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Abstract: The primary motivation for this work is to develop the concept of Marshall’s quotient
applicable to non-commutative multi-rings endowed with involution, expanding upon the main ideas
of the classical case—commutative and without involution—presented in Marshall’s seminal paper.
We define two multiplicative properties to address the involutive case and characterize their Marshall
quotient. Moreover, this article presents various cases demonstrating that the “multi” version of
rings with involution offers many examples, applications, and relatives in (multi)algebraic structures.
Therefore, we established the first steps toward the development of an expansion of real algebra and
real algebraic geometry to a non-commutative and involutive setting.
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1. Introduction

Multialgebraic structures are ”algebraic-like” structures endowed with multiple val-
ued operations: an n-ary multi-operation on set A is just a function An → P(A) \ {∅}. The
definition and study of the concept of multi-group (Definition 1) began in the 1930s by
Marty; in the 1950s, the commutative hyperrings were introduced by Krasner (Definition 2).
Since then, research on these multi-structures and their broad range of applications has
been developed. The concepts of (commutative) multi-ring and superring (Definition 2), are
much more recent developments, as discussed in [1,2]. To access advances and results in the
theory of multi-ring and hyperring (commutative), we recommend the following: [2–9].

Many instances of multialgebraic structures codify the nature of mathematical objects
through operations. Here, we recall some basic examples and provide additional ones,
focusing on the non-commutative case.

Moreover, the exploration of this subject remains substantially open compared to
the classical case. The natural progression of the subject has led to the development of
polynomials [2], linear algebra [10], and orderings [11].

The main purpose of the present work is to outline the fundamental steps necessary
to expand Marshall’s seminal paper [1] to the context of non-commutative multi-rings
with involution. Specifically, we present and analyze the expansion of the notion of the
“Marshall’s quotient” (see [12]), a crucial construction in abstract concepts of real algebra
and real algebraic geometry. This includes applications in the space of signs [13], abstract
real spectra [14], real semigroups [15], and real reduced multi-rings [1].

Building on this foundation, future work will focus on developing a real spectrum
for non-commutative rings with involution, as a preparation for establishing an abstract
theory of Hermitian forms ([16]).

Within this context, we introduce the concept of the Marshall quotient for involutive
(non-commutative) multi-rings and discuss some applications to quaternion algebras over
formally real fields. The main technical results are presented in Theorems 3–5. To illustrate
an application, in Section 5, we provide the following:
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Theorem 1 (7). Let R be a commutative ring and A be an R-algebra with involution σ. We denote

Orth(A) := {a ∈ A : aσ(a) = σ(a)a = 1}.

If Orth(A) ⊆ Z(A), then A/mOrth(A) is a (non-commutative) hyperring.

Outline

In Section 2, we provide a brief introduction to multi/super-structures relevant to
this work. We offer a non-standard example that extends Krasner’s hyperfield and the
signal hyperfield in Example 2. In Section 3, we introduce the basic objects of the theory
of (non-commutative) multi-rings with involution and invite the reader to compare this
theory with the classical one. Additionally, we cover various constructions and examples,
including multi-groups, products, and matrices.

In Section 4, we define Marshall’s quotient on involutive multialgebras and analyze the
conditions for their existence using a “coherent” approach. Theorem 3 presents two types
of quotients characterized by certain multiplicative subsets. Although many relations can
be considered when forming classes in the quotient, we focus on four different possibilities
and show how they are similar (Lemma 4). Moreover, in developing particular examples,
we verify the independence of the conditions in Theorem 3. Additionally, the available
quotient provides a “concrete” framework that encodes several types. In Section 5, we
explore some applications and present examples of quotients that generate well-known
multi-structures. Finally, in Section 6, we present our final remarks and conclusions.

2. Multi-Structures

In this section, we provide a brief overview of multi-structures and establish the
necessary notations for the reader.

Multialgebraic structures are “algebraic-like” structures endowed with multi-valued
operations. An n-ary multi-operation on set A is defined as a function f : An → P(A) \ {∅},
where P(A) is the power set of A. Alternatively, the same concept can be described by an n+
1-ary relation R f ⊆ An+1, which satisfies the following condition: for all x0, x1, · · · , xn−1 ∈
A, there exists xn ∈ A, such that R f (x0, x1, · · · , xn−1, xn).

Definition 1 (Adapted from Definition 1.1 in [1]). A multi-group concept is a first-order
structure (G, ·, r, 1), where G is a non-empty set, r : G → G is a function, 1 is an element of G,
· ⊆ G× G× G is a ternary relation (which will play the role of a binary multi-operation, and we
denote d ∈ a · b for (a, b, d) ∈ ·), such that for all a, b, c, d ∈ G, we have the following:

M1 - If c ∈ a · b, then a ∈ c · (r(b)) and b ∈ (r(a)) · c. We write a · b−1 to simplify a · (r(b)).
M2 - b ∈ a · 1 iff a = b.

M3 - If there exists x, such that x ∈ a · b and t ∈ x · c), then there exists y, such that y ∈ b · c
and t ∈ a · y. Equivalently, if ∃ x(x ∈ a · b ∧ t ∈ x · c), then ∃ y(y ∈ b · c ∧ t ∈ a · y).

The structure (G, ·, r, 1) is said to be commutative (or abelian) if it satisfies the following condi-
tion for all a, b, c ∈ G:

M4 - c ∈ a · b iff c ∈ b · a.

The structure (G, ·, 1) is a commutative multimonoid (with unity) if it satisfy M3, M4, and
condition a ∈ 1 · a for all a ∈ G.

Definition 2 (Definition 5 in [2]). A (commutative) superring is a tuple (R,+, ·,−, 0, 1),
satisfying the following:

1. (R,+,−, 0) is a commutative multi-group and (R, ·, 1) is a (commutative) multimonoid;
2. (Null element) a · 0 = 0 and 0 · a = 0 for all a ∈ R;
3. (Weak distributive) If x ∈ b+ c, then a · x ∈ a · b+ a · c and x · a ∈ b · a+ c · a. Equivalently,

(b + c) · a ⊆ b · a + c · a and a · (b + c) ⊆ a · b + a · c.
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4. The rule of signals holds: −(ab) = (−a)b = a(−b), for all a, b ∈ R.

Note that if a ∈ R, then 0 = 0 · a ∈ (1 + (−1)) · a ⊆ 1 · a + (−1) · a, thus (−1) · a = −a.

R is said to be a multi-ring if (R, ·, 1) forms a monoid. A hyperring R is a multi-ring such
that if for a, b, c ∈ R, a(b + c) = ab + ac and (b + c)a = ba + ca. A multi-ring (respectively,
a hyperring) R is said to be a multi-domain (hyperdomain) if it contains no zero divisors. A
commutative multi-ring R will be a multifield if every non-zero element of R has a multiplica-
tive inverse.

