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Given graphs G and H , we say that G is H-good if the Ramsey number R(G, H) equals the 
trivial lower bound (|G| − 1)(χ(H) − 1) + σ(H), where χ(H) denotes the usual chromatic 
number of H , and σ(H) denotes the minimum size of a color class in a χ(H)-coloring of 
H . Pokrovskiy and Sudakov (2017) [17] proved that Pn is H-good whenever n ≥ 4|H|. In 
this paper, given ε > 0, we show that if H satisfies a special unbalance condition, then Pn

is H-good whenever n ≥ (2 + ε)|H|. More specifically, we show that if m1, . . . ,mk are such 
that ε · mi ≥ 2m2

i−1 for 2 ≤ i ≤ k, and n ≥ (2 + ε)(m1 + · · · + mk), then Pn is Km1,...,mk -good.
© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 

training, and similar technologies.

In this paper, we consider only finite and undirected graphs without loops or multiple edges. Throughout this text, given 
a graph G , we denote by |G| the number of vertices of G . Given graphs K , G and H , we write K → (G, H) if every red--
blue coloring of the edges of K contains a red copy of G or a blue copy of H ; and the Ramsey number R(G, H) is the 
minimum positive integer N for which K N → (G, H). Understanding the behavior of R(G, H) is one of the main problems 
in Extremal Combinatorics, and have been extensively explored over the last century [10] while significant results were 
obtained recently [8,9,12,13,20].

A natural lower bound for R(G, H) is as follows. Let χ(H) be the chromatic number of H , i.e., the smallest number of 
colors for which there is a proper coloring of the vertices of H , and let σ(H) be the minimum size of a smallest class 
in a minimum proper coloring of H , i.e., σ(H) = min{|c−1(i)| : c is a proper coloring of H with χ(H) colors, i ∈ [︁

χ(H)
]︁}. 

Burr [6] observed that if G is a connected graph and |G| ≥ σ(H), then we have

R(G, H) ≥ (|G| − 1)(χ(H) − 1) + σ(H). (1)

Indeed, put N = (|G| − 1)(χ(H) − 1) + σ(H) − 1, and consider the red–blue coloring of E(K N) obtained from χ(H) − 1
disjoint red cliques with |G| − 1 vertices and one red clique with σ(H) − 1 vertices by coloring the remaining edges blue. 
Such a coloring contains no red copy of G because each red component has size at most |G| − 1; and contains no blue copy 
of H because the blue edges induce a χ(H)-partite graph K B , but different parts of H must fit in different parts of K B , 
while no part of H fits in the part of size σ(H) − 1.
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Motivated by this construction, in a seminal paper, Erdős and Burr [7] introduced the concept of goodness. More specif
ically, we say that a graph G is H-good if (1) holds with equality, i.e., whenever R(G, H) = (|G| − 1)

(︁
χ(H) − 1

)︁ + σ(H). 
Erdős and Burr [7] presented several examples of Kr -good sparse graphs, and posed a number of questions that shaped this 
subarea since then. The main such question is whether bounded degree are graphs Kr -good.

Although Brandt disproved the main conjecture [5], goodness of sparse graphs has been extensively studied. Nikiforov 
and Rousseau [16] answered all of other questions, and, in particular, their results together with the Separator Theorem of 
Alon, Seymour, and Thomas [2] imply that all planar graphs are Kr -good. More recently, Allen, Brightwell, and Skokan [1], 
among other interesting results, proved that bounded degree graphs with sublinear bandwidth are Kr -good.

In a more general setup, H-goodness is known for some specific classes of sparse graphs and any fixed graph H , not 
necessarily complete. Erdős, Faudree, Rousseau and Schelp [11] proved that every bounded degree tree with n vertices is 
H-good for every fixed H and sufficiently large n ∈ N , and their result was strengthened first by Balla, Pokrovskiy and 
Sudakov [3], and recently by Montgomery, Pavez-Signé, and Yan [14] who proved that if n = Ω(|H |) then every bounded 
degree tree with n vertices is H-good. In the special case of paths, in 2017, Pokrovskiy and Sudakov [17] presented a much 
tighter result that Pn is H-good whenever n ≥ 4|H |, where Pn denotes the path with n vertices. Observe that it suffices to 
verify the case H is a complete multipartite graph.

