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For a digraph D of order n and an integer 1 ≤ k ≤ n − 1, the k-token digraph of D is the 
digraph whose vertices are all k-subsets of vertices of D and, given two such k-subsets A
and B , (A, B) is an arc in the k-token digraph whenever {a} = A \ B , {b} = B \ A, and there 
is an arc (a,b) in D . Token digraphs are a generalization of token graphs. In this paper, 
we study some properties of token digraphs, including strong and unilateral connectivity, 
kernels, girth, circumference, and Eulerianity. We also extend some known results on the 
clique and chromatic numbers of k-token graphs, addressing the bidirected clique number 
and dichromatic number of k-token digraphs. Additionally, we prove that determining 
whether 2-token digraphs have a kernel is NP-complete.

© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let G be a simple graph of order n ≥ 2 and let k be an integer, with 1 ≤ k ≤ n − 1. The k-token graph of G , denoted 
by Fk(G), is the graph whose vertices are all the k-subsets of V (G), two of which are adjacent if their symmetric difference 
is a pair of adjacent vertices in G .

The name ``token graph'' is motivated by the following interpretation [16]. Consider a graph G and a fixed number k of 
indistinguishable tokens, with 1 ≤ k ≤ n − 1. A k-token configuration corresponds to the k tokens placed on distinct vertices 
of G , which corresponds to a subset of k vertices of G . Tokens can slide from their current vertex to an unoccupied adjacent 
vertex and, at each step, exactly one token can slide. Construct a graph whose vertices are the k-token configurations, and 
make two such configurations adjacent whenever one configuration can be reached from the other by sliding a token from 
one vertex to an adjacent vertex. This new graph is isomorphic to Fk(G). See an example in Fig. 1.

The k-token graphs are also called the symmetric kth power of graphs [5]. In fact, token graphs have been defined, 
independently, at least four times since 1988 (see [2,16,23,27]). They have been used to study the Isomorphism Problem 
in graphs by means of their spectra, and, so far, some applications of token graphs to Physics and Coding Theory are 
known [14,15,22,27]. In addition, token graphs are related to other well-known graphs, such as Johnson graphs and doubled 
Johnson graphs (see, e.g., [3,15]).
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Fig. 1. A graph G and its 2-token graph F2(G). 

Fig. 2. A digraph D and its 2-token digraph F2(D). 

In 2012, Fabila-Monroy et al. [16] reintroduced k-token graphs and proved tight lower and upper bounds on their di
ameter, connectivity, and chromatic number. They also characterized the cliques in token graphs in terms of the cliques in 
the original graph and established sufficient conditions for the existence or non-existence of a Hamiltonian path in various 
token graphs. They showed that if Fk(G) is bipartite for some k ≥ 1, then Fℓ(G) is bipartite for all ℓ ≥ 1. Carballosa et 
al. [10] then characterized, for each value of k, which graphs have a regular k-token graph and which connected graphs 
have a planar k-token graph. Also, de Alba et al. [13] presented a tight lower bound for the matching number of Fk(G) for 
the case in which G has either a perfect matching or an almost perfect matching, estimated the independence number for 
bipartite k-token graphs, and determined the exact value of the independence number for some graphs. Adame et al. [1] 
provided an infinite family of graphs, containing Hamiltonian and non-Hamiltonian graphs, for which their k-token graphs 
are Hamiltonian.

In this paper, we consider a generalization of token graphs to digraphs. A digraph D consists of a non-empty finite set 
V (D) of elements called vertices and a finite set A(D) of ordered pairs of distinct vertices called arcs. Let D be a digraph 
on n vertices and let k be an integer with 1 ≤ k ≤ n − 1. The k-token digraph of D , denoted by Fk(D), is the digraph whose 
vertices are all the k-subsets of V (D) and, for two such k-subsets A and B , (A, B) is an arc in Fk(D) whenever {a} = A \ B , 
{b} = B \ A, and there is an arc (a,b) in D . See Fig. 2 for an example.

As far as we know, the only generalization of token graphs to digraphs prior to our work was proposed by Gao and 
Shao [20] in 2009 for k = 2 tokens, but with the following difference: they considered 2-tuples of vertices instead of 2
subsets. This corresponds to distinct tokens.

In the final stage of this work, we became aware of a master’s thesis by Fernández-Velázquez [17], which independently 
introduces the concept of token digraphs as proposed here. In [17], the author investigates several invariants of token 
digraphs, including strong connectivity, diameter, and the existence of cycles. The thesis also examines the regularity of 
token digraphs derived from regular tournaments, and explores the game of cops and robbers on token digraphs of specific 
digraph families, such as cycles, trees, and Cartesian products. Our contributions are complementary: we provide a complete 
characterization of strong connectivity and unilaterality through the strong component digraph of a digraph D , establish 
results on the directed girth, circumference, and Eulerianity of token digraphs with respect to D , and study the bidirected 
clique number and the dichromatic number of k-token digraphs.

A kernel of a digraph D is an independent set of vertices K ⊆ V (D) such that, for every vertex v ∈ V (D) \ K , there is 
an arc from v to some vertex in K . The notion of a kernel is classical in digraph theory (see, e.g., Chapter 3 of [6]) and it 
was originally introduced by von Neumann and Morgenstern [29] in the context of game theory. Since then, it has found 
several applications in logic [7,8,30] and combinatorics [4,19]. Note that, in the context of token digraphs, a kernel consists 
of a set of configurations that are pairwise non-adjacent by a single move and which are reachable in one move from every 
other configuration. In this work, we also study the existence of kernels in token digraphs. Moreover, we show that deciding 
whether F2(D) has a kernel is NP-complete.

The paper is organized as follows. Section 2 presents some notation and states some basic properties we will use 
throughout the paper. In Section 3, we present results regarding strong connectivity of token digraphs while in Section 4
we present some results regarding kernels of token digraphs. In particular, Section 4 transfers the ``no odd cycle'' condition 
from D to Fk(D) and shows that deciding whether F2(D) has a kernel is NP-complete (via an adaptation of Chvátal’s reduc
tion). Section 5 considers unilateral digraphs, and characterizes when their token digraphs are also unilateral. In Section 6, 
we analyze the relation between the directed girth and circumference of a digraph and their value for its token digraphs 
and, in Section 7, we study whether the fact that a digraph is Eulerian or Hamiltonian implies that its token digraphs 
are also Eulerian or Hamiltonian, respectively. Section 8 determines some relations between the bidirected clique number 
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of a digraph and the bidirected clique number of its token digraphs. Finally, Section 9 studies acyclic partitions, and the 
dichromatic number of a digraph and its token digraphs. We conclude with some final remarks in Section 10.

2. General definitions and basic properties

The notation and terminology for digraphs used in this paper follow closely Bang-Jensen and Gutin [6].
We denote the complete graph on n vertices by Kn , the wheel graph on n + 1 vertices by Wn , and the cycle graph on n

vertices by Cn .
Let D be a digraph. For an arc (x, y) ∈ A(D), we say x is an in-neighbor of y while y is an out-neighbor of x. The in-degree 

of a vertex v is the number of in-neighbors of v , denoted by d−(v), and the out-degree of v is the number of out-neighbors 
of v , denoted by d+(v).

A path of D is a sequence (v1, v2, . . . , vk) of vertices of D such that vi ≠ v j for all i ≠ j and (vi, vi+1) ∈ A(D) for all 
1 ≤ i < k. An (x, y)-path in D is a path from vertex x to vertex y. A cycle is a sequence (v1, v2, . . . , vk, vk+1) of vertices 
of D such that (v1, v2, . . . , vk) is a path, vk+1 = v1 and (vk, v1) ∈ A(D). The length of a path or cycle is the number of arcs 
it contains. A digon is a cycle of length 2 of D . We say that a cycle or path is odd (resp. even) if its length is odd (resp. 
even).

For a graph G , we denote by 
←→
G the digraph obtained from G by replacing each edge of G by a digon. In [6], they refer 

to 
←→
G as the complete biorientation of G . For a digraph D , the reverse of D , denoted as 

←−
D , is the digraph obtained from D

by reversing every arc of D . The underlying graph of D is the undirected graph obtained by replacing each arc of D by an 
undirected edge between the same pair of vertices, and removing any multiple edges.

