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Abstract

Fluid flow devices have been algorithmically designed through optimization methods, and this task is relatively complex
for flow machines. Particularly, one recent development is the use of the topology optimization method for this task,
which is capable of achieving possibly non-intuitive geometries and even auxiliary structures, such as splitter blades
without ever imposing it as a condition for the design. The design of the rotating part of the rotor has already been
previously considered. However, in the presence of stationary parts surrounding the rotor, such as diffuser blades, the
fluid flow behavior may change, meaning that it may be interesting to consider this different dynamic in the design.
One possible approach for this is the Multiple Reference Frame approach, which considers the fluid flow dynamics
inside the rotor being computed in the rotating reference frame, whilst the fluid flow dynamics outside the rotor is
being computed in the stationary reference frame. In particular, this implies the need for some changes in the topology
optimization formulation, also impacting the choice of objective functions. Therefore, here the topology optimization
method is formulated for the MRF approach, and a new combination for the multi-objective function is proposed. The
discrete design variable configuration from the Topology Optimization of Binary Structures approach is adopted with
some adjustments to account for the MRF approach. The fluid flow is chosen to be laminar or turbulent. Numerical
examples are presented in 2D for the rotor-diffuser in order to consider some aspects that affect the overall topology
optimization design.

Keywords: Fluid topology optimization, Multiple Reference Frame, Frozen rotor, Impeller-diffuser, Turbulence,
Automatic differentiation

1. Introduction their performance and efficiency from the fluid flow point-
of-view. While increasing the complexity and range of
There are various optimization approaches that can be  applications of fluid flow topology optimization, one may
used for improving the performance of fluid flow devices.  undoubtedly stumble across turbulence [4], which has al-
One approach that has been gaining momentum is the ready been considered in topology optimization for various
use of the topology optimization method for fluid flows  Reynolds Averaged Navier-Stokes (RANS) models, such as
[1], which has already been considered for various differ- the Spalart-Allmaras model [4, 14], the k-w model [15], the
ent flow physics (Navier-Stokes flows [2], non-Newtonian k-£ model [16], and the Wray-Agarwal (2018) model [17].
flows [3], turbulent flows [4], thermal-fluid flows [5], com-  The Wray-Agarwal (2018) model [18], also referred to as
pressible flows [6] etc.), various different fluid flow devices  WA2018, is a single-equation turbulence model that does
(mixers [7], rectifiers [8], bladed rotors [9], arterial by-pass  not explicitly depend on the wall distance, eases the choice
grafts [10]/ fluid diodes [11] etC.) and various different im- and reduces the quantity of parameters for the topology
plementation approaches (pseudo-density [1], level-set [12],  optimization process [17], and is competitive with the SST
topological derivatives [13]). Essentially, fluid flow topol- k-w model [19].
ogy optimization comnsists of distributing fluid and solid
along a given domain, in order to obtain the positions and
shapes of the necessary solid structures that lead to an
optimized fluid flow path according to given requirements
and objectives. For example, when tackling topology opti-
mization for flow machines [9], it is important to improve

When considering rotating parts in topology optimiza-
tion, such as the rotor of a flow machine, the fluid flow
equations should be solved inside a rotating reference
frame [9]. However, the 2D swirl flow model (2D axisym-
metric flow model with rotation around an axis) does not
have this strict requirement. This is because the axisym-
metry hypothesis makes both stationary and rotating ref-

*Corresponding author. Tel: £55 11 3001 9754: fax: +55 11 erence frame equations equivalent except for a conversion

3091 5722. between velocities (absolute and relative). This enables

Email address: ecnsilva@usp.br (Emilio Carlos Nelli Silva) performing topology optimization considering stationary

Preprint submitted to Applied Mathematical Modelling June 22, 2025
This is the accepted manuscript (AM) according to < https://lwww.elsevi ljournals/applied t tical-modelling/0307-904x/open-access-options >, without any enhancement after

acceptance, with the sole exception of removing the highlights used during the review process This AM has been made available through the mstltutlonal repository of the University of
Séo Paulo < https:/irepositorio.usp.br > after the 24-month embargo (after June, 2025).

Published article (Published in its final form: June, 2023):
Alonso, D.H. & Silva, E.C.N. Topology optimization for fluid flow devices modeled through the Multiple Reference Frame approach. Applied Mathematical Modelling 118, 592—
617 (2023). https://doi.org/10.1016/j.apm.2023.01.019




and rotating parts [20-22] while taking into account the
same fluid flow equations inside the entire design domain,
needing only to care about the distance between the rotat-
ing and stationary parts, in order to avoid undesirable con-
tact. However, other types of fluid flow devices (2D/3D)
do not feature such convenient hypothesis (axisymmetry),
meaning that the fluid flow equations should be treated dif-
ferently for the rotating blades and the stationary parts,
and there is also the inherent necessity to avoid the colli-
sion of the blades and the stationary parts, as opposed to
just contact between them, as in the 2D swirl flow model.
Therefore, a new approach is required for the topology
optimization of non-axisymmetric fluid flow devices.

In Computational Fluid Dynamics (CFD), the first ap-
proach that comes to mind when dealing with rotating and
stationary parts is to consider a transient simulation (slid-
ing mesh model) [23]. However, the computational cost
of considering transience is high due to the large amount
of short time steps that is required [24], and is worsened
when considering topology optimization, which would re-
quire repeating the entire simulation multiple times, at
each topology optimization iteration. Thus, when the fluid
flow is expected to reach a continuous operation condi-
tion, two approaches may be considered for an approxi-
mated steady-state simulation: Multiple Reference Frame
(MRF) [25] and mixing plane [26]. The MRF approach,
also referred to as the frozen rotor approach, consists of
defining a cylinder that encompasses all of the rotating
parts, and solving the rotating fluid flow equations only
inside this cylinder, leaving the outside to the stationary
fluid flow equations. Thus, this steady-state approxima-
tion freezes the positions of the rotor blades, while assum-
ing the rotating effect on the fluid around them. The other
approach (mixing plane) consists of performing the same
as the MRF approach; however, an averaging is performed
on the interface between the rotating and stationary do-
mains. There are various approaches for this averaging,
such as area- and flow rate-based. Thus, there would be
two extrema: the MRF approach, which considers local ef-
fects of the blades inside the rotating zone, and the mixing
plane approach, which considers the average effects of the
blades. As a matter of fact, when under 2D incompressible
flow, the mixing plane approach decouples the fluid flow
physics from both domains, which means that the design
could be considered separately for the stationary [27] and
rotating [9] parts of the flow machine. The same is not
valid for the MRF approach, and the present work will
focus on extending the topology optimization formulation
for fluid flow devices to it, which results in a unique topol-
ogy optimization formulation in the sense that a unified
formulation can be derived and elaborated for the whole
design domain. According to Elder et al. [24], the MRF
approach is robust and features no additional difficulties
for performing the simulation; however, the interpretation
of the results may become more difficult. Moreover, CFD
simulations using MRF have various interesting applica-
tions, such as impeller-diffuser configurations [24], mixing

vessels [28] and cooling fans [29], and CFD implementa-
tions are available in various CFD softwares, such as Ansys
Fluent® , OpenFOAM® ; COMSOL® etc. Although still
not in topology optimization, there are several works con-
sidering parametric [30], and shape optimizations [31].
Thus, this work presents the topology optimization for-
mulation for fluid flow devices through the MRF approach,
for the cases of either laminar or turbulent flows. The
turbulent model being used is WA2018 [17, 18]. The opti-
mization algorithm is the Topology Optimization of Binary
Structures (TOBS) algorithm [32, 33], which is extended
to to be subdomain-aware, the design variable is nodal,
and the material model is the traditional one presented in
Borrvall and Petersson [1]. The fluid flow equations are
implemented in the FEniCS platform [34], while the sen-
sitivities are computed from the adjoint method [35]. Due
to convergence issues when considering turbulence, the ef-
ficient CFD platform OpenFOAM® [36], which is not ca-
pable of automatically deriving the adjoint model, is used
for the simulations, through the FEniCS TopOpt Foam li-
brary [37]. The resulting adjoint model is solved through
the unsymmetric sparse linear solver UMFPACK [38].
This paper is organized as follows: in Section 2, the
MRF formulation is presented for laminar and turbulent
flows; in Section 3, the topology optimization formulation
is presented; in Section 4, the numerical implementation
is described; in Section 5, some numerical results are pre-
sented; and in Section 6, some conclusions are inferred.