If a = 0, then a(b + c) = ab + ac and (b + c)a = ba + ca. Observe that hyperfields
and multifields coincide. Indeed, by definition, every hyperfield is a multifield, and, for a
given multifield, F, if a 6= 0, then we have the following:

a−1(ab + ac) ⊆ b + c implies aa−1(ab + ac) ⊆ a(b + c),

whenever b, c ∈ F. Therefore, a(b + c) = ab + ac.

Definition 3. Let A and B be superrings. A map f : A→ B is a morphism if for all a, b, c ∈ A:

1. f (1) = 1 and f (0) = 0;
2. f (−a) = − f (a);
3. f (ab) = f (a) f (b);
4. if c ∈ a + b then f (c) ∈ f (a) + f (b).

A morphism f is a full morphism if for all a, b ∈ A,

f (a + b) = f (a) + f (b) and f (a · b) = f (a) · f (b).

In this text, we provide some examples and treat (non-commutative) multi-rings.
For more details, we recommend the reader to check [2–9] for advances and results in
multi-ring/hyperring (commutative) theory.

Example 1.

1. Suppose that (G, ·, 1) is a group. Defining a ∗ b = {a · b}, and r(g) = g−1, we have
that (G, ∗, r, 1) is a multi-group. In this way, every ring, domain, and field is a multi-ring,
multi-domain, and hyperfield, respectively.

2. Let K = {0, 1} with the usual product, and the sum defined by relations x + 0 = 0 + x = x,
x ∈ K, and 1 + 1 = {0, 1}. This is a hyperfield referred to as Krasner’s hyperfield [17].

3. Q2 = {−1, 0, 1} is the “signal” hyperfield with the usual product (in Z) and the multi-
valued sum defined by relations

0 + x = x + 0 = x, for every x ∈ Q2

1 + 1 = 1, (−1) + (−1) = −1
1 + (−1) = (−1) + 1 = {−1, 0, 1}

4. For every multi-ring R, we define the opposite multi-ring Rop, which has the same structure
unless (Rop, ·op, 1op) is the opposite monoid of (R, ·, 1), i.e., ·op is the reverse multiplication.
The null element and the weak distributive properties are satisfied on both sides in Rop because
they are met on the opposite sides in R.

The following example codifies the structure of ranks of square matrices:

Example 2 (Superrings of signed ranks). Consider n ∈ N and

K±n = {0, 1, 2, ..., n− 1, n−, n+}.
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This set is endowed with a superring structure, which includes the addition ⊕ and multiplication �
operations, defined by the following:

(n = 0,1) K±0 = K0 = {0}, K±1 = Q2 and K1 = {0, 1} = K.

(K1) 0 is the identity with respect to the addition ⊕;

(K2) 1. m⊕m′ =

{
[|m−m′|, m + m′]; m, m′ ∈ {1, ..., n− 1}, m + m′ < n;
[|m−m′|, m + m′] ∪ {n±}; m, m′ ∈ {1, ..., n− 1}, m + m′ ≥ n;

2. m⊕ n± = [n−m, n− 1] ∪ {n±} whenever m ≤ n− 1;
3. (n is even) n+ ⊕ n+ = n− ⊕ n− = K±n ;

n+ ⊕ n− = K±n \ {0}.
4. (n is odd) n+ ⊕ n+ = n− ⊕ n− = K±n \ {0};

n+ ⊕ n− = K±n .

(K3) n+ is the identity with respect to the multiplication � and n− � n− = n+;

(K4) For m, m′ < n,

m�m′ =

{
[m + m′ − n, min(m, m′)], whenever m + m′ > n;
[0, min(m, m′)], otherwise.

We denote the superrings of ranks by Kn = {0, 1, 2, ..., n − 1, n}, whose axioms are identical,
except for n+ = n− = n.

Example 3 (Kaleidoscope, Example 2.7 in [12]). Let n ∈ N and define

Xn = {−n, ..., 0, ..., n} ⊆ Z.

We define the n-kaleidoscope multi-ring by (Xn,+, ·,−, 0, 1), where − : Xn → Xn is the
restriction of the opposite map in Z, + : Xn × Xn → P(Xn) \ {∅} is given by the following rules:

a + b =


{a}, if b 6= −a and |b| ≤ |a|
{b}, if b 6= −a and |a| ≤ |b|
{−a, ..., 0, ..., a} if b = −a

,

and · : Xn × Xn → Xn is given by the following rules:

a · b =

{
sgn(ab)max{|a|, |b|} if a, b 6= 0
0 if a = 0 or b = 0

.

With the above rules we have that (Xn,+, ·,−, 0, 1) is a multi-ring, which is not a hyperring for
n ≥ 2 because

n(1− 1) = b · {−1, 0, 1} = {−n, 0, n}

and n− n = Xn. Note that X0 = {0} and X1 = {−1, 0, 1} = Q2.

Example 4 (Triangle hyperfield [18]). Let R+ be the set of non-negative real numbers endowed
with the following (multi)operations:

aOb = {c ∈ R+| |a− b| ≤ c ≤ |a + b|}, for all a, b ∈ R+,
a · b = ab, the usual multiplication in R+,
−a = a.

Moreover, this is a hyperfield that does not satisfy the double distributive property (see 5.1 in [18]
for more details).
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Example 5.

1. The prime ideals of a commutative ring (its Zariski spectrum) are classified by equivalence
classes of morphisms into algebraically closed fields; however, they can be uniformly classified
by a multi-ring morphism into the Krasner hyperfield K = {0, 1}.

2. The orderings of a commutative ring (its real spectrum) are classified by classes of equivalence
of ring homomorphisms into real closed fields. However, they can be uniformly classified by
a multi-ring morphism into the signal hyperfield Q2 = {−1, 0, 1}.

3. The Krull valuation on a commutative ring with a group of values (G,+,−, 0,≤) is just a
morphism into the hyperfield TG = G ∪ {∞}.

3. Multialgebras with Involution

In this section, we introduce the key concept of this work: multialgebras with involution.
For a multi-ring A, we denote

Z(A) := {a ∈ A : for all b ∈ A, ab = ba},

the center of A. Of course, if A is commutative, Z(A) = A. The classical theory of central
algebras with involution suggests the development of this subject in a very similar way.

Definition 4.

1. Let R be a commutative multi-ring, A be a (non-necessarily commutative) multi-ring, and
j : R → A a homomorphism of multi-rings, such that j[R] ⊆ Z(A), then (A, j) is an
R-multialgebra.

2. A morphism of R-multialgebras f : (A, j)→ (A′, j′) is a morphism of multi-rings f : A→
A′ such that f ◦ j = j′.

3. An involution σ over the R-multialgebra (A, j) is an (anti)isomorphism of R-multialgebras
σ : (A, j) → (Aop, jop) where Aop is the opposite multi-ring, jop : Rop → Aop is a
homomorphism, and σop = σ−1. Thus, for all a, b ∈ A, σ(ab) = σ(b)σ(a).