Theorem 1 (Pokrovskiy–Sudakov, 2017). Given integers m1 ≤ m2 ≤ · · · ≤ mk, n ≥ 3mk + 5mk−1 and N ≥ (n − 1)(k − 1) + m1 , we 
have K N → (Pn, Km1,...,mk ).

Pokrovskiy and Sudakov [17] also observe that the multiplicative constant (4) cannot be reduced below 2, giving the 
following example which we present here for completeness. Fix H = Km1,m2 with m1 ≤ m2, and suppose n = 2m2 − 2 <

2(m1 + m2) = 2|H |. Then let N = n − 1 + m1 and color K N with disjoint (curiously) blue cliques of size m1 + m2 − 1 and 
m2 − 2, joined by red edges. Such a coloring has no blue copy of H because each blue component has size at most |H | − 1; 
and has no red copy of Pn because any red path must alternate between the two blue cliques, and hence has size at most 
2m2 − 3.

More recently, Pokrovskiy and Sudakov [18] obtained a result on Ramsey goodness of cycles by imposing additional 
conditions on the sizes the color classes of H .

Theorem 2 (Pokrovskiy–Sudakov, 2020). If n ≥ 1060mk, m1 ≤ m2 ≤ · · · ≤ mk satisfy mi ≥ i22 for each i, and N ≥ (n−1)(k −1)+m1 , 
then K N → (Cn, Km1,...,mk ).

When we consider a simple unbalance condition in the size of the largest parts, we obtain the following straightforward 
consequence of Theorem 1 which brings the constant 4 closer to 3.

Corollary 3. Let ε ∈ (0,1]. Given integers m1 ≤ m2 ≤ · · · ≤ mk, such that ε · mk ≥ 2mk−1 and let n ≥ (3 + ε)(m1 + · · · + mk) and 
N ≥ (n − 1)(k − 1) + m1 . Then K N → (Pn, Km1,...,mk ).

Proof. Since ε · mk ≥ 2mk−1, we have

n ≥ (3 + ε)(mk + mk−1) ≥ 3mk + ε · mk + 3mk−1 ≥ 3mk + 5mk−1.

Therefore, by Theorem 1, K N → (Pn, Km1,...,mk ) as desired. □
In this paper, we reduce the constant 3+ε to 2+ε by imposing a stronger unbalance condition on H . Given the example 

presented above, this result is somehow tight.

Theorem 4. Let ε ∈ (0,1] and let m1 ≤ m2 ≤ · · · ≤ mk be positive integers such that ε · mi ≥ 2m2
i−1 for every 2 ≤ i ≤ k. If n ≥

(2 + ε)(m1 + · · · + mk) and N ≥ (n − 1)(k − 1) + m1 , then K N → (Pn, Km1,...,mk ).

Observe that both Corollary 3 and Theorem 4 imply that K N → (Pn, H) whenever H admits a coloring with color classes 
satisfying their respective unbalance conditions.

Our technique borrows a few ideas from [17], but we make only a mild use of Pósa rotation-extension technique (see 
Lemma 6). We, alternatively, explore the structure of the graph obtained when removing a longest path, as well as relations 
between the neighbors of the vertices of such graph in the path (see Section 1).

Organization of the paper. In Section 1, we present some auxiliary results that could be useful in a more general context; 
in Section 2 we verify Theorem 4 in the special case k = 2 (see Theorem 5); and in Section 3 we verify Theorem 4. For ease 
of notation, when dealing with bipartite graphs, we use s, t instead of m1,m2 for the size of its parts.
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Fig. 1. Left: A longer path obtained in the case N(F )− is not an independent set; Right: A longer path obtained in the case |N(F )− ∩ N(F ′)| ≥ 2. 

1. Auxiliary results

Given a graph G and disjoint sets X, Y ⊆ V (G), we denote by G[X, Y ] the bipartite graph with vertex set X ∪ Y and 
whose edges are the edges of G that join a vertex of X to a vertex of Y ; and by e(X, Y ) the number of edges of G[X, Y ].

