
Proceedingsofthe

on

ENGINEERING OF

INTELLIGENT SYSTEMS

=IS

June 27 - 30,2000
University of Paisley, Scotland, U.K.

Editor: C. Fyfe

ISBN 3-906454-21-5

International Computer Science Conventions
Canada / Switzerland

A SELF-ÜRGANIZING NEURAL NETWORK FOR LEARNING AND

RECALL OF COMPLEX ROBOT TRAJECTORIES

Aluizio F. R. Araújo Guilherme de A. Barreto

Universidade de São Paulo
Departamento de Engenharia. Elétrica

C. P. 359, 13560-970, São Carlos, SP, BRASIL
{gbarreto, aluizioa}@sel.eesc.sc.usp.br

Abstract We propose an unsupervised neural network
model to lcam and recall complex robot trajectories.
Two cases are considered: (I) A single trajectory in
which a particular ann configuration may occur more
than once, and (2) trajectories sharing states with other
ones - they are said to contain a shared state. Hence,
ambiguities occur in both cases during recall of such
trajectories. The proposed model consists oftwo groups
o f synaptic weights trained by competi tive and Hebbian
Iearning laws. They are responsible for encoding spatial
and temporal features of the input sequences,
respectively. Three mechanisms allow the network to
dcal witb. repeated or sfiared states: focal and gfobaJ
context units, neurons disabled to leain, and
redundancy. The network produces the current and the
next state o f the Iearned sequences and is able to solve
ambiguities. The model is simulatcd over various sets of
robot trajectories in order to evaluate learning and
recall, trajectory sampling effects and robustness.

Keywords: Unsupervised Jearning, neural networks,
temporal sequences, context, robotics.

1. Introduction

A common problem in robotics is trajectory tracJ...-ing, in
which a robot is required to follow accurately a
continuous pathway (Craig, 1989). Such a task is mainly
pre-programmed such that the ann positions are stored
in the controller memory for !ater recai!. This method
may become time consuming and uneconomical for
complex trajectories (Chen et ai., 1996).

The research in artificial neural network (ANN) models
makes it possible to investigate solutions for complex
problems in robotics following different leaming
paradigms (Zomaya & Nabhan, 1994). Tracking can be
hand.Jed within the framework of artificial neural
networks for temporal processing since trajectories can
be seen as spatiotemporal sequences o f arm positions.

The unsupervised learning paradigrn has appea!illg
properties for its use in robotics and temporal sequence
processinl(., The behavior in unsupervised neural
networkS.:. emerges by means of a self-organizing
process, ~ which reduces substantially the robot
progra.mining burden that accounts even for one third of
the total- côst of an industrial robot system (Heikkonen
& Koildfài~en, 1997).

An imp'ortant issue, usually not addressed in simulations
and tests reported by the neural network literature, is the
leaming of multiple robot trajectories (Chen et al.,
1996). In some industrial operations, a robot is often
required to perforrn more than one task. Hence, the
robot controller must be able to track more than one
trajectory. One of the goals of the present work is to
develop an unsupervised Iearning neural network to
leam and retrieve multiple trajectories. The various
unsupervised neural models to robot control may be
divided into three main approaches: (i) learning of
perception-action trajectories, (ü) learning of robot
state trajectories, and (iü) planning of robot state
trajectories.

The first approach, also called sensory-motor learning,
associates sensory data with desired actions (Bugmann
et al. 1998). It is used when a mobile robot is required to
explore the world to build a model for it. As the robot
navigates, it experiences a long sequence ofperception­
action pairs. This approach is not stable against
deviations ofthe trajectory. Ifthe robot finds itselfin an
untrained position, off the trajectory, no adequate
control action may be produced (Bugrnann et al, 1998).
Examples of this approach are the models proposed by
Denham & McCabe (1995), Rao & Fuentes (1996),
Owen & Nehmzow (1996) and Heikkonen &
Koikkalainen (1997).

In the second approach, the network must associate
consecutive states of a trajectory and store these
transitions for total or partia! reproduction of the
memorized trajectory. For purpose of recall, the
network receives the current state of the robot and

responds with the next one. See for example the models
by Hyõtyniemi (1990), Althõfer and Bugmann (1995),
Bugmann et al (1998) and Barreto & Araújo (l999a, b).

The third approach entails the creation of a robot
trajectory given only its initial and final positions. The
robot recêives sensory information from the workspace
and constructs an inverse kinematic mapping. This
approach is used in Kuperstein & Rubinstein (1989),
Martinez et al (1990), and Walter & Schulten (1993).

