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Abstract. We propose an unsupervised neural network
model to leamn and recall complex robot trajectories.
Two cases are considered: (1) A single trajectory in
which a particular arm configuration may occur more
than once, and (2) trajectories sharing states with other
ones — they are said to contain a shared state. Hence,
ambiguities occur in both cases during recall of such
trajectories. The proposed model consists of two groups
of synaptic weights trained by competitive and Hebbian
learning laws. They are responsible for encoding spatial
and temporal features of the input sequences,
respectively. Three mechanisms allow the network to
deal with repeated or shared states: [ocal and global
context units, neurons disabled to leam, and
redundancy. The network produces the current and the
next state of the learned sequences and is able to solve
ambiguities. The model is simulated over various sets of
robot trajectories in order to evaluate learning and
recall, trajectory sampling effects and robustness.

Keywords: Unsupervised leaming, neural networks,
temporal sequences, context, robotics.

1. Introduction

A common problem in robotics is trajectory tracking, m
which a robot is required to follow accurately a
continuous pathway (Craig, 1989). Such a task is.mainly
pre-programmed such that the arm positions are stored
in the controller memory for later recall. This method
may become time conswning and uneconomical for
complex trajectories (Chen et al., 1996).

The research in artificial neural network (ANN) models
makes it possible to investigate solutions for complex
problems in robotics following different leamning
paradigms (Zomaya & Nabhan, 1994). Tracking can be
handled within the framework of artificial neural
networks for temporal processing since trajectories can
be seen as spatiotemporal sequences of arm positions.
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The unsupervised learning paradigm has appealing
properties for its use in robotics and temporal sequence
processing’~ The behavior in unsupervised neural
networks,. emerges by means of a self-organizing
process,  which reduces substantially the robot
programming burden that accounts even for one third of
the total cost of an industrial robot system (Heikkonen
& Koik¥alainen, 1997).

An important issue, usually not addressed in simulations
and tests reported by the neural network literature, is the
learning of multiple robot trajectories (Chen et al,
1996). In some industrial operations, a robot is often
required to performm more than one task. Hence, the
robot controller must be able to track more than one
trajectory. One of the goals of the present work is to
develop an unsupervised learning neural network to
leam and retrieve multiple trajectories. The various
unsupervised neural models to robot control may be
divided into three main approaches: (i) leamning of
perception-action trajectories, (i) learning of robot
state trajectories, and (iii) planning of robot state
trajectories.

The first approach, also called sensory-motor learning,
associates sensory data with desired actions (Bugmann
et al. 1998). It is used when a mobile robot is required to
explore the world to build a model for it. As the robot
navigates, it experiences a long sequence of perception-
action pairs. This approach is not stable against
deviations of the trajectory. If the robot finds itself in an
untrained position, off the ftrajectory, no adequate
control action may be produced (Bugmann er al, 1998).
Examples of this approach are the models proposed by
Denham & McCabe (1995), Rao & Fuentes (1996),
Owen & Nehmzow (1996) and Heikkonen &
Koikkalainen (1997).

In the second approach, the network must associate
consecutive states of a trajectory and store these
transitions for total or partial reproduction of the
memorized trajectory. For purpose of recall, the
network receives the current state of the robot and



responds with the next one. See for example the models
by Hydtyniemi (1990), Althéfer and Bugmann (1995),
Bugmann et al (1998) and Barreto & Araujo (19994, b).

The third approach entails the creation of a robot
trajectory given only its initial and final positions. The
robot receives sensory information from the workspace
and constructs an mverse kinematic mapping. This
approach is used in Kuperstein & Rubinstein (1989),
Martinez et al (1990), and Walter & Schulten (1993).

In this paper we aim at emphasizing the feasibility of
applying unsupervised leaming to complex robotics
problems. We are particularly concerned with the
problem of fast and accurate leaming of single and
multiple robot trajectories. The contribution of this work
is twofold: (i) development of Hebbian learning rules to
process spatiotemporal patterns and (i) application of
such a model to control robots involved in complex
tracking tasks. The leamming algorithm is evaluated
through simulations on complex trajectories.