4. A multialgebra with involution is just a (R, τ)-multialgebra endowed with an involution,
where (R, τ) is a multi-ring with involution. A morphism of R-multialgebras with
involution is a morphism of R-multialgebras f : (A, j, σ) −→ (A′, j′, σ′) satisfying f ◦ σ =
σ′ ◦ f .

5. For each commutative multi-ring with involution (R, τ), there exists the category of (R, τ)-
multialgebras with involution, whose objects are (R, τ)-multialgebras with involution
and morphisms are morphisms of R-multialgebras with involution.

Whenever the involution τ is clear, we will omit it and write only R. Note that
item 1 implies that (R, τ) is an initial object in R. Item 2 ensures that every morphism
f : (A, j, σ) −→ (A′, j′, σ′) is represented by a commutative triangle.

(R, τ) (A, σ)

(A′, σ′)

	

j

j′
f (�)

We call (A, σ) a subalgebra of (A′, σ′) if the diagram (�) is satisfied by the restricted
identity morphism f = idA′ |A. An ideal J ⊆ A is a σ-invariant (σ(J) ⊆ J) non-empty
subset satisfying J · A ⊆ J and x + y ⊆ J for all x, y ∈ J. Once J is σ-invariant and σ is an
isomorphism, A · J = σ(σ(J) · σ(A)) ⊆ σ(J) ⊆ J and, thus, J is a two-sided ideal. A proper
ideal is an ideal J 6= A. We call J a prime ideal if J is an ideal such that ab ∈ J implies a ∈ J
or b ∈ J for any pair a, b ∈ A. The smallest ideal generated by a1, ..., ak ∈ A is
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J(a1, ..., ak) =
k

∑
i=1

Aai A + Aσ(ai)A.

We define the quotient A/J as usual (see, for instance, [2,12,19], or [20]). We have
many standard and effusive constructions that raise various examples in categoryR.

Let I be a non-empty set. For a given family (Ai, ji, σi)i∈I of R-multialgebras with
involution, the direct product ∏ Ai = (∏i∈I(Ai, πi), j̀, σ̀) is an R-multialgebra with invo-
lution such that πi0 : ∏ Ai −→ Ai0 are projection morphisms for each i0 ∈ I. Indeed,
σ̀(ai)i∈I = (σi(ai))i∈I is an involution over ∏ Ai, and j̀(r) = (ji(r))i∈I ∈ Z(∏ Ai) is a
well-defined map satisfying the necessary conditions above.

Matrices over a given commutative multi-ring are natural constructions. We denote
by Mn(A) the set of square matrices of order n with coefficients in (A, j, σ) and set the sum
and product of matrices as follows:

For all matrices C = (cij)n×n, B = (bij)n×n ∈ Mn(A), we define the function σ̄ :
Mn(A) −→ Mn(A) by σ̄(B) = (σ(bji))n×n and (multi)operations, as follows:

C + B := {(dij) : dij ∈ cij + bij for all i, j} 6= ∅

CB := {(dij) : dij ∈
n

∑
k=1

cikbkj = ci1b1j + ci2b2j + ... + cinbnk for all i, j} 6= ∅

λC := (λcij)n×n, for all λ ∈ R.

Since σ is an involution and A is a commutative multi-ring, it follows that σ̄ is also an
involution. Finally, let f : (A, σ) −→ (Mn(A), σ̄) be the diagonal morphism defined by

f (a) = diag(a, a, ..., a) ∈ Mn(A),

which associates each a ∈ A with a diagonal matrix in Mn(A) and j̄ := f ◦ j is the injective
morphism such that j̄(R) ⊆ Z(Mn(A)). We will avoid the verification that (Mn(A), j̄, σ̄) is
an R-multialgebra with involution, but the reader can check Section 2 of [10], Theorem 2.3,
and Lemma 2.5. However, we provide an example to illustrate this construction.

Example 6. Consider the 2-kaleidoscope multi-ring (X2,+, ·,−, 0, 1) as defined in 3 and ( )t the
matrix transposition. Then, (M2(X2), ( )t) is an X2-multialgebra with involution.

Let A =

[
1 2
−1 0

]
and B =

[
0 1
−1 1

]
matrices over X2. Thus,

AB =

[
1 · 0 + 2 · (−1) 1 · 1 + 2 · 1
−1 · 0 + 0 · (−1) −1 · 1 + 0 · 1

]
, At =

[
1 −1
2 0

]
, Bt =

[
0 −1
1 1

]
.

Therefore, (AB)t = Bt At =

[
−2 0
2 −1

]
.

Example 7. (Adapted from [21]) Let G0 = G ∪ {0} be a group with 0 and define + the multi-
operation satisfying the following:

x + 0 = 0 + x = x , ∀x ∈ G0;

x + x = G0 \ {x} , ∀x ∈ G0;

x + y = {x, y} , ∀x, y ∈ G0 with x 6= y.

We can define an involution σ over this structure by setting σ(x) = x−1 for all x ∈ G and σ(0) = 0.
In fact, σ is additive and it is easy to verify that (G0, 0, 1,+, ·, σ) is a multi-ring with involution.
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4. Marshall’s Quotient of Multialgebras with Involution

The notion of Marshall’s quotient of a commutative (hyper)ring (resp., multi-ring) by
a multiplicative subset always produces a commutative hyperring (resp., a commutative
multi-ring), and is the main construction used in the abstract approaches of quadratic
forms theory ([1,12]). In this section, we introduce the main technical tool, in the gen-
eral setting of a (non-commutative) multi-ring with involution, developed in the present
work—Marshall’s quotient—which will enable us to construct a variety of interesting
multialgebras with involution, derived from standard algebraic structures.

Throughout this section, we fix an R-multialgebra with involution (A, j, σ). We are
interested in Marshall-coherent subsets satisfying at least one of the conditions in Theorem 3,
i.e., normality or convexity. These conditions interact in many ways with the relations
below (6) compared to the commutative case. First of all, we explore basic properties due
to definitions.

Definition 5. A subset (without zero divisors) S ⊆ A is called a Marshall-coherent subset
whenever

• S is a multiplicative submonoid of (A, ·, 1)
• σ[S] ⊆ S (or, equivalently σ[S] = S)

We call S standard if sσ(s) ∈ Z(A)×, for all s ∈ S. We note that S is convex if xSσ(x) ⊆ S for
all x ∈ A0 in the subset of nonzero divisors of A. If xσ(x) ∈ S for all x ∈ A0, we note that S is
1-convex.

Immediately, convexity implies 1-convexity. One can check Lemma 5 and Proposition 1
for a reciprocal result. From now on, we fix a Marshall-coherent subset S ⊆ A.

