
Vol.:(0123456789)

Purinergic Signalling (2025) 21:23–38 
https://doi.org/10.1007/s11302-023-09976-5

REVIEW

Purinergic system in cancer stem cells

J. D. Nuñez‑Rios1 · H. Ulrich2 · M. Díaz‑Muñoz1 · C. Lameu2 · F. G. Vázquez‑Cuevas1

Received: 10 June 2023 / Accepted: 25 October 2023 / Published online: 15 November 2023 
© The Author(s) 2023

Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate 
phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial 
whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedif-
ferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge 
regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective 
therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent 
role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the 
stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC 
phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting 
the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmaco-
logical targets for proposing innovative anti-cancer therapies.
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The origin of cancer stem cells

Although cancer research has significantly progressed 
since the nineteenth century and several successful treat-
ments have been developed since then, cancer is still a major 
cause of death worldwide. According to the World Health 
Organization, in 2020, cancer accounted for nearly 10 mil-
lion deaths [1]. Currently, cancer is understood as a widely 
heterogeneous disease, and knowledge about intratumor 
complexity, which contributes to cancer progression and 
recurrence, therapy failure, and reduced overall survival, 
has been gained [2]. In 1855, Rudolf Virchow and Julius 
Cohnheim proposed that cancer results from the activation 
of dormant embryonic tissue remnants, giving rise to such a 

diverse population of cells. A modern interpretation of the 
observation made by those pathologists could be the cancer 
stem cell (CSC) model [3].

An important premise for the CSC model of cancer devel-
opment is that the cells forming the tumor are phenotypically 
heterogeneous and hierarchically organized. This heteroge-
neity and hierarchy is supported by the differentiation grade 
of each cell with respect to an original ancestor [4]. In this 
hierarchy, notwithstanding the phenotypical diversity of the 
tumor tissue, only one type of cell has the competence to 
initiate cancer and is the source of each one of the pheno-
types in a tumor; these are CSCs. CSCs display particular 
characteristics resembling normal stem cells (nSCs) (Fig. 1): 
(1) self-renewal potential to ensure the presence of tumor-
initiating cells, a property that in nSCs is achieved by asym-
metric cell division [5]; and (2) differentiation potential to 
give rise to the phenotypical diversity of a tumor [6]. In 
addition, the CSC subset of the tumor bulk also acquires 
resistance to conventional therapy, thus making them a pos-
sible cause of cancer recurrence [7].

CSCs were first identified in the experiments by Bon-
net and Dick in 1997, where they proved that only a small 
subpopulation (0.1–1%) of acute myeloid leukemia (AML) 
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could restore the disease after being transferred to immune-
deficient mice, and subsequent propagation of the disease 
was also possible [8]. These cells (with the phenotype 
CD34+CD38neg) resembled those in the hematopoietic 
system. Similar observations were made for solid tumors 
in breast epithelial cancer. In a seminal work by Michael 
Clarke’s group, tumor cells were isolated according to their 
individual phenotypes and xenotransplanted into immuno-
compromised SCID mice. Clarke and colleagues found that 
only cells with a CD44+/CD24low/−ESA+ phenotype had the 
ability to induce a new tumor with full phenotypic diversity 
[9]; in turn, the tumor could be sequentially propagated. In 
parallel, human brain tumor-initiating cells were identified; 
in this case, it was demonstrated that only cells positive for 
the surface marker CD133 could originate cells with similar 
phenotypes to those observed in patients [10].

Thanks to these primordial studies, much effort has been 
focused on detecting CSCs in different tumor tissues, such 
as the ovary, prostate, lung, pancreas, neck and head, and 
colon [11–17], and many glycoproteins, including CD44, 

CD133, CD38, CD24, CD34, and CD73, have been linked 
to stem-like properties [18]. Different tumor markers have 
been identified depending on the type of cancer being stud-
ied. Hence, CSCs are not a single entity but rather a complex 
system with myriad phenotypes.

A question inherent to the CSC model is the origin of 
these tumor-initiating entities (Fig. 1). First, it was proposed 
that CSCs originate from nSCs through the accumulation 
of mutations in specific loci coding for tumor suppressors 
and/or oncogenes, resulting in malignant transformation [6, 
19–21]. The CSC hypothesis has identified strategies for 
novel cancer cell treatment based on the stem cell theory, 
which involves a hierarchical organization from undiffer-
entiated cells toward progenitors with restricted differen-
tiation potential and finally terminal differentiation. There-
fore, CSCs have greater oncological plasticity potential than 
more differentiated cancer cells. A comparison of CSCs with 
nSCs would provide common mechanisms and facilitate the 
treatment of recurrent tumor lapses, metastasis, and drug 
resistance. Nevertheless, untransformed nSCs and CSCs 
cannot be directly compared due to the complexity of their 
embryogenesis and stem cell development, as well as their 
epigenetic backgrounds. Furthermore, Teng and collabora-
tors contest the CSC hypothesis and argue that tumor cells 
maximize their survival potential through a dedifferentiation 
process that occurs during microenvironmental stress (i.e., 
chemotherapy conditions) rather than through a hierarchi-
cal tumor development cascade [4]. In summary, interest-
ing alternatives have been proposed, such as the acquisition 
of CSC properties by differentiated cells through different 
mechanisms, including gene transfer, environmental influ-
ence, and genomic instability [22, 23]. CSC phenotype 
acquisition is a fundamental question that may involve more 
than one mechanism and will therefore continue to generate 
controversy and require further investigation.

