin. Since deg(z) = 4, there is a

coordinate chart w : D → M with w(0) = (1, 0) such that z(w) = w4. By taking `1
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small enough to be in z(w(D)), we conclude that k1 = 1. The same reasoning will give
k2 = −k3 = −1. If we had taken w(0) = (κ, 0), then z(w) = c1 + w2 and so k4 = 2.
By the same reasoning k5 = −2. Let us define A := C \ {0, a±1,−x±1}.

The numbers kj naturally determine a homomorphism H : π1(A) → Z4 ⊕ Z2, of
which the kernel is z∗(π1(M \ {(±1, 0±1), (κ±1, 0±1)})) ⊂ π1(A). By going back to
(23), one sees that the projection map z : R → Ĉ, namely (z, g) → z, is such that
z∗(π1(R \ g−1({0,∞}))) also represents the kernel of H . From [11, p. 159], there is a
fiber-preserving biholomorphism β : M → R such that z = z ◦ β. As a matter of fact,
that reference treats unbranched coverings, but the conclusion still applies to our case.

From [16] and the above paragraph, one sees that G4 has the same divisor as z(1 −
az)/(z−a)·[(z+x)/(xz+1)]2. By composing z with the involution (ζ,G)→ (ζ̄, 1/Ḡ)
we get z → 1/z̄. Therefore, G is unitary where z is. Now, by composing z with
the involution (ζ,G) → (1/ζ̄, iḠ) we get z → z̄. This means that |ζ| = 1 implies
z±1 ∈ (0, a). Hence

G4 = z

(
1− az
z − a

)(
z + x

xz + 1

)2

,

and so we can takeG = g◦β. In [16] one defines dH as the pull-back of the holomorphic
differential form on T . As we have already mentioned, ζ is the pull-back of Z , which is a
shift of Z. Hence, the pull-back of Z ′/Z gives a well-defined square-root of z + 1/z −
a − 1/a on M , and so dH is proportional to z−1dz/

√
z + 1/z − a− 1/a. But since

dH is purely imaginary for |z| = 1, the proportional constant must be ±i. The sign just
changes the minimal immersion to its antipodal, so we take

dH =
idz/z√

z + 1/z − a− 1/a
.

From Proposition 8.1 of [16], or even better [15], and the above discussion, one sees
that each a ∈ (0, 1) admits a unique x for which Re

∫
σ
φ2 = 0. Now suppose that

C ∩ graph(xa) 6= ∅. In this case, there is a ∈ (0, α) such that Re
∫
δ
ϕ2 = Re

∫
σ
ϕ2 = 0

for (a, b, x) = (a, 1, xa). Therefore, it exists ε > 0 such that Re
∫
δ
ϕ2 = 0 for all

(a, b, x) ∈ Bε(a, 1, xa) ∩ C.
Back to (13) and (14), the change t 7→ b− t2 shows that

lim
b→1

Re
∫
δ

ϕ2 = Re
∫ 1

a

φ2.

From the uniqueness, x = xa because Re
∫

σ
φ2 = Re

∫
σ
ϕ2|b=1 and the latter is zero at

(a, 1, xa) ∈ C. But in [16] one proves that such a choice gives an embedded surface, and
in particular Re

∫ 1
a
φ2 is negative.

Therefore, if ε is close enough to zero, then Re
∫
δ
ϕ2 must be negative inBε(a, 1, xa),

a contradiction. We conclude that C∩graph(xa) = ∅. Consequently, the curve C connects
(a, b, x) = (0, 1, 1) with (a, b, x) = (a∗, b∗, 0), for a certain a∗ ∈ (0, α) and b∗ =
b(a∗, 0).
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8 Limits and embeddedness

At this point we have proved all but one item of Theorem 1.1. This last section is devoted
to its accomplishment. By lopping off occasional loops of C, we consider it a simple
curve. Let s 7→ (a(s), b(s), x(s)) be a monotone parametrization of C, assuming (0, 1, 1)
at s = 0 and (a∗, b∗, 0) at s = 1. For every s ∈ (0, 1), we have a well-defined minimal
immersion Xs : S̄ → R3/G, determined by (g, dh) at (1) and (4).

Now consider u as a complex variable of Ĉ and take z = au/(u − 1) in (1) and (4).
If K is a compact subset of Ĉ \ {1}, for u ∈ K a simple computation gives

lim
s→0

g4 = u and lim
s→0

dh√
a

=
4dg/g

g2 − 1/g2 . (27)

One readily recognizes (27) as the Weierstrass data of Scherk’s doubly periodic sur-
face. Namely, the coordinates of the minimal immersion Xs converge uniformly in K
to Scherk’s coordinates. More precisely, suppose that K is the 4th-power image of a com-
pact K ⊂ Ĉ \ {±1,±i}. In this set, g is the standard complex coordinate, which together
with gdg/(g4 − 1) gives the classical Scherk’s doubly periodic surface. Figure 8 shows
how the surface looks like for a close to zero.

Figure 8. The case (a, b, x) = (0.15, 0.8, 0.74).

Consider now z as the complex variable of Ĉ and define D := {z ∈ C : |z| < 1 <
1 + Im{z}}. For z in a compactK ⊂ D \ {0}, one immediately gets

lim
s→1

g4 = z3
(

1− a∗z
z − a∗

)(
b∗ − z
b∗z − 1

)2

, (28)

while lims→1dh is given by (4) with a = a∗. From [17, Section 7] we recognize the
Weierstrass data of a genus 5 example from Hoffman–Wohlgemuth. In fact, to date there
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is just numerical evidence that each genus 4k + 1 gives a unique Hoffman–Wohlgemuth
surface, k ∈ N∗. However, in [17] one gets all such surfaces from the intermediate value
theorem. The choice (a, b) = (a∗, b∗) is then included in [17], since our surfaces are
period free for all s ∈ (0, 1).

Finally, the same arguments from [16, pp. 360–362] imply that Xs is in fact an em-
bedding, for any s ∈ (0, 1). Figure 9 illustrates what happens for s close to 1. Figure 1
shows the fundamental piece for (a, b, x) = (0.47, 0.85, 0.68).

Figure 9. The case (a, b, x) = (0.65, 0.89, 0.69).

We conclude this last section with the demonstration of Corollary 1.1. For the Weier-
strass data of the Hoffman–Wohlgemuth surface, dh is the same as in (4), and g is given
by (28), so that we have a surface of genus 5 with two planar ends, namely at z = 0 and
z =∞. Moreover, dh gives a non-zero integral along a < z < 1/a. This means that the
two planar ends are disjoint. Such ends are graphs, hence embedded.

Therefore, if the Hoffman–Wohlgemuth surface had a self-intersection, it would be in
a ball of R3. By the maximum principle for minimal surfaces, the same would happen to
Xs, for s close enough to 1. But from Theorem 1.1, we know that Xs is embedded for all
s ∈ (0, 1).
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