The expansion of the theory to this non-commutative and involutive setting, inevitably,
leads us to a multitude of definitions that are collapsed to a single one in the traditional
commutative setting and where the involution is trivial. Therefore, we present the following:

Definition 6. Let a, b ∈ A and s1, s2, t1, t2 ∈ S. We define the following:

1. a ∼1 b iff a = s1bs2 and b = t1at2;
2. a ∼2 b iff s1as2 = t1bt2;
3. a ∼3 b iff as1 = t1b and s2a = bt2;
4. a ∼4 b iff there is s ∈ S such that asσ(b) ∈ S.

Despite the diversity of these relations, they are interconnected and, under certain
natural conditions, they may coincide. Of course, a ∼1 b implies a ∼2 b. Further, ∼4 is
an equivalence relation when S is 1-convex. Indeed, this relation concurs with ∼3 (see
Lemma 4). We start our exploration of these relations and the associated properties of
Marshall-coherent subsets.

Lemma 1. For ∼ = ∼1, as defined above, ∼ is an equivalence relation and satisfies the following:

1. For all a ∈ A and all s ∈ S, σ(s)as ∼ a, saσ(s) ∼ a, and abs ∼ ab, sab ∼ ab.
2. For all a, b ∈ A if a ∼ b then σ(a) ∼ σ(b).

Proof. Of course ∼ is reflexive (since S has 1) and symmetric. Now, let a ∼ b and b ∼ c,
with a = s1bs2, b = t1at2 and b = r1cr2, c = w1bw2, s1, s2, t1, t2, r1, r2, w1, w2 ∈ S. Then

a = s1bs2 = s1(r1cr2)s2 = (s1r1)c(r2s2)

and
c = w1bw2 = w1(t1at2)w2 = (w1t1)a(t2w2).



Mathematics 2024, 12, 2931 8 of 17

Since S is multiplicative, we have s1r1, r2s2, w1t1, t2w2 ∈ S, which implies a ∼ c. Hence,
∼=∼1 is an equivalence relation. Items 1 and 2 are straightforward once S is multiplicative
and σ-invariant.

Lemma 2. If S is standard, then ∼ = ∼2 is an equivalence relation and satisfies the following:

1. For all a ∈ A and all s ∈ S, σ(s)as ∼ a, saσ(s) ∼ a, and abs ∼ ab, sab ∼ ab.
2. For all a, b ∈ A if a ∼ b then σ(a) ∼ σ(b).

Proof. Reflexivity and symmetry follow immediately. Note that sσ(s) ∈ Z(A) enable us to
rewrite the definition of ∼ = ∼2 as follows:

a ∼2 b iff s1as2 = t1bt2 iff σ(s1)s1as2σ(t2) = σ(s1)t1bt2σ(t2) iff as′1 = t′1b,

for s′1, t′1 ∈ S.
Consider a ∼ b and b ∼ c, which means that there exist s1, t1, s2, t2 ∈ S. such that

as1 = t1b and bs2 = t2c. Scaling the previous equation on the right by s2, and the latter,
on the left by t1, we conclude that a(s1s2) = (t1t2)c. Thus, ∼ is transitive; that is, an
equivalence relation.

For Item 1, observe that w(σ(s)as)w′ = (wσ(s))a(sw′), and w(abs)w′ = w(ab)sw′ for
all s, w, w′ ∈ S. Item 2 follows by applying σ to both sides of as = bt.

Back to Example 7, we observe that normal and convex (Marshall-coherent) subgroups
coincide in this type of structure. In general, this is not the case, nor is their relationship
with the relations above equal. Now, we treat these two cases.

Lemma 3. Suppose that x · S = S · x for each x ∈ A. Let a, a′ ∈ A, and the following statements
are equivalent:

1. ∃s, t, s′, t′ ∈ S such that sat = s′a′t′

2. ∃u, u′ ∈ S such that ua = u′a′

3. ∃v, v′ ∈ S such that av = a′v′

That is, a ∼2 a′ if, and only if, a ∼3 a′. Furthermore, ∼S=∼2=∼3 is an equivalence relation.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) follows immediately from the hypothesis. Thus, ∼i=∼j for
each pair (i, j), i, j ∈ {2, 3}. For simplicity, denote ∼S=∼i, for each i ∈ {2, 3}.

The relation ∼S is an equivalence relation: suppose that ua = u′a′ and r′a′ = r′′a′′ for
u, u′, r′, r′′ ∈ S. Observe the following:

ua = u′a′ =⇒ r′ua = r′(u′a′) ∴ r′ua = r′(a′v′), for some v′ ∈ S.

Also

(r′u)a = (r′a′)v′ = (r′′a′′)v′ =⇒ ∃r′u = v, v′′ ∈ S, such that (r′u)a = v′′a′′.

It follows that a ∼S a′, a′ ∼S a′′ implies a ∼S a′′. We already prove that ∼S is transitive.
Reflexivity and symmetry follow from 1 ∈ S and the equivalence of the statements 1, 2,
and 3.

Lemma 3 is a powerful tool to deal with multiplication. It improves efficiency when
managing equations, but mainly, it is a sufficient condition for the Marshall’s quotient (8)
being a multi-ring instead of a superring (Theorem 3).

We observe that, for a given Marshall’s coherent subset S, convexity is the reflexivity
property of ∼4 by definition. Indeed, there is a suitable relationship between the upward-
selected set of relations and Marshall’s coherent convex subsets.
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Lemma 4. Suppose that S is convex. Let a, a′ ∈ A, and the following statements are equivalent:

1. a ∼2 a′;
2. a ∼3 a′;
3. a ∼4 a′.

Furthermore, ∼S=∼2=∼3=∼4 is an equivalence relation. Additionally, for every 1-convex S′,
∼4=∼3⊆∼2.

Proof. 1 =⇒ 2 : There are s1, s2, t1, t2 ∈ S such that we have the following:

s1as2 = t1a′t2 =⇒ s1as2(σ(a)︸ ︷︷ ︸
∈S

a) = t1a′ t2(σ(a)a)︸ ︷︷ ︸
∈S

(S is Marshall convex)

∴ (a′σ(a′))s3︸ ︷︷ ︸
∈S

a = (a′ σ(a′))t1a′t′2︸ ︷︷ ︸
∈S

=⇒ sa = a′t.
(1)

2 =⇒ 3 : Suppose that a ∼3 a′. Then, there exist s1, t1 ∈ S, satisfying the following:

as1 = t1a′ =⇒ as1σ(a′) = t1a′σ(a′) ∈ S. (2)

3 =⇒ 1 : Finally, if a ∼4 a′, then ∃s, t1 ∈ S such that we have the following:

asσ(a′) = t1 =⇒ a sσ(a′)a′︸ ︷︷ ︸
∈S

= t1a′ ∴ 1 · as2 = t1a′ · 1.
(3)

To prove the final assertion, consider a ∼S b = a ∼4 b, for all a, b ∈ A. Since 1 ∈ S
and S is convex, aσ(a) ∈ S for all a ∈ A. Moreover, as long as S is σ-invariant, asσ(b) ∈ S
if, and only if, bσ(s)σ(a) ∈ S. It turns out that a ∼S b if, and only if, b ∼S a. Thus, ∼S is
reflexive and symmetric.

