
Journal of the Brazilian Computer Society, 2025, 31:1, doi: 10.5753/jbcs.2025.4912
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Efficient Number of Functional Units and Loop Pipeline Design
Space Exploration for High-Level Synthesis
Leandro de Souza Rosa   [Alma Mater Studiorum - Università di Bologna | lean-
dro.desouzarosa@unibo.it]
Christos-Savvas Bouganis [Imperial College London | savvas.bouganis@imperial.ac.uk]
Vanderlei Bonato [Universidade de São Paulo | vbonato@usp.br]

 Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione ”Guglielmo Marconi”, Alma Mater Studiorum
- Università di Bologna, Viale del Risorgimento, 2, 40136 Bologna (BO), Italy.

Received: 07 September 2024 • Accepted: 31 May 2025 • Published: 05 August 2025

Abstract High-level synthesis compilers offer numerous directives for controlling hardware architecture implemen-
tations, leading to highly customized solutions, but also to large design spaces that are impractical to be fully explored
due to the time-consuming stages of hardware compilation and synthesis. Traditional design space exploration ap-
proaches aim to identify architectures with the best hardware resources-performance balance. However, they usually
consider the compilation process as a black box, failing to leverage relationships between directives and evaluation
metrics to improve their efficiency. This paper analyses the relationship between the “number of functional units”
and “loop pipeline” directives, which allow for balancing hardware area and computation time. For the former, we
propose a novel path-based method to solve the shortcomings of traditional exploration approaches. For the latter,
we propose a novel incremental exploration flow based on a Pareto-frontier evaluation. Results show improvements
in exploration speed and quality of hardware designs when compared to established methods.

Keywords: Design Space Exploration, High-Level Synthesis, Loop, Directives.

1 Introduction
Over the past decade, the improved computation efficiency
of hardware accelerators popularized their use on several ap-
plications, such as cloud computing [Kachris and Soudris,
2016], System-on-Chip (SoC) [Nane et al., 2016], and edge-
machine learning [Samanta et al., 2024]. To overcome the ex-
pensive design of hardware accelerators, High-Level Synthe-
sis (HLS) tools offer the capability of compiling high-level
applications into custom hardware designs, promising to en-
able high-quality solutions in a fraction of the time when
compared to traditional approaches [Nane et al., 2016].

Hardware accelerators generated through HLS are typ-
ically composed of several Functional Units (FUs) (e.g.,
arithmetic units and memory ports) controlled by an Finite
State Machine (FSM), and the number of Functional Units
(nFUs) affects the design’s throughput and energy consump-
tion. HLS compilers offer a set of directives (pragmas, com-
piler optimizations, and code styles) to control the hardware
architecture generation, allowing for balancing the final hard-
ware metrics trade-offs (silicon area, latency, frequency, and
energy consumption). As such, designers must perform a
Design Space Exploration (DSE) to fine-tune the optimal di-
rectives combinations (configurations) to achieve the desired
hardware metrics balance. Given the time-consuming com-
pilation and synthesis stages needed to evaluate hardware de-
signs, this task is laborious. Therefore, having a fast DSE
method is key to unlocking the HLS potential.

Methods for speeding up the DSE for Multi-Processor
System-on-Chip (MPSoC) are classified in into simulation-
based methods, which provide hardware metrics estimations

without fully implementing the designs, or analytical models,
which compute hardware metrics by modelling the systems
explicitly or from data [Pimentel, 2017]. Similarly to simu-
lation approaches, in the HLS scope, estimation-based meth-
ods are used to avoid the lengthy synthesis process at the cost
of a lower DSE accuracy.

For example, [Perina et al., 2019; Bannwart Perina et al.,
2019] presents a latency estimator (number of clock cycles)
which considers compiler and device-specific information to
achieve precise results; [Wang et al., 2020] creates estima-
tions using a dataset composed of several synthesized ker-
nels.

These approaches achieve the highest acceleration poten-
tial [Zhong et al., 2017], but they often require different mod-
els for each metric, which are platform-dependent and not
portable [Rosa, 2019]. For example, [Perina et al., 2021] pro-
poses to leverage knowledge about the scheduling, allocation
and mapping steps to achieve precise estimations of the hard-
ware performance, but they are tightened to the compilation
platform used, and [Castro-Godínez et al., 2020] uses models
in a library for their estimations.

To reduce the estimation errors, [Fernando et al., 2015;
Cong et al., 2017; Ali et al., 2019] propose to map appli-
cations into pre-defined architecture templates optimized for
the target platform, resulting in efficient designs. However,
such solutions reduce flexibility and are restricted to applica-
tions and platforms matching the templates. Other interest-
ing approaches use a database of high-level code and their
matched pre-optimized designs for easily retrieving quasi-
optimal configurations [Wang and Schafer, 2022], or match-
ing designs with past-explorations though a similarity metric

https://doi.org/10.5753/jbcs.2025.4912
https://orcid.org/0000-0003-3457-9164
mailto:leandro.desouzarosa@unibo.it
mailto:leandro.desouzarosa@unibo.it
https://orcid.org/0000-0002-4906-4510
mailto:savvas.bouganis@imperial.ac.uk
https://orcid.org/0000-0002-1743-8004
mailto:vbonato@usp.br

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

[Ferretti et al., 2020].
Another way to speed up the DSE is by evaluating fewer

designs and selecting those with a higher chance of belonging
to the Pareto-optimal front. This process is usually iterative,
using the results of previous iterations to guide the current
one [Schafer, 2016; Xydis et al., 2015; Ferretti et al., 2018b].

Additionally, the literature presents several alternative
DSE approaches, and a review of their characterization,
methods, merits, and shortcomings is found in [Schafer and
Wang, 2020; Reyes Fernandez de Bulnes et al., 2020]. Most
methods explore the available directives in a common frame-
work, considering the compilation process as a black box, as
illustrated in Figure 1, where the values for each directive
(configuration), on the left, lead to an implementation with
different hardware metrics (design), on the right.

Configurations are encoded as arrays of attributions to
each directive (e.g. loop unrolling = true/false,
loop pipeline = true/false, number of adders=3,
number of multipliers=2, function_inline =
true/false). Designs are encoded as arrays of hardware
metrics (e.g. hardware resource usage (area) and number
of clock cycles (latency)).

The relationships between configurations and designs
(highlighted in blue) are complex and unpredictable [Schafer
and Wang, 2020], limiting the accuracy of exploration meth-
ods and forcing them to explore more designs to achieve high-
quality results [Ferretti et al., 2018b].

Figure 1. A framework commonly used for DSE. A configuration is an array
with the attributions for the HLS directives, such as loop unrolling (lu), loop
pipeline (lp), number of arithmetic functions (e.g. n_add and n_mult), and
compiler flags (c_flags). The generated design is considered as a function
of the configuration and is represented as an array with the hardware metrics,
such as area and latency.

Aiming to mitigate the unpredictability of such a rela-
tionship, [Schafer, 2016; Schafer and Wang, 2020] propose
grouping HLS directives according to their application scope.
Each group (called knob) is explored with a different DSE
method, and exploration results of a knob are used as input
to the next knob’s exploration. As such, instead of a fully
combinatorial design space, groups of smaller spaces are ex-
plored methodologically.

This paper extends the idea of exploring knobs incremen-
tally to a finer granularity by selecting two important direc-
tives, which are known for their tight relationship and im-
pacts on the hardware metrics. The first is nFUs, which de-
fines how many functional units (e.g., memory ports, adders,
and multipliers) are available to the HLS compiler, hence
controlling the balance between hardware area and computa-
tion time. The second is the “loop pipeline”, which schedules
loop operations to the available FUs interleaving loop itera-
tions, maximizing their usage and reducing latency. As such,
we have a situation in which the hardware metrics are highly
dependent on the combination of these two directives, and by
analysing their dependency and relationship, we propose an

efficient DSE method for these two directives.
The contributions of this paper are:

• We present a study on the limitations of traditional DSE
methods, given the impact of considering all directives
in a common framework.

• We highlight the limitations of traditional DSE methods
regarding the nFUs and loop pipeline directives’ explo-
ration.

• We propose new DSE methods for exploring the nFUs
and loop pipeline directives, demonstrating the improve-
ments in exploration speed and hardware quality.

The rest of this paper is organized as follows: Section
2 presents the related works. Section 3 presents the back-
ground and definitions. Section 4 evaluates the impact
of traditional DSE approaches that consider directives in a
common framework. Section 5 presents the analyses and
improvements regarding the exploration of nFUs and loop
pipeline. Section 6 presents the improved results in speed
and accuracy. Finally, Section 7 concludes the paper.

2 Related Works
This section briefly introduces DSE approaches that treat all
directives in a common framework. To handle the shortcom-
ing of such an approach, these methods use elaborated es-
timators, e.g., Machine Learning (ML), usually requiring a
large amount of synthesized design samples and target the
DSE of a broad number of directives or complex systems.
Since the methods presented in this paper specifically target
the nFUs and loop pipeline directives, they are better placed
as an auxiliary method for a partial DSE or an initial sampling
for the methods presented in this section aiming to reduce the
number of full synthesis performed.

Early approaches in the literature propose performing the
DSE using Genetic Algorithm (GA), which evolves (refines)
configurations stochastically to optimise the hardware met-
rics, focusing on SoCs [Palesi and Givargis, 2002] and MP-
SoCs [Pimentel, 2017]. On the HLS context, [Krishnan and
Katkoori, 2006] encodes the application’s data-path and the
number of available processing units within a GA, perform-
ing the directives DSE concurrently to the scheduling and
allocation, capturing their inter-relationships in the optimiza-
tion process.