2. MRF formulation

In order to present the MRF formulation, it is first nec-
essary to present the fluid flow formulations in the sta-
tionary (absolute) and rotating (relative) reference frames.
The basic fluid flow equations consist of the linear momen-
tum (Navier-Stokes) and continuity equations, which are
initially presented for laminar flow. In this case, the flow
is assumed to be under steady-state regime and the fluid
is incompressible. Therefore, based on Romero and Silva
191,

- Stationary reference frame:

Vev,ps = 0, and
pv'vabs°vabs = VT + pf + fr,s(a);

- Rotating reference frame:

Vev =0, and
pVvev = VT + pf — 2p(wAv) — pwA(wAT) + . .(a);
(2)

where v, is the absolute velocity, v is the relative veloc-
ity, p is the pressure, p is the density, p is the dynamic
viscosity, pf is a body force acting on the fluid per unit
volume (for completeness), w = (0,0,wp) is the rotation
vector, —2p(wAwv) and —pw A (w A7) are the inertial forces



(A denotes cross product), and r is the radial coordinate
(r = /22 4+ y?). The additional force term that is used
in topology optimization to model the solid material, is
divided into f,. (), for the stationary part, and f, ,.(a),
for the rotating part, where « is the design variable for
topology optimization (pseudo-density). The stress tensor
(T) is the fluid stress tensor, which is the same for both
reference frames, and can be defined as

T:2ue—pI,e=%(Vv+VvT). (3)

In order to combine both equations for, e.g. the absolute
velocity v,ps , it is first necessary to convert the equations
of the rotating reference frame from v to v,ps , through the
relation v,ps = v+wAP. Next, it is necessary to define two
subdomains: the rotating subdomain 2, and the station-
ary subdomain g , which are illustrated in Fig. 1. Then,
the factor fyrr can be used to define each subdomain as:

1,if s € Q,

4
0,ifs€Q’ (4)

JMRF = fMRF(8) = {

where s is the coordinate of each point in the fluid domain.

The set of fluid flow equations that is valid for the
whole domain, including the stationary and rotating sub-
domains, becomes:

Vev,,s = 0, and

PV Vabs®Vabs + MRF [—pVVabs*(WAT)

— PV (WAT)e(Vaps — WAT) (5)
+p2w A (Vahs — w A T) + pwA(wATP)] =

VeT + pf + (1 = furr)f, s(@) + fure £, (@)

|
L Q.

Figure 1: Illustration of the two subdomains for the MRF approach.

Note that, if eq. (5) is unfolded in polar/cylindrical co-
ordinates, there will be a term that is based on the tangen-
tial derivative. This term is the basis of the MRF formula-
tion, because it physically represents the moving mesh-like
approximation. Note that, when assuming axisymmetry,
this term becomes zero, meaning that the MRF formula-
tion is essentially non-existent in the 2D swirl flow model.

2.1. Turbulence modeling

When applying a RANS model, a statistical time aver-
age is taken onto eq. (5), which leads to a set of equa-
tions with the same format, but with T' being replaced by
(T + T'g) (where Tg is the Reynolds (turbulent) stress
tensor), and the state variables from eq. (5) become their
statistical time averaged counterparts (TUaps, p). For sim-
plicity, the statistical time averaged counterparts are rep-
resented here with the same notation as before (vaps, p);
however, notice that this notation is representing statis-
tical time averaged variables when considering turbulent
flow.

While eq. (2) is deduced by considering the reference
frame change formula for vector variables, the turbulence
equations feature scalar variables. Therefore, by consider-
ing the reference frame change formula for scalar variables,
the convective terms become vapseV() (stationary refer-
ence frame) and vsV()(rotating reference frame). There-
fore, the WA2018 model [17, 18] for the MRF formulation

becomes:

TR = ,U/T(vvabs + v'vabsT)a HT = pfuRTa and (6)

pl(1 — fMRF)Vabs + fMRF (Vabs — WAT)[sV R =

Ve [(O‘R/)RT + M)VRT]

R
+ pC1RTS + flcl,k—wp?TVRT'vs
. VSV S
— p(l — fl)mln |:C2,k—5R’2[‘ (T) , CmVRTOVRT

— )\RTI{(OZ)RT,
(7)

where Rr is the undamped turbulent viscosity, Agr.. is a pe-
nalization parameter that attenuates turbulence inside the
modeled solid material, x(«) is the inverse permeability
(used in topology optimization), and the remaining terms



are, from [18],
S = %(V’U + Vo), § = V/28.8,

1
W = 5(Vv —vol), W =V2W.-w,

3 R
X =TT L =854
X2+, v

fu
w
=9 1. |—
2= s [
or = f1(Okew — Okc) + Ok, Ope = 1.0, 04y = 0.72,
f1 = tanh(arg}),
v+ Ry 772 (8)
2 CH kT|10g—layer wT|log—layer’
Z/TS S
A wT|lo Slayer — T /A0 OLL = 0095
/CN g-lay /CM
C1 = [1(Ch kow — Crpee) + C1 s

CLk—w
/‘€2

H , Cp = 8.0,

arg, =

kT | log-layer =

Cl k-¢
)2 + Ok-g;
R

CQ,k—w = + Ok-w CQ,k—s =

Chhw = 0.0829, C e = 0.1284,

% = 0.41 (von Kérméan constant),

="~ (kinematic viscosity).
p

2.2. Boundary value problem

The boundaries of an impeller-diffuser configuration are
illustrated in Fig. 2, from a circular section of the full
device. The boundary value problem for the MRF formu-
lation considering turbulent flow can then be stated as:

[Eq. (5) for (T + T'g)| in Q
[Eq. (7)] in Q
Vabs = Vin, and R = R iy, on I'y,
Vabs = wAT and Rt =0 m?/s  on T, (9)
Vaps = 0 and Ry =0 m?/s  on T
(T+Tgr)m=0and VRren =0 on Iyt
[Cyclic boundaries] on I,

where 2 = Q, U is the full computational domain, I';, is
the inlet boundary, I'yy¢ is the outlet boundary, I, is the
boundary of the rotating blades, I's is the boundary of the
stationary blades, and I'. indicates the cyclic boundaries.
Cyclic boundaries are a specific type of periodic boundaries
applied to circular sectors, in which the velocity vectors
enter through one of the boundaries and exit through the
other one, while keeping the same tangential and radial
flow directions — i.e., the periodicity is set with respect to
the tangential and radial directions. Since each quantity
of blades in topology optimization may lead to different
local minima, these boundaries help imposing a certain
minimum number of blades in the optimized design, and
avoid the situation where all blades may turn out different,
which could also lead to issues such as instability.

Figure 2: Illustration of the boundaries of an impeller-diffuser con-
figuration.

3. Topology optimization problem formulation

The essential information for the topology optimization
problem is defined as follows.

3.1. Material model for the MRF formulation

The solid and fluid parts of the design domain are de-
fined from a continuous varying function [1]. The basic
concept comes from the porous medium theory [39], where
there is a resistance force of the porous medium that is pro-
portional to the relative velocity through it. When this re-
sistance force is sufficiently high, the porous medium acts
as a solid, which means that it attains a solid body mo-
tion. Then, by considering rotating and stationary mod-
eled solids:

fr(a) = _’{T(O‘)vma‘c,r, and

‘fS(a) = _’%S(O‘)vmat,s, (10)

where the relative velocities with respect to the modeled
solids are given by vmat,r = v and Umat,s = Vabs. The
inverse permeabilities for the rotating and stationary solids
are given by k,(a) and ks(a), respectively. The variable «
is commonly referred to as the pseudo-density and is the
topology optimization design variable. Its values are used
to denote solid (o = 0) or fluid (o = 1) materials, while
the solid body motion is controlled by vmat,» and vmat,s-
Intermediary (gray) « values are permitted to relax the
topology optimization formulation.

