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Abstract
Aim: Ecological and anthropogenic factors shift the abundances of dominant and rare 
tree species within local forest communities, thus affecting species composition and 
ecosystem functioning. To inform forest and conservation management it is important 
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1  |  INTRODUC TION

Tree communities typically contain a few dominant and relatively 
many rare tree species, both of which contribute to ecosystem func-
tioning, resilience and services (Dee et al., 2019; McGill et al., 2007). 
Communities are defined as ‘a group of interacting species popula-
tions occurring together in space’ (Roughgarden & Diamond, 1986; 
Stroud et  al.,  2015) and it is therefore important to analyse what 
drives local dominance and rarity, and hence, species composition. 
Here, dominance and rarity refer to the relative abundance of dom-
inant and rare species in the community (Hillebrand et  al.,  2008). 
Dominant tree species make up most of the community biomass and 
contribute therefore most to ecosystem services, whereas rare tree 
species increase functional diversity and therefore ecosystem multi-
functionality (Fauset et al., 2015; Grime, 1998; Mouillot et al., 2013). 
Habitat conversion and degradation shift the abundances of 

dominant and rare species within communities and may lead to spe-
cies loss, with potentially strong impacts on ecosystem functioning 
and biodiversity (Bowler et al., 2017; Butchart et al., 2010; Doncaster 
et al., 2016; Fei et al., 2017; Xu et al., 2014). Quantifying broad-scale 
dominance and rarity patterns at a tree community level and iden-
tifying the predictors of extinction risk of locally dominant and rare 
tree species are therefore critical for management and conservation 
(Chapin et al., 2000; Enquist et al., 2019; Wilsey et al., 2009).

Patterns in community dominance and rarity are shaped by in-
teracting biotic and abiotic factors operating at various scales. First, 
global patterns in the relative abundance of species generally fol-
low the latitudinal gradient in diversity (Liang et al., 2022; Scheiner 
& Rey-Benayas,  1994; Ulrich et  al.,  2016). In general, species-rich 
forests have many rare species, whereas less speciose forests 
tend to have relatively few species that are more evenly distrib-
uted (Bazzaz, 1975; Hordijk et al., 2023). By definition, only a few 

to understand the drivers of dominance and rarity in local tree communities. We an-
swer the following research questions: (1) What are the patterns of dominance and 
rarity in tree communities? (2) Which ecological and anthropogenic factors predict 
these patterns? And (3) what is the extinction risk of locally dominant and rare tree 
species?
Location: Global.
Time period: 1990–2017.
Major taxa studied: Trees.
Methods: We used 1.2 million forest plots and quantified local tree dominance as 
the relative plot basal area of the single most dominant species and local rarity as the 
percentage of species that contribute together to the least 10% of plot basal area. We 
mapped global community dominance and rarity using machine learning models and 
evaluated the ecological and anthropogenic predictors with linear models. Extinction 
risk, for example threatened status, of geographically widespread dominant and rare 
species was evaluated.
Results: Community dominance and rarity show contrasting latitudinal trends, with 
boreal forests having high levels of dominance and tropical forests having high levels 
of rarity. Increasing annual precipitation reduces community dominance, probably be-
cause precipitation is related to an increase in tree density and richness. Additionally, 
stand age is positively related to community dominance, due to stem diameter in-
crease of the most dominant species. Surprisingly, we find that locally dominant and 
rare species, which are geographically widespread in our data, have an equally high 
rate of elevated extinction due to declining populations through large-scale land 
degradation.
Main conclusions: By linking patterns and predictors of community dominance and 
rarity to extinction risk, our results suggest that also widespread species should be 
considered in large-scale management and conservation practices.

K E Y W O R D S
community, dominance, environmental predictors, forests, macroecology, rarity, species 
abundance, species population threats

Handling Editor: Daniel McGlinn
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species can dominate a community, although the absolute domi-
nance might differ between forest types (Pitman et  al.,  2001; Ter 
Steege et al., 2013); forests can either be dominated by one single 
species or multiple species (Hart et  al.,  1989; Hobi et  al., 2015). 
Second, abiotic factors shape community dynamics by filtering out 
species that cannot survive in a given environment, which subse-
quently can increase the abundance of well adapted species (Arnillas 
& Cadotte, 2019; Avolio et al., 2019; Venn et al., 2011). Once a spe-
cies is established, its abundance will be determined by its suitability 
to the abiotic environment, and by interactions with the biotic envi-
ronment, such as competition and facilitation (Goldberg, 1990; Lynn 
et  al.,  2019; Meier et  al.,  2010). Across environmental gradients, 
the suitability of species to the local environment shifts, leading to 
differences in community composition (Cornwell & Ackerly, 2009). 
Third, dominant and rare species can also directly affect each oth-
er's abundance through interactions, whereby dominant species 
compete for resources and ultimately exclude rare species from the 
community when they reach a high abundance (Markham,  2015; 
Zhang et  al.,  2015). Besides the biotic and abiotic factors shaping 
tree communities, also (historical) forest management and prefer-
ence for certain tree species affects tree community composition 
(Albert et al., 2023; Li et al., 2023; Paillet et al., 2010).

Rabinowitz identified seven forms of rarity (Rabinowitz 
et  al.,  1986). Species can be rare because they occupy a narrow 
geographical range, have locally low population densities, have 
specialized habitat requirements, or combinations of these (adding 
up to seven). Here we focus on species that have low local popu-
lation densities. Rare species are inherently more susceptible to 
human disturbance than dominant species as small stochastic fluc-
tuations in population density can drive them to local extinction 
(Goodman, 1987; Matthies et al., 2004; Menges, 1991). When se-
vere enough, human activity can drive species to extinction through 
habitat conversion, habitat fragmentation, or the introduction of in-
vasive species (Newbold et al., 2015; Richardson & Rejmánek, 2011). 
However, dominant species can also decline rapidly in abundance, 
particularly due to overexploitation, accidentally introduced fun-
gal pathogens, pests, diseases or severe droughts that can deci-
mate species across their distribution range (Gaston & Fuller, 2008; 
Hartmann et al., 2022). Whereas the drivers of elevated extinction 
risk for rare species with a narrow distribution range are well estab-
lished, an assessment of the patterns and predictors of extinction 
risk for locally dominant and rare species with a wider geographical 
distribution is lacking (Gaston, 2010; Wan et al., 2017).

