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ABSTRACT

This study investigates the application of Large Language Models
(LLMs) in the context of security requirements engineering through
the conduction of a rapid literature review. The review enabled the
characterization of current research in this domain with respect to:
(i) the purposes for which LLMs are employed in security require-
ments activities; (ii) the families of LLMs explored (e.g., GPT, BERT,
LLaMA), their capabilities (e.g., classification, generation), and un-
derlying architectures (e.g., encoder, decoder, encoder-decoder); (iii)
the techniques adopted for conditioning or guiding LLM behavior;
(iv) the datasets used to train, fine-tune, or validate these models;
and (v) the evaluation metrics applied to assess the performance of
LLMs in supporting security requirements tasks. The findings con-
tribute to a structured understanding of the current state of research
and highlight key trends, gaps, and opportunities for advancing the
use of LLMs in secure software engineering.
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1 Introduction

The security of a software system is defined as the ability to protect
information and data, according to authorization rules, security
standards, and data privacy and protection regulations. In addi-
tion, security aims to defend software against attack patterns by
malicious agents [22]. For this, data must be protected during stor-
age, presentation to users, and transmission over communication
networks [21].

Security-by-design is a transversal area of software systems that
aims to integrate security activities into all aspects of software de-
velopment to minimize vulnerabilities that can be exploited during
software operation. For this, security concerns are starting to be
considered in the early stages of software development, such as
analysis and requirements engineering, namely, analysis, elicitation,
specification, validation, traceability, change management, among
others.

In another perspective, according to [26], the application of Large
Language Models (LLMs) in software engineering can be widely
explored, ranging from requirements analysis in the early stages
of the development lifecycle to the generation of code, test cases,
or infrastructure as a code [14, 20, 33]. LLMs are computational
models that represent human language using statistical structures
and semantic relationships across an extensive textual database [15].
There is a vast variety of models proposed by academics and by the
industry, for instance, BERT, Llama, GPT, Gemini, among others.
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LLM’s architecture can be of types such as encode (for classification
purposes), decode (for generation purposes), or encode-decode
(aiming classification and generation) [14, 20].

Regarding the techniques for using LLMs, it is possible to enu-
merate transfer learning, fine-tuning, retrieval augmentation gen-
eration (RAG), and prompt engineering, among others [7, 9, 23, 24].
Unlike techniques that require (partially) retraining the LLM (e.g.,
fine-tuning, RAG), prompt engineering, also known as in-context
learning, refers to methods used to steer the behavior of LLMs
through carefully designed prompts, without modifying the model
weights.

As observed in related secondary studies on LLMs for software
engineering [14, 20, 32], those models have been applied across
different phases of requirements engineering, such as: (i) Require-
ments Elicitation: LLMs can support in automatically generating
requirements, creating interview scripts, and extracting relevant
information from documents; (ii) Requirements Classification:
The LLMs can outperform traditional machine learning (ML) and
natural language processing (NLP) approaches, offering generaliza-
tion, automation, and adaptability to complex tasks and domains,
reducing the need for manual processes; (iii) Ambiguity and Com-
pleteness Management: While challenges remain in these tasks,
the use of LLMs, particularly those based on BERT, has brought
significant improvements. Notably, the positive results of using
techniques such as prompt-based learning with few-shot learning
and the combination of traditional methods with NLP techniques
are promising; and (iv) Requirements Traceability: The applica-
tion of LLMs alongside techniques such as knowledge distillation,
multi-task learning, and semi-supervised learning have offered
considerable improvements in the scalability and efficiency of the
traceability process, even in large and complex software projects.

Given the benefits identified in the state-of-the-art literature on
the application of LLMs in the broader domain of requirements
engineering, this study aims to explore the extent to which similar
advantages can be observed in the context of security requirements
engineering. To this end, we conducted a rapid literature review
[10] to identify and characterize primary studies that apply or
propose the use of LLMs to support activities related to security
requirements.