By converting the involved velocities to the same refer-
ence frame, assuming £,(a) = ks(a) = x(a) (for simplic-
ity), and defining a combined relative velocity with respect
to the modeled solids as viat,rs, the resistance force terms
from eq. (5) may be changed as:

(1 - fMRF)fns(a) + fMRF.fr,r(O‘) = _K(a)'vmat,rs; (11)

L Vabs — WA T, if s €€,
where v = .
mat,rs Vabs , if s € Q4



The change between solid and fluid is then controlled by

the inverse permeability x(«) as [1]:

1+q
) = Kmax 'min — Fmax )X, 12
() = o+ (i — Ko )= (12

where Kpmax 1S the maximum value, and K, is the mini-
mum value. The penalization parameter ¢ > 0 is used for
the relaxation of the material model, where larger values
mean less relaxation.

3.2. Topology optimization problem

The topology optimization problem can be defined as:

min J(u(a),a)
«
such that

Fluid volume constraints:

- Rotating zone: / 0dQsr < frVio (13)
Qe

- Stationary zone: / adQq.s < fsVso
Qa,s

Box constraint of a: 0 < a< 1

3

p(a)
'Uabs(a)
RT(Oé)
ulation for a given «; f, and fs; are the specified max-
imum fluid volume fractions for the rotating and sta-
tionary zones, respectively (assumed, for simplicity, as
fr="Ffs= 1) Vo= [, dQa, is the volume of the rotat-
ing zone of the design domain (Qy,); Vso = fQ

is the volume of the stationary zone of the design domam
(Qa.s); and J(u(a), o) is the multi-objective function.

where u(a) = is the state vector of the sim-

3.8. Multi-objective function

In order to optimize an impeller-diffuser configuration,
four objectives are taken into account. The first objective
is to minimize the zone-relative energy dissipation, which
is based on [1] and Yoon [14] (turbulence effect), but also
considers the inertial effects presented in Alonso et al. [40]
only inside the rotating zone. This function is closely re-
lated to the pressure increment in Stokes flow [1], and to
the pressure head in Navier-Stokes flow [41]. By assuming

zero external body forces,

1
(Drol—z = / |:§(,U + ,U/T)(V'Uabs + V'UabST)'
Q

(V'Uabs + v'UabsT):l ds)

/ frrla

_/ fr,s(a)'vabsdﬂs
Qs

Vabs — w A 7)dS,

+ / (2p(WA(Vabs — W AT)) + pwA(WAT))e
Qp

(Vaps — w A 1)dQ,..
(14)

The second objective is to give more importance to the
maximization of the performance of the rotor. More specif-
ically, to increase the importance of the indirect relation of
eq. (14) to the pressure head inside the rotor [41, 42]. In
order not to depend on the definition of internal bound-
aries in the mesh, the equation is expressed as a cyclic
integral (which requires using the relative velocity for the
integrals), Gauss’s divergence theorem is applied, and the
rotor relative pressure head becomes:

[Vabs — w A 7|
Hrel r = / Ve |:(— _—
Q ry 29

(15)
(Vabs — w A 'r)] s,

where g is the gravity acceleration (9.8 m/s?), and Q is
the flow rate.

The third objective is to increase the static pressure en-
ergy gained inside the diffuser. The static pressure energy
is here given as a wvariation of static pressure in the dif-
fuser weighted by the flow rate. In order not to depend on
the definition of internal boundaries in the mesh, Gauss’s
divergence theorem is applied, leading to:

APQSZQ/

Since the first and second objectives are relative mea-
sures (related to performance/dissipation), and the third
objective is an absolute measure (related to an absolute
quantity), it is possible for the third objective to pull the
overall energy transfer down while still improving the per-
formance — i.e., by reducing the overall energy transfer, it
is possible that the variation of static pressure increases,
while the energy dissipation drops. Therefore, the fourth
objective is to increase the overall energy transferred from
the whole device to the fluid. This is done through the
(absolute) pressure head. By assuming zero external body

pvabs s (16)



forces,

1 p |'Uabs|2>
H=— / (— + ——— ) vapsondl
Q { I \ P9 29

2
+ / (ﬁ + M) 'vabscndf} .
Tous \PY 29

These four objectives feature different measurement
units (W/m, m, Pa and m, respectively), which have to
be considered in the multi-objective function. By divid-
ing each objective function by its corresponding value in
the initial guess, considering the adequate sign for min-
imization (summation for maximization, subtraction for
minimization), and then scaling by the initial value of one
of the objective functions,

(17)

(I)z—re 4
J:W<I>(Dz—rel —WHr #((ZE% Hrel,r
<Dz—rel(OCO)
—Wps | ———= 1 Apo.s 18
b, ApQ,s(OZO) pr ( )
(I)Z—rcl(a())
- s | T 11/ N\ Ha
17 | T H (o)

where qy is the distribution of the design variable in an ini-
tial configuration for the topology optimization, and wg,
WH r, Wps and Wy s are positive dimensionless weights (
Wo, WH r,Wp s, WH rs = 0 )

Although the four objective functions are interrelated
directly or indirectly, in order to guarantee that one of
them (or more) will be improved, it is necessary to explic-
itly set them in the multi-objective function. The format
presented in eq. (18) may also be changed to a form that
considers the dependency of the pressure head and the
variation of pressure, with respect to the energy dissipa-
tion (see Appendix A).

4. Numerical implementation of the optimization

The numerical implementation of the topology opti-
mization is illustrated in Fig. 3. The flowchart starts
with setting the initial guess for the design variable c.
The corresponding mesh is generated with the Gmsh soft-
ware [43]. Then, the FEniCS software [34] is used to de-
fine the weak form of the problem, as well as the multi-
objective function and the constraints, which are anno-
tated by the dolfin-adjoint library [35]. This annotation
procedure saves the structures of the weak form and in-
tegrations, enabling the later automatic derivation of the
adjoint model. Then, the topology optimization algorithm
(TOBS) is started [32, 33]. First, there is the TOBS lin-
earization step, which requires the computation of the
objective function, constraints and sensitivities. For the
simulations, the OpenFOAM® [36] software is used. The
OpenFOAM® software is an efficient CFD platform, and
is more computationally efficient than FEniCS to model
turbulent fluid flow [44], and also avoids the need to in-
clude possibly counter-intuitive modifications to the finite

element model formulation with the sole aim of trying to
achieve the convergence of the simulation [44] — such as
intermediary projections, preconditioning part of the sys-
tem of equations, derivative approximations, additional
value limiters, pseudo-transient solution etc. The SIM-
PLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) algorithm [45] is used for the simulations. However,
OpenFOAM® does not provide an easy and efficient way
to automatically derive the adjoint model, while FEniCS
is able to do this automatic derivation efficiently through
the dolfin-adjoint library. In order to make use of the ad-
vantages of both software platforms, the FEniCS TopOpt
Foam library is used [37], being able to communicate the
simulation from OpenFOAM® directly into the optimiza-
tion framework of the dolfin-adjoint library. The conver-
sion from the OpenFOAM® state variables to the FEniCS
state variables consists of a discrete mapping and a pro-
jection including a small smoothing [46]. After receiving
the necessary computed data from dolfin-adjoint, the lin-
earized problem is solved by an integer programming op-
timizer (CPLEX® | from IBM). This is followed by the
update of the design variable distribution «, and the ver-
ification of a specified tolerance. After meeting the spec-
ified tolerance, the topology optimization is finalized. A
Helmholtz pseudo-density filter [47] is also considered in
the topology optimization. A pseudocode of the imple-
mentation is provided in Appendix C.

[ Initial guess of the topology ]

v

Annotate the
forward model
from FENICS

¥ To8s
Current topology — TOBS
i il | linearization ¢
FENiCS TopOpt Foam »
OpenFOAM® \4
Integer
Fluid flow simulation Programming
Optimizer
FENiCS TopOpt Foam *
Update of the
topology
h_» Forward model * Objective function, -@
constraints *

* No
Adjoint model m—p | Sensitivities | m— —
R 3

~
A )
. es tolerance
FEniCS 1
Optimized topology

Figure 3: Flowchart of the numerical implementation of the topology
optimization.