Evolving from single-accelerator to complex systems, re-
cent works focus on hierarchical architectures composed of
hardware-accelerated components, requiring a global DSE to
be fully optimised. Targeting this hierarchical scope, [Sira-
cusa et al., 2021] uses a roof-line model to balance the explo-
ration of system-wide directives (as global shared memory)
while performing a traditional DSE for exploring the kernel-
related ones; [Mahapatra and Schafer, 2019] focuses on op-
timising the communication between a master design and
multiple-hardware accelerators by including communication-
related directives in the DSE. [Bannwart Perina and Bon-
ato, 2018] proposes a learning-based classification to de-
cide whether the code should be accelerated using a Field-
Programmable Gate Array (FPGA) or a Graphics Processing
Unit (GPU).

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

Considering complex systems, [Liao et al., 2023] presents
a Pareto-based pruning method for reducing the number of
explored designs in multi-component systems. The design
space explored in these approaches contains parameters that
control components integration (e.g., communication) in ad-
dition to the ones controlling their internal architecture, re-
sulting in extremely large design spaces. Our solution fo-
cuses on loops, which are a snippet of code (likely) present
within each component, being an alternative that could be
adopted as an intermediate step for multi-component DSE
exploration.

Further learning and bio-inspired methods focus on au-
tomatically discovering relationships between the config-
uration space and design space. For example, [Meng
et al., 2016] presents a learning-based method to explore
the OpenCL directives that control high-level architecture of
multiple FPGA accelerators. On the bio-inspired side, MO-
PSE [Mishra and Sengupta, 2014] presents a particle swarm-
based DSE, and [Rajmohan and Ramasubramanian, 2020]
presents a memetic DSE method which uses performance
models to mitigate the costly synthesis time.

Recently, the use of ML methods for DSE has become pop-
ular, e.g., [Goswami et al., 2023] synthesizes a set of config-
urations to build a predictive model, which is used for the
DSE. Similarly, [Ferretti et al., 2022] proposes to use graph
neural networks trained on pre-synthesized accelerators, al-
lowing for handling computer programs of arbitrary length.
Also, in [Kwon and Carloni, 2020], transfer learning is used
to mitigate the large amount of data required by machine
learning-based methods, which is impractical to obtain given
the time-consuming synthesis step involved. The approaches
proposed in this paper can be used for generating optimized
accelerators required for fitting ML approaches.

Regarding Reinforcement Learning (RL), [Nardi et al.,
2019] leverages random forests classifiers using a con-
strained Bayesian optimization for handling unknown fea-
sibility constraints statistically and uses prior distributions
for speeding-up the learning process. Furthermore, [Wu
et al., 2021, 2023] present a Graph Neural Network (GNN)-
based framework composed of a hardware metrics estimator
learned concurrently to the DSE. The a priori distribution
estimations used for improving the learning of such methods
can be created with lighter DSE approaches, such as the ones
proposed in this paper.

Nevertheless, this paper demonstrates that relationships
between directives should be better explored to obtain a more
efficient DSE. A similar observation is done in [Belwal and
Ramesh, 2021], where a regression-forest-based search itera-
tively refines the Pareto-front when exploring the loop unroll
and pipeline directives.

3 Background and Definitions
HLS tools take as input a high-level description (e.g., C code)
and compile it to a hardware-orientated representation, usu-
ally a Register Transfer Level (RTL) one, which can be imple-
mented as an accelerator using FPGAs. The reconfigurable
nature of FPGAs allows for controlling the resulting hard-
ware architecture and its performance metrics by attributing

values to the available directives. Performing a DSE is the
process of finding the values for each directive (a configura-
tion) in order to optimise the desired hardware metrics, which
we formally describe next.

Let 𝑛 be the number of available directives, and 𝑐𝑖 a vec-
tor holding their attributions given by 𝑐𝑖 = {[𝑐 𝑗

𝑖] | 𝑐
𝑗
𝑖 ≤

𝑎 𝑗 | ∀ 𝑗 ∈ {1, . . . , 𝑛}}, where 𝑎 𝑗 is the maximum value for di-
rective 𝑗 . The configuration space is the set of all possible 𝑐𝑖
combinations, formally 𝐶 = {𝑐𝑖 | ∀ 𝑖 = {1, . . . , 𝑝}}, where
𝑝 =

∏𝑛
𝑗=1 𝑎 𝑗 is the number of possible combinations. Two

configurations 𝑐𝑥 and 𝑐𝑦 are said to be neighbours if they
differ by 1𝑢 (one unit) in one directive, i.e. | |𝑐𝑥 − 𝑐𝑦 | | = 1𝑢.

For each 𝑐𝑖 , the source code compilation results in a hard-
ware design, with the respective hardware metrics repre-
sented by the vector 𝑑𝑖 = {[𝑑 𝑗

𝑖] | ∀ 𝑗 ∈ {1, . . . , 𝑚}}, where
𝑚 is the number of metrics considered. The design space set
𝐷 = {𝑑𝑖 | ∀ 𝑖 ∈ {1, . . . , 𝑝}} contains all designs 𝑑𝑖 for each
possible configuration 𝑐𝑖 . Commonly used hardware metrics
are the hardware resources usage (e.g., Adaptive Logic Mod-
ules (ALMs), Digital Signal Processings (DSPs), and Block
Random Access Memorys (BRAMs)), energy consumption
and latency.

Since the DSE aims to find configurations with the best
trade-offs between the hardware metrics, we assume, with-
out loss of generality, that the objective is to minimize all
metrics. Given two configurations 𝑐𝑖 and 𝑐 𝑗 , their respec-
tive 𝑑𝑖 and 𝑑 𝑗 , 𝑐𝑖 is said to dominate 𝑐 𝑗 if, and only if,
{𝑑𝑘

𝑖 ≤ 𝑑𝑘
𝑗 | ∀ 𝑘 ∈ {1, . . . , 𝑚}}. The designs with best trade-

offs are the ones which are not dominated by any other design,
forming a Pareto-optimal front.

4 Configuration and Design Spaces
Relationship

The accuracy of DSE methods (defined here as “how close
the selected points are to the actual Pareto-optimal front”) is
known for being limited by the complex and unpredictable
effects of the directives in designs [Schafer and Wang, 2020;
Ferretti et al., 2018b]. From now on, this limiting factor will
be referred to as the “𝐶 and 𝐷 relationship”.

In this paper, we explore the idea that treating all directives
in a common framework from traditional DSE approaches
creates the complex 𝐶 and 𝐷 relationship. Even though the
ability to treat different directives in a common framework
is desirable for its practicality, the 𝐶 and 𝐷 relationship is
expected to be complex given that:

1. Different directives act on different scopes. E.g., loop
unroll targets a specific loop, while nFUs affects the
whole design.

2. Locally optimal directives are not optimal for the whole
code. For example, the optimal nFUs configuration for
a given loop may differ from the optimal values consid-
ering other loops together.

3. Directives scope may intersect. E.g., memory archi-
tecture optimizations are code-wide, affecting any loop
that references the target memories.

4. Directives are non-orthogonal, meaning that the same

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

design can be obtained with two different sets of direc-
tives.

5. The directives application order impacts the final de-
sign. E.g., applying loop interchange before unrolling
and vice-versa.

6. Neighbor configurations in 𝐶 do not necessarily lead
to neighbors in 𝐷, creating a “false neighborhood rela-
tionship”. E.g., two configurations which differ only in
the loop pipeline turned “on” and “off” are neighbours,
but their designs differ significantly in speed and area
[de Souza Rosa et al., 2018b];

The following sections present three DSE methods that
cover the most common approaches based on gradient, prob-
ability, and Lattice methods. The section highlights their
shortcomings when considering the𝐶 and 𝐷 relationship, re-
sulting in the information used to improve the proposed ex-
ploration of the nFUs and loop pipeline directives described
in Section 5.

4.1 Gradient-Based Approaches
Gradient-based approaches are greedy heuristics that, given
a configuration 𝑐𝑖 , compute (through compilation or estima-
tion) the hardware metrics 𝑑𝑖 for 𝑐𝑖 and all its neighbours.
Then, the next exploration point is defined by the neighbour
with steepest gradient, and the search iterates [Prost-Boucle
et al., 2014; da Silva and Bampi, 2015].

This class of approaches is suitable when all points in the
design space obey a regular area-speed trade-off, i.e., faster
designs use more area and vice versa, which is not always
valid for general HLS, as directives may impact both met-
rics positively or not, especially when considering loop struc-
tures.

Equation (1) defines the gradient, where 𝛿𝑎 and 𝛿𝑙 are the
area and latency differences between the current design 𝑑𝑐
and 𝑑𝑖𝑣 for a configuration 𝑐𝑐 and it’s neighbours 𝑐𝑖𝑣 | 𝑖 ∈
{1, . . . , 𝑛}. Note that the gradient is typically approximated
by considering only one direction at a time; hence, the num-
ber of neighbours is exactly equal to the number of available
directives 𝑛.