Finally, we prove the transitivity property. Put a ∼S b and b ∼S c. Thus, by definition,
it follows that

∃r, s, s′, s” ∈ S;

{
asσ(b) = s′ 1
brσ(c) = s” 2

1·2
=⇒ a sσ(b)br︸ ︷︷ ︸

∈S

σ(c) = s′s” ∈ S.

Remember that S is closed under multiplication and 1-convex. We have previously demon-
strated that transitivity holds; thus, we conclude that ∼S is an equivalence relation. The
final assertion follows straightforwardly.

The following lemma summarizes and proves many results concerning the properties
of Marshall-coherent subsets and the above relations.

Lemma 5. Let S be a Marshall-coherent set in (A, σ). The following statements hold:

1. If y · S = S · y for all y ∈ A and S is 1-convex, then S is convex;
2. If S is convex and xσ(x) ∈ Z(A)× for all non-zero divisors x ∈ A, then x · S = S · x (S is

normal);
3. If S ⊆ A×, and S is 1-convex, then A0 = A× denotes the set of non-zero divisors, i.e., every

non-zero divisor has an inverse in A;
4. If S is standard, then S ⊆ A×;
5. If S is standard then a ∼1 a′ if, and only if, a ∼2 a′ if, and only if, a ∼3 a’;

Proof. 1. Let x ∈ A be a non-zero divisor and s ∈ S. Thus, σ(x)sx = z for some
z ∈ A. Commuting s with x, it follows that σ(x)xs′ = y for a suitable s′ ∈ S. Hence,
1-convexity and the closure of multiplication implies y ∈ S. Therefore, σ(x)Sx ⊆ S.

2. Let x ∈ A∗ be a non-zero divisor. For any s1 ∈ S, σ(x)s1x = s2 for some s2. Therefore
(xσ(x))s1x = xs2, which implies s1x = xs2(xσ(x))−1. Since xσ(x) ∈ S× has an



Mathematics 2024, 12, 2931 10 of 17

inverse in S, s1x = xs′1 for a suitable choice of s′1. Hence, S · x ⊆ x · S. The reverse
inclusive follows from symmetry.

3. By definition, A× ⊆ A0. For the inverse inclusion, note that A0 is a Marshall-coherent
set and, let y ∈ A0 and 1 ∈ S. Thus, σ(y)y = s′ 6= 0.

σ(y)y = s′ =⇒ s′−1σ(y)y = 1 ∴ y−1
l = s′−1σ(y) is a left inverse for y. (4)

The same argument shows that y has the right inverse y−1
r . Note that yy−1

l = s1 ∈ S.
Thus, yy−1

l y = s1y and implies y = s1y for some s1 ∈ S. Scaling by y−1
r on both right

sides of the equation, we obtain 1 = s1. Hence, y−1 = y−1
l = y−1

r .
4. By hypothesis, sσ(s) ∈ Z(A)×(∩S). Hence, ∃x ∈ A such that (xσ(s))s = 1. Direct

calculations confirm that this serves as a unique inverse on both sides.
5. The statement can be straightforwardly proven by scaling and division.

Item 1 of Lemma 5 provides a sufficient condition for a normal subset to be a convex
subset. On the other hand, Item 2 specifies a reciprocal condition; that is, each element,
x ∈ A0, has a norm lying in the center. In the classical theory of rings with involution (see,
for instance, [16]), involution with traces x + σ(x) and norms xσ(x) lying in the center are
called standard. This justifies the notation above. As we see in Section 5, standard subsets
are typical examples.

For each ∼ ∈ {∼1,∼2,∼3,∼4}, we denote an element in A/ ∼ (whenever it exists) by
[a]. We have well-defined rules, as follows:

[a] + [b] := {[c] : c = s1as2 + t1bt2 for some s1, s2, t1, t2 ∈ S} and,

[a][b] := {[c] : c = rasbt for some r, s, t ∈ S}.

Observe that the involutory structure can be defined in the very same way for superrings.

Definition 7. A superring with involution (A, σ) is a superring that satisfies the (mutatis
mutandis) axioms for multialgebras with involution.

Theorem 2. The structure (A/ ∼2,+, ·, [0], [1]) is a superring with involution provided by
σ([a]) := [σ(a)]. If S is standard, then (A/ ∼1,+, ·, [0], [1]) is a superring with involution
σ([a]) := [σ(a)].

Proof. We proceed with a very similar argument to the one used in Theorem 6.

We define existing quotients for general Marshall-coherent subsets. In the sequel, we
deal with normality and convexity.

Definition 8. We define the superring (A/ ∼,+, ·, [0], [1]) as the Marshall’s quotient of A by
S, and denote it by A/mS := A/ ∼.

Whenever ∼ is chosen, we indicate the Marshall subset S by adding it to the index,
i.e., writing ∼S.

Theorem 3 has a central result in this section. Since the reverse image of the canonical
morphism j : R −→ A (see Definition 4) lifts Marshall-coherent subsets of A to R, the
quotient is a multialgebra (with involution) likewise. The associated Marshall-coherent
subset is Sj = j−1[S] ⊆ R, where S ⊆ A is Marshall-coherent in A and [S] = [1] is the
algebraic class of S under ∼S.

Theorem 3. Let S ⊆ A be a Marshall-coherent subset of a multi-ring A satisfying one of the
additional conditions below:

1. (Normal) xS = Sx, for all x ∈ A.
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2. (Convex) For all x ∈ A, a nonzero divisor in A, xSσ(x) ⊆ S.

If (A, σ) is an (R, τ)-multialgebra with involution, the set Sj := j−1[S] ⊆ R is a mul-
tiplicative submonoid of (R, ·, 1). Moreover, jS : R/ ∼Sj→ A/ ∼S, [r] 7→ [j(r)] defines an
R/ ∼Sj -multialgebra structure over A/ ∼S, and σS : A/ ∼S→ A/ ∼S, [a] 7→ [σ(a)] is an
involution over the R/ ∼Sj -multialgebra (A/ ∼S, jS). In both cases, A/ ∼S is a multi-ring.

Proof. Once j : (R, τ) −→ (A, σ) is a homomorphism, if s1rs2 = t1r′t2 in R, then j([r]) =
[j(r)] = [j(r′)] = j([r′]). It is easy to check that Sj is a multiplicative submonoid of R and,
due to S being Marshall-coherent, σ(j(r)) = j(τ(r)) ∈ S for all r ∈ Sj. Thus, τ(r) ∈ Sj
whenever r ∈ Sj. We conclude that Sj is Marshall-coherent and, by Theorem 2, R/ ∼Sj is a
superring endowed with an involution τ([r]) := [τ(r)].