4.1. Finite element formulation

The implementation in FEniCS, which is used for the
automatic derivation of the adjoint model, requires the
definition of the finite element formulation. Note that the
problem defined in Fig. 2 features cyclic boundaries, which



means that it would be more intuitive to view the periodic
boundaries in polar coordinates (2D) or cylindrical coor-
dinates (3D), rather than the usual Cartesian coordinates.
This is shown in Fig. 4, where it can be seen that the
cyclic boundaries become simple periodic boundaries when
in polar/cylindrical coordinates, meaning that the degrees
of freedom between both boundaries can be directly col-
lapsed (i.e., merged). Thus, the finite element formulation
is implemented in polar/cylindrical coordinates, and then
mapped to Cartesian coordinates for visualization and for
communicating with OpenFOAM® .

Cartesian coordinates Polar coordinates

9

y S 0]
NGO, X =
¢ r I v“)* Periodic
v ~—A| Ag
vib Noyoic | e v |ued Periodic
Mugo—
X r

Figure 4: Cyclic boundaries.

In the finite element method, it is necessary to define
the weak form of the problem for polar coordinates, which
is shown in Appendix B. In order to couple the discretiza-
tions of pressure and velocity, the numerically stable MINI
finite element formulation is used [48]. With respect to
the traditional Taylor-Hood elements (quadratic velocity
interpolation), MINT elements pose a lower computational
cost (lower interpolation degree). Thus, the considered
finite elements are: P; + Bg for the velocity (nodal in-
terpolation enriched by a cubic bubble function), Py for
the pressure (nodal interpolation), Py for the undamped
turbulent viscosity (nodal interpolation), and P; for the
design variable (nodal interpolation).

4.2. TOBS formulation

The TOBS algorithm [32, 33] is a type of Sequential
Integer Linear Programming (SILP), where sequentially
linearized subproblems are solved while enforcing binary
values for the design variable. The solution of each lin-
earized subproblem is the design variable step Aa. Since
the TOBS algorithm is based on a linearization, there is a
truncation error that arises from it and should be bounded
through a constraint, resulting in an enforced small value
[33]. Particularly, the truncation error constraint was orig-
inally presented in the discrete form assuming a perfectly
uniform mesh in the topology optimization. In order to
allow possible non-uniformities in the mesh, it is here
extended to its integral form, by changing the original
summation (||[Acll; = Y7 |Acs| < Baip timitha) to an
integral and including the volume in the formulation in
the place of the total number of the nodes ( [;,|Aa|dQ <
Baip 1imit Vo). Furthermore, it is split into the rotating and
stationary subdomains, in order to take the presence of
the two subdomains into account separately. Then, the

subdomain-aware TOBS formulation for eq. (13) is given
as:

dJ
min — Aa
Ao da a=ay
such that
Inequality constraints:
. dey
- Rotating zone: Aa < Ac(ay)
da a=ox
3 (ke
. des
- Stationary zone: — Aa < Acs(ay)
aA=Qk

Truncation error constraints:

- Rotating zone: / |AaldQy < Bhip timit Vr,0
Q.

- Stationary zone: / |Aa|dQs < Baip 1imitVs,0
Qg

Allowed values of Ac: Aa € {ap — gy up — i},

(19)

where aj is the design variable value in the beginning of
the k optimization iteration; ay, = 0 and awp = 1 are the
lower and upper bounds, respectively; ¢, (o) = fszr adQq r;
cs(a) = st ad€q,s; and Bgip 1imis 15 a factor that lim-
its the number of flips/jumps between 0 and 1. The
design variable value for the next iteration is given as
ap+1 = o + Aa. When the bounds of the linearized
inequality constraints (Ac,(ax) and Acs(ay)) are set as
frVio and fsVs o, the integer solution for eq. (19) may be-
come unfeasible [33], depending on ar,. Thus, these bounds
are relaxed as:

—Erelax (Ci (ak) + cref,i)a
if ¢j(ay) > Fezaeis
—ci(a),
R B
Erclax(ci(o%) + Crcf,i)7
it () < estass,
where ¢ = r or S, Cref,r = frV;“,Oa Cref,s = fsVS,Oa and

0 < €relax < 1 is a constraint relaxation parameter.

5. Numerical results

The numerical results are computed for water (z = 0.001
Pa s, p = 1000.0 kg/m?®), and the mesh is unstructured.
Also, the presence of external body forces is neglected
in the numerical examples (pf = (0, 0, 0)), the spec-
ified fluid volume fraction (f) is selected as 70%, and
Kmin = 0 kg/(m®s). The TOBS algorithm is computed
until Aa = 0, or the topology has entered a slight loop



— i.e., when the topology is moving a little bit back and
forth, but has, overall, already converged. The optimized
topologies are plotted for the values of the pseudo-density
(design variable) in the center of each finite element. The
zones outside the design domain are removed from the sys-
tem of equations being solved by TOBS.

The TOBS approach is carried out for .2y = 0.05
and Baip 1imit = 0.05. In some cases, a continuation
scheme in Bgip 1imit 15 considered — for example, consid-
ering Baip 1imit = 0.05 for some iterations, and then chang-
ing to faip limit = 0.01 or 0.005 in the next iterations.
Similarly to continuation schemes in material model pa-
rameters, this continuation scheme is used in order to help
reaching the optimized topology.

The initial guess for the pseudo-density (design variable)
distribution consists of straight blades, which are indicated
in Fig. 5. The indicated angles are set as 3, = 30°, Bs =
15°, and B,.; = 5°, and the thickness of the rectangles is
e = 2 mm, while the remaining dimensions are shown in
Section 5.1. For the turbulent flow cases, the laminar flow
topologies for similar configurations are considered as the
initial guesses. Nonetheless, for a comparison standpoint,
the variable «p, from eq. (18), is still set according to the
straight blades initial guess. In the rotor-only topology
optimization results, only the set of blades of Fig. 5 that
is inside the rotor zone is considered.

el fl | [oH«

1/8€r 1/Ger 1/;8 1/4‘85

Figure 5: Straight blades initial guess, where the rotor straight blade
is angularly centered.

The optimized topologies are the optimized distribu-
tions of the design variable, defining where there is solid
and fluid. Therefore, it is possible to identify the contours
of the fluid part of the domain. Since the topology opti-
mization mesh is fixed, there will be some small roughness
on the identified contours, whose effect was being atenu-
ated during topology optimization, due to the use of the
material model, the pseudo-density nodal design variable
and the pseudo-density filter. Therefore, this small rough-
ness should be smoothed (Fig. 6), either programatically
or manually. All of the presented computed values, with
the sole exception of convergence curves, are computed in

the post-processed meshes, and are shown for the 45° sec-
tion considered in the topology optimization — i.e., 1/8"
of the whole rotor.

Optimized topology

Post-processing
Post-processed

Figure 6: Post-processing of the optimized topologies, illustrated for
the whole rotor.

The sensitivities are compensated by the volume around
each design variable node, by considering a Riesz map in
the sensitivity analysis, leading to mesh-independency in
the computed sensitivities [49]. This is particularly inter-
esting for non-uniform meshes, since non-uniformities lead
to less-smooth sensitivities and may possibly hinder the
topology optimization process. When there are periodic
boundaries, this effect needs to take the mesh periodicity
into account. This can be done by making use of the fi-
nite element variables from FEniCS, and computing the
following equation:

dJ
/Q do
where w2 is the test function for g_i‘m' %‘Lz is the
mesh-independent sensitivity, which mathematically cor-
responds to an L? inner product. In order to keep the same
measurement units from the original equations, g—i ‘ 2 may
then be multiplied by the average volume (sum of the
volumes around each node, divided by the number of
nodes). Under polar/cylindrical coordinates, the differ-
ent coordinate system must also be considered in eq. (21)
(dQ = rdQ,).

The radius from the Helmholtz pseudo-density filter is
set for slightly smoothing the contours of the optimized
topology distributions, as half of the smallest element size
in the mesh.

The Reynolds number is given as the maximum value of
the local Reynolds number based on the external diameter:

dJ
2d) = — 21
L2 wr, d dOt, ( )

abps 2 exr
Reext, ¢ = M7 (22)

P

where r.,; is the external radius.
The inlet velocity profile, which is imposed on Ty, (Fig.
2), is defined as a relative velocity in the radial direction.



The inlet turbulent variable (Rt ;) is given as:

[Ty
RT,in - ?IT€T|vabs,in|; (23)

where Ir is the turbulence intensity (set as 5%), fr is
the turbulence length scale, |vaps,in| is the local absolute
velocity on the inlet, and n, is the number of velocity
components (in 2D, 2 components). Also, {1 is selected
as by = 0.07CA/ 4, [50, 51] where £, is the length of the
inlet contour for the whole rotor (i.e., 277ips).