A digraph is acyclic if it has no cycles. An acyclic digraph is referred to as a DAG (acronym for directed acyclic graph). A 
vertex of a digraph D with out-degree zero is called a sink. It is known that every DAG has at least one sink.

A k-token configuration is a k-subset of vertices of D , and the vertices of the token digraph Fk(D) are k-token configu
rations of D . In several of our proofs, we will use the interpretation of an arc XY of Fk(D) existing when one can slide or 
move one token from X to Y . Also, in order to avoid confusion, we will use nodes to refer to vertices of token digraphs.

It is easy to see that, for every graph G on n vertices, the token graph Fk(G) is isomorphic to the token graph Fn−k(G). 
In particular, if n is even, this gives a non-trivial automorphism on Fn/2(G). The following properties hold.

Property 2.1. For a digraph D of order n, the k-token digraph Fk(D) is isomorphic to the (n − k)-token digraph Fn−k(
←−
D ).

Property 2.2. For a digraph D, the k-token digraphs Fk(D) and 
←−−→
Fk(

←−
D ) are isomorphic.

Property 2.3. For a graph G, the k-token digraphs Fk(
←→
G ) and 

←−→
Fk(G) are isomorphic.

3. Strong connectivity aspects of token digraphs

Let D be a digraph. We say that D is weakly connected1 if its underlying graph is connected. Note that D is weakly 
connected if and only if Fk(D) is weakly connected. This comes from the fact that Fk(G) is connected if and only if G is 
connected [16, Theorems 5 and 6]. In this section, we strengthen this result by establishing the analogous statement for 
strong connectivity. We note that this was previously proved, using a slightly different approach, in [17, Proposition 13].

A digraph D is strongly connected if, for every two vertices x and y of D , there is an (x, y)-path and a (y, x)-path. 
A digraph that is not strongly connected consists of some strongly connected components, which are the maximal strongly 
connected subdigraphs of D plus possibly some arcs connecting these components in a restricted way. Thus, to understand 
strong connectivity aspects of Fk(D) in general, it is important to consider the case in which D is strongly connected.

Lemma 3.1. Let D be a strongly connected digraph, and let A and B be two nodes of Fk(D). There is an (A, B)-path in Fk(D).

Proof. Recall that A and B are k-subsets of V (D). The proof is by induction on |A \ B|. Clearly if |A \ B| = 0, then A = B
and there is nothing to prove. Suppose |A \ B| > 0. Observe that this implies |A ∩ B| ≤ k − 1 and, consequently, |B \ A| > 0, 
since |B| = k. Let P be a shortest path in D from a vertex in A \ B to a vertex in B \ A. Call a the initial vertex of P and b
the terminal vertex of P . The goal is to move the token from A in a to b going through the vertices in P . However there 
might be tokens of A and B on the way. Let u1, . . . , ut be the vertices on P , in order, that are in A ∩ B . Let u0 = a and 
ut+1 = b. For i ∈ {0,1, . . . , t} in decreasing order, we move the token from A in ui to ui+1 through the vertices of P . The 
resulting k-token configuration is A′ = (A \ {a}) ∪ {b}, and the previous process describes a path from A to A′ in Fk(D). 
Now, as |A′ \ B| = |A \ B| − 1, by induction, there is a path in Fk(D) from A′ to B . These two paths together contain a path 
from A to B in Fk(D). □

1 In [6], they use connected for this concept.
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Fig. 3. A digraph D with three strongly connected components, the 2-token digraph F2(D) with five strongly connected components (for simplicity, we 
omit the brackets and place labels inside the vertices), and the digraph isomorphic to SC(F2(D)) whose vertex set is V 2(4,2,1).

The previous result directly implies that, if D is strongly connected, then Fk(D) is also strongly connected. We now 
address digraphs that are not necessarily strongly connected.

Let C1, . . . , Ct be the strongly connected components of D . The strong component digraph of D , denoted by SC(D), is 
obtained from D by collapsing all vertices in each Ci to a single vertex, which we also denote as Ci , and removing any 
resulting parallel arcs and loops. It is known that the strong component digraph of any digraph is a DAG. Hence we may 
assume without loss of generality that C1, . . . , Ct is a topological ordering of the vertices of SC(D), that is, all arcs in SC(D)

go from a Ci to a C j with i < j.
Let D1 and D2 be two digraphs. The Cartesian product of D1 and D2 is the digraph whose vertex set is the Cartesian 

product V (D1) × V (D2), and there is an arc between (u1, u2) and (v1, v2) if and only if u1 v1 ∈ A(D1) and u2 = v2, or 
u2 v2 ∈ A(D2) and u1 = v1. In what follows, we abuse notation and treat a strongly connected component of a digraph as 
its vertex set.

Lemma 3.2. Let D be a digraph and C1, . . . , Ct be a topological ordering of the strongly connected components of D. Let A be a node 
of Fk(D) and let k j = |A ∩ C j| for j ∈ {1, . . . , t}. Then the strongly connected component of Fk(D) containing A is isomorphic to the 
Cartesian product of Fk j (C j) for every j with k j > 0.

Proof. Let J := { j ∈ [t] : k j > 0}. By Lemma 3.1, Fk j (C j) is strongly connected for each j ∈ J . Since the Cartesian product 
of strongly connected digraphs is strongly connected, the strongly connected component of Fk(D) containing A contains ∏︁

j∈ J Fk j (C j). Note that if B is a configuration obtained from A by sliding a token along an arc not contained in any 
strongly connected component of D , then B cannot reach A in Fk(D). In particular, if B / ∈ ∏︁

j∈ J Fk j (C j), then either B is 
unreachable from A, or any (A, B)-path must use such an arc, implying that B cannot reach A. Therefore, the strongly 
connected component of Fk(D) containing A is precisely 

∏︁
j∈ J Fk j (C j). □

Let D be a digraph and C1, . . . , Ct be a topological ordering of the strongly connected components of D , as in Lemma 3.2. 
For each integer vector (k1, . . . ,kt) such that 0 ≤ ki ≤ |Ci | for every i and 

∑︁t
i=1 ki = k, there is a strongly connected com

ponent of Fk(D) isomorphic to the Cartesian product of Fk j (C j) for every j with k j > 0. Let Vk(c1, . . . , ct) be the set of 
such vectors, where ci = |Ci |. For two vectors (k1, . . . ,kt) and (k′

1, . . . ,k′
t) in Vk(c1, . . . , ct), we say there is an (i, j)-move from 

(k1, . . . ,kt) to (k′
1, . . . ,k′

t) if kℓ = k′
ℓ for every ℓ ≠ i, j, and k′

i = ki − 1 and k′
j = k j + 1. For a node A of Fk(D), let k j = |A ∩ C j|

for 1 ≤ j ≤ t . We say the integer vector (k1, . . . ,kt) is the vector associated to A. Note that this vector is in Vk(c1, . . . , ct).
We are ready to completely characterize the strong component digraph of Fk(D) in terms of the strong component 

digraph of D . See Fig. 3 for an example.

Theorem 3.3. Let D be a digraph and C1, . . . , Ct be a topological ordering of its strongly connected components. The strong component 
digraph SC(Fk(D)) is isomorphic to the DAG whose vertex set is Vk(|C1|, . . . , |Ct |) and with an arc from (k1, . . . ,kt) to (k′

1, . . . ,k′
t) if 

and only if there are indices i < j such that there is an (i, j)-move from (k1, . . . ,kt) to (k′
1, . . . ,k′

t) and there is an arc from Ci to C j in 
SC(D).

Proof. Lemma 3.2 characterized the strongly connected components of Fk(D), and thus the vertex set of its strong com
ponent digraph SC(Fk(D)). Let (k1, . . . ,kt) and (k′

1, . . . ,k′
t) be vertices of SC(Fk(D)). Observe that there is an arc from 

(k1, . . . ,kt) to (k′
1, . . . ,k′

t) if and only if there are two nodes A and B of Fk(D) with associated vectors (k1, . . . ,kt) and 
(k′

1, . . . ,k′
t) respectively, such that there is an arc in Fk(D) from A to B .