∇𝐺 ∝
[
𝛿𝑙

𝛿𝑎

]
(1)

Making DSE decisions based on ∇𝐺 has two shortcom-
ings. First, the false neighbourhood relations presented in
Section 4 lead to erroneous high-gradient values. Second,
Equation 1 raises the following scenarios for the possible 𝛿𝑎
and 𝛿𝑙 results:

1. 𝛿𝑎 = 0 and 𝛿𝑙 = 0: ∇𝐺 = 0
0 ;

2. 𝛿𝑎 = 0 and 𝛿𝑙 > 0: ∇𝐺 = ∞, and 𝑑𝑖𝑣 dominates 𝑑𝑐;
3. 𝛿𝑎 = 0 and 𝛿𝑙 < 0: ∇𝐺 = ∞, and 𝑑𝑐 dominates 𝑑𝑖𝑣;
4. 𝛿𝑎 > 0 and 𝛿𝑙 = 0: ∇𝐺 = 0, and 𝑑𝑖𝑣 dominates 𝑑𝑐;
5. 𝛿𝑎 < 0 and 𝛿𝑙 = 0: ∇𝐺 = 0, and 𝑑𝑐 dominates 𝑑𝑖𝑣;
6. 𝛿𝑎 > 0 and 𝛿𝑙 > 0: ∇𝐺 > 0, and 𝑑𝑖𝑣 dominates 𝑑𝑐;
7. 𝛿𝑎 < 0 and 𝛿𝑙 < 0: ∇𝐺 > 0, and 𝑑𝑐 dominates 𝑑𝑖𝑣;
8. 𝛿𝑎
| 𝛿𝑎 | = −

𝛿𝑙
| 𝛿𝑙 | : ∇𝐺 < 0, 𝑑𝑖𝑣 and 𝑑𝑐 trade-off area and

speed.

For scenario 1, ∇𝐺 is undefined. When comparing sce-
narios 2 against 3, 4 against 5, and 6 against 7, ∇𝐺 cannot
differ between the dominant and dominated designs, leading
to inconsistent exploration decisions. Scenario 8 represents a
trade-off between area and speed, indicating that the config-
urations are Pareto-points candidates and should be further
explored. However, since ∇𝐺 < 0, the exploration selects
only one configuration.

The approach presented in [Xydis et al., 2015] reduces
these inconsistencies using the area-time product signal
model 𝑠[𝑑𝑐] defined in Equation (2), whose minimization
tends to the Pareto-optimal curve direction, but does not im-
ply in finding all Pareto points.

𝑠[𝑑𝑐] = 𝐴𝑟𝑒𝑎(𝑑𝑐) × 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑑𝑐) (2)

Equation (3) rewrites 𝑠[𝑑𝑖𝑣] as a function of 𝑑𝑐, allowing
for easily evaluating the 𝑠[𝑑𝑖𝑣]’s behaviour in the 8 scenarios.

𝑠[𝑑𝑖𝑣] = 𝐴𝑟𝑒𝑎(𝑑𝑖𝑣) × 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑑𝑖𝑣)
= 𝑠[𝑑𝑐] − 𝐴𝑟𝑒𝑎(𝑑𝑐)𝛿𝑙 − 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑑𝑐)𝛿𝑎 + 𝛿𝑎𝛿𝑙

(3)
Here, 𝑠[𝑑𝑖𝑣] solves the inconsistencies in scenarios 1 to

5. In scenarios 6 and 7, 𝑠[𝑑𝑖𝑣] is consistent when assum-
ing 𝐴𝑟𝑒𝑎(𝑑𝑐) >> 𝛿𝑎 and 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑑𝑐) >> 𝛿𝑙, however,
this assumption can be invalid, especially for loop pipelines
[de Souza Rosa et al., 2018a]. Furthermore, in scenario
8, which represents the finding of Pareto-point candidates,
𝑠[𝑑𝑖𝑣] can either increase or decrease, leading to inconsisten-
cies in differentiating dominant from dominated designs.

4.2 Probabilistic Approach
The Probabilistic Multi-Knob (PMK) [Schafer, 2016], from
Cyber compiler, proposes separating HLS directives into
sets, called knobs, and using different methods to explore
each knob. Later, [Schafer and Wang, 2020] discusses the
impacts of each knob’s directives on the resulting hardware
design, separating the knobs according to their application
scope as follows:

Local knob: Composed by local synthesis directives that af-
fect a specific code region, controlling the final hard-
ware micro-architecture. E.g., loop unroll and pipeline.

nFUs knob: The nFUs available and shared among all high-
level code operations. E.g., the number of adders, multi-
pliers, and memory ports. This knob controls the trade-
off between hardware area and speed, significantly im-
pacting loop pipelines [de Souza Rosa et al., 2018a] and
memory usage [Pilato et al., 2017].

Global knob: Contains global synthesis options applied
throughout the whole code. E.g., dead code elimination,
tree balancing, and function inline [Zuo et al., 2015].

PMK starts by exploring the local knob using an ant-
colony optimization with the nFUs fixed at their minimum
and maximum values 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 , respectively. The area
between 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 is considered as its likelihood of
containing Pareto-optimal designs (hence the probabilistic
name), and larger areas are selected for further exploration.

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

The limited number of designs explored in this first step bal-
ances the trade-off between exploration speed and result qual-
ity.

Then, the nFUs knob is explored by synthesizing 10
equally distributed configurations between 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥

to avoid local-optima and plateaus. However, the uniform
distribution might not be adequate to larger codes, leading
to a small diversity in the Pareto-front [Reyes Fernandez de
Bulnes et al., 2020].

The global knob is not explored in [Schafer, 2016], and fur-
ther research focuses on solving such problems and speeding
up the DSE by using multi-scale searches [Jun et al., 2023].

4.3 Lattice-Based Approach
Algorithm 1 presents the Lattice-Based DSE [Ferretti et al.,
2018b], the first approach to consider the relationships be-
tween 𝐶 and 𝐷 in its development. It starts by using an 𝑈-
distribution to select 𝑚 random points from the 𝐶 (line 1),
which are synthesized (line 2). This distribution makes con-
figurations with extreme values more likely to be chosen.

In the iterative part, Pareto-optimal configurations among
the evaluated designs are selected for further exploration (line
3). Each configuration has its 𝜎-neighbours synthesized
(lines 5 to 6). The selection and synthesis process iterates
until no new Pareto-optimal designs are found or a budget is
exceeded (lines 10 to 12). Finally, all compiled configura-
tions and metrics are returned (lines 1, 2, 8, and 9).

Algorithm 1: Lattice-Based DSE algorithm pre-
sented in [Ferretti et al., 2018b].

input : list of possible configurations, maximum
number of design evaluations (𝑏𝑢𝑑𝑔𝑒𝑡)

output
:

list of configurations and metrics

1 𝑒𝑣𝑎𝑙𝐶 ← 𝑚 U-distributed random configurations 𝑐;
2 𝑒𝑣𝑎𝑙𝐷 ← synthesize and annotate area and latency;
3 𝑛𝑒𝑥𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔𝑠← 𝑝𝑎𝑟𝑒𝑡𝑜(𝑒𝑣𝑎𝑙𝐷);
4 do
5 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑠← 𝜎-neighbours of 𝑛𝑒𝑥𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔𝑠;
6 𝑑𝑒𝑠𝑖𝑔𝑛𝑠← synthesize and annotate area and

latency ∀ 𝑐𝑖 ∈ 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑠;
7 𝑛𝑒𝑥𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔𝑠← 𝑝𝑎𝑟𝑒𝑡𝑜(𝑒𝑣𝑎𝑙𝐷 ∪ 𝑑𝑒𝑠𝑖𝑔𝑛𝑠);
8 append 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑠 to 𝑒𝑣𝑎𝑙𝐶;
9 append 𝑑𝑒𝑠𝑖𝑔𝑛𝑠 to 𝑒𝑣𝑎𝑙𝐷;

10 if 𝑠𝑖𝑧𝑒(𝑒𝑣𝑎𝑙𝐶) ≥ 𝑏𝑢𝑑𝑔𝑒𝑡 then
11 break;

12 while 𝑛𝑒𝑥𝑡𝐶𝑜𝑛 𝑓 𝑖𝑔𝑠 ≠ ∅;
13 return 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑𝐶𝑜𝑛 𝑓 𝑖𝑔𝑠 and 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝐷𝑒𝑠𝑖𝑔𝑛𝑠;

The parameters 𝑚 and 𝜎 in Algorithm 1 control the trade-
off between exploration time and results quality, and must be
adjusted for the target compiler, directive set, and high-level
code.

There are two shortcomings of this approach. The first lies
within its𝑈-shaped distribution initialization, which tends to
create either fast-and-large or slow-and-small designs, mak-
ing them susceptible to local minima and plateaus [Rosa,
2019]. The second lies in treating all directives in a common

manner, limiting its exploration capabilities, as discussed in
Section 4.

5 Number of Functional Units and
Loop Pipeline Exploration

Given the observations in Section 4, this section presents the
proposed incremental DSE method for exploring the nFUs
and loop pipeline directives, highlighting the achieved im-
provements.

As per motivations, we chose nFUs since it controls the
balance between computation time and hardware resources
usage, and it is arguably the major contributor to the large
exploration design spaces on HLS, typically at thousands
of combinations, while other directives usually have few op-
tions each. Loop pipeline has been chosen since it is crucial
to implement instruction-level parallelism on FPGAs, signif-
icantly improving the hardware throughput and energy effi-
ciency, and it is found in the vast majority of DSE works.
Furthermore, both directives are known for their tight inter-
action, as loop pipelining is meant to optimise nFUs usage.

