
Borsa Istanbul Review 25 (2025) 1378–1390 

A
2

 

Contents lists available at ScienceDirect

Borsa Istanbul Review

journal homepage: www.elsevier.com/journals/borsa-istanbul-review  

High-frequency dynamics of Bitcoin futures: An examination of market 
microstructure
Mateus Gonzalez de Freitas Pinto
Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, São Paulo - SP, 05508-090, Brazil

A R T I C L E  I N F O

Keywords:
Bitcoin futures
Cryptocurrency
Market microstructure
High-frequency trading
Mixture of Distributions Hypothesis
Intraday pattern

 A B S T R A C T

We investigate the high-frequency dynamics of Bitcoin and Ethereum perpetual futures traded on Binance from 
January 2020 to December 2024. After a thorough discussion of the stylized facts and particularities of Bitcoin 
perpetual futures, based on previous research in futures markets, we evaluate the fit of two competing models 
of market microstructure: the Mixture of Distributions Hypothesis (MDH) and the Intraday Trading Invariance 
Hypothesis (ITIH). Using intraday data at different levels of aggregation, we investigate the relationship 
between return volatility per transaction and trade size. We find evidence favoring the MDH in the crypto 
futures market.
1. Introduction

Bitcoin (BTC) is a decentralized electronic currency that enables 
monetary transfers over the Internet without relying on traditional 
financial institutions such as banks. It has grown exponentially in 
popularity since its online emission in 2009 (Eross et al., 2019) and 
is built on a technology called blockchain, introduced in Nakamoto 
(2008).

Unlike traditional currencies, Bitcoin is not controlled by any cen-
tral authority or issued by any central bank. Its decentralized nature 
makes it resistant to censorship and allows access to financial systems in 
regions with limited banking infrastructure. Recent research has been 
conducted on the institutional impact of Bitcoin and challenges for 
regulation (Berg et al., 2019; Guegan, 2017).

Given its limited supply of 21 million coins (Norland & Putnam, 
2019), the resource is scarce and therefore its price is adjusted by 
market conditions. As such, Bitcoin has been used as a form of payment, 
a store of value, or an investment (Alfieri et al., 2019). Some authors 
still question whether it is an asset or a currency, without a clear 
consensus on this matter (Alfieri et al., 2019; Glaser et al., 2014; 
Yermack, 2013). In spite of that, there have been periods of increases 
and shifts in BTC/USD prices, usually related to periods of political, 
economic or social stress in financial markets.

The first surge in the value of Bitcoin was in 2017, with an increase 
of more than 21,000% in value from January 12 to March 17, which 
can be potentially attributed to a decrease in trust in central banks 
due to financial crises and European bailouts (Eross et al., 2019). More 
recently, from March 2020 to March 2021, there was an increase of 
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more than 1000% in the BTC/USD price due to COVID-19 and the 
subsequent economic crisis. Macroeconomic instability and political 
uncertainty arising from the invasion of Ukraine in 2016 and again in 
2022 and the war in Israel in 2023, as well as other political tensions in 
Asia, Europe, and the United States, might also have had an effect on 
the confidence of investors in regulated currencies, leading to BTC/USD 
all-time highest values in November 2024. For a discussion, see Al-
Shboul et al. (2023), Alexakis et al. (2024), Auer et al. (2023), Bouri 
et al. (2020) and Chen et al. (2024).

Binance is a platform for trading digital assets, including Bitcoin. 
It was founded in 2017 and has grown to become one of the largest 
cryptocurrency exchanges worldwide measured by trading volume. In 
addition, Binance provides intraday historical data on trades since the 
end of 2019 for the spot and futures market.

Given the increasing prominence of cryptocurrencies and other 
digital assets on the market, in 2019 Binance launched its first fu-
tures market, in particular the BTC/USDT. Bitcoin futures aid in price 
discovery between the spot and futures markets and allow partici-
pants to hedge against Bitcoin price volatility and speculate on price 
movements. Unlike traditional derivatives, Bitcoin perpetual futures 
do not have an expiration date, allowing investors to hold positions 
indefinitely. These contracts use funding rates to align their prices 
with the spot market and are popular for hedging, leverage trading, 
or speculating on Bitcoin price movements. For the sake of simplicity, 
hereinafter we refer to Bitcoin perpetual futures contracts as BTC 
futures or Bitcoin futures, unless otherwise stated.