The remainder of this paper is structured as follows: Section 2
describes the methodological design of this secondary study. Sec-
tion 3 presents the findings of the literature review. Finally, Section 4
provides concluding remarks and directions for future work.
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2 Methods

This study aims to offer an overview on the use of LLMs for security
software requirements and characterize those studies regarding the
following research questions (RQs):

e RQ1 - What are the purposes, related to security require-
ments, that motivated the studies to use LLM?

e RQ2 - What LLM models have been used for security soft-
ware requirements?

e RQ3-Which LLM techniques (e.g., RAG, fine-tuning, prompt
engineering) are being used by primary studies?

e RQ4 - Which databases are being used in research of LLM-
based security software requirements?

e RQ5 - How the research of LLM-based security software
requirements are being evaluated and what metrics are being
used for it?

For this purpose, the rapid literature review (RLR) method was
conducted following the guidelines in [10]. Figure 1 shows the
process of this review. Each stage and its results are explained as
follows.

Stage 1 - Primary studies search. The searching was done
by one research in May, 2025. The search strategy contemplated
two moments. Firstly, the following search string was running in
Scopus database!: “TITLE-ABS-KEY ( ( "requirement” OR "require-
ments" OR "requirement specification" OR "requirement engineering”
) AND ( "GenAI" OR "LLM" OR "generative artificial intelligence” OR
"generative AI" OR "language model" ) AND ( "security” OR "data
protection” OR "data privacy" ) AND ( software OR "software en-
gineering”)” . This first searching returned 26 studies. Following,
those 26 studies were uploaded in Research Rabbit 2, an Al-based
tool that discovers similar work based on snowballing (backward
and forward) techniques. The Research Rabbit returned 51 studies
that matched in similarity to those returned by Scopus. As result of
this first stage we obtained 77 studies.
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Figure 1: Literature review process

Stage 2 - First selection. This selection was done by two re-
searchers whom read the title abstract, and keywords of the 77
studies. To be selected for the next step, studies must accomplish
the following inclusion criteria: IC1 - The study propose or uses
LLM models to solve a problem related with security software re-
quirements. Studies were excluded when they met at least one of
the following exclusion criteria: EC1 - The study solves a problem

!http://www.scopus.com
Zhttps://www.researchrabbit.ai/
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related with security software requirements, however it doesn’t
use LLM models; EC2 - The study is written in a language different
from English, Portuguese, or Spanish; EC3 - The full-text of the
study is not available for downloading; EC4 - The study was pub-
lished as a short paper, thesis, monograph, or technical report. As a
result of this stage, 44 studies were excluded and 33 were included
for the next step.

Stage 3 - Second Selection. The full-text of the 33 studies
was read and the inclusion and exclusion criteria were applied.
This activity was conducted by two researchers. A third researcher
intervened in cases where there were disagreements between the
other researchers. As a result, 16 studies were excluded and 17 were
included as the final set of primary studies of this literature review.
The included studies are listed in Table 1.

Stage 4 - Data extraction and analysis. For data extraction
was proposed a Google Forms containing all information required
to answer the research questions. Two reviewers selected the ar-
ticles and extracted the data. A third, more experienced reviewer
participated in resolving disagreements or questions. Quality was
assessed based on the methodological rigor of the primary stud-
ies.The final set of primary studies and the extracted data from them
are available in [13]. Furthermore, the extracted data was analyzed
using qualitative and narrative synthesis methods, as recommended
by [29].

3 Results

This study was conducted between November 2024 and July 2025.
Accordingly, the final set of primary studies, presented in Table 1,
includes works published up to June 2025. The table also provides
the extracted data from each of the selected studies.

A significant portion of the studies were published within the
last 18 months, with 41% (7 out of 17) published in 2024 and 29.5% (5
out of 17) in 2025. The remaining 29.5% (5 out of 17) were published
between 2020 and 2023.

The findings addressing the research questions are presented in
the subsequent sections.

3.1 ROQ1 - Purposes of using LLMs in security
software requirements

As depicted in Figure 2, primary studies have researching the use of
LLMs in security software requirements for a quite variety of pur-
poses, namely, analysis (2/17), elicitation (2/17), specification (12/17),
validation (2/17), traceability and change management (1/17), and
documentation (3/17).