The microenvironment for CSCs

Physiologically “normal” stem cells, here named nSCs, 
reside within specific conditions that maintain the stem-
cell state; these include cell-to-cell and cell-to-extracellular 
matrix (ECM) interactions and signals that repress and acti-
vate diverse cell fate programs in order to preserve self-
renewal and keep a dormant state. The “stem cell niche” was 
first proposed by Schofield in 1978 based on the observa-
tion that the spleen is unable to support the hematopoietic 
stem cell state in the same way that the bone marrow can, 
concluding that there are specific conditions (i.e., a micro-
environment) that support the stemness and differentiation 
capability of stem cells [24]. Since then, several nSC niches 
have been identified in adult tissues such as the hematopoi-
etic system, skin, intestine, brain, and muscle [25]. A niche 

Fig. 1   Origin and fate of cancer stem cells. Cancer stem cells are 
highly plastic cells in the tumor bulk. The hypothesis of their origin 
transits between two different proposals: that cancer stem cells origi-
nate from a genetic mutation of normal stem cells or that tumor cells 
are capable of dedifferentiating from a differentiated state to an undif-
ferentiated state. Like normal stem cells, cancer stem cells can self-
renew and divide asymmetrically, giving rise to an unlimited number 
of cancer stem cells or cells with compromised cell fates, respec-
tively. Thus, cancer stem cells have the capacity to initiate a new 
tumor and generate phenotypically different tumor cells that sustain 
tumor growth, are resistant to current therapies, and have the motility 
to spread throughout the body and form secondary tumors. Created 
with BioRender.com
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is thus defined by its functionality rather than by its location, 
as nSC proximity to certain components of the microenvi-
ronment does not indicate that the stem state is supported.

As mentioned previously in this review, the tumor is a 
complex and heterogeneous entity containing not only can-
cerous cells but also resident stromal host cells, soluble fac-
tors, and the ECM, all of which favor tumor growth and 
progression [26]. Thus, it is not surprising to realize that 
there are niches within the tumor that support a stem-like 
phenotype. In a similar manner to nSCs, CSCs reside in 
niches within the tumor microenvironment (TME), preserv-
ing their phenotypic plasticity and conferring immune sup-
pression and protection against chemotherapy [27]. Many 
cell types have been described to comprise the CSC niche, 
such as fibroblasts, endothelial cells, adipocytes, myeloid-
derived suppressor cells (MDSCs), macrophages, and CD4+ 
T-cells, among others [28]. Altogether, these diverse cell 
types orchestrate a malignant phenotype, allowing chemo-
therapy and radiotherapy resistance, cancer initiation and 
recurrence, and metastatic capability. Cancer-associated 
fibroblasts (CAFs) have been linked to a tumor-supportive 
environment in different models. For example, in a head and 
neck cancer model, cancer cell-secreted transforming growth 
factor beta (TGF-β) augmented periostin, an ECM compo-
nent, leading to proliferation, migration, and metastasis [29]. 
Similarly, in a breast cancer model, normal fibroblasts that 
were irradiated and injected into the mouse mammary fat 
pad overexpressed TGF-β and hepatocyte growth factor 
(HGF), thereby supporting tumor initiation [30].

Endothelial cells have also been associated with favor-
ing a malignant phenotype in a prostate cancer model, 
where human umbilical vein endothelial cells (HUVEC) 
co-cultured with prostate cancer cell lines favored tumor 
initiation and metastasis, thus activating autophagy, which 
has been related to a stem-like phenotype [31]. In addition 
to these stromal cells, immune cells are recruited and re-
educated in order to favor malignancy and stem-likeness. In 
an ovarian cancer model, CSCs isolated from the OVCAR-3 
(a metastatic ovarian carcinoma cell line) interacted with 
macrophages polarized to an M2 phenotype, which dimin-
ished chemotherapeutic sensitivity and increased invasion in 
a transwell assay and tumor formation in a mouse xenotrans-
plant model. These processes were thought to be ignited by 
WNT pathway overactivation [32].

The TME is not just a silent spectator but rather an active 
component within the tumor bulk. In addition to the pre-
viously mentioned cell types, the TME also contains non-
cellular elements, such as the ECM, which in healthy condi-
tions helps to maintain tissue structure and homeostasis but 
in cancer has been related to supporting malignancy and 
metastasis. The ECM can perpetuate a malignant stem-like 
phenotype, given that modifications in the ECM can alter 
fibroblasts, endothelial cells, and immune cell functions, 

which can further reinforce ECM modifications and pro-
long the malignancy [33]. Moreover, the ECM can provide 
an anchoring site for CSCs through their matrix-interacting 
receptors, including integrins, CD47, and CD44. The latter 
has been used as a CSC marker in several in vitro mod-
els and patient-derived samples. Its binding to hyaluronic 
acid (present within the ECM) has been proven to activate 
NANOG, thereby eliciting the expression of pluripotent 
stem cell regulators (e.g., Rex1 and Sox2). CD44 has also 
been shown to interact with STAT-3, promoting multidrug-
resistance transporter MDR1 expression, which results in 
chemotherapy resistance [34].

Early in tumor development, there is reciprocal commu-
nication between the components of the TME and cancerous 
cells, promoting angiogenesis, nutrient supply, and waste 
removal. Many soluble factors constitute the TME, such as 
growth factors, hormones, and signaling molecules. TGF-β 
has been one of the most studied and well-characterized of 
these factors. TGF-β can have a dichotomous effect as it 
limits or preserves CSC populations. In gastric carcinoma, 
it was shown to decrease the side population by down-regu-
lating ABCG2, an important chemotherapy efflux mediator 
[35]. On the other hand, several studies have proved that 
TFG-β facilitates the stem-like phenotype in solid tumors 
(e.g., breast cancer, glioblastoma, and leukemia) [36] by 
increasing CD133 and CD44 expression, thereby potenti-
ating the stem-like populations. Other growth factors have 
been linked to promoting stemness in CSCs, such as epi-
dermal growth factor (EGF) and fibroblast growth factor 
(FGF). In colon cancer, EGF proved to be essential for CSC 
selection and maintenance, and its inhibition promoted CSC 
apoptosis due to a decreased basal activation of Akt and 
ERK [37]. Conversely, FGF was demonstrated to induce a 
malignant phenotype in “healthy” induced pluripotent stem 
cells, where chronic exposure to this growth factor led to 
a CSC population that no longer required FGF in order to 
sustain its survival [38].