In this study, we use 1.2 million forest plots distributed across 
the globe and relate local tree dominance and rarity to ecologi-
cal predictors (i.e. climate and soil characteristics) and anthropo-
genic predictors (i.e. population density and human development). 
Specifically, we answer the following research questions: (1) What 
are the patterns of dominance and rarity in tree communities? (2) 
Which ecological and anthropogenic factors predict these patterns? 
And (3) are locally rare species more likely to be threatened with ex-
tinction compared to dominant species within ecological communi-
ties? The species we captured in this study are generally widespread 

tree species that differ in their local abundances. We hypothesize 
that (i) at low latitudes community rarity is highest and dominance 
is lowest, as with an increase in species richness, the number of rare 
species increases and the single most dominant species becomes 
less dominant (Magurran & Henderson,  2003; Ulrich et  al.,  2016), 
(ii) community dominance increases in environments with higher 
resource limitations, as it increases competition, and human dis-
turbance, as it selects for early successional species (Huston, 1979; 
Keddy, 2023; Morris, 2010; Rozendaal et al., 2019), and (iii) dominant 
species have a lower extinction risk under anthropogenic pressure 
on forests than rare species due to their higher population density 
(Vincent et al., 2020).

2  |  METHODS

2.1  |  Dataset

To assess tree community dominance and rarity in forest communities 
worldwide, we used the database of the Global Forest Biodiversity 
Initiative (GFBI database, 2021). Our analysis also includes the data 
of Condit et  al.  (2019a, 2019b). The plots include all trees with 
stem diameter at breast height (DBH) ≥ 5 cm. The plots in the GFBI 
database contain information on tree species composition and DBH 
of every individual tree, along with the latitudinal and longitudinal 
coordinates of the forest plots (Figure 1a).

The entire GFBI database consists of approximately 1.2 million 
plots. However, since the number of dominant and rare species can 
vary with spatial scale (Weiher & Keddy, 1999; Wilson et al., 1999; 
Zhang et  al.,  2012), we excluded plots that were smaller than the 
first quantile (0.02 ha) and larger than 1.6 ha. This resulted in the ex-
clusion of 8.3% of the database, and resulted in a mean plot size 
of 0.06 ha. Within the filtered database, the correlations between 
plot size and community dominance or rarity explained very little 
variation as indicated by the low r and r2 values (Pearson's r = −0.16, 
r2 = 0.03, N = 670,527, p < 0.001 and Pearson's r = 0.20, r2 = 0.04, 
N = 670,527, p < 0.01, respectively), the apparent significance being 
driven by the large number of observational data. Additionally, plots 
measured before 1990 were filtered out, as these plots may not rep-
resent current forest composition and do not match with the climatic 
data we used. This resulted in filtering out 21% of the database, and 
the average measurement year being 2006. The filtered GFBI data-
set consisted of 858,315 forest plots (including plots in for example 
savannas), of which 668,812 are in the six forest biomes (boreal for-
est, temperate conifer forest, temperate broadleaf forest, tropical 
conifer forest, tropical dry forest, tropical moist forest) (Dinerstein 
et al., 2017). Species names in the GFBI dataset were standardized 
using The Plant List, at least up to genus level (The Plant List, 2013). 
Of the 10,141 species names, around 10% could not be matched 
using The Plant List, including around 20% of the genera, therefore 
subsequently the Global Biodiversity Information Facility (GBIF) 
backbone was sourced to standardize these species names as well to 
accepted species names (GBIF Secretariat, 2020).
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2.2  |  Calculating community dominance and rarity

There are many definitions of dominant and rare species at differ-
ent spatial levels and suitable for different communities (e.g. Avolio 
et al., 2019; Rabinowitz et al., 1986). This study assesses dominance 
and rarity at the community level. A community is defined as “a 
group of interacting species populations occurring together in space” 
(Roughgarden & Diamond, 1986; Stroud et al., 2015). Hence, we quan-
tified dominance and rarity at the plot level, as this is the spatial scale 
at which tree species interact directly with each other, and therefore 
where the outcome of both abiotic and biotic interactions affect-
ing species abundances are most directly reflected (Roughgarden & 
Diamond, 1986; Stroud et al., 2015). Classification of tree commu-
nity dominance and rarity is based on basal area (m2) of each species 
per hectare, calculated from the tree-level DBH measurements (in 
cm) for each inventory plot (Figure 1b). The total basal area (BA) per 
species is calculated as BAj

�

m2 ∕ha
�

=
∑n

i=1
π∗

�

di−n∕200
�2. Where 

BAj stands for the total basal area per species, and di for the DBH 
of the individual(s) of that species. Basal area integrates both the 
number of tree stems and the stem size, is commonly used to com-
pute competition (Biging & Dobbertin, 1992; Contreras et al., 2011; 
Kunstler et al., 2016), and is correlated with the ecosystem functions 
of aboveground biomass and carbon sequestration (Balderas Torres 
& Lovett, 2013; Rao et al., 2015; Slik et al., 2010), but also with leaf 
area index and therefore photosynthetic capacity and respiration 