Our analysis reveals that the specification of security require-
ments has been the primary focus in the majority of the studies
reviewed. Specifically, 70.5% (12 out of 17) of the primary studies
report contributions in this area. Within this subset, requirements
classification emerges as the most commonly cited motivation by
65% (11 out of 17) of the studies. These studies aimed to classify
sets of software requirements into: (i) functional and non func-
tional requirements; (ii) non functional requirements types, such
as performance, usability, security, and availability; (iii) security
properties of privacy, protection, availability, confidentiality, in-
tegrity, authentication, and authorization; (iv) requirements related,
or not, to security; (v) requirements prone, or not, to privacy; and


http://www.scopus.com
https://www.researchrabbit.ai/

Investigating the use of LLMs in software security requirements. Results of a

literature review.

ISE’25, September 23, 2025, Recife, PE

Table 1: Final set of primary studies on LLM-based security software requirements.

D Ref. Year Purpose LLM Model(s) Conditioning Method Evaluation Metrics Dataset(s)
S01 [11] 2024 Binary and multi-label classi- ~ BERT Fine-tuning; ensemble tech-  Recall, F1-Score, Hold-out, AUC-  AI-CRAS-Dataset (own dataset) +
fication niques ROC, Precision CISPE handbook
S02 [8] 2024 Extraction and classification, ~ GPT Few-Shot Prompting Humans Evaluation, 5-point Likert ~ ERTMS L3 requirements
and assessment of coesion, scale
clarity, and precision.
S03 [5] 2025 Generation NFRs from FRs Claude, DeepSeek, Gemini, GPT, =~ Few-Shot Promptingand Role ~ Accuracy, confusion matrix, human ~ FR_NFR_dataset, extracted in part
Grok, LLaMA, Qwen prompting feedback from PURE
S04 [1] 2024 Contflict resolution, complete- ~ GPT Role prompting Human Feedback Dalpiaz user-stories [12]
ness, and feasibility valida-
tion.
S05 [4] 2023 Classifation,  specification AllMini, Bert4RE, SBERT, SObert Zero - shot learning F1-Score, Precision, Recall PROMISE + SecReq
generation
S06 [6] 2024 Classification BERT Accuracy, F1-score PROMISE + IREC 2017 Data-
Challenge (adapted)
S07 [2] 2024 Extraction of quality concerns BERT, DistilBERT, RoBERTa, XL-  Fine-tuning Accuracy, F1-score, Precision and Own dataset compiled from user
NET Recall stories and acceptance criteria ob-
tained from various sources
S08 [31] 2021 Classification of security ~ BERT, DistilBERT, XLNet Fine Tuning Confusion matrix, Recall, F1-Score, = Own dataset built from PURE + Se-
properties K-Fold Cross-validation, Precision cReq + Riaz’s dataset
S09 [16] 2024 Traceability and change man- ~ GPT Zero-Shot Prompting, Role Recall, F1-Score, Human evaluation, ~TGRL Specification of the GRL
agement prompting precision Model for Virtual Interior Design,
developed by undergraduate stu-
dents.
S10 [19] 2024 Alignment with the ISO 27001~ CISO-BERT, SBERT Fine-tuning HPOS@kl Own dataset built from ISO 27001
standard norm + BSI IT-Grundschutz + MAP
(a professional mapping between
the two standards)
S11 [3] 2025 Classification BERT, DistilBERT, RoBERTa, XLNet Fine-tuning Accuracy, F1-score, precision, con-  Own dataset built from academic
fusion matrix and F1 weitgh resources and online sources
S12 [18] 2020 Classification NoRBERT (BERT) Fine-tuned Recall, F1-Score, K-Fold Cross- PROMISE + Dalpiaz [12]
validation, ~weighted average
F1-score and precision
S13 [34] 2024 Classification BART, BERT, DistilBERT, GPT, Fine-tuning Accuracy, Precision, F1-score and SecReq + PROMISE + PURE + Kag-
RoBERTa, T5 Recall gle (REQ-Class) + IoTAC (adapted)
S14 [28] 2025 Classification BERT, DistilBERT, RoBERTa, XLNet Fine-tuning Accuracy, Precision, Recall, F1-  SecReq (adapted)
Score and confusion matrix
S15 [25] 2023 Classification BERT, DistilBERT, DistilRoberta,  Prompting (few-shot) withex- ~ Acuraccy, confusion matrix, recall, ~ Non Functional Requirements (own
Electra, XLNet amples F1-score, Hold-out and precision dataset)
S16 [27] 2022 Classification BERT-MLM, NoRBERT, PRCBERT Fine-tuning + vocab matching Precision, F1-score, Recall, NFR-SO (own dataset) + PROMISE
(BERT/RoBERTa), Trans_PRCBERT  (DPV) + synonym/mentionre- ~ Weighted-F1,  paired  t-testn, + NFR-Review
placement Cross-validation, K-Fold Cross-
validation
S17 [17] 2024 Identify and classify privacy =~ BERT, RoBERTa Data augmentation, token  FI-Score, Recall, Precision Augmented PII dataset (privacy fo-