For any two elements [c], [d] ∈ [a] · [b] ⊆ R/ ∼Sj , s1c = t1ab and ds2 = abt2 for some
s1, t1, s2, t2 ∈ Sj, because R is commutative. Scaling these equations, we write s1ct2 = t1ds2,
i.e., , [a] · [b] = {[ab]}. Hence, R/ ∼Sj is a multi-ring with involution.

Now, consider the following diagram:

0 // R
j //

ψR

��

A
ψ // A/ ∼S // 0

R/ ∼Sj

∃!jS

66 (5)

(1) If xS = Sx, then ∼ = ∼2 can be read as a ∼ b if, and only if, as = tb for some
s, t ∈ S. Previous constructions (see Theorem 2) and demonstrations show that (A/ ∼S)
is a superring. Let [c] and [c′] be elements in [a] · [b]; thus, c = abs and c′ = s′ab for some
s, s′ ∈ S. Scaling equations and comparing gives us s′c = c′s = s′abs, which means that
c ∼ c′. Therefore, [a] · [b] = {[ab]} and A/ ∼ is a multi-ring.

By the universal property of the quotient R/ ∼Sj , js is unique. Since all arrows are
homomorphisms, (A/ ∼S, jS) is R/ ∼Sj -multialgebra. Furthermore, S is σ-invariant, which
means σ(aS) = σ(a)S. Consequently, the induced anti-homomorphism σS : A/ ∼S−→
A/ ∼S such that σ([a]) = [σ(a)] is well-defined and an involution over A/ ∼S.

(2) Let ∼ = ∼2. In this case, Lemma 4 and the preceding case show that A/ ∼ is a
multi-ring. The proof is the same as before since Theorem 2 still holds.

The above theorem provides us with two kinds of quotients lying in the class of
multi-rings. One can wonder if the quotient can provide some information about the
Marshall-coherent subset.

Proposition 1. Let A/ ∼S be a multi-ring, and S be a Marshall-coherent subset, such that 1 ∈ S
and ∼=∼2. Then, [1] is 1-convex if, and only if, [1] is convex.

Proof. (Sketch:) Note that [S] = [1] is Marshall-coherent. The converse is immediate. To
prove the reciprocal statement, use [x] · [s] · [σ(x)] = [xsσ(x)] = [1] (since the quotient is a
multi-ring, · is a usual operation) for all s ∈ [1]. We obtain xsσ(x) ∈ [1] and, therefore [1]
is convex.

According to the above results, some immediate examples follow below.

Example 8. For a given (A, σ), a (R, σ′)-multialgebra with involution, the following sets are
Marshall-coherent:

(a) The set of all non-zero divisors A0;
(b) The set of all invertible elements A×;
(c) The set of all symmetric elements (in A0) Sym(A, σ) = {a ∈ A0| a = σ(a)};
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(d) If xσ(x) ∈ Z(A) for all x ∈ A, then A0σ(A0) = {aσ(a)| a ∈ A0} is Marshall-coherent
and convex.

In the next section, we will provide more examples minutely. For now, we treat
another kind of operation in the quotient. For a, a′ ∈ A, let a ∼S a′ if, and only if, there
exist s, t, s′, t′ ∈ S such that sat = s′a′t′. This can be replaced in terms of the equivalent
statements in 3 or 4, whether x · S = S · x or S is convex, respectively. Hence, ∼S is an
equivalence relation. Moreover, each [a] is invariant under S action, [a] = [sa] for all s ∈ S.

In A/ ∼S define [a] + [b] := {[c] : ∃ri, si, ti ∈ S, r0cr1 ∈ s0as1 + t0bt1}, −[a] := [−a]
and [a] · [b] := [ab].

Theorem 4. Suppose that x · S = S · x. Then, we have the following:

1. A/ ∼S is a (non-commutative) multi-ring.
2. If A is a hyperring, then A/ ∼S is a hyperring. In particular, if A is a ring, then A/ ∼S is a

hyperring.
3. It holds the universal property of Marshall’s quotient for homomorphisms f : A → M and

anti-homomorphisms (= homomorphism f : A→ Mop) such that f [S] = {1}.

Proof. To demonstrate 1, we note that +, ·, and − are well-defined as multi-group opera-
tions, and 0 = [0] = {0} is the null element because A is a multi-ring.

Suppose that [c] ∈ [a] + [b]. Thus, there exists r, s, t ∈ S, satisfying rc ∈ sa + tb in A.
Therefore, sa ∈ rc + t(−b) (in A). Similarly, tb ∈ s(−a) + rc. Consequently, [a] ∈ [c]− [b]
and [b] ∈ −[a] + [c].

Let [b] ∈ [a] + [0]. By definition, there exists r ∈ S such that rb ∈ sa + t0 for some
s, t ∈ S. However, it implies [a] = [b]. The reciprocal is obvious.

If [x] ∈ [a] + [b] and [t] ∈ [x] + [c], then vt ∈ wx + zc and r′wx ∈ s′a + p′b for
r′, s′, p′, v, w, z ∈ S. Afterward,

vt ∈ wx + zc =⇒ r′vt ∈ r′wx + r′zc

∃r′wx(r′wx ∈ s′a + p′b ∧ r′vt ∈ r′wx + r′zc) =⇒ ∃y(y ∈ p′b + r′zc ∧ r′vt ∈ s′a + y)

The last implication means ∃[y]([y] ∈ [b] + [c]∧ [t] ∈ [a] + [y]). Once A is a multi-ring,
[c] ∈ [a] + [b] if, and only if, [c] ∈ [b] + [a] follows.

We already proved that (A/ ∼S,+,−, 0) is a multi-group. Note that there exists
1 = [1] = S ∈ A/ ∼S such that [a] · [1] = [a] for all [a] ∈ A/ ∼S. Thus, (A/ ∼S, ·, 1) is
a monoid. Moreover, [a] · 0 = 0. Finally, let [c] ∈ [a] + [b] and pd ∈ [d] ∈ A/ ∼S. By
definition, exists r, s, t ∈ S such that rc ∈ sa+ tb. Since A is a multi-ring, rcpd ∈ sapd+ tbpd.
Using the ’normality property’ of S, we rewrite it as follows:

r′cd ∈ s′ad + t′bd ∴ [c][d] ∈ [a][d] + [b][d].

Similarly, [d][c] ∈ [d][a] + [d][b] holds. It follows that A/ ∼S is a multi-ring. For the second
assertion, suppose that A is a hyperring. Let [e] ∈ [a][d] + [b][d]. Thus,

∃s, r, t ∈ S, se ∈ rad + tbd =⇒ se ∈ (ra + tb)d (A is hyperring)

=⇒ [e] ∈ ([a] + [b])[d] (by definition of +).

Therefore, [a][d] + [b][d] = ([a] + [b])[d]. By symmetry, [d][a] + [d][b] = [d]([a] + [b])
also follows.