As previously stated, the TME includes soluble sign-
aling molecules regulating the cancerous phenotype, and 
given that the purinergic system is ubiquitous and modu-
lates many cell processes (e.g., proliferation, differentiation, 
and migration), ATP concentrations within the intra-tumor 
milieu can reach the millimolar range. In healthy tissues, 
they remain below the micromolar range, as Pellegatti and 
Di Virgilio elegantly demonstrated [39]. Extracellular ATP 
(eATP) is actively secreted into the extracellular space in a 
basal manner. Once there, ATP is metabolized to ADP, then 
AMP, and finally to adenosine (ADO) by the ectonucleoti-
dases CD39 and CD73. Several stressors, such as hypoxic 
conditions (highly observed in necrotic tumors), acute and 
chronic inflammation (in the TME), and anti-cancer therapy-
induced cell death, promote the accumulation of eATP and, 
thus, ADO. Within the TME, eATP and ADO seem to play 
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contradictory roles since ATP is a “find me” signal, recruit-
ing the immune system, and ADO is an immune suppressor 
[40]. Moreover, there is evidence suggesting that ATP can 
also induce immune suppressive regulatory T cell (Treg) 
expression through dendritic cell activation by chemother-
apy-induced cell death [41]. Altogether, this information 
suggests that the primary function of the purinergic system, 
namely ATP and ADO, is purely related to the immune sys-
tem; however, this could not be further from the truth, as we 
will argue in the next sections by explaining in detail the role 
of ATP in the TME.

Nucleotide and nucleoside signaling

Chemistry

Purines are an extended family of aromatic and heterocyclic 
molecules. 9H-purine, the simplest of these compounds, is 
formed by two rings: a pyrimidine fused with an imidazole. 
The alternating presence of single and double bonds among 
N and C atoms allows the formation of conjugated systems 
characterized by the coincidence of an overall low molecular 
energy and, at the same time, high molecular stability. The 
chemical underpinning of these properties is the existence of 
interatomic conjugated bonds connected by π-orbitals with 
delocalized electrons [42]. Different nucleobases, includ-
ing purines, have been detected in carbonaceous meteorites 
[43]. In addition, it has been widely reported that adenine 
can be formed from simpler molecules, such as NH4

+/NH3, 
CN−, CO, CH4, H2, and formamide, under abiotic primordial 
conditions [44]. These facts strongly suggest that purines, 
as well as many other “organic” molecules, were already 
present in early terrestrial times and were selected during 
the prebiotic evolution that occurred prior to the emergence 
of the first living entities on our planet [45].

The two principal purines with biological activities are 
adenine (6-amino-purine) and guanine (2-amino-6-hydroxy-
purine). In this review, we only address the importance and 
characteristics of adenine and its relationship with nucleo-
side and nucleotides in purinergic signaling through their 
actions on different membrane receptors. ADO contains a 
molecule of adenine attached to a ribofuranose moiety via 
a β-N (9)-glycosidic bond. ADO shows keto-enol tautomer-
ism, being the keto form predominant at pH 7 [46]. In addi-
tion, the rotation of the glycosidic bond allows the presence 
of two ADO conformations: syn and anti. The syn confor-
mation is favored in physiological conditions [47]. ADO is 
a polar molecule with a partition coefficient XlogP3 value 
of − 1.1, where negative coefficients are indicative of hydro-
philic compounds. Its dipole moment has been calculated 
to be 3.93 Debye, showing an orientation toward the region 

between C6 and N3, and being located in the middle of the 
purine and sugar rings [48].

In contrast to ADO, ATP is a nucleotide with a nega-
tively charged triphosphate moiety and a net electrical 
charge of − 4 at physiological pH. ATP and other nucleotide 
triphosphates form organic complexes with divalent cations, 
most commonly Mg2+. Mg2+ can coordinate with ATP4− by 
either all three phosphate groups (C3 configuration) or by 
the terminal β and γ phosphate groups only (C2 configura-
tion) [49]. Because of its ionic characteristics, the XlogP3 
partition coefficient of ATP is clearly more negative (− 5.7) 
than the one calculated for ADO (− 1.1). Molecular dynam-
ics simulation of ATP has suggested that the conformations 
of this nucleotide in water change drastically when ATP is 
bound to diverse proteins, especially in the C2 of the ribose 
ring, the adenine ring, as well as the torsion angles of the 
glycosyl bond and the bond between phosphate and ribose 
[50].

In addition to signaling through purine nucleotides and 
nucleosides, the UTP and UDP pyrimidines, pyrimidine 
dinucleotides (i.e., Ap4A), and sugar nucleotides (UDP-
glucose and UDP-galactose) activate specific receptor sub-
types (reviewed in [51]).

Intracellular metabolism

ATP and ADO are part of a large set of interconnected 
purine intermediates that play diverse metabolic and sign-
aling roles as extracellular and intracellular molecules by 
means of catabolic and anabolic transformations. These 
metabolic conversions are particularly relevant since only 
the liver and kidney are fully capable of synthesizing purines 
de novo from simpler units such as glycine, glutamine, 
aspartate, formate, and HCO3

− [52]. Hence, some tissues 
(e.g., brain and muscle) express the salvage pathway that 
allows the formation of purine nucleotides from metabolic 
intermediates like hypoxanthine. Therefore, purine transit is 
established between these tissues (receptors) and the liver 
(emitting source), with ADO and hypoxanthine in plasma 
and erythrocytes being the metabolic intermediates. This 
metabolic communication is subjected to circadian regula-
tion [53].

ATP is a key factor in energy metabolism that controls 
intracellular electron fluxes from reducing nutrients to 
mitochondrial oxygen. In the sixties, Atkinson and Wal-
ton postulated that the proportion of adenine nucleotides, 
known as the adenylate energy charge ([ATP] + ½[ADP]/
[ATP] + [ADP] + [AMP]), regulates the balance between 
anabolic and catabolic reactions [54]. This concept was 
further tested and ratified with the identification of a set 
of allosteric enzymes sensitive to the AMP/ATP ratio that 
modulates the biosynthetic and degradative metabolic path-
ways, as well as with the existence of energy sensors such as 
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AMP-kinase [55]. ADO treatment is capable of increasing 
the hepatic energy charge in vivo by enhancing mitochon-
drial activity [56].