In the numerical results, the variation of (static) pres-
sure Ap is computed as

U

_ _ pdrout frin pdrin
Ap = Pout — Pin = -

frin dlin

In order to accelerate the progress of the optimization,
the OpenFOAM® simulations for each optimization step
reuse the simulation result coming from the immediately
previous optimization step. Since the resulting simulations
are sequentially being converged, the maximum number
of SIMPLE iterations per optimization step can also be
reduced (e.g., depending on the case, 500~2000 iterations
per optimization step).

The numerical examples are presented in four parts. In
the first part, some dimensions are varied in the rotor-
diffuser design, and a single configuration for the dimen-
sions is selected for the next numerical results. In the
second part, the laminar flow design is compared to the
turbulent flow design. In the third part, the rotor-diffuser
design is shown for a rotor-only design. In the last part,
the weights from the multi-objective function are varied,
in order to show the importance of each of them.

out

fFout dFout

(24)

5.1. Design domain and mesh

An impeller-diffuser configuration [24], also referred to
as a rotor-diffuser configuration, is considered for topology
optimization through a 2D model (predominantly radial
impeller-diffuser — For other configurations, such as radial-
axial configurations, a 3D model, which is more computa-
tionally costly would need to be considered). The impeller,
which is also referred to as the runner blades or simply as
the rotor, is the driving part of the device. The diffuser
[52], also referred to as the guide vanes or the diffuser ring,
can serve for two aims: the first one is to increase the static
pressure energy of the outflow, and the second one is to ad-
just the direction of the outflow, in order to better match
devices that are placed after the impeller-diffuser. Here,
the topology optimization is set for the diffuser to help
maximizing the total energy transferred to the fluid, and
to maximize the variation of the static pressure in it, or,
at least, to avoid dropping it too much in the optimized
topologies.

The computational domain is shown Fig. 7, where the
design domain is set only for the ¢, (rotor) and ¢, (dif-
fuser) zones. The inlet length is set as ¢;, (outside the

design domain, set here as 5 mm), and the gap length is
set as ¢, (outside the design domain), in order to avoid the
rotating and stationary zones to touch each other. The
basic radial dimensions are r.;+ (external radius, for the
outlet), and 7;,; (internal radius, for the inlet, set here as
15 mm). The MRF zone (rotating zone) is delimited by
/12 + y% < rMRr, and TR i given in the middle of the
gap. The domain section is set for Af = 45°, and the ro-
tation is given according to the right-hand rule — i.e., in
the z direction.

Figure 7: Computational domain.

The mesh being considered for the topology optimiza-
tion is 2D and depends on the dimensions being consid-
ered. For /, = 38 mm, ¢, = 2 mm, and ¢, = 6 mm, the
mesh is shown in Fig. 8, with 57,510 elements.

Figure 8: Mesh.

In the laminar flow examples, the radial inlet velocity
is set as 0.001 m/s, and the rotation is set as 1.047x107!
rad/s. For the turbulent flow case, the radial inlet velocity
is set as 0.01 m/s, and the rotation is set as 1.047 rad/s.

5.2. Sizes of the gap and diffuser zones

The sizes of the gap (¢;) and the diffuser (¢s) zones
are varied in the rotor-diffuser design, in order to show
their effect in laminar flow topology optimization, before
setting a single configuration for the dimensions in the
next numerical results. The topology optimization results
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Figure 9: Topology optimization results for different gap sizes (Wp =8, wg » = 1, wp,s = 0.05 and Wg s = 5).
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for different gap sizes, by considering ¢, = 38 mm and
{5 = 6 mm, are shown in Fig. 9.

The optimized topologies are overlapped in Fig. 9d, and
the dashed circumferences indicate the middle of the gaps.
Note that larger gap sizes seem to make the flow path
slightly more inclined. Furthermore, the diffuser zones are
located in larger radii and feature larger blades as the gap
size gets larger. The different gap sizes are indicated by
the zone between the red circumferences in the optimized
topologies from Figs. 9a to 9c. From Fig. 9a, the zone-
relative energy dissipation ®..., considered in topology
optimization seems to feature a minimum value near the
gap size of 2 mm. This effect is also shown separated into
the rotor and diffuser zones, which show different behav-
iors; the rotor zone effect seems to also have a minimum
value near the 2 mm gap size — however, it diminishes
for even larger gap sizes; and the diffuser zone seems to
have a minimum value near the 4 mm gap size, increas-
ing for even larger gap sizes. The increase in the energy
dissipation of the diffuser can be viewed as a consequence
of the diffuser being located at larger radii, which means
that the diffuser zone is larger, and larger zones are more
prone to dissipating energy. The rise in the rotor relative
pressure head Hye , (Fig. 9b) shows that the overall per-
formance of the rotor seems to improve for larger gaps.
The variation of pressure in the diffuser zone Apg s shows
a similar behavior; however, there seems to be a mini-
mum value at the 2 mm gap size, which can be caused
by the different angulations of the flow around the rotor
and diffuser blades. Finally, the pressure head H and the
variation of pressure Ap show similar behaviors, increas-
ing at larger gaps. Therefore, in the overall, larger gap
sizes seem to help transferring energy to the fluid more
efficiently, although this behavior may change at smaller
gap sizes, most probably due to the smaller consequent
diffuser size.

By considering a 2 mm gap size ({; = 2 mm), and
£, = 38 mm, the topology optimization results for different
diffuser sizes are given in Fig. 10.

From Fig. 10d, the effect of the larger size of the dif-
fuser slightly affects the shape of the rotor blades, mak-
ing them more inclined, while the diffuser becomes more
prominent. The larger diffuser size caused a decrease in
the zone-relative energy dissipation ®,¢)., due to the effect
in the rotor zone, although the diffuser zone tried increas-
ing it (from its larger size) (Fig. 10a). In this case, a
worse performance (rotor relative pressure head Hye ;) is
observed for the rotor (Fig. 10b), as well as a larger static
pressure rise inside the diffuser Apg s (done mostly from
the larger size) (Fig. 10b), and a rise in the pressure head
H and the static pressure Ap (Fig. 10c). Therefore, larger
diffuser zones seem to help transferring energy to the fluid,
although at the cost of the performance of the rotor (rotor
relative pressure head Hyel ).

From this section onwards, for evaluating other effects,
the dimensions are set as £; = 2 mm, ¢, = 38 mm, and
s, = 6 mm.
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5.8. Turbulent flow

The rotor-diffuser is optimized for turbulent and lami-
nar flows, and the convergence curves of the topology opti-
mization are shown in Fig. 11. The simulation results are
shown in Fig. 12, where v, corresponds to all velocities
viewed from the rotating reference frame. By comparing
the optimized topologies in Fig. 12, the rotor blades in
the turbulent case are more tilted back, while there are
also splitter diffuser blades, which are not present in the
laminar flow case. From the velocity plots from Fig. 12,
the diffuser blades change the outflow direction, reducing
its spinning component, which was highly increased by the
rotation of the rotor and is, in fact, one of the objectives of
this type of device. Also, the major pressure rise happens
inside the rotor (Fig. 12), showing its pumping power.
The plot of the turbulent viscosity (Fig. 12b) shows that
the turbulence is more apparent going outside the inlet,
which seems to be an effect of the inlet turbulence and the
shape of the rotor blades, and rises again when reaching
the diffuser blades, due to the change in the flow direction.

In order to gain a better insight on the optimized topolo-
gies, the simulations of the straight blades are shown in
Fig. 13. Note that, in the turbulent flow case, the
straight blades suffer from flow separation (recirculation
zones) behind them, which increases energy dissipation.
These recirculation zones are completely avoided in the
optimized topologies, and the induced turbulence (ur) is
much smaller (about 10 times smaller).