Notice that a pipelined loop requires hardware resources to
store and route data, creating an overhead which depends on
the nFUs, invalidating the idea of “fewer functional units lead
to smaller designs” [de Souza Rosa et al., 2018a]. Further-
more, designs with the same nFUs and loop pipeline turned
“on” and “off” cannot be considered neighbours.

The main idea in the proposed DSE method is exploring
nFUs individually first, incorporating the observations from
Sections 4.1, 4.2, and 4.3, as we describe in Section 5.1.
Then, we leverage the nFUs exploration results to analyse
the relationships between nFUs and loop pipeline, leading to
novel exploration flow for both directives, described in Sec-
tion 5.2.

5.1 Path-Based Number of Functional Units
Exploration

When considering the nFUs directives in isolation, the𝐶 and
𝐷 relationship has a more predictable behaviour than when
considering more directives simultaneously. As such, we pro-
pose a neighbourhood-based path search between the con-
figurations with maximum and minimum nFUs (𝑐𝑚𝑎𝑥 and
𝑐𝑚𝑖𝑛).

Algorithm 2 presents proposed Path-Based approach,
which iteratively evaluates configurations focusing solely
nFUs. First, 𝑐𝑚𝑎𝑥 , and 𝑐𝑚𝑖𝑛 constants are defined, 𝛿10 is de-
fined as 10% of the interval between 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛, along
with memory structures to annotate which designs were com-
piled and discarded (lines 1 to 8), and which are the config-
urations to be searched next (line 5). The hardware metrics
can be obtained through full synthesis or estimation methods
(lines 6 and line 3 of Algorithm 4). The iterative part (lines
9 to 24) starts by popping the search pool to get the next ex-
ploration, and its neighbours are obtained using Algorithm 3
(line 12), which returns neighbour configurations that were
not explored or discarded (more details next).

Algorithm 4 (line 14) iteratively compiles neighbour con-
figurations, adding only Pareto-dominant points among the

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

current design and its neighbours (i.e. calculating the Pareto
frontier [Ščap et al., 2013] in line 18) to the search pool, guar-
anteeing that only the most promising points are evaluated. If
no neighbours are found (local optimum and plateaus), a new
configuration is created by reducing 10% of all nFUs, and the
algorithm iterates until a configuration that has not been com-
piled or discarded yet is found, or 𝑐𝑚𝑖𝑛 is reached (lines 19
to 23).

Algorithm 2: Proposed Path-based DSE.
input :data-Flow Graph (𝐷𝐹𝐺)
output
:

nFUs and evaluated points metrics

1 𝑐𝑚𝑎𝑥 ← maximum resources;
2 𝑐𝑚𝑖𝑛 ← minimum resources;
3 𝛿10 ← ⌈0.1 ∗ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)⌉;
4 𝑐𝑐𝑢𝑟 ← 𝑐𝑚𝑎𝑥 ;
5 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙 ← 𝑐𝑐𝑢𝑟 ;
6 𝑑𝑐𝑢𝑟 ← compile 𝑐𝑐𝑢𝑟 ;
7 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 ← [𝑐𝑐𝑢𝑟];
8 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 ← ∅;
9 do

10 𝑐𝑐𝑢𝑟 ← 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙.𝑝𝑜𝑝();
11 𝑑𝑐𝑢𝑟 ← metrics of 𝑐𝑐𝑢𝑟 ;
12 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠←

𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑐𝑐𝑢𝑟 , 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑, 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑) ;
13 if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ≠ ∅ then
14 𝑁𝑐, 𝑁𝑑 ←

𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑑𝑐𝑢𝑟 , 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠);
15 append 𝑁𝑐 to 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑;
16 append 𝑁𝑑 to 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑;
17 Insert 𝑁𝑐 into the 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙;

/* remove dominated designs */
18 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙 ← 𝑝𝑎𝑟𝑒𝑡𝑜(𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙 ∪ 𝑐𝑐𝑢𝑟);

/* apply the 10% rule */
19 if 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙 == ∅ && 𝑐𝑚𝑖𝑛 ∉ 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 then
20 𝑐𝑛𝑒𝑤 ← 𝑚𝑎𝑥(𝑐𝑐𝑢𝑟 − 𝛿10, 𝑐𝑚𝑖𝑛);
21 while 𝑐𝑛𝑒𝑤 ∈ 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 | | 𝑐𝑛𝑒𝑤 ∈

𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 && 𝑐𝑛𝑒𝑤 ≠ 𝑐𝑚𝑖𝑛 do
22 𝑐𝑛𝑒𝑤 ← 𝑚𝑎𝑥(𝑐𝑛𝑒𝑤 − 𝛿10, 𝑐𝑚𝑖𝑛);
23 Insert 𝑐𝑛𝑒𝑤 into the 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙;

24 while 𝑠𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑜𝑙 ≠ ∅;

Algorithm 3 computes the given configuration’s neigh-
bours by decrementing a single directive’s value from the
input configuration (line 2 to 6), avoiding their reduction to
less than 𝑐𝑚𝑖𝑛 (line 4), returning only non-compiled and non-
discarded neighbours (lines 5 and 6).

Finally, Algorithm 4 compiles all neighbours of a given
design, evaluating one configuration at a time (lines 2 to 8).
If a neighbour dominates the current design or results in the
same hardware metrics (line 6), the neighbours evaluation
stops, returning only non-compiled designs (line 8).

This approach integrates the strengths of gradient-based,
probabilistic, and lattice-based methods while mitigating
their weaknesses. By limiting the search to nFUs only and us-
ing the Pareto-dominance explicitly, instead of the gradient
or area-time signal, we avoid the shortcomings of gradient-

Algorithm 3: 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() function used by Al-
gorithm 2.

input :design configuration 𝑐𝑐𝑢𝑟 , 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 and
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑 lists.

output
:

neighbours configurations 𝑟𝑆𝑒𝑡.

1 𝑟𝑆𝑒𝑡 ← ∅;
2 foreach directive 𝑗 ∈ 𝑐𝑐𝑢𝑟 do
3 𝑐𝑛𝑒𝑤 ← 𝑐𝑐𝑢𝑟 ;
4 𝑐𝑛𝑒𝑤 (𝑗) ← 𝑚𝑎𝑥(𝑐𝑛𝑒𝑤 (𝑗) − 1, 𝑐𝑚𝑖𝑛 (𝑗));
5 if 𝑐𝑛𝑒𝑤 ∉ 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 && 𝑐𝑛𝑒𝑤 ∉ 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑

then
6 𝑟𝑆𝑒𝑡.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑐𝑛𝑒𝑤);

Algorithm 4: 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠() function used
by Algorithm 2.

input :metrics a design 𝑑𝑐𝑢𝑟 , its 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 list.
output
:

list of compiled (𝑐𝑜𝑚𝑝𝑁𝑒𝑖𝑔ℎ) and

discarded (𝑑𝑖𝑠𝑐𝑁𝑒𝑖𝑔ℎ) neighbours.
1 𝑐𝑜𝑚𝑝𝑁𝑒𝑖𝑔ℎ← ∅;
2 foreach 𝑐𝑖 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
3 𝑑𝑖 ← compile 𝑐𝑖;
4 calculate 𝑑𝑎 and 𝑑𝑡 from 𝑑𝑖 and 𝑑𝑐𝑢𝑟 ;
5 add 𝑐𝑖 to 𝑐𝑜𝑚𝑝𝑁𝑒𝑖𝑔ℎ;
6 if 𝑑𝑎 ≥ 0 && 𝑑𝑡 ≥ 0 then
7 break;

8 𝑑𝑖𝑠𝑐𝑁𝑒𝑖𝑔ℎ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠/𝑐𝑜𝑚𝑝𝑁𝑒𝑖𝑔ℎ;

based methods. At the same time, our path-based search
avoids PMK’s low-diversity problems since it is not limited
to a fixed number of designs between 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛. Op-
posing the Lattice-Based approach, it can escape possible lo-
cal minima and plateaus since it forces a connection between
𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛.

Nevertheless, the path-based search does not have parame-
ters to balance the number of explored designs and the quality
of results. Such a mechanism can be implemented by varying
the number of neighbours explored per design in Algorithm
3; thus, it will not be considered a shortcoming of the pro-
posed algorithm.

5.2 Loop Pipeline Exploration Based on the
nFUs Exploration

With a DSE method in place to explore the nFUs, the next
step is to consider the loop pipeline directive in the DSE. To
do so, we first explicitly analyse how the loop pipeline di-
rective affects the 𝐶 and 𝐷 relationship, using the observa-
tions to elaborate a novel exploration flow which improves
the speed and quality of results when considering nFUs and
loop pipeline combined.

The proposed flow divides the configuration space into
two subsets containing all possible combinations of nFUs,
one with the loop pipeline directive turned “off”, and another
with it turned “on”. Then, one subset is explored, and the ex-
ploration results are used as a priori knowledge for improv-

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

ing the second subset’s exploration utilising an Lattice-based
DSE extension as a Pareto-refinement too.

5.2.1 Lattice-Based DSE Extension

The idea behind this extension is to use a set of configurations
to initialise the search instead of the 𝑈-shaped distribution
in Algorithm 1. This extension, referred as “Seeded Lattice-
Based DSE”, is achieved with the following modifications in
Algorithm 1:

• Add an input configurations set (𝑠𝑒𝑒𝑑𝑠);
• Modify line 1 to “𝑐𝑜𝑛 𝑓 𝑖𝑔𝑠← 𝑠𝑒𝑒𝑑𝑠;”.