That happens if and only if A and B differ in exactly one token, and this token must have moved from a vertex a to a 
vertex b of D , through an arc of D , with a and b being in different strongly connected components of D . Let Ci and C j be 
the strongly connected components of D containing a and b respectively. Then there is an arc from Ci to C j in SC(D) and 
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Fig. 4. Two examples of a digraph D and its 2-token digraph F2(D). (a) Digraph D has a kernel, namely the set {a, c}, while F2(D) does not. (b) The 
opposite occurs: the five external vertices form a kernel of F2(D).

so i < j. Moreover, kℓ = k′
ℓ for every ℓ ≠ i, j, and k′

i = ki − 1 and k′
j = k j + 1. Hence there is an (i, j)-move from (k1, . . . ,kt)

to (k′
1, . . . ,k′

t), and the theorem holds. □
In particular, we derive the following from Theorem 3.3.

Corollary 3.4. The digraph Fk(D) is strongly connected if and only if D is strongly connected.

Corollary 3.5. The digraph Fk(D) is acyclic if and only if D is acyclic.

4. Kernels

For a set S of vertices in a digraph D , let N−[S] = S ∪{u ∈ V (D) : (u, v) ∈ A(D) and v ∈ S}. Recall that a set K of vertices 
in D is a kernel if K is independent and N−[K ] = V (D). Von Neumann and Morgenstern [29] showed that every DAG has 
a unique kernel. This result, together with Corollary 3.5, also shows that the token digraph of a DAG has a unique kernel. 
Indeed, the kernel of a DAG D can be obtained iteratively as follows. Start with D ′ = D and let S1 be the set of sinks of D ′; 
remove N−[S1] from D ′ and repeat the process until D ′ vanishes, that is, let S2 be the set of sinks of the remaining D ′; 
remove N−[S2] from D ′ and so on. The set K = S1 ∪ S2 ∪ · · · is the unique kernel of D .

Richardson [26] later generalized von Neumann and Morgenstern’s result to graphs with no odd cycle.

Theorem 4.1 ([26]). Every digraph with no odd cycle has a unique kernel.

We now prove the following theorem, which, together with Theorem 4.1, implies that if D has no odd cycle, then D
and Fk(D) have unique kernels.

Theorem 4.2. If D is a digraph with no odd cycles, then Fk(D) has no odd cycles.

Proof. Because D has no odd cycles, every strongly connected component C of D is bipartite. Let X and Y be a bipartition 
of the vertex set of C . For every i with 0 ≤ i ≤ k, a node of Fi(C) is an i-token configuration in C , and it has an even or an 
odd number of vertices in X . That induces a bipartition of Fi(C), as a move of a token goes from X to Y or vice-versa, and 
always changes the parity of the configuration within X . Thus, each Fi(C) is also bipartite.

Because each Fi(C) is bipartite, and the Cartesian product of bipartite digraphs is bipartite (Lemma 2.6 in [28]), we 
conclude by Lemma 3.2 that the strongly connected components of Fk(D) are bipartite, and hence Fk(D) has no odd 
cycles. □

These results might suggest a connection between kernels in a digraph D and kernels in its token digraph Fk(D), which 
could be valuable for our understanding of the existence of kernels in digraphs with odd cycles. However, in Fig. 4(a), we 
show a digraph D with a triangle that has a kernel, but for which F2(D) does not have a kernel, and, in Fig. 4(b), we show 
a digraph D that does not have a kernel, but for which F2(D) has a kernel.

Moreover, by adapting parts of Chvátal’s proof [11] that deciding whether a digraph D has a kernel is NP-complete, we 
show that deciding whether F2(D) has a kernel is also NP-complete.

Chvátal’s reduction is from 3-SAT. From a 3-SAT formula ϕ, he builds a digraph D such that D has a kernel if and only 
if ϕ is satisfied. The idea is to use the same construction, but to add a universal sink vertex u to D . The resulting digraph D ′
is such that ϕ has a not-all-equal satisfying assignment if and only if F2(D ′) has a kernel. So we would need to do the 
reduction from the following variant of 3-SAT, which is also NP-complete [21]. The problem NAE-3-SAT consists of, given a 
3-SAT formula, to decide whether there is an assignment for the variables such that each clause has either one or two true 
literals. We call such an assignment a NAE assignment.

Theorem 4.3. The problem of, given a digraph D, deciding whether F2(D) has a kernel is NP-complete.

5 
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Fig. 5. The digraph D for the 3-SAT formula ϕ = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x3 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x̄4). The vertices in red form a kernel for the digraph D ′ = D − u. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Proof. Given a 3-SAT formula ϕ on variables x1, . . . , xn , call C1, . . . , Cm the clauses in ϕ. Consider the following digraph D
built from ϕ. For each variable x j , there is a vertex labeled x j and a vertex labeled x̄ j in D . These are called literal vertices. 
For each clause Ci , there are three vertices in D , each labeled by one of the three literals in Ci . These are called clause 
vertices. The two literal vertices for variable x j induce a digon in D , and these digons are called variable digons. The three 
vertices of a clause induce a triangle, and these are called the clause triangles. Additionally, there is an arc from a vertex in a 
clause triangle to a literal vertex whenever they have the same label. Finally, there is a vertex u, with arcs from each literal 
vertex to u. Let us denote by C ⊆ V (D) the set of clause vertices and by L ⊆ V (D) the set of literal vertices. See an example 
in Fig. 5.

Let D ′ be D without vertex u. Observe that D ′ is exactly the digraph from the reduction of Chvátal [11], so we know 
that D ′ has a kernel if and only if ϕ is satisfiable. Note that any kernel for D ′ contains a vertex in each variable digon. First 
we will prove that there is a NAE assignment for ϕ if and only if D ′ has a kernel that contains exactly one vertex in each 
variable digon and exactly one vertex in each clause triangle. We refer to such a kernel as special. Second, we will prove 
that D ′ has a special kernel if and only if F2(D) has a kernel. These two statements imply the theorem.

Suppose there is a NAE assignment for ϕ. We define a set K of vertices in D ′ as follows: first, include in K the true 
literal from each variable digon; then, for each clause triangle, include one vertex labeled by a false literal. If a clause 
triangle contains two vertices labeled by false literals, choose the one that is an out-neighbor of the other. The red vertices 
in Fig. 5 show one such set K corresponding to the assignment x1 = x2 = x4 = T and x3 = F . Note that K is an independent 
set, and every vertex in D ′ is either in K or has an arc to a vertex in K . Thus K is a special kernel in D ′ .

Now, suppose K is a special kernel in D ′ . Consider the truth assignment that makes true exactly the literals that are 
labels of literal vertices in K . This is well-defined because there is exactly one vertex in K in each variable digon. We must 
argue that this is a NAE assignment for ϕ. In each clause triangle, there is exactly one vertex in K . Because K is independent, 
the literal that labels this vertex is false in the assignment, and this assignment does not satisfy all three of the literals in 
each clause. On the other hand, for each clause triangle, one of the two vertices not in K is not an in-neighbor of the vertex 
in K in this triangle. As K is a kernel, this vertex has to be an in-neighbor of the literal vertex with the same label, which 
means the clause is satisfied. That is, this assignment is a NAE assignment for ϕ.

Now we prove that D ′ has a special kernel if and only if F2(D) has a kernel. We start by arguing that if F2(D) has 
a kernel, then D ′ has a special kernel. First notice that the token graph F2(D) has two parts. One of them is isomorphic 
to F1(D ′), which in turn is isomorphic to D ′ itself, and corresponds to the 2-token configurations in D that have one token 
always in u. The second part corresponds to 2-token configurations with the two tokens being in D ′ . Note that all the arcs 
between the first and the second part go from the second part to the first one, because u is a sink. Hence, any kernel K
of F2(D) induces a kernel K ′ in D ′ , namely, take K ′ = {x ∈ V (D ′) : {u, x} ∈ K }. Let us argue that K ′ is a special kernel in D ′ . 
Recall that C ⊆ V (D) is the set of clause vertices and L ⊆ V (D) is the set of literal vertices. To ease the exposition, let us 
refer to a 2-token configuration in D as one of the following types, depending on where the two tokens are: a uL, uC , LL, 
LC , or a CC configuration.