To demonstrate the third statement, consider f : A −→ M a homomorphism such
that f ([S]) = 1. Let a ∈ A and s ∈ S. Thus, f (sa) = f (s) f (a) = f (a). Define the
homomorphism f̄ : A/ ∼S−→ M with f̄ ([a]) = f (a). Hence, f̄ is well-defined, and f =
f̄ ◦ψ, with ψ(a) = [a] the canonical projection. It is immediate that another homomorphism
ḡ : A/ ∼S−→ M satisfying f = ḡ ◦ ψ must coincide with f̄ .
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Remark 1. Theorem 4 is valid if S is convex. Since both conditions normality and convexity imply
∼2=∼3, we are capable of proving that the distributive laws hold and the entire rest of the proof
follows as above.

The next theorem distinguishes Marshall-coherent subsets that lie in the center Z(A)
from an ordinary one.

Theorem 5. Let A be a multialgebra with involution and S ⊆ A be a Marshall-coherent subset such
that S ⊆ Z(A) (thus, in particular, xS = Sx, for all x ∈ A). Then, A/mS is a (non-commutative)
hyperring with induced involution.

Proof. From previous considerations and Theorem 2, we prove that A/mS is a multi-ring
instead of a superring, and the hyperring property still holds.

In fact, if [c] ∈ [a][b], then cr = asbt for some r, s, t ∈ S ⊆ Z(A), which means
cr = (ab)(st) and c ∼ ab. Then, [a][b] = {[ab]}, proving that A/mS is a multi-ring.

Now, let [y] ∈ [c][a] + [c][b]. Then, [y] = [d1] + [d2] for some [d1] ∈ [c][a], [d2] ∈ [c][b],
providing the following equations:

y = r1d1s1 + r2d2s2,

d1 = t1cv1aw1 and

d2 = t2cv2aw2

for some r1, r2, s1, s2, t1, t2, v1, v2, w1, w2 ∈ S. Then, we have the following:

y = r1d1s1 + r2d2s2

= r1[t1cv1aw1]s1 + r2[t2cv2bw2]s2

= c(r1t1v1)a(w1s1) + c(r2t2v2)b(w2s2)

= c[(r1t1v1)a(w1s1) + (r2t2v2)b(w2s2)]

implying that [y] ∈ [c]([a] + [b]). The same reasoning provides [ac] + [bc] ⊆ ([a] +
[b])[c].

5. Applications

This section focuses on results surrounding particular examples. We verify some
quotients associated with typical multi-structures, a few of them presented in Section 2.
Throughout the subsections below, we deal with technical results and interpret elements in
the Marshall quotient as classes of isometric elements.

5.1. Orthogonal

Let R be a commutative ring and A be an R-algebra with involution σ. We denote the
following:

Orth(A) := {a ∈ A : aσ(a) = σ(a)a = 1}.

Once we prove that Orth(A) is a Marshall-coherent subset, then, by definition, the
standard property also holds, as follows:

Lemma 6. The set Orth(A) is non-empty and if a, b ∈ Orth(A) then σ(a), ab ∈ Orth(A).

Proof. The set Orth(A) is non-empty because 1 ∈ Orth(A). For the rest, note that
σ(a)σ(σ(a)) = σ(a)a and (ab)σ(ab) = ab[σ(b)σ(a)] for all a, b ∈ A. If a, b ∈ Orth(A),
these imply σ(a)a = aσ(a) = 1 and

(ab)σ(ab) = ab[σ(b)σ(a)] = a[bσ(b)]σ(a) = aσ(a) = 1.
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Now let a, b ∈ A. We define

a ∼ b if, and only if, as = tb for some b, t ∈ Orth(A).

Note that a ∼ b if, and only if, a = sbt for some s, t ∈ Orth(A), because S= Orth(A) is a
Marshall-coherent standard subset.

Theorem 6. The structure (A/ ∼,+, ·, [0], [1]) is a superring with involution σ([a]) := [σ(a)].

Proof. Note that a ∼ 0 if, and only if, a = 0. Moreover, from the very definitions of the
sum and the product, we have for all a, b ∈ A,

[a] + [0] = [0] + [a] = {[a]}, [a][1] = [1][a] = {[a]},
[a] + [b] = [b] + [a],

σ([a][b]) = [σ(b)][σ(a)],

[0] ∈[a] + [b] ⇐⇒ [b] = −[a].

Now, let a, b, c ∈ A and [e] ∈ ([a] + [b]) + [c]. As a result, [e] also belongs to [x] + [c] for
some [x] ∈ [a] + [b]. Consequently, we can express e as s1xs2 + t1ct2 and x as v1av2 +w1bw2,
where s1, s2, t1, t2, v1, v2, w1, w2 ∈ Orth(A). Then, we have the following:

e = s1xs2 + t1ct2

= s1(v1av2 + w1bw2)s2 + t1ct2

= (s1v1)a(v2s2) + (s1w1)b(w2s2) + t1ct2

= (s1v1)a(v2s2) + [(s1w1)b(w2s2) + t1ct2]

Let y = (s1w1)b(w2s2) + t1ct2. Then, [e] ∈ [a] + [y] with [y] ∈ [b] + [c], implying that
[e] ∈ [a] + ([b] + [c]). The same reasoning provides [a]([b][c]) = ([a][b])[c].

Finally, let [x] ∈ [c]([a] + [b]). Therefore, [x] ∈ [c][d] for some [d] ∈ [a] + [b]. These
provide equations x = rcsdt and d = s1as2 + t1bt2. Thus, we have the following:

x = rcsdt

= rcs[s1as2 + t1bt2]t

= rcss1as2t + rcst1bt2t

= rc(ss1)a(s2t) + rc(st1)b(t2t)

with r, ss1, s2t, st1, t2t ∈ Orth(A), concluding that [x] ∈ [c][a] + [c][b]. Similarly, we con-
clude that ([a] + [b])[c] ⊆ [a][c] + [b][c].

Observe that S is not necessarily convex, and neither satisfies xS = Sx (see Theorem 2).
Thus, A/ ∼may not be a multi-ring.

Definition 9. We define the superring (A/ ∼,+, ·, [0], [1]) as the orthogonal fragment of A,
and denote by A/mOrth(A) := A/ ∼.

Theorem 7. If Orth(A) ⊆ Z(A), then A/mOrth(A) is a (non-commutative) hyperring.

Proof. This is a particular case of Theorem 5.

Theorem 8. Let F be a field and A = M2(F). Then A/mOrth(A) consists of rotation 2× 2
matrices over F.
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Proof. Note that a ∈ Orth(A) if, and only if, aat = id2, with σ(a) = at the transpose
matrix of a = (aij)2×2. Applying the definition of matrix product, we have to solve the
following system: 

a2
11 + a2

12 = 1
a2

21 + a2
22 = 1

a11a21 + a12a22 = 0
det(a)2 = 1

.