ADO plays various intracellular roles. ADO catabolic 
transformation results in uric acid in mammals without 
uricase, a free radical scavenger [57]. The redox enzyme 
that produces uric acid, xanthine dehydrogenase, can also act 
as an oxidase in Ca2+-promoted protein alteration. Xanthine 
oxidase has been proposed as a source of the free radical 
anion superoxide (·O2

−) in pathological conditions such as 
inflammation and ischemia [58]. ADO can also combine 
with the sulfur-containing molecule homocysteine to form 
S-adenosyl-L-homocysteine (SAH). SAH is an inhibitor of 
methylation reactions that depend on S-adenosyl methionine 
(SAM). Therefore, ADO can indirectly modulate the for-
mation of methylated intermediates and influence processes 
including neurotransmission, epigenetics, and membrane 
fluidity [59].

Signal transduction

In addition to its well-known role in energy exchange reac-
tions, ATP is an important signaling molecule with charac-
terized release mechanisms and specific receptors. In 1929, 
researchers showed that adenine influences cardiac rhythm, 
thus indicating that ATP plays a role in extracellular signal-
ing [60]. In 1972, Burnstock proposed ATP as a non-adren-
ergic and non-cholinergic neurotransmitter [61], giving rise 
to a new field of study: the purinergic system. At first, his 
proposals were not accepted by the scientific community 
but were gradually earning a place in the field thanks to the 
cloning of purinergic receptors that mediate the signal in 
response to extracellular purines. These receptors have been 
classified into two major types based on agonist selectivity: 
P1 adenosine receptors and P2 nucleotide receptors. The 
former are conformed by four receptors (A1, A2A, A2B, and 
A3), and the latter are divided into two main subtypes: P2X 
and P2Y receptors, which are ligand-gated ion channels and 
G-protein-coupled receptors, respectively [62].

To date, seven P2X subunits have been cloned in mam-
mals (P2X1-P2X7), and these subunits can form either a 
homotrimer or heterotrimer that acts as a ligand-gated 
ion channel exclusively responsive to ATP [63], allowing 
Ca2+ and Na+ influx and K+ efflux. Each subunit has two 
membrane-spanning domains (TM1 and TM2) with an 
intracellular N-terminus and C-terminus, and most of the 
protein is extracellular with the ligand-binding region at the 
intersection of two subunits [63]. Regarding P2Y G-protein-
coupled receptors, eight genes have been cloned in mam-
mals (P2RY1, P2RY2, P2RY4, P2RY6, P2RY11-14). The 
preferred natural agonists are ATP (P2Y11), ADP (P2Y1, 
P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6), 
and UDP-sugars (P2Y14). P2Y1, 2, 4, and 6 act through 

Gq-phospholipase C β (PLCβ), producing inositol-triphos-
phate (IP3), which causes Ca2+ release from the endoplasmic 
reticulum, and diacylglycerol (DAG), which activates PKC. 
P2Y12-14 receptors act through Gi protein, causing adeny-
lyl cyclase inhibition and a reduction in cyclic adenosine 
monophosphate (cAMP) levels; and P2Y11 receptor acti-
vates Gs protein, activating adenylyl cyclase and augmenting 
cAMP levels [64].

As molecular messengers, ATP and ADO can act as coun-
terparts of each other, recognizing their specific receptors. 
For example, ATP is mostly a pro-inflammatory molecule, 
whereas ADO plays an important anti-inflammatory role. 
The fine-tuned regulation of these antagonist actions indeed 
depends on the set of ATP and ADO receptors expressed by 
the cellular system; they are also contingent on the activity 
of a set of extracellular hydrolytic enzymes that turn ATP 
into ADP, AMP, and ADO. For example, ATP can be con-
verted into ADO in a two-step enzymatic process involving 
the CD39 (with apyrase-like action) and CD73 [65].

For a long time, it has been reported that purinergic 
signaling plays important roles in many physiological and 
pathological events. Haulica et al. reported in 1973 that, in 
addition to neurotransmission and blood coagulation, ADO 
exerts a hypnogenic action that was later confirmed [66]. 
Both ATP and ADO can act as coronary vasodilator agents 
[67]. Additionally, in the context of the orchestrated immune 
response, the alternative actions of ATP and ADO have been 
described [65]. Purinergic system malfunction contributes 
to the mechanisms of various illnesses, including cancer, 
diabetes, gout, osteoporosis, and cardiovascular, neurologi-
cal, and psychiatric diseases [62, 68, 69].

Purinergic signaling in cancer

Recent reviews highlight the diversity and plasticity of 
purinergic signaling in the context of cancer [70–73]. The 
purinergic system in the TME has a particular configuration 
that gives it a prominent role in cancer progression, with 
some notable characteristics: (1) cancer cells have a high 
capacity to produce ATP as a result of metabolic adaptations 
such as the Warburg effect, making cancerous cells energeti-
cally sustainable [74]; (2) ATP efflux to the interstitium is 
increased due to the boost in ATP synthesis, resulting in a 
high concentration of nucleotides (hundreds of µM) in the 
TME, which is enough to activate any purinergic receptor 
subtypes [39]; (3) purinergic receptors are widely expressed 
in tumor cells [75], and some subtypes, such as P2X7 recep-
tor, are overexpressed in specific cancers [76–79]; and (4) 
the expression of ecto-nucleotidases (mainly CD73) con-
tributes to regulating purinergic ligand concentrations in the 
TME [80]. CD39 and CD73 promote an immunosuppressive 
environment in the TME [81]. CD73, which is rate-limiting 
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in the degradation of AMP into ADO, regulates tumor pro-
liferation and progression and has therefore been defined as 
a prognostic marker for tumor survival [82].

The aforementioned characteristics suggest that the 
purinergic system is a fundamental element of the TME with 
a dual role. At the cellular social level, it mainly induces 
immunosuppression by mediating interactions with host 
immune cells. It also exerts autocrine-paracrine actions 
by directly regulating processes such as metabolism, cell 
proliferation, and cell migration and inducing epithelial-to-
mesenchymal transition (EMT).

The purinergic system at the cellular social level: 
from “find me” signaling to evasion of antitumor 
immune response

ATP has been categorized as a “find me” signal that trig-
gers the immune response. In the cancer context, ADO—a 
direct product of ATP hydrolysis catalyzed by the sequential 
actions of CD39 and CD73 ecto-nucleotidases—elicits an 
immunosuppressive response by modulating the phenotype 
of tumor-infiltrated immune cells [83, 84]. Thus, the identity 
and proportion of purinergic ligands directly contribute to 
the balance of antitumor immune attack.