In our proof we use the following result to bound the order of a longest path in the red graph. Such a result can be 
proved with a simple depthfirst search (see, e.g., [15, Lemma 3.3]).

Lemma 1. Let s, t be two positive integers, and let G be a graph on N vertices. Then at least one of the following holds: (i) there is a 
pair S, T of disjoint sets of vertices with |S| = s and |T | = t for which e(S, T ) = 0; or (ii) G contains a path of order N − s − t + 1.

The following result on split graphs is also useful to find a blue copy of Ks,t .

Lemma 2. Let s, t be two positive integers with s ≤ t, and let G be a graph obtained from a clique X and a graph with vertex set Y with 
X ∩ Y = ∅ by joining every vertex of X to every vertex of Y . If |X | ≥ s and |X | + |Y | ≥ s + t, then G contains a Ks,t .

Proof. Let S ⊆ X be a set of size s and T ⊆ (X ∪ Y ) \ S be a set of size t , then G[S, T ] is the desired Ks,t . □
Given a graph G and a set X ⊆ V (G), we denote by NG (X) the set of vertices in V (G) \ X that are adjacent to at least 

one vertex of X . We omit subscripts when it is clear from the context. A component of a graph G is a set F of vertices of 
G for which G[F ] is a maximal connected subgraph of G . Now, consider a path P ⊆ G . In what follows, we fix an ordering 
P = u0 · · · uℓ of V (P ). Let F be a component of G \ V (P ), and observe that N(F ) ⊆ V (P ). We denote by N(F )− the set 
{ui−1 : ui ∈ N(F )}. Also, given vertices u and u′ in P , we denote by u P u′ the subpath of P joining u and u′ . When P is a 
longest path in G , we obtain the following.

Lemma 3. Let G be a graph, let P be a longest path in G, and let F be a component of G \ V (P ). Then (i) N(F )− ∩ N(F ) = ∅; and (ii) 
N(F )− is an independent set.

Proof. Let P = u0 · · · uℓ be as above. (i) If ui ∈ N(F )− ∩ N(F ), then ui, ui+1 ∈ N(F ). Let Q be a path joining ui to ui+1
whose internal vertices are in F . Then (P ∪ Q ) − uiui+1 is a path in G with at least |P | + 1 vertices, a contradiction to 
the maximality of P . (ii) By the maximality of P we have u0 / ∈ N(F ). Let ui, u j ∈ N(F ) with 1 ≤ i < j and suppose that 
ui−1u j−1 ∈ E(G). Let Q be a path joining ui to u j whose internal vertices are in F . Then (P ∪ Q ) − ui−1ui − u j−1u j +
ui−1u j−1 is a path in G with at least |P | + 1 vertices (see Fig. 1a), a contradiction to the maximality of P . □

The next lemma gives a bound on the number of vertices of N(F )− that can be adjacent to a vertex in F ′ for any two 
distinct components F and F ′ of G \ V (P ). Its proof is analogous to the proof above. We include it for completeness.

Lemma 4. Let G be a graph, let P be a longest path in G, and let F and F ′ be distinct components of G \ V (P ). Then |N(F )− ∩ N(F ′)| ≤
1.

Proof. Let P = u0 · · · uℓ be as above. Suppose there are two distinct vertices ui, u j ∈ N(F )− ∩ N(F ′). By the definition of 
N(F )− , we have ui+1, u j+1 ∈ N(F ). Let Q (resp. Q ′) be a path in G connecting ui+1 to u j+1 (resp. ui to u j) whose internal 
vertices are in F (resp. in F ′). Then P∗ = (︁

P ∪ Q ∪ Q ′)︁ − uiui+1 − u ju j+1 is a path in G with at least |P | + 2 vertices (see 
Fig. 1b), a contradiction to the maximality of P . □
2. Paths versus unbalanced bipartite graphs

For organizational purposes we first verify Theorem 4 in the case of bipartite graphs (see Theorem 5), i.e., when k = 2, 
to serve as the base case of our main induction argument. For that we prove the following lemma.
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Lemma 5. Let s, t, and r be positive integers with r ≤ s ≤ t, and let G be a graph with order N ≥ 2t + s2 − 1. Let P ⊆ G be a longest 
path in G. If there are r components in G \ V (P ) whose union contains at least s vertices, then Ks,t ⊆ G.