(Bartelink, 1997; Buckley et al., 1999; Fang et al., 2019; Jonckheere 
et al., 2005). In this analysis, we quantify community dominance as 
the percentage of basal area occupied by the single most dominant 
species in a given plot (cf. Friedman & Reich,  2005; Koike,  2001; 
Majumdar et al., 2014; Riemann et al., 2018; Zilliox & Gosselin, 2014). 
Values closer to 100% indicates therefore that the most dominant 
species contributes relatively more to plot basal area. Because we 
expressed the dominance metric as a percentage we quantified rar-
ity also as a percentage, for sake of symmetry. Rarity was defined 
as the percentage of the total species in a plot that had the smallest 
basal area and accounted together for <10% of the accumulated plot 
basal area (Bracken & Low, 2012; Gaston, 1994; Magurran,  2004; 
Molina,  2013) (Figure  1b). Although in both cases dominance and 
rarity is expressed as a percentage to account for large biome differ-
ences in plot basal area and richness, for dominance the percentage 
refers to the plot basal area, and for rarity to the percentage of spe-
cies making up the least 10% of the basal area (Figure 1b). We chose 
10% as a threshold because this clearly distinguishes dominant from 
rare species, it allows to compare plots with different numbers of 
species, and it allows to include a representative number of plots 
for all biomes (which would not be the case with a species richness 
threshold) (Bracken & Low, 2012). This means that not every plot 
contains rare species, as the least dominant species might comprise 
>10% of the basal area of the plot. The measure of rarity can include 
multiple species, as long as the least 10% of the basal area threshold 

F I G U R E  1 (a) Location of the Global 
Forest Biodiversity Initiative database 
plots used in this study (GFBI database), 
coloured by biome (n = 668,812). In the 
table, the number of plots and mean 
species richness per plot is indicated per 
forest biome (Dinerstein et al., 2017). (b) 
A graphical illustration of the definitions 
of dominance, rarity and dominant and 
rare species. Dominance is defined as 
the relative basal area (BA) of the single 
most dominant species, while rarity is 
defined as the maximum proportion of 
species that accounts for the least 10% 
of the basal area. In this graph, rarity 
equals 25%. Dominant and rare species 
are defined as the species which make up 
respectively the top and bottom 10% of 
basal area in a plot.

(a)

(b)
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is not reached. If a species does not occur in a given plot, it is not 
categorized as dominant or rare species in that plot. Community 
dominance and rarity were calculated for each plot in the GFBI data-
base, providing single point values that together describe the spatial 
variation in dominance and rarity for forests globally. The effect of 
plot size on richness, dominance and rarity is visualized in Figure S1.

2.3  |  Mapping community dominance and 
rarity globally

To map community dominance and rarity across all forested biomes 
(including savannas), we used the approach described in van den 
Hoogen et  al.,  (2019, 2021). We extracted information available at 
global scale that is reported to influence plant dominance, including 
10 climatic variables (Kraft et al., 2015; Venn et al., 2011): mean an-
nual temperature, temperature seasonality, isothermality, maximum 
temperature of the warmest month, minimum temperature of coldest 
month, annual temperature range, mean annual precipitation, precip-
itation seasonality, precipitation of the driest month, precipitation of 
the wettest month (Karger et al., 2017), 7 soil variables (Hillebrand 
et  al.,  2007; Stevens et  al.,  2004): cation exchange capacity, sand 
content, clay content, silt content, organic carbon, pH, saturated 
water content (Batjes et  al.,  2017; Ribeiro et  al.,  2018), 9 biomass 
and greenness variables (Bradford,  2011): tree density (Crowther 
et al., 2015), above ground biomass, growing stock volume (Santoro 
et al., 2018), annual net primary productivity (Running et al., 2011), 
NDVI, EVI (Didan,  2015), LAI (Myneni et  al.,  2015), EVI dissimilar-
ity, Shannon index of greenness (Tuanmu & Jetz, 2015), 2 landscape 
characteristics: slope and elevation (Amatulli et  al.,  2018), 2 stand 
age variables: percentage secondary forests (forests younger than 
150 years) and mean age of the secondary forest (Poulter et al., 2019), 
and 2 human disturbance variables: population density (Center for 
International Earth Science Information Network—CIESIN—Columbia 
University,  2016) and human development (Tuanmu & Jetz,  2014) 
(See Table 1 for details of the variables).

To assure that all predictor variables had the same spatial resolu-
tion, we extracted all these variables from global maps at a 30 arc sec-
ond resolution (Poulter et al., 2019; Richardson & Rejmánek, 2011; 
Urbieta et  al.,  2008) (see Table  1 for full list of covariates). Using 
these covariates as independent variables, we predicted tree com-
munity dominance and rarity using random forest models, with 100 
decision trees, a minimum of three variables per split, and a bag 
fraction (the proportion of training data to be used in the next tree, 
which by default is 0.5) of 0.632. To overcome computational lim-
itations inherent in dealing with millions of observations and have a 
similar sample number per biome, we performed a stratified boot-
strapping mapping procedure, where 1000 plots were sampled with 
replacement per biome (or the maximum number of plots for biomes 
with <1000 unique plots) and used to train the models. We repeated 
this bootstrapping approach 500 times for both community dom-
inance and rarity. For every pixel we then calculated a mean and 
standard deviation across the 500 model-based predictions. The 

final maps have a resolution of 30 arcseconds and were projected 
in WGS84 (EPSG:4326) coordinate system, and only forested areas 
were visualized in the maps (FAO, 2001; Hansen et al., 2013). The 
modelling and mapping procedure was performed with Google Earth 
Engine (Gorelick et al., 2017).

We tested the predictive accuracy of our models using a spa-
tial leave-one-out cross-validation (van den Hoogen et  al.,  2021). 
In this test, a random forest model is trained on all data except for 
points that fall within a predefined buffer zone from a test point. 
This procedure is repeated for every data point across ten randomly 
sampled stratified bootstrapped training sets per biome and across 
a range of buffer zone radii (1 km, 5 km, 10 km, 25 km, 50 km, 100 km) 
(Table 2). Tukey's test indicated that the mean r2 of the random for-
est model for buffer zone radii was significantly different (Tukey's 
test, p < 0.05) indicating that they showed spatial autocorrelation, at 
1 km, but did not show spatial autocorrelation at spatial scales of 
5 km and beyond (Tukey's test, p > 0.1 in all cases). Thus, no spatial 
autocorrelation was detected for dominance and rarity values sam-
pled further apart than 5 km.