The computed values in the laminar and turbulent flow
optimized topologies are shown in Table 1. The corre-
sponding maximum local Reynolds numbers in the op-
timized topologies are 6.5 x 102 and 6.4 x 103, respec-
tively. From Table 1, the laminar flow optimized topology
is shown to dissipate less energy (®,q.,) than the straight
blades initial guess, being caused mainly by the reduction
in the dissipation of the diffuser zone ®.q ,|s. The static
pressure rise Ap is also shown some improvement. The
other values are slightly worse in the optimized topology;
however, this is mostly due to the considered objective
function weights, which prioritized the reduction of the
energy dissipation (capable of giving a smoother flow in-
side the rotor that dissipates less energy). As an example,
if the weight of the pressure head wy 5 (= 0.5) is increased
to, for example, 10.0, the new optimized topology features
a pressure head H that is 25% higher, although the other
values are slighlty worsened. When performing this same
comparison for the turbulent flow case, the turbulent flow
optimized topology is shown to feature much less energy
dissipation ®c1.,, the rotor relative pressure head Hie
is shown a 16% improvement, the variation of pressure in
the diffuser Apg s and the pressure head H are worsened,
and the variation of static pressure Ap is improved by
45%. The improvements under turbulent flow are shown
to be different from laminar flow, and may possibly be at-
tributed to: the optimized topology itself, which induces
a smoother flow that reduces potential turbulence sources;
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R AR X Figure 12: Simulations of the laminar and turbulent optimized
to their values at the initial iteration.

topologies (Wg = 8, wg,» = 1, wp s = 0.05 and wg s = 0.5).
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Figure 13: Simulations of the laminar and turbulent straight blades.
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and also the different effects of the objective functions un-
der turbulent flow, which may increase the importance of
the some of the objective functions with respect to the
energy dissipation.

Table 1: Computed values for the laminar and turbulent optimized
(op.) topologies after post-processing, under laminar and turbulent
flows, respectively. The values for the straight (st.) blades initial
guess are also shown.

Case Doy Dol yls Dol yly
(107°W/m) (1075W/m) (1075W /m)
Laminar (op.) 0.0165 0.0068 0.0097
Turbulent (op.) 4.9 2.3 2.6
Laminar (st.) 0.020 0.011 0.0090
Turbulent (st.)  11.49 6.85 4.64
Hielr Apg.s H Ap
(10~ %m) (10~2Pa) (10~ *m) (10~ 1Pa)
0.0171 0.027 0.0094 0.097
1.79 -2.2 1.0 9.7
0.0174 0.021 0.013 0.13
1.54 7.40 1.6 14.02

The laminar and turbulent topologies from Fig. 12 may
be compared to one another (i.e., cross-checked), in order
to show the effects of extrapolating the optimized topolo-
gies obtained from one type of fluid flow to another. This
is shown in Table 2. For simplicity, from here onwards,
the topology optimized under laminar flow is referred to
as laminar topology, and the one optimized under turbu-
lent flow is referred to as turbulent topology. From the
laminar flow results in Table 2, when considering the tur-
bulent topology, all of the shown functions worsened, with
the sole exception of the energy dissipation in the diffuser
zone ®o)_,|s, which slightly improved. In the case of tur-
bulent flow, the lack of the splitter blade in the laminar
topology, as well as the differently shaped rotor and dif-
fuser blades, caused a decrease in the energy dissipation
D1, and slightly improved the rotor relative pressure
head H,e,. On the other hand, the variation of pressure
in the diffuser Apg s, as well as the pressure head H and
the variation of static pressure Ap, worsened. Therefore,
in the overall, the behavior of the topologies under dif-
ferent flow conditions seems to be quite unpredictable in
the sense that the computed values may become worse.
In order to assess the improvement more predictably, it
is better to consider the same flow configuration from the
optimization, and the objective function weights can be
varied, which will be shown in Section 5.5.



Table 2: Comparison of the optimized topologies when under laminar
and turbulent flows*.

Case Drel-s Drelzls Drelgr
(107°W/m) (107°W/m) (107°W/m)

Laminar (0.L)  0.0165  0.0068 0.0097
Laminar (0.t.)  0.0206  0.0055 0.0151
Turbulent (0.t.) 4.9 2.3 2.6
Turbulent (0.l.) 54 2.3 3.1
Hielr Apg,s H Ap
(10~4m) (10~2Pa) (10~4m) (10~ 1Pa)
0.0171 0.027 0.0094 0.097
0.0165 -0.057 0.0051 0.060
1.79 -2.2 1.0 9.7
1.73 3.3 1.2 11.2

* Legend:

0.l. = optimized topology for laminar flow.
o.t. = optimized topology for turbulent flow.

In order to get a brief insight on the computational
cost of the performed topology optimization, the aver-
age/typical timings for each optimization iteration are
shown in Fig. 14. Note that this number has to be mul-
tiplied by the number of the required iterations in order
to give the total time of the topology optimization, which
may be high. In Fig. 14, the computations were performed
with only OpenFOAM® running in parallel (4 processes),
for a maximum of 500 iterations for the simulation in each
optimization step. The interfacing from Fig. 14 corre-
sponds to converting to and from OpenFOAM® | whilst
the TOBS step from Fig. 14 corresponds to solving eq.
(19). Under laminar flow, the optimization iteration takes
about 1 minute and a half, whilst under turbulent flow,
the optimization iteration takes about 2 minutes. This is
understandable from the sense that there are more state
variables in the case of turbulent flow. Note that the TOBS
step part consists of the smallest of the timings although it
solves an integer optimization problem, which is normally
expected to take longer, meaning that the implementation
in CPLEX® is quite efficient. The main source of compu-
tational cost is the forward problem (simulation), which
can still be improved by considering more processes when
running the OpenFOAM® simulations, or using a smaller
maximum number of iterations in OpenFOAM® for each
optimization iteration (with some care so as not to deterio-
rate the ongoing topology optimization). The sensitivities’
and interfacing timings can also still be improved by con-
sidering an iterative solver for the linear problems (such
as GMRES), and/or parallelism in the adjoint model and
in the projections.
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Figure 14: Average/typical timings for each optimization iteration
(in seconds).

5.4. Rotor-only configuration

Since previous works considered only the topology opti-
mization of the rotor [9, 42, 53], the topology optimization
of only the rotor is also performed here, in order to com-
pare with the rotor-diffuser configuration. For this, the
computational domain from Fig. 7 is considered up to the
radius i + £, + £, meaning that the topology optimiza-
tion may be performed entirely inside the rotating refer-
ence frame, which simplifies the formulation. Note that,
here, the rotation is given according to the right-hand rule
(z direction), instead of the left-hand rule (—z direction),
which was considered in [9] and Sa et al. [53]. The op-
timized topologies, alongside their respective simulations,
are shown in Fig. 15.

By comparing Fig. 15 with Fig. 12, note that the size
of the rotor blades is larger, mainly due to neglecting the
interaction with the diffuser, which dissipates energy and
changes the outflow direction. Also, there are rotating
blade splitters in Fig. 15, which may be attributed to the
pressure head weight wg s (= 5.0) with respect to 0.5,
which was considered in Fig. 12. The computed values
are shown in Table 3. Note that the laminar flow topology
is mostly better than the straight blades initial guess, with
a slightly worse energy dissipation ®,q.,. In the turbulent
flow topology case, the optimized topology is notably bet-
ter in terms of the pressure head H; however, it features
worse values in the other values with respect to the straight
blades initial guess. This is directly an effect of the weight
of the pressure head wy s (= 5.0) and, if needed, Wy s
may be reduced in order for the other values to be able to
improve, while worsening the pressure head H.



Table 3: Computed values for the laminar and turbulent optimized
(op.) rotor-only topologies after post-processing, under laminar
and turbulent flows, respectively. The values for the rotor-only
straight(st.) blades initial guess are also shown.

Case Drelr Hyar H Ap
(1075W/m) (10~*m) (10~*m) (10~ 'Pa)
Laminar (op.) -0.0169 0.0154 0.033  0.149
Turbulent (op.) -17.16 1.55 4.03 13.23
Laminar (st.) -0.0170 0.0149 0.024  0.140
Turbulent (st.) -18.037 1.57 2.15 13.92

In the overall, the rotor-only design neglects the pres-
ence of the diffuser, which allows it to better optimize the
rotor. However, in some applications, it may be necessary
to change the outflow characteristics through a diffuser,
which affects the flow inside the rotor, and means that, in
order to optimize it, the coupled phenomenon should be
considered.

[— I
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5.5. Weights of the multi-objective function

(a) Laminar flow.