Proof. Let G ′ = G \ V (P ) and let F1, . . . , Fr be components of G ′ with |F1 ∪ · · · ∪ Fr | ≥ s. The proof follows by induction on 
r. First, suppose r = 1, i.e., that G ′ has one component F1 of order at least s. Note that no vertex in V (G) \ (︁

F1 ∪ N P (F1)
)︁

is 
adjacent to a vertex in F1. Thus, if N − |F1| − |N(F1)| ≥ t , then Ks,t ⊆ G[F1, V (G) \ (︁

F1 ∪ N P (F1)
)︁] as desired. Therefore, we 

may assume

|F1| + |N(F1)| ≥ N − (t − 1) ≥ t + s2 ≥ t + s. (2)

Now, suppose that |N(F1)| ≥ s. Note that, by the maximality of P , the end vertices of P are not adjacent to vertices of F1. 
Thus, we have |N P (F1)

−| = |N P (F1)| = |N(F1)| ≥ s. By Lemma 3, no vertex of N P (F1)
− is adjacent to a vertex of F1, and 

N P (F1)
− is an independent set. Thus, (2) implies that G[N P (F1)

− ∪ F1] is a graph as in the statement of Lemma 2, and 
hence Ks,t ⊆ G[N P (F1)

− ∪ F1], as desired.
Therefore we may assume that |N(F1)| ≤ s − 1. Together with (2), this implies that

|F1| ≥ t + s(s − 1) + 1 ≥ t + s. (3)

Observe that |P | + |F1| ≤ N , and, by (3), we have |P | ≤ N − s − t . Therefore, by Lemma 1, we have Ks,t ⊆ G , as desired. This 
proves the case r = 1.

Now, suppose r ≥ 2 and let F ∗ = F1 ∪ · · · ∪ Fr . Although we can get a slightly better upper bound on |F ∗|, here we prove 
that |F ∗| ≤ s2 − r(r − 1). Indeed, if |Fi | ≥ s − (r − 2) for some i ∈ [r], then we can pick Fi and r − 2 other components of 
G \ V (P ) and obtain r − 1 components whose union contains s vertices. But then, by the induction hypothesis, we have 
Ks,t ⊆ G . Thus, we may assume |Fi | ≤ s − (r − 1) for every i ∈ [r]. Therefore, since r ≤ s, we have

|F ∗| ≤ r
(︁
s − (r − 1)

)︁ = r · s − r(r − 1) ≤ s2 − r(r − 1), (4)

as desired.
Now, analogously to the case r = 1, if N − |F ∗| − |N(F ∗)| ≥ t , then Ks,t ⊆ G[F ∗, V (G) \ (︁

F ∗ ∪ N(F ∗)
)︁], as desired. Thus, 

we may assume that

N − |F ∗| − |N(F ∗)| ≤ t − 1. (5)

Summing (4) and (5), by the hypothesis in N , we obtain

|N(F ∗)| ≥ N − t + 1 + r(r − 1) − s2 ≥ t + r(r − 1).

Now, by Lemma 4 given i and j with i ≠ j, N P (Fi)
− has at most one vertex in N(F j). Consequently, N P (Fi)

− has at most 
r − 1 vertices of N(F ∗). Thus, N P (F ∗)− = ∪r

i=1N P (Fi)
− has at most r(r − 1) vertices of N(F ∗). Therefore, there is a set 

N∗ ⊆ N−
P (F ∗) \ N(F ∗) with t vertices, and hence Ks,t ⊆ G[F ∗, N∗], as desired. □

Now, we can prove Theorem 5, which requires a slightly weaker unbalance condition than Theorem 4.

Theorem 5. Let ε ∈ (0,1], and let s ≤ t be positive integers such that ε · t ≥ s2 − (3 + ε)s. If n ≥ (2 + ε)(s + t) and N ≥ (n − 1) + s, 
then K N → (Pn, Ks,t).