To further analyse confidence in the final maps, we visualized 
the predicted versus observed values (Figure S2) and evaluated the 
coefficient of variation for the community dominance and rarity map 
by dividing the standard deviation across the 500 model-based pre-
dictions by the mean value per pixel (Figure 2). Additionally, we eval-
uated the percentage of data interpolation and extrapolation for the 
global community dominance and rarity maps (Figure S3), as a gen-
eral limitation of our approach is the limited capacity of random for-
est models to predict outside the range of the training data (Hengl 
et  al.,  2018). To visualize the areas of extrapolation, we assessed 
whether predicted pixel values of dominance and rarity are within 
the range of the training data (van den Hoogen et al., 2021). In gen-
eral, 92% to 97% of the predicted values of dominance and rarity in 
the global forest pixels were predicted within the range of the train-
ing data, which is the measured tree community data (Figure S3).

2.4  |  Analysing predictors of community 
dominance and rarity

In global datasets, tropical biomes are usually under-represented, 
and the GFBI database used in this present study is no exception 
(McGill, 2003; Meyer et al., 2016). To address the problem of under 
sampled tropical regions, we performed the analyses with a subset 
of the dataset where the proportion of plots within a biome was 
approximately representative of that biome's forest cover across 
the globe. We therefore selected 14,282 plots, composed of at 
least 1000 plots from each of the six Ecoregions2017©Resolve for-
est biomes, and proportional to the forested area within that biome 
(Dinerstein et  al.,  2017). These proportions were calculated in 
Google Earth Engine by overlaying the biomes with a global map of 
existing forest cover (Hansen et al., 2013), where areas with more 
than 10% canopy cover for vegetation taller than 5 m were defined 
as forests (FAO, 2001).
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    |  7 of 21HORDIJK et al.

The relationship between community dominance, community 
rarity and species richness within the six forest biomes was eval-
uated with a Pearson correlation. Species richness was calculated 
as the number of species in the plot, and log (Ln) transformed in 
the correlation to ensure normality. Plots without rare species 
(i.e. if the least abundant species accounted for >10% of the basal 

area), were excluded when evaluating the relationship between 
dominance and rarity (58% of the plots). Also, monodominant 
plots were excluded when evaluating the relationship between 
dominance and rarity as they introduced a mathematical artefact, 
forcing the regression line to change from a positive to negative 
slope (Figure S4a,b).

Variable category Variable Reference

Climate Mean annual temperature Karger et al. (2017)

Temperature seasonality

Isothermality

Maximum temperature of 
the warmest month

Minimum temperature of 
coldest month

Annual temperature range

Mean annual precipitation

Precipitation seasonality

Precipitation of the driest 
month

Precipitation of the wettest 
month

Soil (at 15 cm depth) Cation exchange capacity Batjes et al. (2017), Ribeiro 
et al. (2018)Sand content

Clay content

Silt content

Organic carbon

pH

Saturated water content

Biomass and greenness Tree density Crowther et al. (2015)

Above ground biomass Santoro et al. (2018)

Growing stock volume

Annual Net Primary 
Productivity

Running et al. (2011)

NDVI Didan (2015)

LAI Myneni et al. (2015)

EVI Didan (2015)

EVI dissimilarity Tuanmu and Jetz (2015)

Shannon index of greenness

Landscape Slope Amatulli et al. (2018)

Elevation

Stand age Secondary forest percentage Poulter et al. (2019)

Age secondary forest

Human impact Population density Center for International 
Earth Science Information 
Network—CIESIN—Columbia 
University (2016)

Human development Tuanmu and Jetz (2014)

Note: In the machine learning models to produce the maps the Nadir reflectance bands 1 to 7 are 
included as well (Schaaf & Wang, 2015). The variables in bold were included in the random forest 
models to evaluate the importance of climate, soil and human impact on dominance and rarity.

TA B L E  1 The variables used to create 
the global map of dominance and rarity.
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8 of 21  |     HORDIJK et al.

To evaluate how dominance and rarity were predicted by eco-
logical and anthropogenic factors, we included the variables having 
the largest effect per variable category on dominance and rarity 
based on the random forest model to map the global distribution. 
We selected for climate mean and seasonality in temperature and 
precipitation (Karger et al., 2017), for soil variables soil pH and sand 
content at 15 cm depth (Batjes et al., 2017; Ribeiro et al., 2018), for 
topography elevation (Amatulli et al., 2018), for forest attributes tree 
density, stand age, for the landscape the percentage forest classi-
fied as secondary forest (Poulter et al., 2019), and for human impact 
population density and human development (Tuanmu & Jetz, 2015; 
University, 2016) (Table 1). To quantify the relative importance of 
the effect of these variables on community dominance and rarity, we 
used random forest models. Biome, latitude, longitude, plot size and 

species richness were included in the models as well, to correct re-
spectively for the effect of different biomes, geographical locations, 
plot sizes and the number of species within the forest plot on domi-
nance and rarity. Both dominance (Pearson's r = −0.82, N = 670,527, 
p < 0.001) and rarity are related to species richness (Pearson's 
r = 0.60, N = 670,527, p < 0.001). To ensure that the patterns we find 
can be assigned to the effect of dominance or rarity and not to rich-
ness, we corrected for the confounding effect of species richness by 
including species richness as a predictor variable in the models. See 
Table S2 for an overview of the variable importance values for all 
variables predicting dominance and rarity.

2.5  |  Identifying conservation status and range 
dominant and rare species

Here, we define dominant species as the species which make up 
the top 10% of plot level basal area, and rare species as the species 
which make up the bottom 10% of plot level basal area (Figure 1b). 
To assess if the definition of dominant and rare species affects the 
results, we also analyse the data when dominant and rare species 
are defined based on respectively the highest and lowest 10% of the 
number of stems in the plot and when dominance is defined as the 
single most dominant species (Figures S5–S7). Additionally, we show 
for species that are neither defined as dominant nor rare (the ‘locally 
common’ species), their distribution characteristics (Figures S5–S7). 
It is possible for a species to be locally dominant and locally rare 
within different plots within a biome because of a chance effect in 

TA B L E  2 The r2 of the dominance and rarity maps across a range 
of buffer zone radii.