The paper is organized as follows. In Section 2, we
present the model. In Section 3, we evaluate the
performance of the model through computer simulations
and discuss the main results. We conclude the paper in
Section 4.

2. The Proposed Neural Model Description

The architecture of the model is shown in Figure 1. It is
a two-layer network composed of an input and an output
layer which is responsible for the whole processing. The
model has feedforward and feedback connections that
play different roles in its dynamics.

Feedback
weights M "
Feedforward
weights W
( Sensory inputs L Global ][ Local —]
— / _
trajectory states context units

Figure 1. The architecture of the propoesed model.

The input comprises sensory and context units. The first
set of units receives the trajectory state at time step ¢ and
propagates it towards the output layer. By trajectory
state at time ¢ we mean end-effector position, joint
angles and applied joint torques. For example, for a six
degree of freedom robotic arm moving in 3D space, we
need three units for the end-effector position (x, v, 2),
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six units for the joint angles 8, i=1, ..., 6, and six units
for the joint applied torques T, i=1, ..., 6. Two types of
trajectories are considered: (i) closed (initial state = final
state), and (ii) open (initial state # final state). Pre-
processing of the input data is not required.

Context units are necessary when a single trajectory has
repeated patterns, or multiple sequences have shared
states. Global context (fime-invariant) is always set to
the final spatial position of a given trajectory. Usually,
this information is supplied as task specification. For
open frajectories, fixed context units are sufficient for
correct storage and recall (Barreto & Aratjo, 19992, b).
However, for closed paths with crossing points,
additional information is necessary. Then, local context
(time-variant) is added to the network mput. These units
are always set to the spatial coordinates of the states that
precedes the one just delivered to the network. The
inclusion of time-varying context units in this work
allows the network to encode both closed and open
trajectories, increasing the model applicability.

The output neurons represent the current and the next
states in a particular sequence. The weight vectors
associated with the most activated neurons are then used
as control signals to place the robot arm at the desired
configuration.

The synaptic weights consist of feedforward (or
interlayer) weights and feedback (or intralayer) weights.
The interlayer and intralayer weights are updated by
competitive and Hebbian learning rules respectively.
The feedforward weights connect each input unit to
each output neuron. They encode the spatial
configuration of the robot arm at a specific time step.
Feedforward weights are initialized randomly with
numbers between 0 and 1. The intralayer coupling
structure encodes the temporal order of the patterns in a
sequence. The Feedback weights are initialized with
zeros, indicating no temporal associations at ali.

The two groups of synaptic weights are updated during
a single pass of an entire trajectory in which each state
is read once. This means that a sequence with N,
components requires N, training steps. An input state is
compared with each feedforward weight vector through
Euclidean distance. The group of weight vectors closest
to the input vector is selected to be wupdated.
Mathematically, we have:

v {t)=arg mjjn{[j (t]}x,- -wy H} forall j

vy (1)=argm]in{fj (l)nxi —Wjiﬂ} Vje{n} M
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where v,...,v, are indices ranking the proximity
between the weight vectors and the current input. Thus,
for each input vector, a cluster of X neurons is chosen to
encode it, similarly to neighboring neurons in
Kohonen's SOM (1997). However, unlike the neurons in
SOM, the output peurons do need to be in physical
neighborhood. Redundancy results in a network more
resilient to noise and tolerant to neuronal faults. For
recall, we always set K = 1.

The function f{7) is a penalty factor defined as:

[ o, if je {v,,...,vK}
= . 2
f;® £;(t) otherwise @
where f{0) = 1 and o >> 1. This function is used to
exclude a winning neuron from subsequent competitions
to guarantee that each point of the trajectory is encoded
by different neurons.