We conclude the following:

Orth(A) =

{(
x y
y −x

)
| x2 + y2 = 1, x, y ∈ F

}
∪
{(

x −y
y x

)
| x2 + y2 = 1, x, y ∈ F

}
. (6)

If F = R, in (6), the second subset (with the positive determinant equal to 1) is the set
of orthonormal matrices or the set of linear transformations in R2 that are rotations by some
angle θ ∈ [0, 2π) with x = cos(θ) and y = sin(θ). Moreover, consider the inner product

〈a, b〉 =
2

∑
i,j=1

aijbij, for a, b ∈ A.

One may verify that the actions of elements in Orth(A) function as a set of isometries.
By solving a system of equations very similar to the one discussed above, it is possible to
demonstrate that these actions form a subset of isometries. The associated matrix, denoted
as T = (tij), has a determinant different from ±(t11 − t12). Thus, this quotient describes
the behavior concerning certain kinds of isometry classes considering the underlined
inner product.

5.2. Quaternions over Real Closed Fields

Now, we explore the diversity of quotients in quaternions. Although this includes a
lot of calculations, it provides quick verification of independence regarding normal and
convex quotients.

Example 9. Let R be a real closed field and

H = R{x, y}/(x2 + 1, y2 + 1, xy + yx)

the corresponding quaternion algebra (1, 1)R; it is an R-division algebra of dimension 4. Put
S = R>0 · 1 ⊆ H. Note that S satisfies the second condition of the Theorem 3 (it is a convex set) in
the previous section and S = {σ(a) · a : a ∈ H \ {0}}.

Then, H/mS ∼= S3 is a monoid. And, in this quotient, x · σ(x) · x = x, as x · σ(x) = 1.

We observe that, in this case, S is also standard, “normal”, and 1-convex (see Lemma 5).

Example 10. Let H be the quaternions real algebra endowed with the standard involution σ(a) = ā,
for all a ∈ H. Set S = R \ {0} and define a ∼ b iff a = σ(x)by for some x, y ∈ S. Thus, [0] = {0},
and for a nonzero element a, [a] is the line determined by the origin and the quaternion a(without
{0}), i.e., H/mS ∼= RP3.

Once S ⊆ Z(H) (S has the first “normality” property of the Theorem 3), it is easy
to check that S = [1] = [−1], and [±a] = Sa, and for a, a pure quaternion as well. If
a = a0 + a1i + a2 j + a3k and b = b0 + b1i + b2 j + b3k are quaternion numbers, then we have
the following:

[a] + [b] =
⋃
[x0 + x1i + x2 j + x3k], (7)
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for xi ∈ R, xi ∈ S, or xi = 0, depending on ai, bi 6= 0, or ai 6= 0 and bi = 0 (and vice-versa),
or both ai = bi = 0, respectively, for each i ∈ {0, 1, 2, 3}. Hence, [a] + [b] is the plane
determined by [a] and [b], containing (or not containing) the origin.

Example 11. Consider the orthogonal fragment Orth(H). Let S = S3 ⊆ H, representing the
sphere of radius with 1 centered at the origin.

Clearly, 1 ∈ S, and S is a multiplicative set, satisfying x−1 ∈ S whenever x ∈ S. Once
|x| = xσ(x), it is immediate that S is σ-invariant. It remains to verify that the sphere
qualifies as “a normal set” in H (item 1 of Theorem 3) and, thus, the quotient is a multi-ring.
In fact, let a ∈ H and x ∈ S; given the norm is multiplicative, we have the following:

|ax| = |a| =⇒ aσ(a)xσ(x) = σ(a)a =⇒ aσ(a)x = σ(x)−1σ(a)a

=⇒ σ(a)ax = σ(x)−1σ(a)a =⇒ ax = (σ(a)−1σ(x)−1σ(a))a.
(8)

Yet, we have the following: |σ(a)−1σ(x)−1σ(a)| = |σ(a)−1||σ(x)−1||σ(a)| = |σ(a)−1||σ(a)| =
1; therefore,

y = σ(a)−1σ(x)−1σ(a) ∈ S.

We conclude that ax = ya for some y ∈ S, i.e., aS ⊆ Sa. The reverse inclusion is followed by
symmetry. Moreover, in a general division algebra with standard involution, this property
holds since S = Orth(H).

Let a ∼ b iff a = σ(x)by, with x, y ∈ S. Hence, a ∼ b iff |a| = |b|. It is obvious that
[0] = {0} and [1] = S3 = S. The elements [a] are spheres centered at the origin with
radius

√
|a|. In fact,

√
|a| = a · σ(a)√

|a|
, with x = σ(a)√

|a|
∈ S. Therefore,

√
|a| ∼ a. For a ∈ [b],

[a] + [b] forms a filled sphere with radius 2
√
|a|. If |a| > |b|, both triangular inequalities

|a + b| ≤ |a| + |b| and ||a| − |b|| ≤ |a − b| indicate that [a] + [b] is the ’hollow’ surface
defined by two spheres with coincident centers at the origin and radii

√
|a|+

√
|b| and√

|a| −
√
|b|. Moreover, H/mS ∼= R+, as a multimonoid with multi-addition, satisfies

the following:

[a] + [b] =

{
[a− b, a + b] if a ≥ b;
[b− a, a + b] if b ≥ a.

Thus, this is the triangle hyperfield Example 4. In the last example, S does not
satisfy the convexity property. At the same time, Example 9 shows Marshall-coherent sets
satisfying many properties simultaneously. These examples illustrate that the definitions
provided in the previous section encapsulate elements of different types of structures and
demonstrate the independence between the statements outlined in Theorem 3.

6. Conclusions

We have extended the concept of the (commutative) multi-ring, as presented in Mar-
shall’s seminal paper [1], to the setting of (non-commutative) and involutive multi-rings
(Definition 4). Additionally, we have expanded the concept of Marshall’s coherent subset
to this new setting (Definition 5) and introduced and studied several equivalence relations
related to this notion (Definition 6; Lemmas 4 and 5). Furthermore, we have broadened
the concept of Marshall’s quotient (Definition 8; Theorems 2 and 3) to accommodate this
framework, which serves as a key technical tool for constructing many interesting examples
of multialgebras with involution. These examples are derived from standard algebraic
structures such as orthogonal groups and quaternion algebras, as thoroughly developed
in Section 5.

Thus, we have established the groundwork for extending real algebra and real algebraic
geometry into the non-commutative and involutive settings, broadening the abstract method-
ologies utilized in the space of signs [13], abstract real spectra [14], real semigroups [15], and
real reduced multi-rings [1]. Notably, the theory presented here lends itself to model-theoretic
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methods since every n-multi-operation corresponds to a n+ 1-relation, satisfying an ∀∃ axiom.
This is an area we intend to explore in future work. Moreover, the continued development of
the theory on non-commutative multialgebras with involution should lay a robust foundation
for establishing an abstract theory of Hermitian forms ([16]), similar to how the theory of
special groups ([22]) serves as an abstract theory of quadratic forms.
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