The weights of the multi-objective function are varied
here, in order to show that each of the objective functions
affects the overall design, creating a tendency to improve
the corresponding value, which may or may not improve
the other values.

The first weight to be varied is the one corresponding to
the zone-relative energy dissipation (Wg). The results are
shown in Fig. 16, for laminar and turbulent flows, where
fi.op is the function ¢ computed in the optimized topology,
and f; s is the function ¢ computed in the straight blades
configuration. On the images of the optimized topologies,
when the main changes of each optimized topology with
respect to the immediate left of it are possibly not easily
[y j— noticeable, they are explicitly written on the images. For
345674 laminar flow (Fig. 16a), when increasing wg, the rotor
107*Pa s) blades have a tendency of becoming shorter and narrower,
(b) Turbulent flow. which should make the fluid more smooth. Note that all
of the other computed functions, with the exception of the
ones related to the energy dissipation (®re1, ,Prelsls, and
Drel4|r), sSeem to get worse when increasing wg. For tur-
bulent flow (Fig. 16b), when increasing wg, the optimized
topology may arive at different solutions when trying to
minimize the energy dissipation ®.._,, which can be seen
on the two rightmost optimized topologies in Fig. 16b.
One noticeable point is that the diffuser splitter blade has
a tendency of becoming smaller under higher wg, which
may indicate that the diffuser splitter blade is not too fa-
vored by the energy dissipation ®,)_,.
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Figure 15: Simulations of the laminar and turbulent rotor-only op-
timized topologies (Wp =8, wg,» = 1, and wg s = 5).
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Figure 16: Optimized topologies for different wg values.

The second weight to be varied is the one correspond-
ing to the rotor relative pressure head (W), shown in
Fig. 17. For laminar flow (Fig. 17a), when increasing
Wg -, the rotor relative pressure head H,, is also im-
proved, especially when more diffuser blades appear in the
optimized topology. However, the energy dissipation ®,)_,
does not follow the same trend, and actually worsens (i.e.,
increases), as well as the other computed functions (Apg s,
H, Ap). The additional diffuser blades seem to help de-
creasing the upward flow velocity near the exit of the rotat-
ing zone, which seems to help increasing the rotor relative
pressure head Hye,. For turbulent flow (Fig. 17a), when
increasing wg ., the rotor blades seem to become more
tilted towards the direction of the rotation, and shorter.
The improvement in the rotor relative pressure head H,e1,,
for the middle optimized topology is about 3.2% with re-
spect to the leftmost optimized topology. The leftmost
optimized topology featured a decrease of about 0.3% in
the rotor relative pressure head H,¢ ,, which may indicate
a local minimum.

17

a—

0246810

N jo_n | s

L Zoom

A

10WH,r

o 2 4 & 8

0

1 4__Longer 10
4
= S

KIAVKIA YR~y = 5

\INJA\ s AN\

MDA AN M7

R vy 70 Zoom (

- Dy, A= H, b A
= Droo)e == Apqs == Straight blades
*+ O, =« H 1 @4 @10

(a) For laminar flow (wg =8, wp,s = 0.05, and wg s = 5).

1.4
1.2 -
1
f 0.8 X
iop 0.6 3
0.4 ——
|f;',st| o2t = D
01
0.2 \/
-0.4 g
0 1 2 WHr
Larger
0 Longer 1_splitter NO splitter
= Illtoere
/‘ \ / ‘? 7 ﬁ.,shorter
VAN V
\\‘y \\\" \\‘ .' Zoom
Shoner
- D, e Heo, \/
> Der|r = Apos — Straight blades
= Dpyfs - H [__J0] ;1 ;2

(b) For turbulent flow (we = 8, wp s = 0.05, and Wi s = 0.5).

Figure 17: Optimized topologies for different wy ;. values.

The third weight to be varied is the one corresponding
to the variation of static pressure in the diffuser weighted
by the flow rate (wp_s), shown in Fig. 18. For laminar flow
(Fig. 18a), when increasing w), 5, the optimized topology
tends to have longer and straighter blades near the rotor
exit. For w, s > 0.4, the optimized topology drastically
changes, creating various auxiliary structures inside the
rotor and changing the diffuser shape, aiming to increase
the variation of pressure inside the diffuser Apg . This
comes, however, at the cost of the other function values,
which get a tendency to worsen due to the now tortuous
(less smooth) fluid flow path. For turbulent flow (Fig.
18b), when increasing w), s, the optimized topology tends
to get shorter diffuser blades and rotor blades that are
tilted more towards the direction of the rotation, as can be
seen in the plots, while the only value that ends up getting
slightly worse is the rotor relative pressure head Hie,,
which worsens about 1.75% with respect to the leftmost
optimized topology, most probably due to the amount of
blade tilting, which may not be the ideal one for improving
it.
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I'igure 18: Optimized topologies for different wy, s values.

The fourth weight to be varied is the one corresponding
to the (absolute) pressure head (Wp rs), shown in Fig. 19.
For laminar flow (Fig. 18a), when increasing wy 5, the
rotor blades seem to favor longer sizes, which should be
capable of delivering more power from the blades to the
fluid. Overall, the functions related to the energy dissipa-
tion (Prers ,Prelzls, and Pyel,|r) worsened, and the rotor
relative pressure head Hyel , slightly worsened. This can
be seen from the fact that longer rotor blades are closer to
the diffuser blades and, therefore, the interaction between
blades is more intense (i.e., increases energy dissipation).
For turbulent flow (Fig. 18b), when increasing wy .5, the
optimized topologies seem to have reached different local
minima in the topology optimization, where one of them
features larger diffuser splitter blades and the other one
tries to compensate the lack of diffuser splitter blades by
changing the shapes of the rotor and diffuser blades. The
improvement in the pressure head H for the two rightmost
optimized topologies (from left to right) is 2.6% and 3.4%,
with respect to the leftmost optimized topology.
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Figure 19: Optimized topologies for different wg ;. values.

6. Conclusions

In this work, the topology optimization method has been
formulated for the MRF approach. The MRF approach
consists of simulating the fluid flow inside the rotor zone
according to the rotating reference frame, and inside the
diffuser zone according to the stationary reference frame,
in the form of a unified formulation. Also, a new combi-
nation for the multi-objective function is proposed for this
case.

The numerical examples are presented for a 2D config-
uration, which means that the modeled impeller-diffuser
is being simplified from a predominantly radial config-
uration. This simplification can be viewed as a design
methodology, since it aims to make the analysis feasible
in a topology optimization standpoint. Note that most
works in pump optimization in literature consider para-
metric optimization, in which a small fixed set of param-
eters is considered, such as 10 parameters or some more,
and the optimization ends up being quite restricted — i.e.,
it is unable to create splitters and change shapes. However,
topology optimization operates by computing the sensitiv-
ities on each pixel/voxel of the design domain in order to
define where to include or remove solid material, meaning



that there are millions of design variables (one for each
pixel /voxel in the design domain), which significantly in-
creases the computational cost, meaning that, in 3D re-
alistic (well refined) models, it would necessarily require
the use of High Performance Computing (HPC), which is
not the focus of this paper. Nonetheless, in terms of a
design methodology, it is normally good to have an initial
insight on the optimization problem, and the use of a 2D
model can possibly give at least a practical insight on the
optimized configurations, since at least turbulence is be-
ing considered with a relatively realistic rotation. Thus,
the use of a 2D model can be viewed as a first step in the
overall design. It is not able to guarantee a 3D optimized
result; however, it is systematic and may give a good in-
sight on the problem. For example, the straight blades
configuration was compared to the optimized topologies.

Four numerical examples are shown for: varying some
dimensions in the rotor-diffuser design, comparing laminar
and turbulent flow optimized topologies, showing the cor-
responding rotor-only design, and varying the weights in
the multi-objective function. The dimensions of the rotor-
diffuser design can affect the optimized topologies, albeit
being fixed depending on the application. The turbulent
flow is shown to affect the optimized topology, with respect
to laminar flow. The rotor-only design neglects the pres-
ence of the diffuser ring, ignoring downstream effects, and
may not be the best alternative depending on the applica-
tion, when it is necessary to change the outflow character-
istics through diffuser blades. The different importance of
each objective function for the given application is repre-
sented by the multi-objective function weights, which lead
to different optimized topologies.