Radius (km)

Dominance Rarity

Mean r2
Standard 
deviation r2 Mean r2

Standard 
deviation r2

1 0.448 0.025 0.416 0.036

5 0.353 0.020 0.299 0.040

10 0.355 0.020 0.298 0.043

25 0.361 0.021 0.287 0.041

50 0.348 0.030 0.259 0.037

100 0.335 0.025 0.222 0.035

F I G U R E  2 Global tree community dominance and rarity. (a) Community dominance is the percentage basal area of the most dominant 
species in the forest plot. The boxplot visualizes the measured data in the six forest biomes. (b) The map of predicted community dominance 
in global forests, with the spatially corrected r2 indicated. (c) Coefficient of variation for the community dominance maps. The coefficient of 
variation is the standard deviation divided by the mean, and is expressed in percentages. The coefficient of variation indicates the variation 
in the different model outcomes, the higher the coefficient of variation the larger the distances between the values of the different models 
and the less accurate the mean value. (d) Community rarity is defined as the percentage of rare species, which are defined as the proportion 
of species contributing to the least 10% basal area. The boxplot visualizes the measured data in the six forest biomes. (e) The map of 
predicted community rarity in global forests, with the spatially corrected r2 indicated. (f) Coefficient of variation for the community rarity 
maps. The map of tree community dominance was less variable, with a maximum coefficient of variation of 15%, whereas the map of tree 
rarity had a maximum coefficient of variation of 30%. The predicted dominance values exhibited particularly high variation in species rich 
areas, whereas in Spain, France, Northern Canada and Russia, the rarity predictions are more variable.
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    |  9 of 21HORDIJK et al.

relatively small plots, or because of within biome differences in en-
vironmental conditions. The species were therefore categorized as 
locally dominant or rare only if their local abundance was consistent 
(i.e. in at least in 95% of the plot occurrences they were either domi-
nant or rare). We use this strict categorization of dominant and rare 
species as we want to limit our analyses to species that have consist-
ent abundances within the community. In total, consistently 3% of 
the species have been categorized as dominant, 29% as common and 
68% as rare at biome level.

According to the definition of the IUCN, a species has an ele-
vated extinction risk (i.e. threatened) if it: (i) is restricted in geo-
graphical range, (ii) has a low number of individuals, or (iii) exhibits 
rapid declines in population density over time (IUCN Standards and 
Petitions Committee, 2019). Therefore, we evaluated the conserva-
tion status (e.g. not threatened or threatened), extent of occurrence 
(EOO, which is a measure for the range where the species occurs) 
and endemism of locally dominant, common, and rare species with 
data generated for the first report of the Global Tree Assessment 
from Botanic Gardens Conservation International (BGCI,  2021a). 
Additionally, the population trend over three generations of locally 
dominant, common, and rare species was evaluated with data from 
IUCN Red list (IUCN, 2021b). The Global Tree Assessment database 
provides the most comprehensive overview of extinction risks of 
tree species, covering 84% of the global number of tree species. 
However, we are aware of the constraints of the databases used, 
such as the impact of spatial scale on rarity and extinction risk 
(Hartley & Kunin, 2003). The GFBI and Global Tree Assessment 
data (BGCI, 2021a) were matched using the species names. In the 
GFBI database 371 dominant and 7815 rare species were classified 
as either “not threatened”, “possibly threatened” or “threatened” 
(BGCI, 2021a). Of the dominant species, the conservation status of 
1.2% were not evaluated and 3.5% were evaluated but data is too 
uncertain and therefore considered data deficient. For the rare spe-
cies, 4.9% was not evaluated, and 3.6% was data deficient. With a 
Fisher's exact test, which is used to test associations between cat-
egorical variables, we identified if there is a difference in conserva-
tion status between dominant and rare species. To identify if the 
conservation status (i.e. “not threatened”, “possibly threatened” or 
“threatened”) of dominant and rare species differs between biomes, 
we performed a Poisson regression, as this is count data, with biome, 
species category (dominant or rare species), and their interaction as 
predictors.

To evaluate the spatial range where the locally dominant and 
rare species occur, the extent of occurrence (EOO) was calculated 
for the threatened dominant and rare species. The latitude and lon-
gitude of the species distribution was extracted using the GBIF da-
tabase, and distribution was refined to native countries only using 
GlobalTreeSearch (BGCI, 2021b; GBIF Backbone Taxonomy, 2020). 
EOO was calculated as the minimum convex hull in km2 where the 
species can occur, however there can be areas within the EOO 
where the species is absent. The methodology for EOO follows the 
IUCN mapping standards (IUCN, 2021a). For each forest biome, the 
mean difference between EOO of in total 315 dominant and 5923 

rare species was tested with a t-test. As our locally common and 
rare species are based on inventory plots, rather than on sampling 
all unique habitats, this may result in a selection of more widespread 
species. To check if this affects the results, we also compared the 
EOO of tree species in the GFBI dataset to the average EOO of tree 
species per forest biome (IUCN,  2021b). A one-sample t-test was 
performed to analyse if the EOO of the species included in GFBI 
within a specific forest biome differs between the average EOO of 
that forest biome. We also assessed if the number of species consid-
ered by IUCN Red List to have a high extinction risk was higher for 
locally rare species, endemic species and species with smaller dis-
tribution range (EOO) (Figure S8). We defined endemism based on 
whether a species was restricted to a single country (endemic) or not 
(non-endemic) (BGCI, 2021a). Extinction risk information was avail-
able for all dominant and 89.1% of the rare species (BGCI, 2021a). 
The difference in endemism between the two groups was evaluated 
with a Fisher's exact test.