First, this extension can be used as a DSE method, and us-
ing samples from a𝑈-shaped distribution results in the origi-
nal Lattice-based approach. Second, if the seeds are a Pareto-
optimal approximation, this extension works as a Pareto re-
finement step, which guarantees achieving a Pareto-optimal
approximation at least as good as the input one. Third, the
search will converges faster for input configurations closer to
the Pareto-optimal ones.

Finally, even though the proposed Seeded Lattice-Based
approach can be applied for an arbitrary set of directives, we
use it mostly as a refinement toll for exploring the nFUs and
loop pipeline, and hence we limit our evaluations to those
directives.

5.2.2 Proposed Exploration Flow

Let 𝐵 and 𝐴 be the subsets of 𝐶 considering the nFUs with
loop pipeline turned off (no pipeline) and on (fully pipelined
with minimum initiation interval), with design metrics 𝑏𝑖 and
𝑎𝑖 , respectively. A traditional exploration flow (Figure 1) is
equivalent to consider the configuration space as (𝐶 = 𝐵∪𝐴),
and then explore it using any DSE method.

The proposed DSE flow, depicted in Figure 2, separates
the nFUs and loop pipeline exploration, reducing the number
of evaluated designs without compromising the exploration
accuracy as consequence of avoiding the complex 𝐶-𝐷 rela-
tionship.

First, a DSE is performed in 𝐵, and its Pareto-front are
used as seeds to explore 𝐴 with the seeded lattice-based
method, which is expected to speed-up the lattice search con-
version given that Pareto-optimal points in 𝐵 and 𝐴 are likely
to be close w.r.t. the nFUs. Finally, the Pareto-front of both
explorations is selected as a result.

Figure 2. Proposed DSE seeding-based flow for nFUs and loop pipeline
directives. The design space is divided into two subsets: loop pipeline “on”
(𝐴) and “off” (𝐵). 𝐵 is explored with any DSE method of choice, and its
resulting Pareto-front approximation is used to quick-start the exploration of
𝐴 using the Seeded Lattice-Based DSE.

The proposed flow is based on two suppositions s1 and s2:
s1 - given two configurations 𝑏𝑖 and 𝑏 𝑗 , if 𝑏𝑖 is faster (or
slower) than 𝑏 𝑗 in 𝐵, than the respective 𝑎𝑖 is likely to be

faster (or slower) than 𝑎 𝑗 in 𝐴 as well. s2 - configurations
with a smaller area in 𝐵 are likely to have a smaller area in 𝐴
as well.

The reasoning behind s1 is the fact that a faster configura-
tion has shorter paths in its Data-Flow Graph (DFG), which
tends to result in pipelines with smaller 𝐼 𝐼 values [de Souza
Rosa et al., 2021]. The reasoning behind s2 is that the area
difference between two designs in 𝐵 reflects the different
nFUs, and it should also be observed in 𝐴 unless the hard-
ware overheads are larger than the resources used by the FUs.

If s1 and s2 were an implication instead of a likelihood,
the Pareto-optimal designs from 𝐴 would also be optimal in
𝐵, and exploring only one of them would be sufficient. Nev-
ertheless, we can use the Pareto-front of 𝐴 (or 𝐵) to approxi-
mate its counterpart’s Pareto-front, and the approximation’s
quality increases with the suppositions’ likelihood to hold,
also leading to higher exploration speed-ups.

Table 1 presents the suppositions’ validity frequency over
the benchmarks used in Section 6 considering the hardware
metrics 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝐴𝐿𝑀𝑠, and both concurrently. Consider-
ing the 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 results in a probability estimation for s1; As
an “overview” of s2, we consider the 𝐴𝐿𝑀𝑠 usage when com-
piling the codes with hardcore DSPs disabled, avoiding their
influence in the 𝐴𝐿𝑀𝑠 and Registers.

Table 1. Frequency that designs keep their relative position for de-
sign spaces without (𝐵) and with (𝐴) loop pipeline for 𝑙𝑎𝑡𝑒𝑛𝑐𝑦,
ALMs, and both, indicating how often suppositions s1, s2, and
both are likely to hold. Benchmark names abbreviations: Multipli-
ers (mt), Adder Chain (ac), Dividers (dv), Float Adder Tree (fat),
and Complex (cp).

Benchmark mt ac dv fat cp
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 1.000 0.930 0.923 0.932 0.897
𝐴𝐿𝑀𝑠 0.837 0.897 0.674 0.622 0.448
both 0.837 0.885 0.621 0.572 0.381

Table 1 shows that for the tested benchmarks, at least
89.7% of the designs keep their relative position regarding
design speed, corroborating s1. Table 1 also shows that s2 is
less likely to hold (as little as 44.8%), which is a consequence
of increasing overhead necessary for creating loop pipelines
with decreasing nFUs.

As a final remark, the proposed approaches are domain
agnostic, being more impactful for applications which highly
depend on pipelining for achieving a high throughput and can
explore instruction level parallelism with multiple FUs, such
as signal processing or streaming applications.

6 Results
This section presents the exploration improvements proposed
in Sections 5.1 and 5.2 regarding their accuracy and speed
gains. All directives apart from nFUs and loop pipeline are
fixed to their default values for comparing approaches di-
rectly.

Sections 6.1 to 6.4 describe the experimental setup,
nomenclature, evaluated metrics, and benchmarks. Sections
6.5 and 6.6 present results for the nFUs exploration (Section

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

5.1) and when both the nFUs and loop pipeline directives are
considered (Section 5.2), respectively.

6.1 Experimental Setup
The results were obtained on a Ubuntu 14.04 computer with
16 GB of RAM and an Intel(R) Core(TM) i7-2600 CPU @
3.40GHz, using LegUP 4.0 as HLS compiler and Gurobi 7.5
as Solver. Loop pipelines were created using [Oppermann
et al., 2016] with a 10 minutes time budget. All results are
the average of 50 repetitions.

The designs were synthesized using Quartus II 16.1, tar-
geting a Stratix V board. We consider as hardware metrics
the latency, ALMs, registers and DSPs, noting that other
hardware metrics can be regarded without loss of generality.

We highlight that no further HLS annotations than the ones
for specifying the nFUs and loop pipeline are necessary for
the proposed DSE methods, which are implemented along
with scripts for generating the configuration files using GNU
Octave.

6.2 Nomenclature
For briefness, table 2 summarizes the nomenclature to facil-
itate the DSE methods identification and the configuration
space used for testing. E.g., a test using the lattice-based
DSE to explore nFUs and loop pipeline together is written as
“L𝐵∪𝐴”; a test using the proposed approach to explore nFUs
and loop pipeline (Figure 2) using the proposed path-based
DSE to generate the seeds is written as “S𝐴(P𝐵)”.

Table 2. Summary of nomenclature used to identify the exploration
methods and configuration spaces.

Short Name DSE Method
K PMK [Schafer, 2016] (Section 4.2)

L Lattice-based [Ferretti et al., 2018b]
(Section 4.3)

P Path-based (Section 5.1)
S Seeded lattice (Section 5.2.1)

Design
Space Description

𝐵
Formed by nFUs with loop pipeline

“off”

𝐴
Formed by nFUs with loop pipeline

“on”
𝐵
∪

𝐴 Formed by nFUs and loop pipeline

Notation Description

S(𝑋) DSE method X is used to create the
seeds for S

XY DSE method X is used to explore the
design space Y

6.3 Evaluation Metric
We consider the exploration speed proportional to the number
of evaluated designs, given that the compilation and synthe-

sis process vastly dominates the computation time.
The exploration’s accuracy is measured using the Aver-

age Distance from Reference Set (ADRS), which is the most
common DSE quality indicator [Reyes Fernandez de Bulnes
et al., 2020]. The ADRS compares two sets, a reference one
Γ and an approximation one Ω, according to Equation (4).
The set Γ = {𝛾1, . . . , 𝛾𝑝} is formed by the Pareto-optimal
points of an exhaustive DSE over the design space, while
Ω = {𝜔1, . . . , 𝜔𝑞} is formed by the Pareto-optimal estima-
tion obtained by the different exploration methods or flows.
The ADRS is measured only between unique points in the
reference and approximated sets to avoid its reduction due to
repeated points.

𝐴𝐷𝑅𝑆(Γ,Ω) = 1
|Γ |

∑
𝛾∈Γ

min
𝜔∈Ω

[
max

𝑗={1,...,𝑚}

(
𝜔 𝑗 − 𝛾 𝑗

𝛾 𝑗

)]
(4)

The ADRS is computed over the latency, ALMs, regis-
ters and DSPs, using their average as the final ADRS value.
As baseline, we consider a sufficiently accurate exploration
when achieving ADRS < 1%, which is considered a small
value according to [Schafer, 2016].

6.4 Benchmark Selection
The proposed approaches focus on the synthesis of loop struc-
tures. Hence, for fairness, the benchmark selection contains
codes solely composed of loops, avoiding the bias created
by code outside the loop structures in the results. Further-
more, unrolling the nested loops in more complex applica-
tions negatively impacts loop pipelining, which can inflate
the hardware metrics results [de Souza Rosa et al., 2021].
The adopted benchmarks are the same ones as in [Canis et al.,
2014; de Souza Rosa et al., 2018b], which are composed of
challenging loops for creating pipelines and that are strongly
impacted by the configurations [de Souza Rosa et al., 2018a],
making the DSE a compulsory step to achieve optimal hard-
ware implementations [Rosa, 2019].