Suppose, by means of a contradiction, that K ′ is not special. This means that there is a triangle clause △ with no vertex 
in K ′ . Because K ′ is a kernel in D ′ , from each vertex y in △, the arc from y to L goes to a vertex in K ′ . Let x be an arbitrary 
variable, and consider the 2-token configurations with one token in the variable digon associated with x and the other in △. 
Call Z this set of LC configurations. Let us argue that no neighbor of configurations in Z outside Z are in K . There are arcs 
from LC configurations to uC , LL, and LC configurations. The uC configurations that receive arcs from configurations in Z
are not in K , because they consist of u and a vertex in C \ K ′ . The LL configurations that receive arcs from configurations 
in Z are also not in K , because at least one of the two vertices in L is in K ′. Moreover, if there is an arc from a configuration 
in Z to an LC configuration, the latter is also in Z . Hence, K must contain a kernel of the subdigraph of F2(D) induced 
by Z . See Fig. 6 for an example of such subdigraph. However, one can check that this digraph has no kernel.

It remains to show that if D ′ has a special kernel, then F2(D) has a kernel. Let K ′ be a special kernel in D ′ . There is 
exactly one vertex from K ′ , say y, in each clause triangle △. The vertex not in K ′ in △ that is an in-neighbor of y is called 
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Fig. 6. The subdigraph of F2(D) for D from Fig. 5, with △ being the triangle for clause x1 ∨ x̄2 ∨ x3 and x = x1. We name x△
1 , x̄△

2 , x△
3 the vertices in △ whose 

labels are x1, x̄2, x3 respectively.

the dominating vertex in △ while the other vertex in △ not in K ′ is called undominating vertex. Note that the undominating 
vertex is an in-neighbor of a literal vertex in K .

Let us now describe a kernel in F2(D) from K ′ . For that, let S1 = {{u, v} : v ∈ K ′}. This is an independent set, because K ′
is an independent set in D ′ . Let S2 = {{v, v ′} : v, v ′ ∈ L and v, v ′ / ∈ K ′}. Because K ′ is special, there is a vertex in K ′ in each 
variable digon. Thus, as there is no arc between variable digons, the 2-token configurations in S2 form an independent set. 
In fact, S1 ∪ S2 is also an independent set, because the tokens in configurations of S2 are in vertices not in K ′ , while the 
tokens in literal vertices in configurations of S1 are in vertices from K ′. Let S3 = {{v, y} : either v ∈ K ′ ∩ L and y ∈ C is 
a dominating vertex, or v ∈ L \ K ′ and y ∈ C is an undominating vertex}. Clearly, S3 is an independent set. Also, because 
a token in C cannot move to u, and a token in an undominating vertex can only move to a vertex in L that is in K ′ , we 
can see that S1 ∪ S2 ∪ S3 is also an independent set. At last, let S4 = {{y, z} : y, z ∈ C and either y, z ∈ K ′ , or y, z are both 
dominating vertices not neighboring a vertex in L ∩ K ′ , or y, z are both undominating vertices, or both y and z are in 
the same clause triangle with y ∈ K ′ and z being a dominating vertex}. Clearly, S4 is independent. Also, we can see that 
K = S1 ∪ S2 ∪ S3 ∪ S4 is also an independent set, because a token in an undominating vertex can only go to a vertex in L
that is in K ′ .

Finally, let us argue that K is a kernel of F2(D). Consider an arbitrary node S of F2(D). If S ∈ K , there is nothing to 
prove, so we may assume S / ∈ K . If u ∈ S , then the second vertex in S is not in K ′ , otherwise S would be in S1, so there is 
an arc from S to a configuration in S1, because K ′ is a kernel in D ′ . If u / ∈ S , then there are three cases. In the first case, 
S contains only literal vertices. Then, because S ∉ S2, there is a vertex from K ′ in S , and hence there is an arc from S to a 
configuration in S1. In the second case, S = {v, y} contains a literal vertex v and a clause vertex y. If y ∈ K ′ , then there is 
an arc from S to the configuration {u, y} in S1. Thus either y is a dominating vertex and v / ∈ K ′ , or y is an undominating 
vertex and v ∈ K ′ (otherwise S would be in S3); either way, there is an arc from S to a configuration in S3 (obtained 
by moving the token in L to the other literal vertex in the same digon). In the last case, S = {y, z} contains only clause 
vertices. If {y, z} ∩ K ′ = ∅, then one of them is dominating and the other (dominating or undominating) has a neighbor 
in X ∩ K ′ , which means there is an arc from S to a configuration in S3. Otherwise we may assume y ∈ K ′ , and either z is 
the dominating vertex in another clause triangle, or z is undominating, and there is always an arc from S to S4. Indeed, in 
the former case, we can move the token in z to the vertex in K ′ in the same triangle and, in the latter case, if both y and z
are in the same triangle, then we can move the token in z to the dominating vertex in the same triangle, and if y and z are 
in different clause triangles, we can move the token from y to the undominating vertex in the same triangle. □
5. Unilateral digraphs and their token digraphs

A digraph D is unilateral if, for every pair of vertices x and y, there is an (x, y)-path or a (y, x)-path (or both). Note 
that a digraph can be weakly connected without being unilateral (take, for instance, the antipath, i.e., an oriented path that 
alternates the direction of its arcs). We use the next theorem to characterize when Fk(D) is unilateral.

Theorem 5.1 (Theorem 7.2 in   [18]). A digraph D is unilateral if and only if the strong component digraph SC(D) has a Hamiltonian 
path.

Because SC(D) is a DAG for every digraph D , the Hamiltonian path of SC(D) for a unilateral digraph D given by Theo
rem 5.1 is unique.

Obviously, as F1(D) is isomorphic to D , if D is unilateral, then so is F1(D). Moreover, F1(D) is isomorphic to Fn−1(D), 
where n is the number of vertices in D . The next theorem addresses the remaining cases, that is, when 2 ≤ k ≤ n − 2.

Theorem 5.2. Let D be a digraph of order n with C1, . . . , Ct being its strongly connected components, and let k be an integer such that 
2 ≤ k ≤ n − 2. Then Fk(D) is unilateral if and only if D is unilateral and either t ≤ 2 or t = 3 with |C2| = 1.
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Proof. Let us first show that if D is unilateral and either t ≤ 2 or t = 3 with |C2| = 1, then Fk(D) is unilateral. Since D
is unilateral, let C1, . . . , Ct be the strongly connected components of D in the order given by the Hamiltonian path of 
Theorem 5.1.

We start by considering the case t ≤ 2. If t = 1, then D is strongly connected and so it is Fk(D) by Corollary 3.4, and 
hence Fk(D) is unilateral. For t = 2, according to Theorem 3.3, the vertices of SC(Fk(D)) are pairs (k1,k2), for 0 ≤ ki ≤ |Ci |
and k1 + k2 = k. Let k1 = min{k, |C1|} and k2 = min{k, |C2|}. The following is a Hamiltonian path in SC(Fk(D)):

((k1,k − k1), (k1 − 1,k − k1 + 1), (k1 − 2,k − k1 + 2), . . . , (k − k2,k2)) .