As future work, some suggestions are to consider non-
Newtonian fluids, thermal effects, the mixing plane ap-
proach, and other flow machine designs.
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Appendix A. Alternative unified objective func-
tion

From eq. (18), by considering the weak form of the
Navier-Stokes equations with the velocity vaps (or v) be-
ing considered instead of w,, it is possible to represent
all of the objective functions as part of a single objective
function with internal weights:

1
J = Wq?WH,TWH,’I‘S / |:§ (N + ,UJT)(V'Uabs + vvabsT)°
Q

r

(V'Uabs + V'UabsT)

ds,

1
[—(u + 1) (VVas + VUaps )e

+ W@WH,rst,s / 2

Qg

(V'Uabs + vvabsT) dQs

- W@WH,TWH,TS / fr)r(a)'('vabs —wA r)er
Qr
— WH,rs / fr)r(oz)-(w A 1)dS,
Q..
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Qs

+ WoWH rWH rs / [2p(W/\(vabs —wA T))

Q’V‘
+ pwA(WAT)]*(Vabs — w A 7)dS2,

- WH,TWH,TS / V-[(,u + NJT)(V'Uabs + V’UabsT)}er

r

—WHrsWps / v'[(,u + HT)(Vvabs + vvabsT”dQs

s

1
+ Wps / EV ° (pvabs(vabs'vabs))dﬂs
Qs
(A1)

where the dimensionless weights we, Wi ., Wy s and W g
should be set as non-zero. If the weights are set in a
summation fashion in all terms — for example, for the
first term, it would be (We + Wi, + Wi rs) instead of
WeWH WH,rs, the weights are allowed to be set as zero as
well, and the final form of the equations would be sim-
ilar to considering eq. (18), without, however, the need
of scaling the objective functions, due to using the same
measurement units.

Note that eq. (A.1) is quite complex, featuring intri-
cate intermixed dependencies which may cloud the phys-
ical meaning of each term when trying to attain a cer-
tain improvement, including possibly making the choice of
weights harder. Also, there is a second order derivative in
the velocity in the penultimate and antepenultimate terms
of eq. (A.1), which may be an issue depending of the nu-
merical method being considered. Thus, for more clarity
for the physical meanings and to avoid the mentioned issue
in the numerical method, eq. (18) is considered.



Appendix B. Finite element formulation for MRF
under polar coordinates

The weak form of the problem defined for polar coordi-
nates (s, = (r,0)) depends on the weighted-residual and
the Galerkin methods for the velocity-pressure (mixed)
formulation [54|, and relies on converting the differential
operators to polar coordinates, as well as converting the
integrals. Thus, the weak form of the problem becomes:

F = R.+ Ry, + Rwaso1s = 0,
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(B.1)

where F' is the weak form, and R., R,, and Rwao01s are
the residuals of the continuity equation, the linear mo-
mentum (Navier-Stokes) equations, and the Wray-Agarwal
(2018) equation. The polar integration domains corre-
spond to the same ones presented in previous sections (€2,
Qs, Q, , and T') but converted to polar coordinates: The
resulting polar domains are indicated by the additional
subscript ¢ and are equal to their counterparts multiplied
by r, as Q. , Q¢s, Qc,r, and I'¢, respectively. The test func-
tions for each state variable (v,ps, p, Rr) are given as w,,,
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wy, and Wg,, respectively. Eq. (B.1) can also be extended
to cylindrical coordinates (s, = (r,0,z)). Note that the
differential operators, such as gradient and divergence, are
expressed differently depending on the coordinate system
being considered [55].

Appendix C. Pseudocode of the implementation

All the information in the article is sufficient for the
reproduction of this article. Particularly, the original
TOBS implementation can be obtained from Souza et al.
[32] and then adjusted for this work. The FEniCS and
OpenFOAM® softwares are open source, as well as the
FEniCS TopOpt Foam library [37], which also provides
an example of usage (sample code). The implementa-
tion in FEniCS is then straightforward from the pro-
vided weak forms in this work, because it uses a high-
level description for the variational formulation (UFL).
In the case of considering polar coordinates, the differ-
ential operators (“grad’, “curl”, “div”) must be pro-
grammed by hand by using the “Dx (var, component_num)”
or “var.dx(component_num)” functions, because the oper-
ators provided by FEniCS assume Cartesian coordinates.

The part of the implementation that is performed
in OpenFOAM® | consists of including the inverse
permeability term in the “simpleFoam” solver from
OpenFOAM® | which is already able to take MRF into ac-
count (already available in the git repository from Alonso
et al. [37], as “CustomSimpleFoam”), and also in the Wray-
Agarwal (2018) turbulence model, which needs to be ad-
justed from the original git repository [56] according to
eq. (7) considering fyrr = 0, because OpenFOAM® can
internally change the fluxes in order to take MRF into
account.

In order to facilitate the reproduction of results, a pseu-
docode is represented in Algorithm 1, where the main
FEniCS/dolfin-adjoint functions being used are given be-
tween parentheses.



Algorithm 1 Pseudocode of the implementation

10:

15:

20:

Input parameters: Flow rate, turbulence, dimensions, optimization parameters and constants.
Result: Optimized topology (optimized distribution of the design variable) and its post-processed simulation.
1 [FEniCS] Generate the mesh using Gmsh [43], import it in FEniCS and convert it to polar coordinates.
2 [FEniCS| Prepare the state variables and the design variable (pseudo-density) (MINI element (velocity and pressure)
(“FiniteElement”, “VectorElement”, “NodalEnrichedElement”), CG1l “FiniteElement” (pseudo-density, undamped turbu-
lent viscosity), “MixedElement” (for pressure, velocity and undamped turbulent viscosity), “FunctionSpace”), by considering
periodic boundaries.
3 [FEniCS] Define the Dirichlet boundary conditions (see eq. (9)) (“DirichletBC”), and leave the boundaries marked by a
“MeshFunction”.
4 [FEniCS] Define the initial guess of the topology (i.e., the initial values of the design variable) (“interpolate”).
5 [FEniCS]| Define the material model for the inverse permeability (eq. (12)).
6 [FEniCS| Compute the Helmholtz pseudo-density filter.
7 |[FEniCS] Define the weak form of the fluid flow problem (eq. (B.1)) by using the filtered design variable.
8 [OpenFOAM® | Prepare the default OpenFOAM® setup dictionaries, the material model properties
(“materialmodelProperties”), as well as the MRF setup (“topoSetDict” and “MRFProperties”).
9 [FEniCS — OpenFOAM® | Convert the mesh and boundary markings from FEniCS to OpenFOAM® by using FEniCS
TopOpt Foam [37].
10 Start the topology optimization iterations, until convergence. This part may be implemented manually, or by an opti-
mization solver based on the dolfin-adjoint built-in “IPOPTSolver”. In the first case, the implementation framework should be
similar to [32]; in the second case, the implementation framework should be similar to [37]. All of the operations performed
with FEniCS TopOpt Foam are available in the sample code from [37]. Exemplifying for the first case,

9.1 [FEniCS| Compute the Helmholtz pseudo-density filter without annotations (“annotate = False”), and update the
filtered design variable values.

9.2 [FEniCS| Map the variables from the polar coordinates to the Cartesian coordinates.

9.3 [FEniCS — OpenFOAM® | Map the current state variables and the filtered design variable to OpenFOAM® | by
using the FEniCS TopOpt Foam library.

9.4 [OpenFOAM® | Solve the simulation in OpenFOAM® .

9.5 [OpenFOAM® — FEniCS| Map the current state variables to FEniCS, by using the FEniCS TopOpt Foam library

9.6 [FEniCS| Map the variables from the Cartesian coordinates to the polar coordinates.

9.7 [dolfin-adjoint| Compute the sensitivities by using dolfin-adjoint: first, use the “pyadjoint” module from dolfin-adjoint
in order to temporarily stop annotations, and then compute the sensitivities (“compute_gradient”).

9.8 [TOBS]| Define and solve the TOBS step.

9.9 [FEniCS| Update the design variable.

9.10 [TOBS| Check for convergence.
10 Post-process the optimized topology.
11 Set up the simulation for OpenFOAM® in the post-processed mesh, and solve it.
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