Table 3 presents design space size formed by consider-
ing only the nFUs for each benchmark, which is computed
by multiplying the maximum values of all FUs, and when
loop pipeline is also considered, which is the former’s dou-
ble since the pipeline directive can assume 2 values (“on” and
“off”). Among the codes, ac contains a chain of adders, fat
is a tree of floating-point adders, cp contains a diversity of
arithmetic operations, and mt and dv focus on creating and
sharing multipliers and dividers.

Table 3. Selected benchmarks design space size formed by only the
number of nFUs and when loop pipeline is also considered.

Acronym mt ac dv fat cp
|𝐶 |𝑛𝐹𝑈𝑠 30 48 128 168 3920
|𝐶 |𝑛𝐹𝑈𝑠+𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 60 96 256 336 7840

We highlight that a full synthesis takes approximately 40
minutes in our setup, resulting in a total time between 2.5 and
217.8 days for an exhaustive search. It is worth noting that the
design space cardinality and amount of designs that need to

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

be synthesized for obtaining a satisfactory Pareto-front esti-
mation depend on the number of possible configurations (and
not on the source code complexity), and that the design space
size does not reflect the source code complexity.

6.5 Results Optimizing nFUs
Table 4 presents the number of synthesized configurations for
K, P, L, and S for loop pipelining “off” (𝐵) and “on” (𝐴).
The (𝑚, 𝜎) parameters for L and S are fixed at (0.05, 0.25)
(see Section 4.3).

For exploring the nFUs, we found (𝑚, 𝜎) = (0.05, 0.25)
are adequate for achieving ADRS < 1%, while the exper-
iments presented in [Ferretti et al., 2018b,a] use (𝑚, 𝜎) ≥
(0.2, 0.5) to achieve the same accuracy. The larger values
required in [Ferretti et al., 2018b,a] imply a higher number
of compiled configurations, which is a consequence of the
more complex design space given that more directives are
considered together.

Table 4 shows that the proposedP evaluates up to 2.3× (ge-
omean) fewer designs and achieves a smaller ADRS than L.
Furthermore, S successfully improves the ADRS compared
to P, at the cost of evaluating more designs, demonstrating
its usage as a Pareto refinement tool.

The higher ADRS for L w.r.t. P is a consequence of L
not being designed to efficiently escape local optimum and
plateaus created by its initial 𝑈-distribution, while the pro-
posed exploration avoids such problem.

Note that P is constructed to evaluate more designs than
K, but less than L, while improving the ADRS w.r.t. both,
andS improves the ADRS by exploring more designs thanP.
Overall, both P and S achieve a lower ADRS than L while
synthesizing less designs. Finally,K is not suitable for larger
benchmarks, as demonstrated by the ADRS for fat and cp.

6.6 Optimizing nFU and Loop Pipeline
Table 5 presents the number of compiled designs and ADRS
when loop pipeline and nFUs are explored together (𝐵 ∪ 𝐴),
and with the proposed exploration flow (Figure 2).

Table 5 shows that the proposed flow reduces the number
of evaluated designs and the ADRS in all cases when com-
pared against exploring 𝐵∪ 𝐴 with a traditional flow, demon-
strating the expected improvements.

Note that S𝐴(P𝐵) increases the number of evaluated de-
signs when compared to P𝐵∪𝐴 for fat, but this extra explo-
ration results in a smaller ADRS. These results emphasize
the adverse effects of combining directives for exploration,
especially on P, which is designed solely for exploring the
nFUs.

Besides that, the reduction in the number of explored de-
signs grows with the configuration space size (see Table 1),
what we speculate is caused by the proposed exploration flow
leveraging the fact that supposition s1 holds frequently.

Note that L𝐵∪𝐴 achieves ADRS > 1% with (𝑚, 𝜎) =
(0.05, 0.25), which were adequate values to achieve
𝐴𝐷𝑅𝑆 < 1% while exploring only the nFUs (Section 6.5).
Hence, to achieve ADRS < 1%, (𝑚, 𝜎) should be increased,
demonstrating that the combination of two directives (nFUs
and loop pipeline) forces traditional approaches to increase

the exploration to maintain the accuracy as a consequence of
the 𝐶 and 𝐷 relationship.

It is important to note that the proposed flow always uses
S to explore 𝐴; as such, it is sensitive to the (𝑚, 𝜎) param-
eters. As such, Figure 3 presents the number of evaluated
designs by ADRS for the same explorations presented in Ta-
ble 5 when varying (𝑚, 𝜎), demonstrating the exploration
methods’ robustness to these parameters. Increasing (𝑚, 𝜎)
means to increase the number of explored designs and, con-
sequently, to reduce the ADRS.

Figure 3. Number of evaluated designs by ADRS for the
methods presented in Table 5 (geomean) and (𝑚, 𝜎) =
{ (0.01, 0.05) , (0.025, 0.075) , (0.05, 0.1) , (0.05, 0.25) , (0.1,
0.5) , (0.15, 0.75) , (0.2, 0.1) }. As 𝑚 and 𝜎 increase, the number
of evaluated designs increases, while the ADRS decreases.

Figure 3 shows that the designs obtained with the proposed
flow dominate the ones obtained with the traditional flow,
demonstrating consistent improvements independently of the
(𝑚, 𝜎) tuning and underlying nFUs exploration method. The
consistency indicates that the measures taken in exploring the
nFUs and loop pipeline mitigate the problems encountered
by state-of-the-art approaches, which consider all directives
concurrently and the HLS process as a black-box approach.

7 Conclusion
During the high-level synthesis, the design space exploration
is crucial in achieving efficient hardware designs. Tradi-
tional DSE approaches are based on commonly treating all
directives, analysing only the inputs and outputs of the sys-
tems. However, this paradigm complicates the relationships
between inputs (configuration space) and outputs (design
space), limiting the existing approaches’ prediction capabili-
ties and performance.

In this paper, we carefully evaluate the shortcomings of
state-of-the-art approaches when exploring the nFUs and
loop pipeline directives and propose a novel, improved ap-
proach for exploring these directives.

For nFUs exploration, we propose a path-based DSE ap-
proach (Section 5.1) that improves the exploration by avoid-
ing inconsistencies and local traps identified on different tra-
ditional methods. Results show that the proposed approaches
speed up the nFUs exploration up to 2.82×while keeping the
ADRS smaller than 1%.

For nFUs and loop pipeline directives, we proposed a novel
exploration flow based on the relationship between points in

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

Table 4. Number of compiled configurations and ADRS obtained byP,L, andS over spaces B and A independently. (𝑚, 𝜎) = (0.05, 0.25).

K𝐵 L𝐵 P𝐵 S𝐵 (P𝐵) K𝐴 L𝐴 P𝐴 S𝐴(P𝐴)
designs

mt 5 6.00 12 12 5 6.00 11 11
ac 9 46 35 52 9 34.22 30 55
dv 8 31.92 30 32 8 33.30 27 32
fat 11 137.88 36 114 11 101.16 40 111

geo. 8.31 63.39 27.55 44.77 8.31 60.59 30.50 59.67
ADRS (%)

mt 0.99 0.99 0 0 0.99 0.63 0 0
ac 0 0 0 0 0.12 0 0 0
dv 0.69 0.011 0.095 0.095 0.42 0.38 0.41 0.41
fat 4.34 0.023 0.24 0.22 2.71 0.14 0.20 0.18
cp 4.09 0.0036 0.16 0.15 5.37 0.031 0.30 0.11

geo. 2.04 0.21 0.10 0.09 1.94 0.24 0.18 0.14

Table 5. Number of compiled designs and ADRS obtained by DSE methods to explore the nFUs and loop pipeline directives. Results
present the traditional and proposed flows using the DSE methods P, L, and S. (𝑚, 𝜎) = (0.05, 0.25).

Proposed flow (Section 5.2.2) Traditional Flow
S𝐴(K𝐵) S𝐴(L𝐵) S𝐴(P𝐵) S𝐴(S𝐵 (P𝐵)) K𝐵∪𝐴 L𝐵∪𝐴 P𝐵∪𝐴 S𝐵∪𝐴(P𝐵∪𝐴)

designs

mt 8 8 12 12 10 8 21 11
ac 22.34 43 34 44 18 64.9 59 65
dv 8 11.98 21 24 16 17.96 28 24
fat 15.47 134.28 130 184 22 81.5 33 75
cp 10.3 474.22 313 357 20 1231.42 344 1369

geo. 11.79 48.28 51.11 60.82 16.62 62.26 52.37 70.66
ADRS (%)

mt 0.65 2.65 0.90 0.90 0.89 1.32 0.00 0.00
ac 0.00 0.00 0.00 0.00 0.76 0.00 0.08 0.00
dv 2.43 0.02 2.31 2.31 3.64 0.06 2.64 2.64
fat 2.74 0.00 1.40 1.40 2.83 9.97 2.38 2.38
cp 3.89 0.00 0.02 0.02 4.69 0.01 0.96 0.02

geo. 1.95 0.54 0.93 0.93 2.57 2.35 1.22 1.02

the design space. Results show that the proposed flow consis-
tently improves the DSE speed-accuracy trade-off, forming a
new Pareto-front when contrasted against traditional explo-
ration flow.