Additionally, we used data from the IUCN Red List to evaluate 
for locally dominant and rare species the population trend (e.g. de-
creasing or increasing) and the type of threats (e.g. logging lead-
ing to mortality, ecosystem conversion or ecosystem degradation) 
(IUCN, 2021b; IUCN Standards and Petitions Committee, 2019). The 
IUCN Red List could provide population trend or threat information 
on of 81% of the dominant and 48% of the rare species. To identify 
if there is a difference between population trend or type of threats 
to the population between threatened dominant and rare species, a 
Fisher's exact test was performed. Data management and statistical 
analyses in this study were performed in R, version 3.6.1 (R Core 
Team,  2019). The data to simulate the main graphs, and the code 
used to perform the statistical analyses can be found at Github, fol-
lowing this link: tinyu​rl.​com/​376m4pra.

3  |  RESULTS

3.1  |  Global and regional patterns of community 
dominance and rarity

The contribution of dominant and rare species to local community 
structure shows a clear opposing latitudinal pattern at the global 
scale (Figure 2). These patterns are consistent across different spa-
tial scales (i.e. it was analysed with grid sizes varying from 0.01 to 
1000 km2) (Figure  S9). Community dominance increases gradually 
with latitude, where the single most dominant species comprises 
on average 35% of local basal area near the equator to 70% in bo-
real forest (Figure 2a,c). In contrast, the proportion of species that 
are rare (those compromising the bottom 10% of basal area) ranges 
from an average of 40% in tropical forest to nearly 0% in boreal for-
est. These results closely mirror global patterns in species richness: 
community rarity is positively related to species richness (Pearson's 
r = 0.60, N = 670,527, p < 0.001), whereas dominance is negatively re-
lated to species richness (Pearson's r = −0.82, N = 670,527, p < 0.001) 
(Figure 3).
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At the biome scale, within the tropical forest biome a positive 
relationship between rarity and species richness (tropical moist for-
est: Pearson's r = 0.52, N = 6263, p < 0.001), whereas the temperate 
and boreal forest biomes show a negative relationship (boreal for-
est: Pearson's r = −0.54, N = 58,522, p < 0.001). While at the global 
scale there is a negative relationship between dominance and rarity, 
at the forest biome scale, species-poor communities tend to exhibit 
a stronger positive relationship between community dominance 
and rarity (boreal forest: Pearson's r = 0.75, N = 20,648, p < 0.001) 
(Figure  3). These results suggest that two mechanisms structure 
these patterns at different scales: (1) at the global scale, the inverse 
correlation between community dominance and rarity is predicted 
by turnover in richness across ecosystems, and (2) at regional scales, 
with less variation in species richness, an increase in the abundance 
of the dominant species necessarily decreases the abundance of the 
remaining species, thereby promoting rarity.

3.2  |  Predictors of community 
dominance and rarity

When exploring the predictors underpinning community dominance 
and rarity with a random forest model (N = 14,282), biome differ-
ences explained ≈2% of the variation, whereas richness explained 
23% of dominance and 12% of rarity. Regarding the abiotic environ-
ment, climate was the most important predictor (≈31%), followed by 
soil characteristics (≈20%) (Figure  4a). Specifically, annual precipita-
tion decreases community dominance (≈8%), and soil sand content 
is an equally strong predictor for both community dominance and 
rarity (≈9%). Dominance increases with soil sand (pseudo r2 = 0.08), 
whereas the relationship between soil sand content and rarity is 

not well predicted by a generalized linear model (pseudo r2 = 0.001). 
Interestingly, community dominance and rarity are equally predicted 
by human impact (≈15%) and stand age (≈14%). Community dominance 
showed a gradual increase with stand age (generalized linear model, 
pseudo r2 = 0.28), whereas community rarity shows a very slight de-
crease (generalized linear model, pseudo r2 = 0.06) (Figure 4b).

3.3  |  Conservation status of dominant and 
rare species

BGCI categories the extinction risk of species in three broad cat-
egories; threatened, possibly threatened, or at risk (BGCI,  2021a). 
Both locally dominant and rare species have a similar percentage of 
species that are either ‘threatened with extinction’ (11% and 16%, 
respectively) or ‘possibly threatened with extinction’ (5% and 7%, re-
spectively) (Figure 5a). There is no significant difference between the 
number of locally at-risk dominant and rare species, neither globally 
(Fisher's exact test, p = 0.89) nor between biomes (Poisson regres-
sion, z-value = 0.971, β = 0.10, p = 0.33). Of the species threatened 
with extinction, dominant and rare species show a similar population 
decline of 95% and 75%, respectively (Fisher's exact test, p = 0.17) 
(Figure  5b), and a similar percentage (36% and 41%, respectively) 
are identified as endemic (Fisher's exact test, p = 0.61) (Figure 5c). 
Dominant species have a larger distribution range (EOO) than rare 
species (t-test, p = 0.04) (Figure  5d). These trends are consistently 
found when different definitions of locally dominant and rare spe-
cies are used. (Figures S5–S7). Ecosystem degradation is the most 
important threat for both dominant and rare species, followed by 
mortality for dominant species and ecosystem conversion for rare 
species (Table S2).

F I G U R E  3 The relationship between dominance, rarity and species richness in forests globally (N = 670,527). For the relationship 
between rarity and dominance, and rarity and species richness, only the plots that included rare species were considered (N = X). In 
Figure S4, the relationships between rarity and dominance, and rarity and species richness were visualized for all plots, including 
monodominant plots.
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    |  11 of 21HORDIJK et al.