Proof. Fix a red–blue coloring of K N and let G be the graph induced by its red edges. Let P ⊆ G be a longest path in G . If 
N − |P | ≤ s − 1, then |P | ≥ n, as desired. Thus, we may assume that N − |P | ≥ s. However, as N = (2 + ε)(s + t) − 1 + s =
2t + (3 + ε)s + ε · t − 1 ≥ 2t + s2 − 1, applying the Lemma 5 with r = s we have Ks,t ⊆ G , as desired. □
3. Paths versus unbalanced graphs

To prove the main result of this section we need the following consequence of the well-known Pósa rotation-extension 
technique [5,19], which we restate for our purposes (for a proof see, e.g., [4]).

Lemma 6 ([5]). Let P be a longest path of a graph G. Then there is a set S ⊆ V (P ) for which N(S) ⊆ V (P ) and |N(S)| ≤ 2|S|.

Now we can prove Theorem 4.

Proof of Theorem 4. The proof follows by induction on k. If k = 2 the results follow from Theorem 5. Thus we may assume 
k ≥ 3, and that the statement holds for k′ < k. In this proof, we use the induction hypothesis either with m1, . . . ,mk−1 or 
with m2, . . . ,mk . In either case we have ε · mi ≥ 2m2

i−1 for every i in the considered interval.
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Fix a red–blue coloring of K N , and let G be the graph induced by its red edges. Let P be a longest path in G . If |P | ≥ n, 
then the statement follows. Thus, we may assume that |P | ≤ n − 1. We first deal with the case P is small.

Suppose that |P | ≤ n − m2 − 2m1 − 1. By Lemma 6 there is a set S ⊆ V (P ) such that N(S) ⊆ V (P ) and |N(S)| ≤ 2|S|. 
Thus, N − |S ∪ N(S)| ≥ N − |P | ≥ (n − 1)(k − 2) + m2. By induction hypothesis either Pn ⊆ G \ (︁

S ∪ N(S)
)︁

or Km2,...,mk ⊆
G \ (︁

S ∪ N(S)
)︁
. In the former case we have Pn ⊆ G as desired. Thus, we may assume that there is a copy K ′ of Km2,...,mk

in G \ (︁
S ∪ N(S)

)︁
. If |S| ≥ m1, then S together with V (K ′) induces a copy of Km1,...,mk in G , as desired. Therefore, we 

may assume that |S| ≤ m1 − 1. Now, let A be a maximum set in V (G) such that |A| ≤ m1 − 1 and |N(A)| ≤ 2|A|. Let 
G ′ = G \ (︁

A ∪ N(A)
)︁

and set N ′ = |V (G ′)| ≥ N − 3m1. Note that for every set A′ ⊆ V (G ′) with |NG ′ (A′)| ≤ 2|A′| we have 
|NG(A ∪ A′)| = |NG(A)| + |NG ′ (A′)| ≤ 2

(︁|A| + |A′|)︁, and hence, by the maximality of A, we have |A| + |A′| ≥ m1.
Now, let P ′ ⊆ G ′ be a longest path. Again, by Lemma 6 there is a set S ′ ⊆ V (P ′) such that NG ′ (S ′) ⊆ V (P ′) and |NG ′ (S ′)| ≤

2|S ′|. Since |NG ′(S ′)| ≤ 2|S ′|, we have |A| + |S ′| ≥ m1. Naturally, we have |P ′| ≤ |P | ≤ n − m2 − 2m1 − 1, and since S ′ ∪
NG ′ (S ′) ⊆ V (P ′), we have N ′ − |S ′ ∪ NG ′ (S ′)| ≥ N − 3m1 − |P | ≥ (n − 1)(k − 2) + m2. By induction hypothesis either Pn ⊆
G ′ \ (︁

S ′ ∪ NG ′ (S ′)
)︁

or Km2,...,mk ⊆ G ′ \ (︁
S ′ ∪ NG ′ (S ′)

)︁
. In the former case we have Pn ⊆ G as desired. Thus, we may assume 

that there is a copy K ′ of Km2,...,mk in G ′ \ (︁
S ′ ∪ NG ′ (S ′)