Declarations
Acknowledgements
The authors would like to thank the São Paulo Research Foundation
(FAPESP) and the European Union’s Next-Generation EU (FAIR) -
Future Artificial Intelligence Research project.

Funding
FAPESP - grant number 2014/14918-2. FAIR - Piano Nazionale di
Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Investi-

mento 1.3 - D.D. 1555 11/10/2022, PE00000013. This manuscript
reflects only the authors’ views and opinions, neither the European
Union nor the European Commission can be considered responsible
for them.

Authors’ Contributions
LSR contributed to the conception, implementation, and experi-
ments and is the main author. VB and CSB guided the method-
ology development. All authors contributed to the writing of this
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that there are no competing interests.

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

Availability of data and materials
The manuscript does not provide complementary materials.

References
Ali, K., Ben Atitallah, R., Ait El Cadi, A., Fakhfakh, N., and

Dekeyser, J.-L. (2019). ViPar: High-Level Design Space
Exploration for Parallel Video Processing Architectures.
International Journal of Reconfigurable Computing, 2019.
DOI: 10.1155/2019/4298013.

Bannwart Perina, A., Becker, J., and Bonato, V. (2019).
Lina: Timing-Constrained High-Level Synthesis Perfor-
mance Estimator for Fast DSE. In 2019 International
Conference on Field-Programmable Technology (ICFPT),
pages 343–346. DOI: 10.1109/ICFPT47387.2019.00063.

Bannwart Perina, A. and Bonato, V. (2018). Map-
ping Estimator for OpenCL Heterogeneous Accelera-
tors. In 2018 International Conference on Field-
Programmable Technology (FPT), pages 294–297. DOI:
10.1109/FPT.2018.00057.

Belwal, M. and Ramesh, T. (2021). Q-PIR: A quan-
tile based Pareto iterative refinement approach for high-
level synthesis. Engineering Science and Technol-
ogy, an International Journal, page 101078. DOI:
10.1016/j.jestch.2021.11.004.

Canis, A., Brown, S. D., and Anderson, J. H. (2014). Mod-
ulo SDC scheduling with recurrence minimization in high-
level synthesis. In 2014 24th International Conference on
Field Programmable Logic and Applications (FPL), pages
1–8. DOI: 10.1109/FPL.2014.6927490.

Castro-Godínez, J., Mateus-Vargas, J., Shafique, M., and
Henkel, J. (2020). AxHLS: design space exploration
and high-level synthesis of approximate accelerators us-
ing approximate functional units and analytical mod-
els. In Proceedings of the 39th International Confer-
ence on Computer-Aided Design, ICCAD ’20, New York,
NY, USA. Association for Computing Machinery. DOI:
10.1145/3400302.3415732.

Cong, J., Wei, P., Yu, C. H., and Zhou, P. (2017).
Bandwidth Optimization Through On-Chip Memory Re-
structuring for HLS. In Proceedings of the 54th An-
nual Design Automation Conference 2017, DAC ’17,
pages 43:1–43:6, New York, NY, USA. ACM. DOI:
10.1145/3061639.3062208.

da Silva, J. S. and Bampi, S. (2015). Area-oriented iter-
ative method for Design Space Exploration with High-
Level Synthesis. In Circuits & Systems (LASCAS), 2015
IEEE 6th Latin American Symposium on, pages 1–4. IEEE,
IEEE. DOI: 10.1109/LASCAS.2015.7250447.

de Souza Rosa, L., Bonato, V., and Bouganis, C.-S. (2018a).
Scaling Up Loop Pipelining for High-Level Synthesis: A
Non-iterative Approach. In 2018 International Conference
on Field-Programmable Technology (FPT), pages 62–69.
DOI: 10.1109/FPT.2018.00020.

de Souza Rosa, L., Bouganis, C. S., and Bonato, V.
(2018b). Scaling Up Modulo Scheduling For High-Level
Synthesis. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, pages 1–1. DOI:
10.1109/TCAD.2018.2834440.

de Souza Rosa, L., Bouganis, C.-S., and Bonato, V. (2021).
Non-iterative SDC modulo scheduling for high-level syn-
thesis. Microprocessors and Microsystems, 86:104334.
DOI: 10.1016/j.micpro.2021.104334.

Fernando, S., Wijtvliet, M., Nugteren, C., Kumar, A., and
Corporaal, H. (2015). (AS)2: Accelerator Synthesis Us-
ing Algorithmic Skeletons for Rapid Design Space Explo-
ration, pages 305–308. DATE ’15. EDA Consortium, San
Jose, CA, USA. DOI: 10.5555/2755753.2755821.

Ferretti, L., Ansaloni, G., and Pozzi, L. (2018a). Cluster-
Based Heuristic for High Level Synthesis Design Space
Exploration. In IEEE Transactions on Emerging Top-
ics in Computing, volume PP, pages 1–1. IEEE. DOI:
10.1109/TETC.2018.2794068.

Ferretti, L., Ansaloni, G., and Pozzi, L. (2018b). Lattice-
Traversing Design Space Exploration for High Level Syn-
thesis. In 2018 IEEE 36th International Conference on
Computer Design (ICCD), pages 210–217. IEEE. DOI:
10.1109/ICCD.2018.00040.

Ferretti, L., Cini, A., Zacharopoulos, G., Alippi, C., and
Pozzi, L. (2022). Graph Neural Networks for High-Level
Synthesis Design Space Exploration. ACM Trans. Des. Au-
tom. Electron. Syst., 28(2). DOI: 10.1145/3570925.

Ferretti, L., Kwon, J., Ansaloni, G., Guglielmo, G. D., Car-
loni, L. P., and Pozzi, L. (2020). Leveraging Prior Knowl-
edge for Effective Design-Space Exploration in High-
Level Synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(11):3736–
3747. DOI: 10.1109/TCAD.2020.3012750.

Goswami, P., Schaefer, B. C., and Bhatia, D. (2023). Ma-
chine learning based fast and accurate High Level Synthe-
sis design space exploration: From graph to synthesis. In-
tegration, 88:116–124. DOI: 10.1016/j.vlsi.2022.09.006.

Jun, H., Ye, H., Jeong, H., and Chen, D. (2023). Au-
toScaleDSE: A Scalable Design Space Exploration Engine
for High-Level Synthesis. ACM Trans. Reconfigurable
Technol. Syst., 16(3). DOI: 10.1145/3572959.

Kachris, C. and Soudris, D. (2016). A survey on re-
configurable accelerators for cloud computing. In
2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–10.
DOI: 10.1109/FPL.2016.7577381.

Krishnan, V. and Katkoori, S. (2006). A genetic
algorithm for the design space exploration of data-
paths during high-level synthesis. IEEE Transac-
tions on Evolutionary Computation, 10(3):213–229. DOI:
10.1109/TEVC.2005.860764.

Kwon, J. and Carloni, L. P. (2020). Transfer Learning for
Design-Space Exploration with High-Level Synthesis. In
Proceedings of the 2020 ACM/IEEE Workshop on Ma-
chine Learning for CAD, MLCAD ’20, page 163–168,
New York, NY, USA. Association for Computing Machin-
ery. DOI: 10.1145/3380446.3430636.

Liao, Y., Adegbija, T., and Lysecky, R. (2023). Efficient
system-level design space exploration for high-level syn-
thesis using pareto-optimal subspace pruning. In Proceed-
ings of the 28th Asia and South Pacific Design Automa-

https://doi.org/10.1155/2019/4298013
https://doi.org/10.1109/ICFPT47387.2019.00063
https://doi.org/10.1109/FPT.2018.00057
https://doi.org/10.1016/j.jestch.2021.11.004
https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1145/3400302.3415732
https://doi.org/10.1145/3061639.3062208
https://doi.org/10.1109/LASCAS.2015.7250447
https://doi.org/10.1109/FPT.2018.00020
https://doi.org/10.1109/TCAD.2018.2834440
https://doi.org/10.1016/j.micpro.2021.104334
https://doi.org/10.5555/2755753.2755821
https://doi.org/10.1109/TETC.2018.2794068
https://doi.org/10.1109/ICCD.2018.00040
https://doi.org/10.1145/3570925
https://doi.org/10.1109/TCAD.2020.3012750
https://doi.org/10.1016/j.vlsi.2022.09.006
https://doi.org/10.1145/3572959
https://doi.org/10.1109/FPL.2016.7577381
https://doi.org/10.1109/TEVC.2005.860764
https://doi.org/10.1145/3380446.3430636

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

tion Conference, ASPDAC ’23, page 567–572, New York,
NY, USA. Association for Computing Machinery. DOI:
10.1145/3566097.3567841.

Mahapatra, A. and Schafer, B. C. (2019). Optimizing RTL
to C Abstraction Methodologies to Improve HLS Design
Space Exploration. In 2019 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1–5. DOI:
10.1109/ISCAS.2019.8702355.

Meng, P., Althoff, A., Gautier, Q., and Kastner, R.
(2016). Adaptive threshold non-pareto elimination:
re-thinking machine learning for system level design
space exploration on FPGAs, page 918–923. DATE
’16. EDA Consortium, San Jose, CA, USA. DOI:
10.3850/97839815370790350.