Therefore, by Theorem 5.1, Fk(D) is unilateral.
Now, suppose that D is unilateral, t = 3 and |C2| = 1. If k ≤ |C1|, then the following is a Hamiltonian path in SC(Fk(D)):

(︁
(k,0,0), (k − 1,1,0), (k − 1,0,1), (k − 2,1,1), (k − 2,0,2), (k − 3,1,2), . . . , v

)︁
,

where the last vertex v is either (0,0,k) if k ≤ |C3|, or (k − |C3| − 1,1, |C3|) otherwise. If k > |C1|, then the following is a 
Hamiltonian path in SC(Fk(D)):

(︁
(|C1|,1,k − |C1| − 1), (|C1|,0,k − |C1|), (|C1| − 1,1,k − |C1|),

(|C1| − 1,0,k − |C1| + 1), (|C1| − 2,1,k − |C1| + 1), . . . , v
)︁
,

where again v is either (0,0,k) if k ≤ |C3|, or (k − |C3| − 1,1, |C3|) otherwise.
For the other direction, we prove the contrapositive, that is, we show that if D is not unilateral or t ≥ 4 or t = 3 with 

|C2| ≥ 2, then Fk(D) is not unilateral.
Suppose that t ≥ 4 or t = 3 with |C2| ≥ 2. Let C ′ = C2 ∪ · · · ∪ Ct−1, so |C ′| ≥ 2. Take A to be an arbitrary k-token 

configuration of D such that |A ∩ C1| ≥ 1, |C ′ \ A| ≥ 2, and |A ∩ Ct | ≥ 1. Such a set exists because k ≥ 2, which assures we 
can select A with |A ∩ C1| ≥ 1 and |A ∩ Ct | ≥ 1, and because |C ′| ≥ 2 and k ≤ n − 2 = |C1| + |C ′| + |Ct | − 2, which assures we 
can also choose A that does not contain at least two vertices w and z in C ′ . Let x and y be vertices in A ∩ C1 and A ∩ Ct , 
respectively. Let B be the k-token configuration (A \ {x, y}) ∪ {w, z}. Then, there is no (A, B)-path in Fk(D) because there is 
no way to move tokens from A to a configuration with fewer vertices in Ct , such as B . Also, there is no (B, A)-path because 
there is no way to move tokens from B to a configuration with more vertices in C1, such as A. Therefore, Fk(D) is not 
unilateral.

Suppose now that D is not unilateral. Then clearly t ≥ 3. By the previous case, we may assume that t = 3 and |C2| =
1. As we observed in Section 3, D is weakly connected if and only if Fk(D) is weakly connected, so we may assume 
that D is weakly connected. Let y be the unique vertex in C2. Since D is not unilateral, SC(D) has exactly two arcs, which 
are {(C1, C3), (C2, C3)} or {(C1, C2), (C1, C3)}. Note that if SC(D) has the arcs {(C1, C3), (C2, C3)}, then SC(

←−
D ) has the arcs 

{(C1, C2), (C1, C3)}, and vice-versa. So, given that D is unilateral if and only if 
←−
D is unilateral, we may assume the former 

case. Now, take a configuration A with y / ∈ A and |A ∩ C1| ≥ 1. Let x ∈ A ∩ C1, and let B := (A \ {x})∪{y}. Observe that there 
is no (A, B)-path because no token at vertices in A can be moved to the vertex y ∈ C2. Further, there is no (B, A)-path 
because no token at vertices in B ∩ (C2 ∪ C3) can be moved to a vertex in C1. Hence, Fk(D) is not unilateral. □
6. Directed girth and circumference

The directed girth of a digraph D is the length of the shortest cycle in D , and it is denoted by g(D). The directed 
circumference of D is the length of a longest cycle in D , and it is denoted by c(D).

Theorem 6.1. For every digraph D on n vertices and for each k ∈ {1,2, . . . ,n − 1}, g(D) = g(Fk(D)) and c(D) ≤ c(Fk(D)).

Proof. Let C be a cycle in D of length t . Let A be a k-token configuration in D with at least one and at most t − 1 tokens 
in C . Such a configuration exists because 1 ≤ k ≤ n − 1. We can move around the tokens in C to obtain a cycle in Fk(D) of 
length exactly the length of C , that is, t . This implies that g(D) ≥ g(Fk(D)) and c(D) ≤ c(Fk(D)).

Now, let C be a cycle in Fk(D) of length t . Let us argue that there is a corresponding cycle C ′ in D of length at most t . 
Let C = (A0, . . . , At), where A0 = At . While traversing C , each of the k tokens traverses a path from a vertex in A0 back to 
a vertex in A0 (the same vertex or another one). Let D ′ be the subdigraph of D whose arc set consists of all arcs traversed 
in such paths of length at least one, and whose vertex set consists of the endpoints of these arcs. Hence, every vertex in D ′
has outdegree at least one, and thus D ′ contains a cycle. Clearly, this cycle has length at most t , as D ′ has exactly t arcs. 
For t = g(Fk(D)), this means that g(D) ≤ g(D ′) ≤ t = g(Fk(D)), which allows us to conclude that g(D) = g(Fk(D)). □

Now we consider the directed circumference of token digraphs. Since F1(D) is isomorphic to D and Fn−1(D) is isomor

phic to 
←−
D , we have that c(F1(D)) = c(Fn−1(D)) = c(D). On the other hand, when 2 ≤ k ≤ n−2, there exist many digraphs D

such that c(D) < c(Fk(D)). Indeed, Fk(D) is much larger than D and, for instance, Fk(
←→
Kn ) is a Hamiltonian digraph, and so 

c(Fk(
←→
Kn )) > c(

←→
Kn ) as long as n ≥ 4 and 2 ≤ k ≤ n − 2.
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Also, there exist non-Hamiltonian graphs whose k-token graphs are Hamiltonian (see [1]), and we can consider the di
graph D obtained from such graphs by replacing each edge with the two possible arcs. It is straightforward to see that Fk(D)

is Hamiltonian, so the same holds for these digraphs.

Theorem 6.2. Let D be a digraph on n vertices with c(D) ≥ 5 and 2 ≤ k ≤ n −3. Let r = 2 if k = 2 and r = min{max{k,n −k}, c(D)−
3} otherwise. Then c(Fk(D)) ≥ r c(D).

Proof. As c(D) = c(
←−
D ) and Fk(D) is isomorphic to the token graph Fn−k(

←−
D ), we can assume that either k = 2 or k ≥ n −k. 

Let c = c(D) and C be a cycle of length c in D . Assume without loss of generality that V (C) = {0,1, . . . , c − 1}. In what 
follows, sums and subtractions are taken mod r.

First, suppose that r = k ≤ c − 3. Let Xi = {i, i + 1, . . . , i + k}, for each i ∈ V (C). Clearly |Xi ∩ Xi+1| = k. Now, note 
that |V (C) \ Xi | = c − (k + 1) ≥ 2, which means that |Xi ∩ X j | < k if | j − i| ≠ 1, because i and i + 1 are not in X j for 
j ∈ {i + 2, . . . , i + k − 1} (as the last element in X j in this case would be at most i + k − 1 + k = i − 1), i + 1 and i + k − 1
are not in Xi+k (as the last element in Xi+k is i), and i + k − 1 and i + k are not in X j for j ∈ {i + k + 1, . . . , i − 2} (as the 
last element in X j in this case would be at most i + k − 2).

Let Pi be the path in Fk(D) from Xi−1 ∩ Xi = {i, i + 1, . . . , i + k − 1} to Xi ∩ Xi+1 = {i + 1, i + 2, . . . , i + k}, obtained from 
moving one by one the token from j to j + 1, for j ∈ {i, . . . , i + k − 1} in decreasing order, where the sum is taken mod r. 
It is readily seen that Pi is a path in Fk(D) of length k, and that its vertices correspond to k-token configurations contained 
in Xi . Because of this, as |Xi ∩ X j | < k if | j − i| ≠ 1, paths Pi and P j do not intersect if | j − i| ≠ 1. Moreover, Pi starts at 
the end of Pi−1, hence we can concatenate P0, P1, . . . , Pc−1 to obtain a cycle of length kc in Fk(D), which implies that 
c(Fk(D)) ≥ kc = rc.

Now suppose that r = c − 3 < k. As k ≤ n − 3, there are k − r vertices outside C . Consider the subdigraph H of Fk(D)

generated by moving r tokens on V (C), whereas the remaining k − r tokens are fixed outside C . Thus, H ≃ Fr(C) and, then, 
by the first part of the proof, we deduce that there is a cycle in H of order rc. This completes the proof. □
7. Eulerian and Hamiltonian digraphs

A digraph D is Eulerian if D is weakly connected and d+
D (v) = d−

D (v) for all v ∈ V (D).