In this paper we aim at emphasizing the feasibility of
applying unsupervised learning to complex robotics
problems. We are particularly concemed with the
problem of fast and accurate learning of single and
multiple robot trajectories. The contribution ofthis work
is twofold: (i) development o f Hebbian leaming roles to
p:rocess spatiotemporal pattems and (ü) application of
such a model to control robots involved in complex
tracking tasks. The learning algorithm is evaluated
through simulations on complex trajectories.

The paper is organized as follows. In Section 2, we
present the modeL In Section 3, we evaluate the
performance ofthe model through computer simulations
and discuss the main results. We conclude the paper in
Section 4.

2. The Proposed Neural Model Description

The architecture of the model is shown in Figure l. It is
a two-layer network composed ofan input and an output
layer which is responsible for the "Mlole processing. The
model has feedforward and feedback connections that
play different roles in its dynamics.

trajectory states context units

Figure 1. The architecture of the proposed model.

The input comprises sensory and context units. The frrst
set ofunits receives the trajectory state at time step t and
propagates it towards the output layer. By trajectory
state at time t we mean end-effector position, joint
angles and applied joint torques. For example, for a six
degree of freedom robotic arm moving in 3D space, we
need three units for the end-effector position (x, y, z),

73

six units for the joint angles 91, i=l, ... , 6, and six units
for the joint applied torques 't,, i=l, ... , 6. Two types of
trajectories are considered: (i) closed (initial state = final
state), and (ii) open (initial state ;'= final state). Pre­
processing o f the input data is not required.

Context units are necessary when a single trajectory has
repeated pattems, or multiple sequences have shared
states. Global context (time-invariant) is always set to
the final spatial position of a given trajectory. Usually,
this information is supplied as task specification. For
open trajectories, fixed context units are sufficient for
correct storage and recall (Barreto & Araújo, l999a, b).
However, for closed paths with crossing points,
additional information is necessary. Then, local context
(time-variant) is added to the network input. These units
are always set to the spatial coordinates ofthe states that
precedes the one just delivered to the network. The
inclusion of time-varying context units in this work
allows the network to encode both closed and open
trajectories, increasing the model applicability.

The output neurons represent the current and the next
states in a particular sequence. The weight vectors
associated with the most activated neurons are then used
as control signals to place the robot arm at the desired
configuration.

The synaptic weights consist of feedforward (or
interlayer) weights and feedback (or intralayer) weights.
The interlayer and intralayer weights are updated by
competitive and Hebbian learning rules respectively.
The feedforward weights connect each input unit to
each output neuron. They encode the spatial
configuration o f the robot arm at a specific time step.
Feedforward weights are initialized randomly with
numbers between O and l. The intralayer coupling
structure encodes the temporal order o f the pattems in a
sequence. The Feedback weights are initialized with
zeros, indicating no temporal associations at ali.

The two groups of synaptic weights are updated during
a single pass of an entire trajectory in which each state
is read once. This means that a sequence with Nc
components requires Nc training steps. An input state is
compared with each feedforward weight vector through
Euclidean distance. The group of weight vectors closest
to the input vector is selected to be updated.
Mathematically, we have:

v1 V)=argmin{rj(t~jx; -wFJJ} forallj
1

v2 (t) = arg mink· (t ~~x; - w Ji jj} 'v'j e {v1} (l)
1

v K (l)= ais mm{^. (?|x, - w^, |} Vye {vi,..., v^_i }

where v^,...,v^ ais Índices ranking the proxünity

between the weight vectors and the cunrent mput. Thus,
for each input vector, a cluster ofKnewons is chosen to

encode it, sunilarly to neighboring neurons m
Kohonen's SOM (1997). However, unlike the neurons in

SOM, the output neurons do need to be in physical
neighborhood. Redundancy results in a network more

resiüent to noise and tolerant to neuronal faults. For

recall, we always set K = l.

The fúnctionj^í) is a penalty factor defined as:

f'w-[f^
ij ye{vp.
otherwise

^VK } (2)

where^O) = l and cx » l. This fünction is used to
exclude a wiiming neuron fi-om subsequent competitions
to guarantee that each point ofthe trajectory is encoded
by different neurons.