Mishra, V. K. and Sengupta, A. (2014). MO-PSE:
Adaptive multi-objective particle swarm optimization
based design space exploration in architectural syn-
thesis for application specific processor design. Ad-
vances in Engineering Software, 67:111–124. DOI:
10.1016/j.advengsoft.2013.09.001.

Nane, R., Sima, V.-M., Pilato, C., Choi, J., Fort, B., Canis,
A., Chen, Y. T., Hsiao, H., Brown, S., Ferrandi, F., et al.
(2016). A Survey and Evaluation of FPGA High-Level
Synthesis Tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35:1591–1604.
DOI: 10.1109/TCAD.2015.2513673.

Nardi, L., Koeplinger, D., and Olukotun, K. (2019). Practical
design space exploration. In 2019 IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS),
pages 347–358. DOI: 10.1109/MASCOTS.2019.00045.

Oppermann, J., Koch, A., Reuter-Oppermann, M., and Sin-
nen, O. (2016). ILP-based Modulo Scheduling for High-
level Synthesis. In Proceedings of the International Con-
ference on Compilers, Architectures and Synthesis for Em-
bedded Systems, CASES ’16, pages 1:1–1:10, New York,
NY, USA. ACM. DOI: 10.1145/2968455.2968512.

Palesi, M. and Givargis, T. (2002). Multi-objective de-
sign space exploration using genetic algorithms. In Pro-
ceedings of the Tenth International Symposium on Hard-
ware/Software Codesign, CODES ’02, page 67–72, New
York, NY, USA. Association for Computing Machinery.
DOI: 10.1145/774789.774804.

Perina, A. B., Becker, J., and Bonato, V. (2019). ProfCounter:
Line-Level Cycle Counter for Xilinx OpenCL High-Level
Synthesis. In 2019 26th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pages 618–
621. DOI: 10.1109/ICECS46596.2019.8964669.

Perina, A. B., Silitonga, A., Becker, J., and Bonato, V. (2021).
Fast Resource and Timing Aware Design Optimisation for
High-Level Synthesis. IEEE Transactions on Computers,
70(12):2070–2082. DOI: 10.1109/TC.2021.3112260.

Pilato, C., Mantovani, P., Di Guglielmo, G., and Car-
loni, L. P. (2017). System-Level Optimization of Ac-
celerator Local Memory for Heterogeneous Systems-on-
Chip. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 36(3):435–448. DOI:
10.1109/TCAD.2016.2611506.

Pimentel, A. D. (2017). Exploring exploration: A tu-

torial introduction to embedded systems design space
exploration. IEEE Design & Test, 34(1):77–90. DOI:
10.1109/MDAT.2016.2626445.

Prost-Boucle, A., Muller, O., and Rousseau, F. (2014).
Fast and standalone Design Space Exploration for
High-Level Synthesis under resource constraints.
Journal of Systems Architect, 60(1):79–93. DOI:
http://dx.doi.org/10.1016/j.sysarc.2013.10.002.

Rajmohan, S. and Ramasubramanian, N. (2020). A Memetic
Algorithm-Based Design Space Exploration for Datapath
Resource Allocation During High-Level Synthesis. Jour-
nal of Circuits, Systems and Computers, 29(01):2050001.
DOI: 10.1142/S0218126620500012.

Reyes Fernandez de Bulnes, D., Maldonado, Y., Trujillo, L.,
and Acacio Sanchez, M. E. (2020). Development of Multi-
objective High-Level Synthesis for FPGAs. Sci. Program.,
2020. DOI: 10.1155/2020/7095048.

Rosa, L. d. S. (2019). Fast Code Exploration for
Pipeline Processing in FPGA Accelerators. DOI:
10.11606/T.55.2019.tde-21082019-143417.

Samanta, A., Hatai, I., and Mal, A. K. (2024). A survey on
hardware accelerator design of deep learning for edge de-
vices. Wireless Personal Communications, 137(3):1715–
1760. DOI: 10.1007/s11277-024-11443-2.

Schafer, B. C. (2016). Probabilistic Multiknob High-
Level Synthesis Design Space Exploration Accelera-
tion. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(3):394–406. DOI:
10.1109/TCAD.2015.2472007.

Schafer, B. C. and Wang, Z. (2020). High-Level Syn-
thesis Design Space Exploration: Past, Present, and Fu-
ture. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(10):2628–2639. DOI:
10.1109/TCAD.2019.2943570.

Siracusa, M., Delsozzo, E., Rabozzi, M., Di Tucci, L.,
Williams, S., Sciuto, D., and Santambrogio, M. D. (2021).
A Comprehensive Methodology to Optimize FPGA De-
signs via the Roofline Model. IEEE Transactions on Com-
puters, pages 1–1. DOI: 10.1109/TC.2021.3111761.

Wang, Z., Chen, J., and Schafer, B. C. (2020). Efficient
and Robust High-Level Synthesis Design Space Explo-
ration through offline Micro-kernels Pre-characterization.
In 2020 Design, Automation Test in Europe Con-
ference Exhibition (DATE), pages 145–150. DOI:
10.23919/DATE48585.2020.9116309.

Wang, Z. and Schafer, B. C. (2022). Learning from the Past:
Efficient High-level Synthesis Design Space Exploration
for FPGAs. ACM Trans. Des. Autom. Electron. Syst., 27(4).
DOI: 10.1145/3495531.

Wu, N., Xie, Y., and Hao, C. (2021). Ironman: Gnn-assisted
design space exploration in high-level synthesis via rein-
forcement learning. In Proceedings of the 2021 Great
Lakes Symposium on VLSI, GLSVLSI ’21, page 39–44,
New York, NY, USA. Association for Computing Machin-
ery. DOI: 10.1145/3453688.3461495.

Wu, N., Xie, Y., and Hao, C. (2023). Ironman-pro: Mul-
tiobjective design space exploration in hls via reinforce-
ment learning and graph neural network-based model-
ing. IEEE Transactions on Computer-Aided Design of

https://doi.org/10.1145/3566097.3567841
https://doi.org/10.1109/ISCAS.2019.8702355
https://doi.org/10.3850/9783981537079_0350
https://doi.org/10.1016/j.advengsoft.2013.09.001
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/MASCOTS.2019.00045
https://doi.org/10.1145/2968455.2968512
https://doi.org/10.1145/774789.774804
https://doi.org/10.1109/ICECS46596.2019.8964669
https://doi.org/10.1109/TC.2021.3112260
https://doi.org/10.1109/TCAD.2016.2611506
https://doi.org/10.1109/MDAT.2016.2626445
https://doi.org/http://dx.doi.org/10.1016/j.sysarc.2013.10.002
https://doi.org/10.1142/S0218126620500012
https://doi.org/10.1155/2020/7095048
https://doi.org/10.11606/T.55.2019.tde-21082019-143417
https://doi.org/10.1007/s11277-024-11443-2
https://doi.org/10.1109/TCAD.2015.2472007
https://doi.org/10.1109/TCAD.2019.2943570
https://doi.org/10.1109/TC.2021.3111761
https://doi.org/10.23919/DATE48585.2020.9116309
https://doi.org/10.1145/3495531
https://doi.org/10.1145/3453688.3461495

Efficient Number of Functional Units and Loop Pipeline Design Space
Exploration for High-Level Synthesis de Souza Rosa et al. 2025

Integrated Circuits and Systems, 42(3):900–913. DOI:
10.1109/TCAD.2022.3185540.

Xydis, S., Palermo, G., Zaccaria, V., and Silvano, C.
(2015). SPIRIT: Spectral-Aware Pareto Iterative Re-
finement Optimization for Supervised High-Level Syn-
thesis. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 34:155–159. DOI:
10.1109/TCAD.2014.2363392.

Zhong, G., Prakash, A., Wang, S., Liang, Y., Mi-
tra, T., and Niar, S. (2017). Design Space explo-
ration of FPGA-based accelerators with multi-level par-
allelism. In Design, Automation Test in Europe Confer-
ence Exhibition (DATE), 2017, pages 1141–1146. DOI:
10.23919/DATE.2017.7927161.

Zuo, W., Kemmerer, W., Lim, J. B., Pouchet, L.-N.,
Ayupov, A., Kim, T., Han, K., and Chen, D. (2015).
A polyhedral-based SystemC modeling and generation
framework for effective low-power design space explo-
ration. In 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 357–364. DOI:
10.1109/ICCAD.2015.7372592.

Ščap, D., Hoić, M., and Jokić, A. (2013). Determination
of the Pareto frontier for multiobjective optimization prob-
lem. Transactions of FAMENA, 37(2):15–28. Available at:
https://hrcak.srce.hr/105312.

https://doi.org/10.1109/TCAD.2022.3185540
https://doi.org/10.1109/TCAD.2014.2363392
https://doi.org/10.23919/DATE.2017.7927161
https://doi.org/10.1109/ICCAD.2015.7372592
https://hrcak.srce.hr/105312

	Introduction
	Related Works
	Background and Definitions
	Configuration and Design Spaces Relationship
	Gradient-Based Approaches
	Probabilistic Approach
	Lattice-Based Approach

	Number of Functional Units and Loop Pipeline Exploration
	Path-Based Number of Functional Units Exploration
	Loop Pipeline Exploration Based on the nFUs Exploration
	Lattice-Based DSE Extension
	Proposed Exploration Flow

	Results
	Experimental Setup
	Nomenclature
	Evaluation Metric
	Benchmark Selection
	Results Optimizing nFUs
	Optimizing nFU and Loop Pipeline

	Conclusion