requirement

separation, prompt learning?

rums and vocab); single evaluation
split Custom augmented set + DPV
+ Camper+ project; test set from
Hadar et al. (2021)

(v) specifications related to any requirement (including security) or
other kind of software concern.

Additionally, we identified that generative LLMs, specifically
studies 502, S03, S04, S09, and S13, have been applied to various
activities within the requirements engineering process. These ap-
plications include: conflict resolution during requirements analysis
(S04); requirements elicitation, particularly the generation of secu-
rity requirements based on functional requirements (S03); classifica-
tion of requirements into functional (FR) and non-functional (NFR)
categories, as well as sub-classification within NFRs (S13); valida-
tion of the completeness, cohesion, clarity, and precision of security
requirements (S02 and S04); and support for traceability and change
management of security requirements (S09). It is noteworthy that,
for the latter two purposes, i.e, traceability and change management,

only generative LLMs have been explored in the reviewed studies,
differently from others activities where non generative LLMs also
have been studied.

3.2 RQ2 - Models used for security
requirements engineering

Twelve distinct LLMs families have been found across the 17 pri-
mary studies. Among the models with encoder-only architectures,
BERT-based models (i.e., BERT-base/large, ROBERTa, DistilBERT,
SBERT, and specialised variants such as CISO-BERT and Bert4RE)
dominated, being used in 76% (13 out of 17) of studies (See Table 1).
At the same time, ELECTRA appeared once (S15).

Regarding decoder-only families, GPT and XLNet were reported
in 29,5% (5 out of 17) of studies, although for different purposes.
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Figure 2: Classification of primary studies purposes.

XLNet first surfaced in 2021 (S08) and reappeared in 2023 (S15) with
more force in last two years (507, S11, S14 and S15); in every case,
XLNet it was fine-tuned for text classification and evaluated along-
side a BERT comparison, showing that early decoder-only models
are still being treated as classifiers rather than generators. GPT
variants (502, S03, S04, S09, and S13), by contrast, were leveraged
mainly for text generation, with the only exception being S13, in
which the GPT-2 was used as a text classifier, alongside the only
encoder—decoder models identified: BART and T5. A further cluster
of decoder-only models, i.e., Claude, Gemini, DeepSeek, LLaMA,
Grok, and Qwen, was benchmarked together in S03, the sole study
that assesses eight distinct generators side by side.

23.4% (4 out of 17) of primary studies applied LLMs for generative
purposes, all published from 2024 onward. In this scenario, S02 ap-
plied GPT-3.5 (ChatGPT) and GPT-4 (through Microsoft Copilot) to
formalize railway cybersecurity requirements in the CNL4DSA con-
trolled language; S04 evaluated GPT-3.5-turbo-16k (ChatGPT) on its
capability to support professionals in assessing GDPR compliance
within user stories; S09 employed GPT-3.5-turbo (ChatGPT) to gen-
erate security-related traceability links between natural-language
requirements and GRL goal models; and S03 benchmarked eight dif-
ferent generators—GPT-40-mini, Claude (claude-3-5-haiku/claude-
3-7-sonnet), Gemini 1.5 pro, DeepSeek-V3, LLaMA-3.3, Grok-2 and
Qwen-2.5, during automated generation of ISO/IEC 25010, aligned
non-functional requirements from functional requirements.