The neuronal activiües a/r) and outputs y^í) are
detennmed as follows:

..(')=
A-1"\ foTi=ï,...,K

0, for i > K
(3)

where O < y < l and A > l. According to Eq. (3), the K
winners at time step / receive an amount of activity
proportional to its rank as determmed m Eq. (l). Note

that due to Eq. (2), a/;)7a//-l) = 0, for i ^ r. The output
y^(t) is defined as follows:

y^=s\Ï'n^r(f} (4)

where g(u) > O só that dg(u)/dí > 0, mj^t) is the
intralayer coimection weight between the output

neurons r ana J, and N is the number of output neurons.
The highest output value detemiines the weight vector
to be sent to the robot controller

Following the selection of the wuming neurons and the
detennination of their activations and outputs, the
weight vectors w//) are updated according to the
following competitive leaming role:

w//+l)=w/í)+5a//)[x(/)-w/?)] (5)

where 5= l is the leaming rate. Note that units with
activities a//) equal to zero do not leam (see Eq. (2)).

The successive wümers are linked m the correct
temporal order through a lateral coupling structure.

These feedback weights are updated according to the
foiïowmg leaming rule (Barreto & Araújo, 1999b):

/n^+l)=^(/)+Àff/?)fl,C-l) (6)

where X is the feedback leaming rate. The activaticxi
pattem of the previous competition, a^t-l), is made
available fhrough time delays. Equation (6) is a Hebbían
leamüig rule (Hebb, 1949) that creates temporal
associations between consecutive states of the input
trajectory. Time in Hebbian leaming rules plays an
essential role in psychology (Montague & Sejnowski,

1994), biology fWallis, 1998), route leaming aad
navigation (SchõUcopf& Mallot, 1995) and blind source
separation (Girolami & Fyfe, 1996).

It is important to emphasize that two elements are
essential for sequence recall. First, a mechanism of
short-term memory (Mozer, 1993) to eaable exti^ction
and storage transitions from one pattem to its successors
in the sequence (see Eq. 6). Second, the activatioa
dynamics must be defined to mimic the previously
leamed sequence by moving through correct sequence

ofstored states (see Eqs. (3) and (4)). This way, the next
state ofa stored sequence is recalled every time an input
vector matches one of the stored pattems. The weight
vector ofthis "next state" neuron supplies the robot with
the next spatial position, tfae associated joint angles, and
the applied torques. Qnce a robot hás reached its next
position, new sensor readings are fed back to fhe neural
network mput that geaerates the next state of the
sequence. This process continues until the entire
trajectory is reproduced.

3. Simulations

We evaluate the proposed neural network in storing and
recalling different types of trajectories. We consider
closed 2D robot trajectories and open 3D robot
trajectories of a FUMA 560 with 6 DOF gena-ated by
the toolbox ROBOTICS of Matlab (Corke, 1996). The
circular paths have 20, 35, 70 and 100 points. The
figure-eight trajectories the sequences are 20, 40, 80 and
100 points long. Each open trajectory hás 11 states
mcluding the initial and the final ones. These
trajectories are presenteei sequentially, one after the
other. The network performance is evaluated in tracking
tasks by means ofthe root mean square en-or (RMSE).

3.1. The Learning of Closed Trajectoríes

Choice ofLearning Rate & This sünulation intends to

show how the leaming rate mfluences the storage

74

accuracy of the proposed model. We have ti-amed the
network on the circular and figure-eight trajectories for

4 difFerent values of the leammg parameter 5 = 0.45,
0.75, 0.90 and 0.99. The other parameters were set to K

= l, a = 1000, \ = 0.8, y = 0.99, and N - 100. The

nlunber of sensory mputs is 6, because we need 2 units

for the end-effector position, 2 for the joint angles and 2
for fhe applied jomt tca-ques. In addition, we need 2
more urúts for the local context and 2 more for the
global còntext. The feedforward weights were randomly
initialized between O and l and the feedback units are
initialized with zeros. The same initial weights are used

for au values of ô. The results are plotted in Figure 2a
and 2b for a circular trajectory (35 states) md a figure-

eight trajectory (80 points), respectively.

L;

^:.:r'<.

/
^

^ú/^w\
'/ '\--'

'•»

'̂. l
\
f

^
'Sr

x:) ^

(a) (b)
Figure 2. Accuracy in learning closed trajectories for § =

0.45, 0.75, 0.90 and 0.99. Inner trajectories hás lower

values for 5. Arrows indicate the direction ofmovement.

The en-ors for the circular trajectories were 2.1731

(5=0.45), 0.9655 (5=0.75), 0.3776 (5=0.90) and 0.0388

(5=0.99). The errors for the figure-eight trajectory were

12.0304 (5=0.45), 5.4090 (5=0.75), 2.1716 (5=0.90) and

0.2185 (5=0.99). As expected, the RMSE decrease as S

approaches l. Thus, ifaccuracy is required, 5 must be
nearly or equal to l. It is an important achievement
since the robot controller must be supplied with precise

signals fi-om the network.