The find me role of ATP has been described in the context 
of tissue damage generated by conditions such as hypoxia, 
inflammation or necrosis. Under these conditions, ATP acts 
as a damage-associated molecular pattern (DAMP) [85], 
attracting dendritic cells, macrophages, and neutrophils to 
prompt damage resolution [86, 87]. In cancer conditions, 
especially when anti-cancer therapies induce cell death, 
extracellular ATP increments notably in the TME, and 
nucleotides can activate receptors in resident non-cancerous 
cells. For instance, in dendritic cells, ATP activates P2X7 
receptors, inducing NLRP3 inflammasome assembly and the 
release of IL-1β, a proinflammatory cytokine with the capac-
ity to induce an immunogenic response through the regula-
tion of CD8+ T cells [88, 89]. On the other hand, actions 
through P2X and P2Y receptors can determine macrophage 
subpopulations that promote tumor development (tumor-
associated macrophages), thereby establishing a protective 
TME for cancer cells and inducing CSC development and 
dissemination [90, 91].

Moreover, a consequence of the increase in extracellu-
lar ATP concentration is ADO accumulation in the TME 
as a result of ecto-nucleotidase activity [92]. ADO, acting 
through ADO receptor-dependent mechanisms, inhibits 
the antitumor immune response. Thus, after CL8-1 tumor 
melanoma cell xenotransplantation in mice, pharmaco-
logical inhibition or genetic deletion of the A2A receptor 
enhanced the inhibition of tumor growth, vascularization, 
and the destruction of metastases by incoming antitumor 
T lymphocytes [92], demonstrating that the ADO/A2A 

receptor pathway is essential for the modulation of immune 
host-tumor interactions. Furthermore, phenotypic modula-
tion to inhibit the antitumor immune response via the ADO/
A2A receptor pathway was documented for Tregs [93–95], 
T effector cells [95–97], natural killer cells [98, 99], and 
myeloid cells [100–102]. On the other hand, in medullo-
blastoma cells, CD79 overexpression reduced tumor prolif-
eration, possibly by inducing differentiation and apoptosis 
through A1 receptor activation [82].

Autocrine‑paracrine actions of purinergic signaling 
in TME

As mentioned above, purinergic receptors are widely 
expressed in cancerous tissues [75], and ATP is available in 
the TME [39]; consequently, purinergic-mediated autocrine-
paracrine communication regulates diverse physiological 
aspects in cancer cells, such as cell proliferation and cell 
migration.

P2X7 and P2Y2 receptors are two of the most studied 
purinergic receptors. Although P2X7 receptor was originally 
described as a cytotoxic receptor promoting cell death, it 
has been demonstrated to activate proliferative pathways in 
the TME, such as Ca2+-dependent and independent ERK 
phosphorylation [103–105], mTOR-HIF1-α-VEGF [106], 
and PI3K-AKT [107, 108], as well as tumor metastasis 
[109]. P2X7 can induce cell death and promote tumor pro-
liferation and survival. These divergent actions have been 
related to two splice variants of the P2RX7 receptor gene: 
the P2X7A and B isoforms. While the P2X7A variant com-
prises the full-length receptor, capable of pore formation 
with cytotoxic activity, the truncated P2X7B variant lacks 
the C-terminal tail and thus cannot form pores. However, ion 
channel opening and consequent downstream cellular sign-
aling functions in this receptor contribute to the TME and 
promote tumor progression, metastasis, and chemotherapy 
resistance (reviewed by [110]). Tumor-promoting actions for 
P2X7 receptor have been described for mesothelioma [78], 
pancreatic carcinoma [105, 111], ovarian carcinoma [79], 
osteosarcoma cells [106], and neuroblastoma cells [109].

On the other hand, P2Y2 receptor is coupled to Gq het-
erotrimeric G-proteins, and its activation induces Ca2+ 
release from intracellular storage by the PLC/IP3 pathway 
[64]. P2Y2 activity has also been related to the activation 
of PI3K/Akt [112, 113], mitogen-activated protein kinases 
(MAPK) ERK [114–116] and JNK [116, 117], and mTOR 
kinase [118]. P2Y2 receptor-induced proliferation has been 
described for cancers in a broad group of tissues, such as the 
lung [119], breast [115, 120], ovary [121], cervix [122], liver 
[123], and stomach [124]. P2X7 receptor has been associated 
with the induction of cell migration and/or the triggering of 
EMT in the lung [125], breast [126, 127], prostate [128], 
and colorectal cancer cells [108]. P2Y2 receptor modulates 
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these processes in the breast [115, 120, 129], prostate [128, 
130], ovary [131], liver [123], stomach [132], and pancreas 
[133]. Thus, purinergic signaling constitutes a set of auto-
crine-paracrine signals that contribute to the regulation of 
multiple processes to support cancer progression.

Purinergic signaling in CSCs

The implication of ATP and the purinergic system in nSCs 
is gradually becoming clearer. And while only a few studies 
have explored the role of the purinergic system exclusively 
in CSCs, extensive research has assessed the importance of 
purinergic receptors in stem-like traits that confer a malig-
nant phenotype. Within tumor heterogeneity, CSCs are cen-
tral to cancer phenotype regulation given their chemoresist-
ance [134], enhanced DNA repair mechanisms [135], higher 
reactive oxygen species scavenging capacity [136], and 
metastatic competence [137]. In the next sections, we pre-
sent some of the most recent literature concerning purinergic 
system components and their role in stem-like traits (sum-
marized in Table 1).

ATP

One of the best-characterized systems in stem cell biology 
is the hematopoietic system, as well as the role of puriner-
gic system in stem cell differentiation and pool regulation 
in hematopoiesis. As Paredes-Gamero and coworkers have 
revised [159], P2 receptors are differentially expressed in the 
different stages of hematopoiesis, and ATP is released by dif-
ferent cells in the hematopoietic niche (endothelial cells and 
osteoblasts). ATP may act as a regulator for hematopoietic 
stem cells (HSCs). One study reported that ATP increased 
a CD34+ cell population from adult healthy donors [160], 
while another study showed how ATP reduced the percent-
age of HSCs and myeloid progenitors [161]. Although the 
effect of ATP on stem cell physiology might seem contradic-
tory, its influence on HSCs is evident.