The neuronal activities aff) and outputs y{r) are
determined as follows:

il =l
a, (1)={A Yy, fori=1,..,K @)

g 0, for i>K

where 0 <y< 1 and 4 2 I. According to Eq. (3), the X
winners at time step ¢ receive an amount of activity
proportional to its rank as determined in Eq. (1). Note
that due to Eq. (2), a/(t)ra,(t-l) =0, for ; = r. The output
yAt) is defined as follows:

y,<,>=g(;”;m,, @a,(,)) @

r=l

where g(u) 2 0 so that dg(u)/dr > 0, my{r) is the
intralayer connection weight between the output
neurons r and j, and  is the number of output neurons.
The highest output value determines the weight vector
to be sent to the robot controller

Following the selection of the winning neurons and the
determination of their activations and outputs, the
weight vectors wjr) are updated according to the
following competitive learning rule:
w{r+1) =w{r) + 8a (H[x(0)- win)] ®
where & = | is the learning rate. Note that units with
activities a{f) equal to zero do not leamn (see Eq. (2)).
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The successive winners are linked in the correct
temporal order through a lateral coupling structure.
Thesc feedback weights are updated according to the
following learning rule (Barreto & Aradjo, 1999b):

©®

where A is the feedback leamning rate. The activation
pattern of the previous competition, a(z-1), is made
available through time delays. Equation (6) is a Hebbian
learning rule (Hebb, 1949) that creates temporal
associations between consecutive states of the input
trajectory. Time in Hebbian learning rules plays an
essential role in psychology (Montague & Sejnowski,
1994), biology (Wallis, 1998), route learning and
navigation (Scholkopf & Mallot, 1995) and blind source
separation (Girolamni & Fyfe, 1996).

m,+)=m, (t)+ra,{)a, (t-1)

It is important to emphasize that two elements are
essential for sequence recall. First, a mechanism of
short-term memory (Mozer, 1993) to enable extraction
and storage transitions from one pattern to its successors
in the sequence (see Eq. 6). Second, the activation
dynamics must be defined to mimic the previously
learned sequence by moving through correct sequence
of stored states (see Eqgs. (3) and (4)). This way, the next
state of a stored sequence is recalled every time an input
vector matches one of the stored patterns. The weight
vector of this “next state” neuron supplies the robot with
the next spatial position, the associated joint angles, and
the applied torques. Once a robot has reached its next
position, new sensor readings are fed back to the neural
network input that generates the next state of the
sequence. This process continues until the entire
trajectory is reproduced.

3. Simulations

We evaluate the proposed neural network in storing and
recalling different types of trajectories. We consider
closed 2D robot trajectories and open 3D robot
trajectories of a PUMA 560 with 6 DOF generated by
the toolbox ROBOTICS of Matlab (Corke, 1996). The
circular paths have 20, 35, 70 and 100 points. The
figure-eight trajectories the sequences are 20, 40, 80 and
100 points long. Each open trajectory has 11 states
including the initial and the final ones. These
trajectories are presented sequentially, one after the
other. The network performance is evaluated in tracking
tasks by means of the root mean square error (RMSE).

3.1. The Learning of Closed Trajectories

Choice of Learning Rate & This simulation intends to
show how the leaming rate influences the storage



accuracy of the proposed model. We have trained the
network on the circular and figure-eight trajectories for
4 different values of the learning parameter 8§ = 0.45,
0.75, 0.90 and 0.99. The other parameters were set to X
=1, o = 1000, A = 0.8, vy = 0.99, and N = 100. The
number of sensory inputs is 6, because we need 2 units
for the end-effector position, 2 for the joint angles and 2
for the applied joint torques. In addition, we need 2
more units for the local context and 2 more for the
global context. The feedforward weights were randomly
initialized between 0 and 1 and the feedback units are
initialized with zeros. The same initial weights are used
for all values of 8. The results are plotted in Figure 2a
and 2b for a circular trajectory (35 states) and a figure-
eight trajectory (80 points), respectively.

) o

(a) (b)
Figure 2. Accuracy in learning closed trajectories for o =
0.45, 0.75, 0.90 and 0.99. Inner trajectories has lower
values for 8. Arrows indicate the direction of movement.