Influence of Redundancy on Fault-Tolerance. In this
sünulation, we show how a trajectory is stored by the K
first winning neurons, and why such redundancy is
usefal in cases ofneuronal fault We chose K = 3, i.e.,
each trajectory state is encoded by 3 different neurons.

The other parameters were set to 5 •= l, a = 10 , A. = 0.8,

A = l, y = 0.99, N = 525. The results for a circular
trajectory with 70 points are shown in Figure 3. Figure

3a illustrates fhe input (circles) and the stored/retrieved

trajectory (crosses) encoded by the first wmner neuron,
while Figure 3b presents the result for the third winner
unit The RMSE values for the stored trajectories are
0.00 (1a winner), 0.1438 (2'"i wmner), and 0.2877 (3rd

wümer). The RMSE values for the second and third

wmners can be viewed as worst cases. For example. if

ali the first winners have collapsed, fhe second wmners
would be used instead, yielding RMSE = 0.1438. In the
extreme and unlüce case of total collapse ofthe first and
second wiimers, the third wümers would be used by the
network, yielding RMSE - 0.2877.

? 3

Oi

S t

05
\

^
^

O 05 \ i1. ^ :5
•n

C: O OS f IS : ;5 'T)5
ï|'s

(a) (b)
Figure 3. Redundancy effects in learmng circular

trajectories for the: (a) l" wianer and (b) 3 winner.

An example for a figure-eight trajectory with 80 points
is plotted in Figure 4. This sequence hás a crossing
position at coordinates (3.13, 0.00). To correctly recall
the trajectory, the context müts are set to the coordinate
of the state which immediately precedes Üie current
sensory input. The RMSE values are: 0.00 (l*' winner),
0.2233 (Tí wümer), and 0.4452 ffi wümer).

,r\

/- (y)•li i

"Vv/
E- t ï Ï í 3 E 7

(a) (b)
Figure 4. Redundancy effects ia learning figure-eight

trajectories for the: (a) l" winner and (b) 3'i winner.

We conclude that, for tracking purpose, the robot
controller must use the trajectories in Figure 3a and 4a.
In the case ofneuronal faüure the stored trajectories will
continue to be reh-ieved at the expense of a slighüy
highcr RMSE value. It is worth noting that the network

can store and retrieve a trajectory with RMSE = 0, even
in the presence ofneuronal failures, by sünply adopting

§ = Y = A = l. However, this would tum the network
much like a fault-tolerant convenúonal storage-and-

recall device without the ability to generalize.

Influente of Sampling Raie and Redundancy on
Noise-Tolerance. The previous simulations considered

noise-free trajectories. However, tolerance to noise is a

75

desü-able property for any controller ofa real robot. The
tolerance to noise of our network is tested by adding
different amounts of zero mean Gaussian white noise to

the trajectory states and calculating the RMSE value.
The noise variance ranges from 0.001 to 0.1.

Ariother issue to be addressed is the sampUng rate
effects on fhe network perfoimance. In this case, we

evaluate how the network responds to noisy üajectory
as one varies the redundancy degree and the number of
points of lhe input trajectory. We simulated the network
for K = 3, 4 and 5. Figures 5 show typical results for
circular ü-ajectories. Note that lower values for RMSE
(solid) are obtained by choosing K = 5. The worst
results were obtained for K = 3 (dashed-dotted) and 4

(dotted). Results for figure-ejght trajectories (not
shown) follow the same pattem.

2<"1

/~/

/

-Jv
v^<f K.:.'-/

^-v

"i f

00; OW ODC COS 01 :0; O K üC6 C3t
«ïsa-xn

..^.^
./

/-

', r-'~~y

^
..y

1/
30; O M SOí

Figure 5: Noise Tolerance of the network trained on

circular trajectories for diflerent sampling rates: (a) 20

points, (b) 35 points, (c) 70 points and (d) 100 points.

Note that, at some limit, higher values ofK do not imply
in lower values of RMSE. On the contrary, it can result
in higher values of RMSE, especially when the number

of points in a sequence inCTeases. This is explained by
noting that as the distance between consecutive pomts
decreases due higher sampling rates, the chance of the
network to choose an incon-ect winner due to noise also

mcreases.

and (2) any trajectory must contam at least one crossing
state with ali the other ones at any intennediate state.