As shown previously with nSCs, ATP might regulate CSC 
populations. In a primordial study published in 2012, the 
addition of exogenous ATP to glioblastoma cell lines (U87, 
C343, and C6) reduced spheroid size and numbers in the 
spheroid-formation assay and lessened the expression of the 
stem cell markers CD133 and OCT-4 [162]. In a similar way, 
ATP decreased the viability of patient-derived CSCs and 
increased their sensitivity to chemotherapy in glioblastoma 
[158] and acute myeloid lymphoma [157], thus implying that 
ATP can impact CSC survival. On the other hand, purinergic 
signaling could promote chemoresistance as ATP hydrolysis 
by CD73 enhanced temozolomide cytotoxicity in the glio-
blastoma cell lines M059J and U251, thereby supporting cell 
cycle arrest and cell death [163].

CD73

Ecto-5′-nucleotidase (NT5E/CD73) is one of the most exten-
sively studied components of the purinergic system and a 
highly important regulator of extracellular ATP concen-
tration. Thus, it is not surprising that there is information 
about its role in CSCs. High expression of CD73 has been 
correlated with stemness markers in different models. For 
example, in cell lines derived from patients with stage 4 
neuroblastoma, CD73 protein levels were correlated with the 
presence of stemness markers (SOX2, CD44, and ALDH) 
and transcripts of EMT markers (N-cadherin, vimentin, 
Notch) [151] (Fig.  2). In another study, hepatocellular 
carcinoma cell lines were sorted based on CD73 expres-
sion levels. According to its findings, CD73High had a high 
expression of the stemness marker SOX9 and a high capacity 
for spheroid formation. However, when CD73 was knocked 
down, SOX9 was downregulated, and spheroid formation 
was abolished [164]. In addition, a renal carcinoma cell line 
(786-O) was sorted in a similar way, and the CD73High popu-
lation upregulated Oct-3/4 expression and was enriched in 
mytomycin C-resistant cells [165], which was not observed 
in the CD73low population. In this same study, CD73 was 
evaluated in spheroids derived from 786-O cell lines, and 
higher levels of the ecto-nucleotidase were found in contrast 
with the monolayer culture.

Other studies have shown that spheroids derived from 
cancer cell lines have a higher CD73 expression than their 
parental cell line. In a cervical cancer cell line (CaSki), 
CD73 was increased in spheroids in contrast to their mon-
olayer cultures, thus promoting a higher extracellular con-
centration of ADO. The authors of the study mention the 
plausible positive feedback loop between ADO and CD73, 
given that ADO promotes TGF-� expression, which further 
enhances CD73 expression [145, 146]. To strengthen these 
findings, Bertolini and coworkers identified CD73 overex-
pression in spheroids from NSCLC cell lines and a higher 
production of ADO [147].

CD73 knockdown has been evaluated as well, and simi-
lar results have been found in different models. In a gall 
bladder cancer cell line NOZ, spheroids presented a high 
expression of CD73 and knockdown using siRNA impeded 
spheroid formation [148]. Furthermore, in ovarian cancer 
cell lines and fresh tumor tissue, CD73 silencing using 
siRNA downregulated EMT markers and spheroid forma-
tion capacity [166]. Other studies have evaluated chemo-
therapy resistance, as it is a well-established stem-like trait. 
Chemotherapy resistance was shown to be impeded after 
CD73 knockdown using siRNAs in both glioblastoma and 
breast cancer cell lines [149, 150]. Moreover, CD73 silenc-
ing using siRNA-containing nanoparticles in murine cancer 
cell lines from colon, breast, and melanoma diminished cell 
migration, proliferation, and resistance to doxorubicin [167].
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Table 1   Purinergic elements important for a stem-like phenotype

Purinergic element Effect Model Reference

A1, A2A, A2B, and A3 Augmented expression at mRNA and protein levels 
in CSCs (spheroids) derived from monolayers. 
Pharmacological antagonism downregulates 
CD133 and abolishes neurosphere formation. 
Pharmacological antagonism favors temozolo-
mide-induced cell death

U87MG and U343MG glioblastoma multiforme cell 
lines

[138]

A2A Agonist induces activation of PI3K-Akt-mTOR 
pathway. Induction of Nanog, OCT-4, SOX-2 and 
CD44. Activation favors radioresistance

MKN-45 gastric cancer cell line [139]

A2B and A3 Antagonism decreases MRP3 (multidrug resistance 
protein) in hypoxia. Antagonism and knockdown 
(using siRNA) increases sensitivity to chemo-
therapy (teniposide) in hypoxia

U87MG glioblastoma multiforme cell line [140]

A2B Spheroids present higher transcript levels. Agonist 
activation promotes spheroid formation derived 
from monolayer cultures. Pharmacological activa-
tion in CSCs induces apoptosis

MCF7 and MDA-MB-231 breast cancer cell lines [141]

A2B Overexpression in isolated CSCs. Knockdown 
impedes spheroid formation. Exogenous adenosine 
augments proliferation in CSCs and tumor forma-
tion (in mice)

U87 and GL1 glioblastoma multiforme cell lines [142]

A2B In hypoxic conditions, antagonism reduces EMT 
markers (SNAIL, TWIST, vimentin and CDH-2)

U87MG, GB,38, and GBM27 glioblastoma multi-
forme cell lines

[143]

A2B Overexpression in mammospheres. Agonist (adeno-
sine) increases ALDH activity and antagonism 
(caffeine) does the opposite

MCF7 and SUM149 breast cancer cell lines [144]

A2B Overexpression in chemotherapy-resistant cell lines. 
Up-regulation in mammospheres from the mon-
olayer. Knockdown reduces spheroid formation 
and ALDH activity and downregulates transcript 
levels of NANOG, SOX2, and KLF4

MDA-MB-231, SUM149, and SUM169 breast 
cancer cell lines

[144]

CD73 Overexpression in spheroids. Higher production of 
adenosine, compared to the monolayer. Adenosine 
promotes TGF � expression which enhances CD73 
expression

CaSki cervical cancer cell line [145, 146]