The emrors for the circular trajectories were 2.1731
(6=0.45), 0.9655 (5=0.75), 0.3776 (5=0.90) and 0.0388
(8=0.99). The errors for the figure-eight trajectory were
12.0304 (6=0.45), 5.4090 (8=0.75), 2.1716 (8=0.90) and
0.2185 (8=0.99). As expected, the RMSE decrease as &
approaches 1. Thus, if accuracy is required, & must be
nearly or equal to 1. It is an important achievement
since the robot controller must be supplied with precise
signals from the network.

Influence of Redundancy on Fault-Tolerance. In this
simulation, we show how a trajectory is stored by the K
first winning neurons, and why such redundancy is
useful in cases of neuronal fault. We chose X = 3, e,
each trajectory state is encoded by 3 different neurons.
The other parameters were setto d=1, a = 10%, A =0.8,
A =1, v= 099, N= 525 The results for a circular
trajectory with 70 points are shown in Figure 3. Figure
3a illustrates the input (circles) and the stored/retrieved
trajectory (crosses) encoded by the first winner neuron,
while Figure 3b presents the result for the third winner
unit. The RMSE values for the stored trajectories are
0.00 (1% winner), 0.1438 (2™ winner), and 0.2877 (3
winner). The RMSE values for the second and third
winners can be viewed as worst cases. For example, if
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all the first winners have collapsed, the second winners
would be used instead, vielding RMSE = 0.1438. In the
extreme and unlike case of total collapse of the first and
second winners, the third winners would be used by the
network, yielding RMSE = 0.2877.
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Figure 3. Redundamcy effects in learmng circular
trajectories for the: (a) 1*' winner and (b)3 winner.

An example for a figure-eight trajectory with 80 points
is plotted in Figure 4. This sequence has a crossing
position at coordinates (3.13, 0.00). To correctly recall
the trajectory, the context units are set to the coordinate
of the state which immediately precedes the current
sensory mgut The RMSE values are: 0.00 (1™ winner),
0.2233 (2! winner), and 0.4452 (3 winner).
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Figure 4. Redundancy effects in learmng figure-eight
trajectories for the: (a) 1 winner and (b)3 winner.
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We conclude that, for tracking purpose, the robot
controller must use the trajectories in Figure 32 and 4a.
In the case of neuronal failure the stored trajectories will
continue to be retricved at the expense of a slightly
higher RMSE value. It is worth noting that the network
can store and retrieve a trajectory with RMSE = 0, even
in the presence of neuronal failures, by simply adopting
3 =y = A = 1. However, this would tum the network
much like a fault-tolerant conventional storage-and-
recall device without the ability to generalize.

Influence of Sampling Rate and Redundancy on
Noise-Tolerance. The previous simulations considered
noise-free trajectories. However, tolerance to noise is a




desirable property for any controller of 2 real robot. The
tolerance to noise of our network is tested by adding
different amounts of zero mean Gaussian white noise to
the trajectory states and calculating the RMSE value.
The noise variance ranges from 0.001 to 0.1.

Another issue to be addressed is the sampling rate
effects on the network performance. In this case, we
evaluate how the network responds to noisy trajectory
as one varies the redundancy degree and the number of
points of the input trajectory. We simulated the network
for K = 3, 4 and 5. Figures 5 show typical results for
circular trajectories. Note that lower values for RMSE
(solid) are obtained by choosing K = 5. The worst
results were obtained for K = 3 (dashed-dotted) and 4
(dotted). Results for figure-eight trajectories (not
shown) follow the same pattern.
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Figure S: Noise Tolerance of the network trained on
circular trajectories for different sampling rates: (a) 20
points, (b) 35 poiats, (c) 70 points and (d) 100 points.

Note that, at some limit, higher values of X do not imply
in lower values of RMSE. On the contrary, it can result
i higher values of RMSE, especially when the number
of points in a sequence increases. This is explained by
noting that as the distance between consecutive points
decreases due higher sampling rates, the chance of the
network to choose an incorrect winner due to noise also
increases.