4  |  DISCUSSION

In this study, we evaluated patterns and population status of locally 
dominant and rare species across forests globally. Specifically, we 
analysed (1) global patterns, (2) abiotic and anthropogenic predic-
tors and (3) extinction risk and population decline of locally domi-
nant and rare tree species. We found clear latitudinal trends, which 
are predicted by species richness both across and within biomes 
(Figure  2–4). Across biomes, community dominance decreased 
with annual precipitation (Figure 4b) and increased with stand age 
(Figure  4b). Dominant and rare species show similar levels of ex-
tinction risk, with ecosystem degradation and land use conversion 
being the most important causes (Figure 5a). Taken together, these 
results suggest that species relative abundances are clearly related 

to species richness and affected by human impact, and that locally 
dominant and rare species are equally threatened.

4.1  |  Global and regional patterns of community 
dominance and rarity

At the global scale, higher number of tree species correlates with 
a decrease in the abundance of the locally most dominant spe-
cies and a slight increase in the proportion of locally rare spe-
cies (Figure  2), which is consistent with previous studies (Bock 
et  al.,  2007; Enquist et  al.,  2019; Sabatini et  al.,  2022; Soininen 
et al., 2012; Stirling & Wilsey, 2001). However, at the biome scale, 
the relationship between community dominance and rarity is 

F I G U R E  4 (a) Relative variable importance of soil characteristics (soil pH and soil sand content), climate (annual mean and seasonality of 
precipitation and temperature), stand age (percentage secondary forest, stand age) and human impact (human development and population 
density) on tree community dominance and rarity. Variable importance is calculated with a random forest model, incorporating species 
richness (variable importance 23% for dominance and 12% for rarity), plot size (variable importance 4% for dominance and rarity), biomes 
(variable importance 2% for dominance and rarity), latitude (variable importance 4.8% for dominance and 8.6% for rarity) and longitude 
(variable importance 6% for dominance and 5.4% for rarity), which are not shown in the bar graph. The r2 of the random forest models are 
indicated under the bar graph. (b) The relationship between community dominance, rarity and the best fitting climatic, soil, and stand age 
variables to a gaussian generalized linear model. The data density is visualized with the colour saturation. The pseudo r2 of the generalized 
linear models are indicated in the graphs.
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generally positive, apart from very species rich biomes (i.e. tropi-
cal forest) where there is no significant relationship (Figure  3). 
Based on the definition of dominance and rarity, a stronger and 
consistent relationship between rarity and richness would be ex-
pected as richness is included in the calculation of rarity. However, 
the relationship between dominance and richness is stronger and 
consistent (Figure  3). These results suggest fundamentally dif-
ferent processes structuring global versus biome level patterns 
of species abundance, which is also known as Simpson's paradox 
(Scheiner et  al.,  2000; Simpson,  1951). At the global scale, pat-
terns of community dominance and rarity are predicted by species 
richness, whereas at a regional scale there is more direct competi-
tion between dominant and rare species for space and resources 
(Markham,  2015). However, this local pattern breaks down for 
moist tropical forests, suggesting that other mechanisms play a 
role in speciose forests (Svenning et al., 2004; Volkov et al., 2003).

At biome level, local dominance declines with species richness 
(Figure  3), which indicates that with a higher number of species 
in the community, the most dominant species have a relatively 
smaller basal area. A higher species richness indicates higher in-
terspecific competition, which can indeed affect tree diameter 
and architecture (Forrester et al., 2017; van de Peer et al., 2017). 
Interestingly, the relationship between richness and rarity is 

positive for the tropical forests, but negative for the temperate 
and boreal forests (Figure  3). It is widely accepted that a higher 
species richness leads to a higher number of rare species, and 
that in an ecological community most of the species are, by defi-
nition, rare (Preston, 1962). Species richness is indeed positively 
correlated with rarity (Pearson's r = 0.60, N = 670,527, p < 0.001), 
which might indicate that in less species-rich forests an additional 
species will be present in relatively high abundance. This would 
mean that species have a more equal abundance in a forest con-
taining fewer species, which is supported by the most common 
species-abundance distribution models and a global analysis on 
the relationship between richness and relative abundance of spe-
cies (Hordijk et al., 2023; Ulrich et al., 2010).

4.2  |  Predictors of community 
dominance and rarity

When evaluating the effect of abiotic, biotic and anthropogenic pre-
dictors on local community dominance and rarity, the random for-
est model explained community dominance better (r2 = 0.73) than 
rarity (r2 = 0.42). Therefore, the relationships between the most im-
portant abiotic, biotic and anthropogenic predictors were stronger 
with dominance compared to rarity. Overall, rarity is best explained 
by richness, which might be caused by the way rarity is calculated, 
whereas dominance increases with stand age and soil sand content, 
and decreases with annual precipitation. With an increase in stand 
age, trees increase in diameter after the initial phase where trees 
mainly invest in height growth (Ryan & Yoder,  1997). Our results 
suggest that the basal area of the most dominant species increases 
with stand age, indicating that species' basal area might differenti-
ate more during succession due to competition. Soil sand content 
also increases community dominance, which might be a result of 
fewer tree species able to establish and dominate on less fertile soils 
with a lower water holding capacity (Avolio et  al., 2019; Ehbrecht 
et al., 2021; Laurance et al., 2010). Additionally, we found that pre-
cipitation is negatively related to dominance, a possible explanation 
is that under more benign and productive conditions, more species 
are able to persist, which increases richness and reduces absolute 
dominance.