CD73 Overexpression in spheroids. Higher production of 
adenosine, compared to the monolayer

H2228, H3122, and A549 NSCLC cell lines  [147]

CD73 Overexpression in spheroids. Knockdown decreases 
spheroid formation

NOZ gall bladder cancer cell line [148]

CD73 Knockdown using nanoparticles carrying siRNAs 
favor chemotherapy

4T1 breast cancer cell line [149]

CD73 Knockdown using nanoparticles carrying siRNAs 
favors sensitivity to temozolomide

C6 and U138MG glioblastoma multiforme cell line [150]

CD73 High protein levels correlated to stem-like mark-
ers (SOX2, CD44, ALDH) and EMT markers 
(N-Cadherine, vimentin, Notch)

Patient-derived high-risk stage 4 neuroblastoma cell 
lines (CHLA-20 and CHLA-90)

[151]

P2X7 Agonist activation upregulates EMT markers 
in mRNA (CDH2, SNAIL, Zeb1) and protein 
(N-cadherin, ZEB1, vimentin, TWIST). SMAD2 
phosphorylation. Effects counteracted by P2X7 
antagonist (A438079)

Patient-derived glioblastoma stem cells [152]

P2X7 Overexpressed in leukemia-initiating cells and leu-
kemia granulocyte-monocyte progenitors. Knock-
out decreased homing and invasiveness

Murine-induced AML model [153]

P2X7 Activation increases EMT markers (vimentin, 
N-cadherin). Agonist administration promotes 
tumorigenesis and metastasis

HOS/MNNG osteosarcoma cell line. Xenograft 
tumor in mice

[106]

P2X7 Synthetic antagonists inhibit spheroid formation TS15-88 glioblastoma cell line [154]

30



Purinergic Signalling (2025) 21:23–38 

Table 1   (continued)

Purinergic element Effect Model Reference

P2X7 Activation augments EMT markers (vimentin, snail, 
and fibronectin)

SW-620 and HCT-116 colorectal cancer cell lines. 
Xenograft tumor in mice

[108]

P2Y2 High protein levels correlate with Notch-4 Patient-derived breast cancer cells [155]
P2Y4 Activation induces neurite differentiation. Transient 

overexpression favors differentiation to neurites
SH-SY5Y neuroblastoma cell line [156]

P2Rs Caspase-mediated apoptosis induced by ATP. 
Increased sensitivity to chemotherapy (Ara-C) by 
ATP

CD34 + CD38- from AML patient-derived cells [157]

P2Rs Decreases viability by exogenous ATP, counteracted 
by P2 antagonists. Increased sensitivity to temozo-
lomide using exogenous ATP

Patient-derived glioblastoma stem cells [158]

Fig. 2   Purinergic signaling in the process of the epithelial-mesen-
chymal transition in cancer cells. Epithelial-mesenchymal transition 
(EMT) involves the transformation of epithelial cells into mesenchy-
mal-like cells, characterized by the loss of epithelial characteristics 
and the acquisition of mesenchymal traits. This transition is associ-
ated with increased migratory capacity, invasiveness, and the devel-
opment of stem-like properties, leading to the formation of cancer 
stem cells (CSCs). CSCs are resistant to standard cancer treatments 
and contribute to tumor recurrence and metastasis. Purinergic sign-
aling encompasses signaling pathways mediated by purine nucleo-
tides, such as adenosine triphosphate (ATP), as well as its breakdown 
products, such as adenosine, facilitated by the ectoenzyme CD73. 
These signaling molecules interact with specific purinergic recep-
tors expressed on the cell surface, including ADORA, P2X, and 
P2Y receptors. Extensive research has implicated purinergic signal-
ing in the regulation of EMT and the maintenance of CSCs. Nota-
bly, the P2X7 receptor has emerged as a key player in this process. 
Activation of P2X7 isoform B has been associated with the induc-

tion of EMT and the expression of EMT-related transcription fac-
tors, such as TWIST and SNAIL, as well as mesenchymal markers 
like vimentin and N-cadherin. Additionally, P2X7 receptor activation 
has been linked to the acquisition of stem-like properties by cancer 
cells. Another important component of the purinergic signaling path-
way involved in EMT and presence of stemness markers (SOX2, 
CD44 and ALDH) is CD73, an ectoenzyme responsible for generat-
ing extracellular adenosine. Adenosine can activate specific adeno-
sine receptors, including ADORA A2A and A3 receptors, which 
have been shown to promote EMT and the expression of EMT mark-
ers. While the role of P2Y receptors in EMT is not well-studied, the 
activation of P2X7 isoform A and ADORA A2B receptors appears 
to counterbalance the EMT process. Overall, modulating purinergic 
signaling pathways, particularly by targeting P2X7 isoform B, CD73, 
and ADORA A2A and A3 receptors, shows potential as a therapeu-
tic strategy to inhibit EMT, disrupt the stem-like properties of can-
cer cells, and enhance the effectiveness of cancer treatments. Created 
with BioRender.com
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Adenosine receptors

ADO is present in high concentrations in the TME, and its 
relevance as an immune modulator can be reviewed else-
where. Here, we will focus on the role of adenosine receptors 
(ADORA) in stem-like properties. In glioblastoma cell lines, 
there is homogenous information showing that adenosine 
receptors A1, A2A, A2B, and A3 are overexpressed in sphe-
roids and are correlated with stemness markers (CD133), 
EMT markers (vimentin, SNAIL, TWIST, and CDH1), and 
pharmacological antagonism. Knockdown of this recep-
tors using siRNAs abolishes spheroid formation capacity, 
increases the sensitivity to chemotherapy, and impedes 
tumorigenesis [138, 140, 142, 168, 169]. In breast can-
cer, there is clear evidence that A2B receptor is correlated 
with a stem-like phenotype, since A2B is overexpressed in 
spheroids from different cell lines (MCF7, MDA-MB-231, 
SUM149, and SUM169) and its pharmacological activation 
in such CSCs enhances ALDH activity. On the other hand, 
A2B knockdown diminishes spheroid formation capacity 
and stemness markers (NANOG, SOX2, KLF4, and ALDH 
activity) [141, 143, 144]. To reinforce the importance of 
ADO receptors in CSCs, one study evaluated A2A in a gas-
tric cancer model (MKN-45 cell line) and showed that recep-
tor activation induced transcription factors that are essential 
for stemness (Nanog, OCT-4, SOX2, and CD44) and favored 
radioresistance [139] (Fig. 2).