The parameters were set to a = 1000, y = 0.95, 5 = 1.0,

X= 0.8, N = 70 and three frajectories were trained
sequentially. Figure 6 shows the results following the
training stage on two trajectories which have a crossing
point at (0.20, 0.30, 0.0). It is worth notmg that the
stored md the desired trajectories in ali cases are very
súnüar. For example, the RMSE value obtained for the
brajectory in Figure 6a is 0.0024. This illustrates the
ability ofEq. (5) in accurately encoding an input pattem
m only one iteration. The leners I and F indicates the
initial and final points ofthe trajectory, respectively.

Figure 6. Two trained trajectories with one shared point.

Desired trajectory (circles), retrieved trajectory (crosses).

Figure 7 shows the brajectories in Figure 6 in a sünulator
we have developed in order to have an idea of the
trajectory behavior in robot workspace.

3.2. The Learning ofMany Robot Trajectories

In order to test the algorithm ability to encode multiple

open trajectories, the following considerations are
made: (l) the final state ofa given ürajectory are known

Figure 7. Trajectories of Figure 6 in a simulated robot
workspace.

Figures 8 and 9 show the shoulder, elbow and wrist
joint angles and torques associated with each state ofthe

76

stored trajectories. Simüarly, the algorithm was able to
encode them with a small error. The desired md stored
values are practically the same. Note that the algorithm
can leam the input independently of its magnitude and
sign. Also note that the network responds equally nice
to trajectories with smooth curvature (circular and
figure-eight types) as well as to üiose with abrupt
changes ofdirection (Figure 6 and 7).

90

T(02

.....i..^

v.... Jo mt .2

..}DW..3..-.^

,^,\.-...^....,

:->Ç/L::::|

Figure 8. The joint angles and torques for the trajectory

shown in Figure 63. Angles (rad) and torques (N.m).

..iütai..j-./\\>-.;....................,,

Figure 9. The joint aagles (a) and (b), aad torques (c) and
(d) associated with trajectory in Figure 6b.

Figure 10 ülustrates the fault-tolerance for Üús type o f
trajectories. In this case, we simulated neuronal faults as
we did for circular and figure-eight trajectories, i.e., by
excluding ali the first wúmmg neurons of each one of
the three trajectories. The second wümers aie now liable
for the retrieval of the stored sequence. Even só, the

network was able to reproduce the to-ajectories correcüy.
This result justifies fhe use of more than one neuron
during the leaming ofthe feedforward weights.

Figure 10. The same trained trajectories of Figure 10.

However, in tbis case, a fault in oae of the neurons
encoding eacb trajectory state is símulated.

Despite the simplicity of the model, the simulations
suggest that multiple trajectories can be leamed very
fast and accurately, independenüy of theü- complexity.
Trajectories with more than one crossing point are
equally leamed with small tracking error.

4. Conclusion and Further Work

An unsupervised model to leam and recall robot
trajectories is proposed. This simple aeural network

accurately stores and retrieves open and closed complex
robot trajectories. Compared to the approaches by

Althõfer & Bugmann (1995), Bugmann el al (1998) our
model advances in the following points: (i) It is noise

and fault tolerant, (ü) the state transitions are not pre-
wired but rather leamed through Hebbian leaming, (üi)
it is able to leam new trajectories mcrementally, and (iv)
it is able to handle open and closed ti-ajectories sampled

at different rates. The proposed model can be viewed as

an extension of our previous work (Barreto & Araújo,
1999a, b). The current one incorporates the ability to
leam and recall closed trajectories with or without

crossmg pomts.

77

It is worth emphasizmg that the proposed model, unlike
other common neural network approaches to temporal
sequence processing, does not require two networks to

leam the invariant temporal arder ofthe input sequence;
that is, two networks leaming exactly the same spatíal
pattems which are usuaUy linked in an ad hoc (non-
adapüve) manner. In our model, the spaüal pattems are

stored in a feedforward layer of weights and linked in
time through lateral connections in a self-organizing
fashion.

At the moment we are pursuing mechanisms to better

use memory resources, since, due to Eq. (2), for every

state occumng more than once, K similar copies of it
are stored by K difFerent neurons. Also, the
implementaüon of the proposed model in a real robot is
being evaluated.

Acknowledgements

The authors thanks FAPESP (project Nr. 98/12699-7)
for financiai support.