3.3 RQ3 - Techniques used to engineer LLMs

LLMs can be subjected to pre-training, training, and post-training
techniques, collectively referred to as methods for LLMs condi-
tioning. Among them, as depicted in Figure 3, the most used were
fine-tuning and prompt engineering variations, e.g., zero-shot, few-
shot, and role-playing, some of them with hyperparameter settings.
The fine-tuning technique has been present since the first ana-
lyzed year, 2020. It continues to be extensively studied over the
subsequent five years in the domain of security requirements en-
gineering, with approximately 58.82% (10 out of 17) of the studies
applying this technique in some way. This technique was applied
across different models with the primary goal of adapting them to
the specific domain in which they were being used. The models
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used in these studies include the following: BERT (S01, S07, S08,
S10 - S16), RoBERTa-base (S07, S11, S14, and S16), RoBERTa-large
(S07 and S16), BERT-large (S07 and S16), DistilBERT (S07, S08, S14,
S15), DistilRoBERTa (S15), SBERT (S10), CISO-BERT (S10), XLNet
(S07, S11, S14, S15), Doc2Vec (S10), Electra-base and Electra-small
(S15), and GPT, T5, and BART (S13).

Despite generative LLMs emerged more recently, prompt engi-
neering techniques have are already being tested in research within
the field of security requirements engineering. The models used
include: GPT (S02, S04, and S09), and LLaMA, Anthropic Claude,
Gemini, Grok, DeepSeek, and Qwen (S03). In general, prompt engi-
neering techniques were applied in the phases of validation, analy-
sis, and generation of security requirements. The hyperparameter
tuning technique (i.e., setting temperature) was also used in com-
bination with prompt engineering approaches in studies S03 and
S09.

Four emerging methodologies were identified, i.e., zero-shot
learning, few-shot learning, and prompt-learning, the first two
applied in two studies each and the last one applied only once.
The zero-shot learning (ZSL) technique, applied in S05 and S16,
aims to perform learning tasks without using training data. The
Few-Shot Learning (FSL) technique is conceptually similar to ZSL.
Still, instead of using zero training data, it employs a small fraction
(usually around 10%) during the training phase, with the remainder
used for validation and testing. ZSL and FSL have been explored to
generate security requirements from user stories and classify non-
functional requirements. The prompt-learning technique involves
adapting the model to transform a multiclass classification task into
a binary classification task, e.g., using BERT combined with prompt
variants (S16). Additionally, the stacking technique, traditionally
used in machine learning, was applied in (S06) to compare the
BERT model with other approaches such as GRU, LSTM, and RNN
for the task of classifying non-functional requirements into their
subcategories (S06).

We observed that the RAG technique has not been explored as a
conditioning methodology for LLMs within the domain of security
requirements engineering. However, it remains a promising tech-
nique to be investigated based on relevant results (e.g., reduction
of hallucinations) observed in other research areas [9].

3.4 RQ4- Databases used for training and/or
testing LLMs

The evidence indicates a limited variety of datasets employed across
the reviewed studies. Notably, 29.4% (5 out of 17) of the studies uti-
lize the PROMISE NFR dataset, either directly or indirectly, specif-
ically, studies S05, S06, S11, S12, S13, and S16. The second most
frequently used dataset is SecReq (utilized in 4 out of 17 studies: S05,
S08, S13, S14), followed by PURE, which appears in 3 studies (S03,
S08, S13). Both S04 and S17 made use of the Dalpiaz user stories
dataset [12]. All other datasets appear only once, for instance, the
AI-CRAS-Dataset in S01 or the IREC 2017 Data Challenge in S06.
These datasets are rarely applied in their original form; instead,
many authors adapt or refine them to suit specific subdomains.
Examples include the merging of PROMISE and IREC-2017 datasets
in S06, the re-labeling of PROMISE in S12, and the creation of
large hybrid datasets, such as the fusion of five different sources
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Figure 3: Conditioning techniques to guide LLMs’ behavior.