Theorem 7.1. For every natural k, the digraph D is Eulerian if and only if Fk(D) is Eulerian.

Proof. As observed in Section 3, a digraph D is weakly connected if and only if Fk(D) is weakly connected. Therefore, to 
prove the statement it suffices to verify the degree condition.

Let A be a k-token configuration and denote by e(A) the number of arcs of D whose both ends are in A. Note that 
the out-degree of A in Fk(D), d+

Fk(D)(A), corresponds to the number of arcs in D going from a vertex in A to a vertex in 
V (D) \ A. Similarly, the in-degree of A in Fk(D), d−

Fk(D)
(A), corresponds to the number of arcs in D going from a vertex in 

V (D) \ A to a vertex in A. We then have

d+
Fk(D)

(A) =
∑︂
v∈A

d+
D (v) − e(A) and d−

Fk(D)
(A) =

∑︂
v∈A

d−
D (v) − e(A).

Suppose first that D is Eulerian. Since d+
D (v) = d−

D (v) for every v ∈ V (D), we conclude directly from the observation 
above that d+

Fk(D)(A) = d−
Fk(D)(A) for every A, and so Fk(D) is Eulerian.

Suppose now that Fk(D) is Eulerian. For any two distinct vertices u and v of D , let A be a k-token configuration 
containing u but not v , and let A′ = A \ {u} ∪ {v}. Note that A \ {u} = A′ \ {v} and let S+ = ∑︁

x∈A\{u} d+
D (x) and S− =∑︁

x∈A\{u} d−
D (x). Then

d+
D (u) = d+

Fk(D)(A) − S+ + e(A)

= d−
Fk(D)(A) − S+ + e(A)

= S− + d−
D (u) − e(A) − S+ + e(A)

= d−
D (u) + S− − S+.

Analogously, using A′ instead of A, we can derive that d+
D (v) = d−

D (v) + S− − S+ . Therefore d+
D (u) − d−

D (u) = S− −
S+ = d+

D (v) − d−
D (v) and, from this, we conclude that 

∑︁
x∈V (D) d+

D (x) − ∑︁
x∈V (D) d−

D (x) = |V (D)|(S− − S+). Because ∑︁
x∈V (D) d+

D (x) = ∑︁
x∈V (D) d−

D (x), it must be the case that S− − S+ = 0, and hence d+(x) = d−(x) for every x ∈ V (D). □
For (undirected) graphs on n vertices, we know that F2(Cn) is Hamiltonian if and only if n = 3 or n = 5. The same 

statement holds for cycles and the token digraph. On the other hand, the digraph D shown in Fig. 7 is not Hamiltonian but 
its token digraph F2(D) is Hamiltonian.
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Fig. 7. A non-Hamiltonian digraph with a Hamiltonian token digraph. 

8. Bidirected cliques

We call the digraph 
←→
Kn the complete digraph on n vertices. A bidirected clique in a digraph D is a subset of V (D) that 

induces a complete digraph in D . The bidirected clique number of a digraph D , denoted by ←→ω (D), is the size of the largest 
bidirected clique of D . We use the next known result on the clique number of undirected token graphs to characterize the 
bidirected clique number of Fk(D).

Theorem 8.1 (Theorem 5 in [16]). For any graph G of order n and 1 ≤ k ≤ n − 1, it holds that ω(Fk(G)) = min{ω(G),max{n −k + 1, 
k + 1}}.

The clean graph of a digraph D , denoted by D∗ , is the graph obtained by first taking the symmetric part of D , and then 
its underlying graph; that is, its vertex set is V (D) and there is an edge between u and v if and only if (u, v), (v, u) ∈ A(D). 
The next result states that constructing the token graph of D and then cleaning it is the same as cleaning D first and then 
constructing the token graph of D∗ . Observe that Fk(D)∗ and Fk(D∗) are both (undirected) graphs.

Fact 8.2. For any digraph D of order n and 1 ≤ k ≤ n, Fk(D)∗ = Fk(D∗).

Proof. Let X and Y be two distinct nodes in Fk(D)∗ . We will prove that XY is an edge in Fk(D)∗ if and only if XY is 
an edge in Fk(D∗). We need to consider only nodes X and Y whose symmetric difference is a pair of vertices in D . So, 
assume that (X \ Y )∪ (Y \ X) = {x, y}, for some x, y ∈ V (D). By the definition of clean graph, XY is an edge in Fk(D)∗ if and 
only if (X, Y ) and (Y , X) are arcs in Fk(D). Now, by the definition of token digraph, (X, Y ), (Y , X) ∈ A(Fk(D)) if and only if 
(x, y), (y, x) ∈ A(D). Using the definition of clean graph, (x, y), (y, x) ∈ A(D) if and only if xy ∈ E(D∗). Finally, xy ∈ E(D∗) if 
and only if XY is an edge in Fk(D∗). □
Theorem 8.3. For any digraph D of order n and 1 ≤ k ≤ n − 1, it holds that ←→ω (Fk(D)) = min{←→ω (D),max{n − k + 1,k + 1}}.

Proof. First, note that ←→ω (D) = ω(D∗). Using this and Fact 8.2, we have that

←→ω (Fk(D)) = ω(Fk(D)∗) = ω(Fk(D∗)) .

By Theorem 8.1, ω(Fk(D∗)) = min{ω(D∗),max{n − k + 1,k + 1}}. Therefore,

←→ω (Fk(D)) = min{ω(D∗),max{n − k + 1,k + 1}}
= min{←→ω (D),max{n − k + 1,k + 1}} . □

9. Acyclic partitions

An acyclic r-partition of a digraph D is a partition of its vertex set into r sets such that each one induces an acyclic 
subdigraph of D . We can see such partition as a (non-proper) coloring c : V (D) → {1, . . . , r} of the vertices and each set 
as a color class. The dichromatic number of D , denoted by ←→χ (D), is the smallest integer r such that D has an acyclic 
r-partition. These notions were introduced by Neumann-Lara [25] as a generalization of proper coloring and chromatic 
number in undirected graphs.

By Corollary 3.5, we have ←→χ (D) = 1 if and only if ←→χ (Fk(D)) = 1. Neumann-Lara [25] proved that if D has no odd 
cycles, then ←→χ (D) ≤ 2. Thus, by Theorem 4.2, we can conclude that if D has no odd cycles, then ←→χ (Fk(D)) ≤ 2. In fact, 
we can show the following result.

Theorem 9.1. For any digraph D, ←→χ (Fk(D)) ≤ ←→χ (D).

10 
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Proof. Let c : V (D) → {1, . . . , r} be an optimal acyclic partition of D with r = ←→χ (D), and let H1, . . . , Hr be the subdigraphs 
of D induced by each of the color classes. As c is an acyclic partition, each Hi is acyclic. For each node A ∈ Fk(D), let

c′(A) =
∑︂
a∈A 

c(a) mod r .

We aim to show that c′ is an acyclic partition of Fk(D). For this purpose, let us define an auxiliary r-vector for the nodes 
of Fk(D). For a node A ∈ Fk(D), let τ (A) = (t1, . . . , tr) with ti = |A ∩ V (Hi)| for i ∈ [r].

Consider an arc (A, B) of Fk(D), and let (a,b) ∈ A(D) be the corresponding arc such that (A, B) is generated by sliding 
one token along (a,b). Observe that (a,b) belongs to Hi , for some i ∈ [r], if and only if τ (A) = τ (B). Thus,

c′(A) = c′(B) ⇐⇒ τ (A) = τ (B) .

This observation is generalized as follows. If J ⊆ Fk(D) is a weakly connected subdigraph contained in a same color class 
of Fk(D), then τ (A) = τ (B) for any two nodes A, B ∈ J . This fact implies that J is generated by moving k1, . . . ,kr tokens 
on H1, . . . , Hr , respectively, where 0 ≤ ki ≤ |V (Hi)| and k1 + · · · + kr = k. In particular, we have that the tokens moving on 
a class Hi cannot slide to any other class H j , implying that J contains no cycle.