References

Althõfer, K. & Bugmaim, G. (1995). Plamúng md leamuig

goal-directed sequences ofrobot arm movements. Proc. ofthe

//!(. Conf. an Artificial Neural Networks (ICANN'95), Paris,

France, vol. l, pp. 449-454.

Barreto, G. A. & Araújo, A. F. R- (1999a). Fast leaming of

robot trajectories via uasupervised neural networks. Proc. 14th

1FAC World Congress, Beijing, Chma, pp. 373-378,

Pergamon Press, Oxford.

Barreto, G.A. & Araújo. A.F.R. (1999b). Unsupemsed

leaming and recall of temporal sequences: An applicatíon to

robotics. /"(. Joumal ofNeural Systems, 9(3):235-242.

Bugmann, G., Koay, K.. L., Barlow, N., Phülips, M. &
Rodney, D. (1998). Stable encoding ofrobot trajectories using
normalized radial basis fimctions: Application to an
autonomous wheelchair. Proc. of lhe 29lh [m. Symp. an

Rohotics (ISR'W), Birmingham, UK, pp. 232-235.

Chen, C.Y, Müls, J.K- & Smith, K.C. (1996). Performance
ünprovement of robot continuous-path operatíon through

iterative leaming using neural networks. Machine Leaming,

23:75-105.

Corke, I. (1996). A Robotics toolbox for MATLAB. IEEE
Rohotícs and Automation Magazine, 3(1):24-32.

Craig, J. J. (1989). Introductíon to Robotics: fvíechanics and

Contrai, Ïd edition, Reading, MA: Addison-Wesley.

Denham. M. J. & McCabe, S. L. (1995). Robot control using

temporal sequence leaming. Proc. ofthe World Congress on

Neural Nehvorks. vol. 2.346-348.

Girolami, M. & Fyfe, C. (1996). A temporal modcl of linear
anü-Hebbian leaming. NeuralProc. Letlers, 4:139-148.

Hebb, D. O. (1949). The organization ofhehavior. Wiley.

Heikkonen, J. & K.oikkalamen, (1997). Self-organization and
autonomous robots- In: Neural Syslems for Rohotics, O.

Omidvar and van der Smagt (Eds.), Academic Press, 297-337.

Hyõtyniemi, H. (1990). Locally controlled optünization of
spray painting robot trajectories. Proc. IEEE lm. Workshnp an

Inlelligenl Motion Contrai, Istanbul, Turkey, pp. 283-287.

Self-organizing maps. Ti editión,Kohonen, T. (1997).
Springer-Vcriag.

Kuperstein, M. & Rubinsteüi, J. (1989). Implementation ofan

adaptive neural controller for sensory-motor coordination.

IEEE Contra! Systems Magazine, 9(3):25-30.

Martmetz, T.M., Ritter, HJ. & Schulten. K.J. (1990). Three-

dimensional neural net for leaming visuomotor coordinatíon

ofa robot ann. IEEE Trans. Neural Networks, I(l):131-136.

Montague, R. & Sejnowski, T. J. (1994). The predictive brain:

temporal coincidence and temporal arder m synaptic leaming

mechanisms. Leaming & Memory, 1:1-33.

Mozer, M. C. (1993). Neural net architectures for temporal

sequence processing. In: Predicting lhe Future and

Underslanding the Past. A. Weigend & N. Gershenfeld (Eds.),

Redwood City, CA: Addison-Wesley, 243-264.

Owen, C. & Nehmzow, U. (1996). Route leaming in mobüe

robot through self-organization. Proc. ofEurohot. 96, IEEE

Computer Society Press.

Rao, R.N. & Fuentes, O. (1996). Leaming navigational
behaviors using a predicnve sparse distributed raemory. Proc.
of From Animais to Animais: lhe 4th Int. Conference on

Simulation ofAdaptive Behavior. pp. 382-390, MIT Press.

Schõlkopf & Mallot (1995). View-based cognitive mappmg

and path plamúng. Ada.pti.ve Behavior, 3:311-348.

Wallis, G. (1998). Temporal arder in human object

recognitíon. J. Biol. Syst. 6(3):299-313.

Walter. J.A. & Schulten. KJ. (1993). Implementation ofself-

organizing neural networks for visuo-motor control of an

industrial robot. tEEE Trans. on Neural Networks, 4(1):86-95.

Zomaya, A.Y. & Nabhan, T.M. (1994). Trends in

neuroadaptive control for robot manipulators, In: Handhook of

Design, Manufacturing and Automation, R.C. Dorf & A.

Kusiak (Eds.), pp. 889-917. Wüey & Sons: New York, U.S.A.

l