)︁
. Since no vertex in A ∪ S ′ is adjacent to a vertex of G ′ \(︁

S ′ ∪ NG ′ (S ′)
)︁

and |A ∪ S ′| = |A| + |S ′| ≥ m1, A ∪ S ′ ∪ V (K ′) induces a copy of Km1,...,mk in G , as desired.
Therefore, we may assume that n − 1 ≥ |P | ≥ n − m2 − 2m1. Now, consider G ′ = G \ V (P ). Since |G ′| = N − |P | ≥ (n −

1)(k − 2) + m1, by the induction hypothesis, either Pn ⊆ G ′ or Km1,...,mk−1 ⊆ G ′ . In the former case, we have Pn ⊆ G , as 
desired. Thus, we may assume that there is a copy K ′ of Km1,...,mk−1 in G ′ . Let K ∗ be the union of the components of G ′
that contain vertices of K ′ . Since K ∗ ⊆ G ′ = G \ V (P ), we have

|K ∗| + |P | ≤ N. (6)

Moreover, if N − |K ∗| − |N(K ∗)| ≥ mk , then there is a copy of Km1,...,mk in G obtained from K ′ by adding mk vertices of 
V (G) \ (︁

K ∗ ∪ N(K ∗)
)︁
. Therefore, we may assume that

N − |K ∗| − |N(K ∗)| ≤ mk − 1. (7)

Now, we use a simple induction to prove that for each i ≥ 2 we have mi ≥ 2(m1 + · · · + mi−1). Indeed, this holds for m2

since ε · m2 ≥ 2m2
1 ≥ 2m1. Now, since mi−1 ≥ 2m2

i−2 ≥ 2mi−2 ≥ 2, if mi−1 ≥ 2(m1 + · · · + mi−2), we have ε · mi ≥ 2m2
i−1 ≥

2mi−1 + mi−1 ≥ 2mi−1 + 2(m1 + · · ·+ mi−2) = 2(m1 + · · ·+ mi−1), as desired. Therefore, we have m2
i ≥ 2mi(m1 + · · ·+ mi−1). 

Summing over i ≥ 2, we have

ε(m1 + · · · + mk) =
k ∑︂

i=1 
ε · mi ≥

k−1 ∑︂

i=0 
2m2

i

=
k−1 ∑︂

i=0 
m2

i +
k−1 ∑︂

i=0 
2mi(m1 + · · · + mi−1) = (m1 + · · · + mk−1)

2. (8)

Summing (6) and (7), we obtain

|N(K ∗)| ≥ |P | − mk + 1 ≥ n − m2 − 2m1 − mk + 1

≥ mk + (m1 + · · · + mk−1)(m1 + · · · + mk−1 − 1),

where the last inequality follows by (8) because n ≥ (2 + ε)(m1 + · · · + mk).
Finally, by Lemma 4 given two distinct vertices u and v in K ∗ , N P (u)− has at most one vertex in N(v). Consequently, 

N P (u)− has at most m1 + · · · + mk−1 − 1 vertices of ∪v∈V (K ∗)\{u}N(v). Thus, N P (K ∗)− = ∪u∈V (K ∗)N P (u)− has at most 
(m1 + · · · + mk−1)(m1 + · · · + mk−1 − 1) neighbors of K ∗ . Therefore, there is a set N∗ ⊆ N P (K ∗)− \ N P (K ∗) with mk vertices, 
and hence N∗ ∪ V (K ∗) induces a copy of Km1,...,mk in G , as desired. □
4. Concluding remarks

In this paper we present a family of graphs H for which the family of H-good paths is almost as large as possible. We 
observe that the unbalance condition ε · mi ≥ 2m2

i−1 could be replaced by the slightly weaker condition ε(m1 + · · · + mi) ≥
(m1 + · · · + mi−1)(m1 + · · · + mi−1 − 1), but this would require a longer checking on the induction hypothesis conditions, 
while keeping a quadratic inequality. Nevertheless, we believe that the results presented in Section 1 could be deepened 
in order to improve the unbalance condition, perhaps to a subquadratic inequality. For example, it’s not hard to see the 
relation between Lemma 3 and Lemma 4. This connection suggests the existence of a more general result that considers a 
larger number of components of G \ V (P ).
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