On the other hand, note that a color class ℋ of Fk(D) is a disjoint union of maximal weakly connected subdigraphs 
of Fk(D) having the same color in c′ , and given that each of these subdigraphs contains no cycle, we conclude that ℋ
contains no cycle. Therefore, c′ is an acyclic partition of Fk(D) and, by the definition of c′ , we have ←→χ (Fk(D)) ≤ r = ←→χ (D), 
as we wanted. □

Cordero-Michel and Galeana-Sánchez [12] established the following upper bound for ←→χ (D) in terms of the directed 
circumference c(D) and the directed girth g(D) of D .

Theorem 9.2 ([12]). Let D be a digraph containing at least one cycle. Then

←→χ (D) ≤
⌈︃

c(D) − 1 
g(D) − 1

⌉︃
+ 1.

Applying Theorem 9.1 and Theorem 9.2 yields the following immediate consequence.

Corollary 9.3. Let D be a digraph containing at least one cycle. Then

←→χ (Fk(D)) ≤
⌈︃

c(D) − 1 
g(D) − 1

⌉︃
+ 1.

The chromatic number of a graph G , denoted by χ(G), is the smallest integer k such that G has a proper k-coloring. In 
the undirected case, it is known that χ(Fk(Kn)) < χ(Kn) = n for some pairs (k,n) (see, e.g., [15]); in particular, χ(F2(Kn)) =
n − 1 for every even n. Since ←→χ (

←→
G ) = χ(G) and Fk(

←→
G ) = ←−→

Fk(G) (Property 2.3), for every even n we obtain

←→χ (F2(
←→
Kn )) = ←→χ (

←−−→
F2(Kn) ) = χ(F2(Kn)) = n − 1 < χ(Kn) = ←→χ (

←→
Kn ).

It is natural to ask how ←→χ (Fk(D)) behaves as k varies. Since ←→χ (D) = ←→χ (
←−
D ) and ←→χ (Fk(D)) = ←→χ (Fn−k(

←−
D )) (with 

n = |V (D)|), we may restrict attention to 1 ≤ k ≤ n/2.
Neumann-Lara [25] proved that

←→χ (D) = max{←→χ (C)  : C is a strongly connected component of D} .
Let C be a strongly connected component of D such that ←→χ (D) = ←→χ (C). If |V (D)| ≥ |V (C)| + k − 1, then ←→χ (Fk(D)) ≥ ←→χ (D). Indeed, we can fix k − 1 tokens in k − 1 nodes outside C and leave one in C to derive that F1(C) ⊆ Fk(D). Con
sequently, ←→χ (Fk(D)) ≥ ←→χ (F1(C)) = ←→χ (C) = ←→χ (D), and therefore ←→χ (Fk(D)) = ←→χ (D) by Theorem 9.1. In particular, D
must have at least two strongly connected components for |V (D)| ≥ |V (C)| + k − 1 to hold. If D is strongly connected, then 
it might happen that ←→χ (Fk(D)) <

←→χ (D) for some k, as we previously pointed out.
One might ask whether ←→χ (F2(D)) <

←→χ (D) for every strongly connected graph D , but this is not true. For instance, ←→χ (Fk(
−→
Cn)) = ←→χ (

−→
Cn) = 2 for the cycle 

−→
Cn . (In particular, see 

−→
C5 and its 2-token digraph in Fig. 4.) It would also be nice 

to find out the exact conditions that ensure that ←→χ (Fk(D)) = ←→χ (D) holds, even considering only strongly connected 
digraphs D and k = 2.

While investigating this topic, we also considered the analogous question for an undirected graph G and the chromatic 
number χ , which coincides with the directed question for 

←→
G and ←→χ by Property 2.3. A detailed discussion is presented 

in Appendix A.
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Let D be a strongly connected digraph of order n. We know that Fk(D) is also strongly connected and that ←→χ (F1(D)) =←→χ (D). It is natural to ask whether ←→χ (Fk(D)) ≤ ←→χ (Fk−1(D)) for k > 1. This is false in general: for D = ←→
Kn with n ≡ 4 

(mod 6), as Property 2.3 and [15] give

←→χ (F2(D)) = n − 1 and ←→χ (F3(D)) = n.

This phenomenon in the undirected world (including a non-complete example exhibiting a strict decrease as k grows) is 
also briefly explored at the end of Appendix A.

10. Final remarks

In this paper we introduced token digraphs Fk(D) and related structural and algorithmic properties of D to those of 
Fk(D). This study is interesting on its own, and it also sheds light on the undirected case. In particular, we characterize 
strong connectivity via the strong component digraph of D , obtain criteria and exact conditions for when token digraphs 
are unilateral, prove that D is Eulerian if and only if Fk(D) is Eulerian, bound the bidirected clique number through the 
clean graph, show that ←→χ (Fk(D)) ≤ ←→χ (D), and transfer parity obstructions while proving that deciding whether F2(D)

has a kernel is NP-complete.
We found the study of acyclic partitions and the dichromatic number of token digraphs particularly challenging, leading 

to questions in both directed and undirected settings (see Conjecture A.1 in Appendix A).
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Appendix A. Chromatic number of 2-token graphs

We address the chromatic number of token graphs, focusing on the case of 2-token graphs. This question has been 
examined for complete graphs [15], and some general lower and upper bounds are known [16]. We conjecture that 
χ(F2(G)) < χ(G) holds precisely when G is the complete graph on an even number of vertices. We further describe proper
ties that any potential counter-example must satisfy, and determine the chromatic number for the 2-token graphs of certain 
families of graphs, providing evidence in support of our conjecture.

Conjecture A.1. χ(F2(G)) < χ(G) if and only if G = Kn for even n.

Let G be a graph of order n. A proper coloring of F2(G) can be viewed as an edge-coloring of Kn (not necessarily proper) 
such that, if the edges uv and v w of Kn are assigned the same color, then uw / ∈ E(G). (If uw ∈ E(G), then {u, v} and {v, w}
are adjacent 2-token configurations in F2(G).) We will use this in the figures ahead, because we find it a convenient and 
compact way to present a coloring for F2(G). Also, we will denote a 2-token configuration {u, v} simply as uv , to simplify 
the notation, and we will call it a configuration instead of a vertex of F2(G) to avoid confusion with the vertices of G .

When G = Kn , such an edge-coloring of Kn is exactly a proper edge-coloring of Kn . Hence χ(F2(Kn)) = χ ′(Kn) and thus 
one direction of Conjecture A.1 is already known: χ(F2(Kn)) = n − 1 = χ(G) − 1 for n even, because there is a partition of 
the edges of Kn into n − 1 perfect matchings, that is, χ ′(Kn) = n − 1.

A graph G is critical if χ(G − v) = χ(G) − 1 for every vertex v of G . It is k-critical if G is critical and χ(G) = k. Any 
potential counter-example to Conjecture A.1�-that is, a graph G that is not complete but for which χ(F2(G)) < χ(G)�-must 
satisfy the following conditions: (a) χ(G) > 3; (b) G is critical; (c) the maximum degree Δ(G) ≥ χ(G); (d) χ(G) > ω(G). 
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Fig. A.8. The 3-coloring of F2(G) from Lemma A.2 represented as an edge-coloring of the complete graph on |V (G)| vertices. 

Indeed, it is known that a graph G is bipartite if and only if F2(G) is bipartite (see [16]), which implies (a). If G is non
critical, there exists a vertex v ∈ V (G) such that χ(G) = χ(G − v). In this case, it suffices to consider the subgraph of F2(G)

consisting of all configurations with a token at v , which is isomorphic to F1(G − v), and this in turn is isomorphic to G − v . 
We then have χ(F2(G)) ≥ χ(G − v) = χ(G). This proves (b). Assume now that G is critical, so G must have minimum 
degree at least χ(G) − 1. If Δ(G) < χ(G), then G is a (χ(G) − 1)-regular graph, and, by Brook’s Theorem (see [9]), G must 
be either an odd cycle or a complete graph, which is not the case by (a) and given that χ(F2(Kn)) = χ ′(Kn) = n for n odd. 
Thus, (c) must hold. Finally, suppose χ(G) ≤ ω(G). By Theorem 8.1 we have ω(Fk(G)) = min{ω(G),max{n − k + 1,k + 1}}, 
and then, as G is not a complete graph, we have χ(F2(G)) ≥ ω(F2(G)) = ω(G) = χ(G), which proves (d).