(PROMISE, PURE, IoTAC, Kaggle (REQ-Class), and SecReq) in S13,
accompanied by manual labeling of incomplete data.

The findings thus reveal a scarcity of publicly available datasets
in the domain of security requirements. As a result, 59% (10 out of
17) of studies (S01, S03, S07, S08, S09, S10, S11, S13, S15, S17) were
compelled to create their own datasets or heavily customize exist-
ing ones due to the lack of suitable public alternatives. Additionally,
three studies (S13, S14, S17) reported the use of data augmenta-
tion techniques during pre-processing to expand the available data
artificially.

Conversely, this data scarcity had less impact on studies em-
ploying generative Al approaches (S02, S03, S04, S09), as these did
not involve fine-tuning the models. In such cases, datasets served
primarily as sources of examples to support prompt engineering
activities.

3.5 RQS5 - Evaluation of LLM-based security
requirements proposals

When analyzing the metrics used by the articles to evaluate LLM
models, a predominance of quantitative metrics over qualitative
ones is observed. The main metrics applied are Precision, F1-Score,
and Recall. This widespread use is believed to be related to the fact
that these metrics are well-established in the machine learning liter-
ature and are particularly suitable for classification tasks, especially
binary classification of requirements, which is a common focus in
many of the analyzed studies.

Among the less frequently used metrics, HPOS@k [30] stands
out. This is a precision-based metric applied in one study (S10)
aimed at tracking and recommending security requirements. An-
other metric observed was the 5-Point Likert Scale, used in S02,
where security requirements domain experts assessed the perfor-
mance of prompt engineering techniques applied to requirements
generation.

It was also noted that the evaluation of models using generative
Al and prompt engineering techniques involved the participation
of human experts (502, S03, S04, and S09). In these cases, the out-
put generated by the models underwent more detailed qualitative

analysis by domain experts to assess aspects such as relevance,
coherence, and adequacy of the generated requirements.

4 Final Remarks

Preliminary literature reviews [14, 20] identified an increasing ap-
plication of LLMs to software engineering activities. However, the
vast majority of research focuses on code generation, test case gen-
eration, and code inspection. In contrast, a significantly smaller
portion of the literature addresses requirements engineering, and
even fewer on security requirements engineering.

This imbalance highlights a clear need to enhance research ef-
forts focused on automating critical security requirements engineer-
ing tasks, including analysis, specification, validation, traceability,
and change management of security requirements. These activities
are crucial for mitigating vulnerabilities early in the software de-
velopment life cycle, thereby supporting the development of secure
systems from their inception.

Among the primary studies analyzed in this review, there is a
noticeable emphasis on the use of LLMs for the classification of
requirements. While such studies offer valuable insights, they of-
ten rely on similar methodologies and report comparable results,
suggesting a possible saturation of this research line. Consequently,
there is a compelling opportunity to advance the state of the art
by exploring the use of LLMs for more complex and critical tasks,
such as the automated extraction of requirements from natural
language sources, the precise formulation of security requirements,
and their semi-automated validation against threat scenarios. How-
ever, considerable effort is required to consolidate accurate and
open databases to make this kind of research feasible.

Given the increasing adoption of generative LLMs and prompt-
ing engineering techniques, it is crucial to establish standardized
metrics and robust benchmarking frameworks to enable fair and
unbiased comparisons across different approaches. The lack of such
standards hinders the reproducibility of studies and poses chal-
lenges to consolidating the knowledge base in this domain. More-
over, empirical evidence involving industry practitioners remains
scarce, limiting the assessment of the practical applicability and
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effectiveness of proposed solutions. Future research should priori-
tize studies that integrate experimental approaches with industry
validations, fostering the transfer of knowledge from academia to
real-world settings.

To ensure validity, this review followed established rapid review
guidelines [10], with study selection and data extraction conducted
by at least two researchers, including a third for resolving dis-
agreements. As the field is still emerging and rapidly evolving, the
conclusions reflect the current landscape and may require future
updates as new evidence emerges.
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