P2Y receptors

In comparison to the other elements of the purinergic sys-
tem, P2Y receptors have been poorly assessed in CSCs. In 
a neuroblastoma model (SH-SY5Y cell line), P2Y4 recep-
tor pharmacological activation induced differentiation to 
neurites, as did transient overexpression [156]. Although 
P2Y2 receptor is one of the most interesting targets for can-
cer research, there is only one paper evaluating, albeit tan-
gentially, its role in stem-like properties. In patient-derived 
breast cancer cells, P2Y2 receptor levels were correlated 
with the stemness marker Notch-4 [155]. The lack of infor-
mation on the topic of P2Y receptors, CSCs, and stem-like 
traits in cancer is evident.

P2X7 receptor

P2X7 receptor, which induces tumor proliferation, contrib-
utes to the maintenance of embryonic stem cell pluripotency 
[170, 171]. And similar functions are expected in maintain-
ing a pool of CSCs capable of causing tumor relapse and 
chemoresistance [172]. A piece of evidence points to P2X7 
receptor as a key player in metabostemness, the metabolic 
reprogramming of cancer cells toward an undifferenti-
ated phenotype (i.e., CSCs). P2X7 receptor modulation is 

associated with metabolic targets closely related to cellular 
events for stemness phenotype acquisition [173]. Impor-
tantly, Lameu and coworkers have focused on the functions 
of P2X7 receptor and its isoforms in promoting the pheno-
typic transition of the tumor into a stemness stage and EMT. 
They have observed that P2X7A is important for triggering 
CSC differentiation, since knockdown cells for this isoform 
remain in an undifferentiated state. In contrast, P2X7B acti-
vation is implicated in EMT [110, 172], promoting treatment 
resistance and metastatic formation.

Similar to P2Y receptors, P2X7 receptor involvement in 
CSCs has been studied solely in a tangential way. In this 
context, using glioblastoma models, P2X7 activation has 
been related to the acquisition of EMT markers in mRNA 
(CDH2, SNAIL, Zeb1) and proteins (N-cadherin, ZEB1, 
vimentin, and TWIST) [152], as well as the promotion of 
spheroid formation [154]. Other cancer models, such as 
osteosarcoma and colorectal cancer cell lines, have dem-
onstrated similar effects, where P2X7 activation increased 
EMT markers both at mRNA and protein levels [106, 112]. 
Yet, there is a study evaluating the presence of P2X7 recep-
tor in different leukemia-initiating cells. This study used an 
induced murine model of acute myeloid leukemia, and P2X7 
receptor was detected at higher levels in leukemia-initiating 
cells and granulocyte-monocyte progenitors [153]. Although 
the latter findings are remarkable, to our knowledge, there 
are no other papers characterizing P2X7 or their function 
in CSCs.

Purinergic system and EMT

Thus far, we have described several purinergic elements 
and their implication in CSC biology. To elaborate on the 
purinergic system’s involvement in the stem-like phenotype, 
we will discuss how purinergic signaling modulates one 
important transdifferentiation program that has been shown 
to be continuously active in stem cells: EMT.

EMT is a transdifferentiation program in which epithelial 
cells gain mesenchymal characteristics, and it is involved 
in embryonic development, tissue repair, and cancer cell 
migration. EMT has been related to stem-like properties. 
Mammary epithelial cells undergoing EMT exhibited an 
amplified stem-like phenotype in terms of spheroid forma-
tion, soft agar colonies, and tumorigenic properties [174].

Considering that EMT confers stem-like properties, 
we focused on papers concerning the importance of the 
purinergic system in EMT. First, a study revealed that, in 
glioblastoma cell lines, hypoxia favored CD73 and ADO 
A3 receptor expression, which is notable considering the 
hypoxic conditions within the tumor. The study also showed 
that A3 receptor pharmacological inhibition decreased EMT 
markers such as TWIST, SNAIL, vimentin, and N-cadherin 
in such cell lines [168] (Fig. 2). With respect to P2 receptors, 
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in colorectal cancer cell lines, pharmacological activation of 
P2X7 receptor led to EMT activation, as demonstrated by 
augmented vimentin, Snail, and fibronectin expression and 
decreased E-cadherin expression [108]. In neuroblastoma, a 
counterbalance of P2X7 isoforms was observed to promote 
EMT, pointing to an epithelial-prone P2X7A-related effect 
and P2X7B as an EMT-favoring isoform [172] (Fig. 2).

CSCs are highly resistant to chemotherapy and radio-
therapy. Therefore, the paper published by Nguyen and 
coworkers is quite fascinating. According to the authors, a 
radioresistant pancreatic cancer cell line favored a mesen-
chymal state, which showed downregulation in E-cadherin 
and upregulation in vimentin and, surprisingly, CD73. In 
this same study, CD73 expression interference with shRNA 
led to radiosensitivity and an epithelial phenotype, evidenc-
ing the importance of CD73 in acquiring a mesenchymal 
phenotype [175].

Concluding remarks

ATP and ADO in the purinergic system are important for the 
regulation of tumor cell proliferation and malignant progres-
sion, as well as for modulating the immune response and 
TME biology. There is abundant information highlighting 
the importance of the purinergic system in nSCs but not in 
CSCs, even when it has been proven that the system occurs 
in healthy conditions and is relevant in cancer pathologies. 
ATP depletion by CD73 activity might be involved in stem-
like properties, but it raises the question of whether ATP 
depletion or ADO generation creates such a phenotype. 
Furthermore, conclusions should be drawn with caution, 
given that the phenotype produced by purinergic receptor 
activity depends on the tissue in question, the receptor being 
studied, and the experimental conditions. Diverse elements 
of the purinergic system have been shown to play essential 
roles in maintaining stemness, especially CD73, A2B, and 
P2X7 receptor, yet there is an obvious lack of understanding 
about P2Y receptors. The purinergic system is undoubtedly 
a promising field of knowledge for comprehending CSC 
biology.
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