Next we prove that Conjecture A.1 holds for two classes of 4-critical graphs. A vertex in a graph G is universal if it is 
adjacent to all other vertices of G .

Lemma A.2. For every graph G on n ≥ 5 vertices, with χ(G) = 4 and a universal vertex u, χ(F2(G)) = 4.

Proof. It is enough to prove that there is no proper 3-coloring for F2(G), because we already know that χ(F2(G)) ≤
χ(G) (Theorem 6 in [16]). For a contradiction, suppose there is such a 3-coloring with colors 1, 2, 3. Let I j =
{v : configuration uv has color j} for j ∈ {1,2,3}. Note that the sets I1, I2, I3 form a partition of V (G − u). Fig. A.8 presents 
the information we are deriving on this coloring.

Because this 3-coloring of F2(G) is proper, there cannot be an edge of G with the two ends in the same I j , that is, 
each I j is an independent set in G . Moreover, since χ(G) = 4, each I j is non-empty. For every v ∈ I1 and w ∈ I2, the 
configuration v w must have color 3, because the configuration uv has color 1 and the configuration uw has color 2, and 
both are edges of G . Thus, all configurations v w for v ∈ I1 and w ∈ I2 have color 3. Similarly, all configurations v w for 
v ∈ I1 and w ∈ I3 have color 2, and all configurations v w for v ∈ I2 and w ∈ I3 have color 1.

Because n ≥ 5, at least one of the sets I j has at least two vertices. Without loss of generality, say |I2| ≥ 2. Because 
χ(G) = 4, there must be an edge between a vertex v1 ∈ I1 and a vertex v2 ∈ I2. For every v ∈ I2 distinct from v2, as 
argued in the previous paragraph, the configurations v1 v2 and v1 v have color 3. Also, as both v2 and v are in I2, the 
configurations uv2 and uv have color 2. Thus, the configuration v2 v must have color 1. So all configurations v2 v , for every 
v ∈ I2 distinct from v2, have color 1. However, there must also be an edge between a vertex v3 ∈ I3 and a vertex v ′

2 ∈ I2, 
and this implies that all configurations v ′

2 v , for every v ∈ I2 distinct from v ′
2, have color 3. Because |I2| ≥ 2, we reach a 

contradiction (on the color of the configuration v2 v ′
2 if v2 ≠ v ′

2, or, if v2 = v ′
2, on the color of the configurations v2 v for 

any v ∈ I2 distinct from v2; at least one such configuration exists because |I2| ≥ 2). □
A well-known class of 4-critical graphs are the odd wheels W2k+1. A consequence of Lemma A.2 is that they do not 

contradict Conjecture A.1, because they have a universal vertex.
Let G be a graph on n vertices v1, . . . , vn . The Mycielski graph of G is the graph M(G) that contains a copy of G together 

with n + 1 vertices u0, u1, . . . , un , where each ui is adjacent to u0 and to each neighbor of vi in G , for i ∈ {1, . . . ,n}. 
Mycielski [24] proved that χ(M(G)) = χ(G) + 1. It is not hard to prove that, for an odd k, the graph M(Ck) is 4-critical. 
Note that M(Ck) does not have a universal vertex, so Lemma A.2 does not apply to M(Ck). Yet we can prove the following 
on F2(M(Ck)), which implies that M(Ck) for odd k does not contradict Conjecture A.1 either.

Lemma A.3. For every odd k, χ(F2(M(Ck))) = 4.
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Fig. A.9. Cases for the proof of Lemma A.3. 

Before presenting the proof for this lemma, we prove a seemingly unrelated result that will be used in the proof of the 
lemma. Let s be a string on a 3-letter alphabet {A, B, C}. We say that s is special if it has the form pq jr for some j ≥ 1, 
such that {p,q, r} = {A, B, C}.

Claim A.4. Let s = s1s2 . . . sn be a string on a 3-letter alphabet. If s contains the three letters of the alphabet, then s contains a special 
string as a substring.

Proof. Let k be the smallest index such that the prefix s1s2 . . . sk contains all three letters. Then s1s2 . . . sk−1 contains exactly 
two distinct letters. Set r := sk .

Let i be the largest index with 1 ≤ i < k such that the substring si si+1 . . . sk−1 contains exactly two letters, whereas 
si si+1 . . . sk contains all three. Such an i exists because s1s2 . . . sk−1 already contains two letters. By the maximality of i, we 
must have si+1 = si+2 = · · · = sk−1. Write q := si+1 and p := si .

Hence the substring si si+1 . . . sk is of the form pq jr, with j = k − i − 1 ≥ 1. Moreover, by the choice of i, the letters p,q, r
are pairwise distinct; therefore {p,q, r} = {A, B, C}, and the substring is special. □
Proof of Lemma A.3. We will prove that there is no proper 3-coloring for F2(M(Ck)). Let Ck = (v1, . . . , vk) and consider 
u0, u1, . . . , uk as in the construction of M(Ck). For a contradiction, suppose there is such a 3-coloring with colors 1, 2, 3. Let 
I j = {v : configuration u0 v has color j} for j ∈ {1,2,3}. The sets I1, I2, I3 form a partition of V (M(Ck) − u0), and each I j is 
an independent set in M(Ck) − u0. Because χ(M(Ck)) = 4 and u1, . . . , uk are the neighbors of u0, there is at least one ui
in each I j . Furthermore, the partition {I1, I2, I3} induces a proper 3-coloring of Ck , and so there is also at least one vi in 
each I j .

Let s be the string of length k on the alphabet {1,2,3} consisting of the sequence of indices j such that ui ∈ I j for i ∈
{1, . . . ,k}. As each I j contains some ui , the three indices 1,2,3 appear in s. We apply Claim A.4 to s, deriving, without loss 
of generality, that u1 ∈ I1, u2, . . . , uℓ ∈ I2, and uℓ+1 ∈ I3, for ℓ ≥ 2. Now let us derive a contradiction by analyzing two cases.

If ℓ = 2, then the situation is depicted in Fig. A.9(a). Because u0 is adjacent to u1, u2, u3, the configuration u1u2 must 
have color 3 and the configuration u2u3 must have color 1. Because v2 is adjacent to u1 and u3, the configuration u0 v2
must have color 2, which means v2 ∈ I2. But then the configuration u2 v2 cannot be colored with any of the colors 1, 2, 3.

If ℓ > 2, then the situation is depicted in Fig. A.9(b). Because v2 is adjacent to u1 and u3, the configuration u0 v2 must 
have color 3, which means v2 ∈ I3. Because u0 is adjacent to u3 and uℓ+1, the configuration u3uℓ+1 must be of color 1, and 
the configuration uℓ+1 v2 must be of color 2. But then the configuration u1uℓ+1 cannot be colored with any of the colors 1, 
2, 3. □

We close with two brief remarks on the dependence on k. First, the monotonicity χ(Fk(G)) ≤ χ(Fk−1(G)) for 1 < k <

n − 1 does not hold in general: for all n ≡ 4 (mod 6) we have χ(F2(Kn)) = n − 1 and χ(F3(Kn)) = n [15]. Second, beyond 
complete graphs, we are aware of one non-complete 6-critical example exhibiting a strict decrease: the graph obtained from 
K8 by deleting a 5-cycle, for which χ(Fk(G)) = 6 for all 1 ≤ k ≤ 3 and χ(F4(G)) = 5. For all other graphs we examined, we 
observed χ(Fk(G)) = χ(Fk−1(G)) for every 1 < k ≤ n/2.
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