4.3  |  Conservation status of dominant and 
rare species

The IUCN Red list regards a species to have an elevated extinc-
tion risk (i.e. threatened) if it: (i) is restricted in geographical range, 
(ii) has a low number of individuals, or (iii) exhibits rapid declines 
in population density over time (IUCN Standards and Petitions 
Committee, 2019). We indeed found that endemic species and spe-
cies with narrow distribution ranges have a higher risk of extinction 
than widespread species (Figure S8) (consistent with e.g. Chichorro 
et al. (2019), Cardillo et al. (2005) and Purvis et al. (2000)). However, 

F I G U R E  5 (a) The percentage of locally dominant and rare 
species identified as “threatened”, or “possibly threatened” 
according to the Global Tree Assessment (BGCI, 2021a). (b) 
The population trend of threatened dominant and rare species. 
Threatened species are defined as “vulnerable”, “endangered” or 
“critically endangered” according to the IUCN Red List assessment. 
(c) The percentage of endemic threatened dominant and rare 
species according to the Global Tree Assessment (BGCI, 2021a). (d) 
The extent of occurrence (EOO) for threatened dominant and rare 
species according to the Global Tree Assessment (BGCI, 2021a). 
The difference between the EOO of dominant and rare species is 
evaluated with a t-test (p = 0.04).
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we also show that species that are locally dominant or rare in the 
community have a similar level of extinction risk (11% and 16% of 
the species, respectively), endemism and range (Figure 5a). In gen-
eral, the range of tree species in our dataset is larger or equal to the 
average range of tree species per biome (p < 0.001), which indicates 
that the species we are evaluating are relatively widespread (Gaston 
et al., 1997). Indeed, species can be geographically widespread, but 
regionally and locally rare (Rabinowitz et  al.,  1986). A surprisingly 
large proportion of locally dominant and rare species show a decline 
in population size (respectively 95% and 75%) (de Lima et al., 2024). 
This might be explained by the main threat, which is ecosystem deg-
radation, as this has probably an equally high impact on dominant 
and rare species within the same community (Curtis et  al.,  2018; 
Newbold et al., 2015). Additionally, in the boreal and temperate co-
nifer forests, where species are widespread and thought to have a 
high population density, the threatened status of widespread domi-
nant and rare species shows a rapid decline in population size due 
to disease outbreaks and invasive species (e.g. Dutch elm disease, 
emerald ash borer, invasive pests) (Table S1). In this context, our re-
sults point to declining population densities across species ranges as 
the primary cause of elevated extinction risk for these widespread 
species (Boonman et al., 2024; Gaston & Fuller, 2007, 2008).

The main challenges when working with global forest inventory 
data and extinction risk assessments are unbalanced sampling with 
biomes over-represented and other biomes under-sampled and the 
lack of species population assessments to evaluate extinction risk, 
which can be particularly limited in tropical regions. To reduce this 
sampling bias, we analysed a weighted subset of the data for our 
global analyses of predictors of community dominance and rarity. 
Moreover, especially in the tropical forest biomes there is relatively 
a lower percentage of assessed locally dominant and rare species, 
compared to the temperate and boreal forests. Therefore, the per-
centage of at-risk species could differ between biomes if a higher 
percentage of the species in the most speciose forest biomes were 
assessed. Additionally, it became apparent that our dataset is biased 
towards species with larger ranges (although rare species can have 
larger distribution ranges as well, see Zizka et al., 2018). Therefore, 
an effort can be made to include in the future also datasets within 
GFBI with a focus on species with a smaller range, especially in the 
tropics. Another challenge when working with global forest inven-
tory data without a standardized protocol are the different manage-
ment histories of the plots and the different plot sizes within the 
dataset. We filtered very small and large plots out of the data but are 
aware that a larger plot size in the same region could lead to a higher 
richness, lower dominance and higher rarity. The differences in plot 
sizes, however, are more pronounced between biomes versus within 
biomes, and the more species rich biomes have generally a larger 
plot size (Figure S1).

Typically, the focus of plant conservation studies are on 
dispersal-limited species and localized endemics with naturally low 
geographical range distributions, usually in more species rich re-
gions (e.g. Corlett,  2016; Myers et  al.,  2000; With & King,  1999). 
However, we find that geographically widespread species also have 

high levels of extinction risk, a conclusion which has not previously 
been reported at this global scale to our knowledge. Widespread 
and dominant species are key for ecosystem functioning, such as 
carbon sequestration to mitigate climate change, and their decline 
is therefore a major concern (Gaston & Fuller, 2007; Grime, 1998). 
Furthermore, we show that the primary predictors of population de-
cline and elevated extinction risk for both rare and dominant species 
are land degradation, land conversion for farming and agro-industry, 
and species mortality mainly due to logging (Table  S1), consistent 
with global studies (Curtis et al., 2018; DeFries et al., 2010; Foley 
et al., 2005). Together, our results bring a new perspective on bio-
diversity loss, highlighting the importance of implementing conser-
vation and restoration actions to bend the curve of biodiversity loss 
(Cazzolla Gatti et al., 2022; Leclère et al., 2020) and reverse the tra-
jectory of species decline and elevated extinction risk for geographi-
cally widespread species (Thakur et al., 2018). Together, our findings 
and previous works emphasize the need to develop more holistic, 
ecosystem scale, biodiversity conservation efforts that explicitly in-
clude the protection of widespread species, which are not tradition-
ally a high priority of conservation and restoration actions. However, 
these results capture broad-scale macro-ecological patterns at the 
biome and global scale, contingent on the specific dataset we use. 
To responsibly manage local forest ecosystems and tree species, it 
is important to consider the local environmental and social context 
(Swanson et al., 2021).

5  |  CONCLUSIONS

The attention of conservation biologists has focused primarily on 
species with narrow range distributions (endemics and dispersal-
limited species), as these species that have a higher intrinsic risk of 
extinction. In this study, we focus on global and biome level patterns 
in community dominance and rarity, and show that across ecosys-
tems, annual precipitation is a strong predictor of the variation in 
dominance and rarity, with lower dominance in regions character-
ized by high precipitation levels. Within forest communities, stand 
age and successional dynamics influence patterns of community 
dominance, indicating the effect of habitat disturbance on species 
abundances. We show that relatively widespread tree species which 
are locally dominant or rare are equally threatened by anthropogenic 
pressures, with land degradation being the largest threat. Although 
forests are continuously changing over time and space, there is a 
clear footprint of human activity on the abundance of both dominant 
and rare species. Our results therefore suggest that conservation ef-
forts should focus not only on the geographically limited species but 
also incorporate the more widespread but locally rare or dominant 
species that are also critical for functioning of forest ecosystems.
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