3.2. The Learning of Many Robot Trajectories

In order to test the algorithm ability to encode multiple
open trajectories, the following considerations are
made: (1) the final state of a given trajectory are known
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and (2) any trajectory must contain at least one crossing
state with all the other ones at any intermediate state.

The parameters were set to o. = 1000, y=0.95, § = 1.0,
A= 0.8, N = 70 and three trajectories were trained
sequentially. Figure 6 shows the results following the
training stage on two trajectories which have a crossing
point at (0.20, 0.30, 0.0). It is worth noting that the
stored and the desired trajectories in all cases are very
similar. For example, the RMSE value obtained for the
trajectory in Figure 6a is 0.0024. This illustrates the
ability of Eq. (5) in accurately encoding an input pattern
in only one iteration. The letters I and F indicates the
initial and final points of the trajectory, respectively. -

62 ©2

Figure 6. Two trained trajectories with one shared point.
Desired trajectory (circles), retrieved trajectory (crosses).

Figure 7 shows the trajectories in Figure 6 in a simulator
we have developed in order to have an idea of the
trajectory behavior in robot workspace.

(a)

Figure 7. Trajectories of Figure 6 in a simulated robot
workspace.

Figures 8 and 9 show the shoulder, elbow and wrist
joint angles and torques associated with each state of the



stored trajectories. Similarly, the algorithm was able to
encode them with a small error. The desired and stored
values are practically the same. Note that the algorithm
can learn the input independently of its magnitude and
sign. Also note that the network responds equally nice
to trajectories with smooth curvature (circular and
figure-eight types) as well as to those with abrupt
changes of direction (Figure 6 and 7).

. jointl

oo

o |

Figure 8. The joint angles and torques for the trajectory
shown in Figure 6a. Angles (rad) and torques (N.m).

Hime

Figure 9. The joint angles (a) and (b), and torques (c) and
{d) associated with trajectory in Figure 6b.
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Figure 10 illustrates the fault-tolerance for this type of
trajectories. In this case, we simulated neuronal faults as
we did for circular and figure-eight trajectories, ie., by
excluding all the first winning neurons of each one of
the three trajectories. The second winners are now liable
for the retrieval of the stored sequence. Even so, the
network was able to reproduce the trajectories correctly.
This result justifies the use of more than one neuron
during the learning of the feedforward weights.

Figure 10. The same trained trajectories of Figure 10.
However, in this case, a fault in one of the neurons
encoding each trajectory state is simulated.

Despite the simplicity of the model, the simulations
suggest that multiple trajectories can be learned very
fast and accurately, independently of their complexity.
Trajectories with more than one crossing point are
equally learned with small tracking error.

4. Conclusion and Further Work

An unsupervised model to leamn and recall robot
trajectories is proposed. This simple neural network
accurately stores and retrieves open and closed complex
robot trajectories. Compared to the approaches by
Althéfer & Bugmann (1995), Bugmann et al (1998) our
model advances in the following points: (i) It is noise
and fault tolerant, (ii) the state transitions are not pre-
wired but rather leamed through Hebbian leaming, (iii)
it is able to learn new trajectories incrementally, and (iv)
it is able to handle open and closed trajectories sampled
at different rates. The proposed model can be viewed as
an extension of our previous work (Barreto & Araujo,
19992, b). The current one incorporates the ability to
learn and recall closed trajectories with or without
crossing points.




It is worth emphasizing that the proposed model, unlike
other common neural network approaches to temporal
sequence processing, does not require two networks to
learn the invaniant temporal order of the input sequence;
that is, two networks learning exactly the same spatial
patterns which are usually linked in an ad hoc (non-
adaptive) marmner. In our model, the spatial patterns are
stored in a feedforward layer of weights and linked in
time through lateral connections in a self-organizing
fashion.

At the moment we are pursuing mechanisms to better
use memory resources, since, due to Eq. (2), for every
state occurring more than once, X similar copies of it
are stored by K different neurons. Also, the
implementation of the proposed model in a real robot is
being evaluated.
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