After the surge of Bitcoin, other cryptocurrencies and technologies 
emerged, with Ether (ETH) being one of the most important. Ethereum 
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is a decentralized open-source blockchain platform that allows the 
creation and execution of smart contracts running on the blockchain 
without the need for intermediaries. It was originally proposed in Bu-
terin (2014), extending the capabilities of Bitcoin by incorporating a 
built-in programming language, allowing developers to build decen-
tralized applications in several areas, one of which includes finance. 
Ether is the native cryptocurrency of the platform and is used to pay 
for computational resources and transaction fees. It is qualitatively 
different from Bitcoin, as it was designed primarily to be a utility 
token to pay for the use of the Ethereum Virtual Machine (EVM) (Bel-
lon & Figuerola-Ferretti, 2022). Ethereum provides a programmable 
infrastructure, making it one of the most widely adopted blockchain 
networks. A detailed commentary on Ethereum can be found in John 
et al. (2025). Following the success of Bitcoin futures, in Decem-
ber 2019 Binance introduced ETH futures to expand its portfolio of 
products.

In this article, we study the intraday dynamics of Bitcoin futures 
traded on Binance from January 2020 to December 2024. Following the 
analysis of Andersen et al. (2020), we aim to understand the dynamics 
of four variables of interest: volume, trade size, number of trades, 
and volatility of returns, and in particular to understand whether the 
Mixture of Distributions Hypothesis (MDH) in the sense of Clark (1973) 
and Harris (1987) applies to the data or whether the Intraday Trading 
Invariance Hypothesis (ITIH) in the sense of Andersen et al. (2020) 
better suits the data.

To provide a complimentary view, we also compare the dynamics of 
Bitcoin futures and Ether futures. Although these cryptocurrencies are 
often compared to each other, they differ significantly in qualitative 
terms as well as in mechanism, scalability, and conceptualization. One 
of the most important differences is at the protocol level: while Bitcoin 
operates in proof-of-work, Ethereum has been operating in proof-of-
stake since 2022 (Arslanian, 2022). Therefore, we provide a comparison 
of two different cryptocurrencies that, although both very liquid, are 
still structurally and functionally different, with protocol-level charac-
teristics that could affect the microstructure of the market, and that 
may also have diverse potential traders and investors.

The MDH, in the sense of Clark (1973), describes a theoretical 
framework in which the return volatility 𝑆𝑡 and the trading volume 
𝑉𝑡 are jointly driven by a latent process or, equivalently, the volatil-
ity per number of trades 𝑆𝑡∕𝑁𝑡 is related to the trade size 𝑄𝑡. This 
essentially means that large spikes in trading volume are related to 
higher volatility of returns, because price movements are determined 
by stochastic information arrival. On the other hand, the ITIH proposed 
by Andersen et al. (2020) and Kyle and Obizhaeva (2016) implies that, 
all else being equal, the mean trade size 𝑄𝑡 drops if the volatility of the 
return increases or the trading intensity declines.

Volatility, in the sense of the MDH, is primarily driven by the 
arrival of new information and macroeconomic factors. In the sense of 
the ITIH, volatility is a function of risk transfer and market liquidity 
constraints, which follows the scaling law discussed in Andersen et al. 
(2020) and Kyle and Obizhaeva (2016). Since these hypotheses have 
fundamental differences, a test for which model better describes the 
Bitcoin and Ether futures markets is of interest theoretically and for 
market players and practitioners.

The MDH of Clark (1973) and Eross et al. (2019) posits that volatil-
ity and trading volume are jointly driven by a latent information arrival 
process. For the MDH, it holds that 𝑆𝑡∕𝑁𝑡 ∼ 𝑄𝛽

𝑡  where 𝛽 > 0. Therefore, 
larger average trade sizes are associated with higher return volatility 
per trade, supporting the theory that trading activity is not purely 
noise-driven or liquidity-driven, but responsive to information shocks. 
If corroborated in our analysis, this would imply that both BTC and 
ETH futures markets behave like information-diffusion systems, where 
bursts of new information increase both volatility and trade size. The 
implications thereof will be discussed in further sections.

Previous studies such as Eross et al. (2019) have analyzed the intra-
day dynamics of the spot market, but did not employ the methodology 
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of Andersen et al. (2020). Others, such as Chou et al. (2023), Patra and 
Gupta (2025) and Wang et al. (2019), have examined the cryptocur-
rency market at the intraday level or compared it with other settings, 
and should be considered complementary to this article, as we analyze 
the BTC and the ETH futures market with the goal of understanding 
the microstructure of the market. Our study therefore contributes by 
both investigating the validity of those models applied to a broader 
class of assets and by studying the cryptocurrency futures market 
microstructure. To the best of our knowledge, this paper provides a first 
systematic comparison of these competing frameworks of foundational 
market microstructure theories using high-frequency data for Bitcoin 
and Ether derivatives. By evaluating the relationship between volatility 
per trade and average trade size across an array of time aggregations 
and an array of distributional quantiles, we provide a detailed overview 
of information efficiency and order flow dynamics in these specific 
decentralized derivative markets, which are still underexplored in the 
literature.

The remainder of the paper is organized as follows. Section 2 
presents a review of the literature on cryptocurrencies and high-
frequency data. Section 3 provides a thorough discussion of the data 
and its stylized facts, as well as a description of the methodology of 
this study. In Section 4 we present and discuss the empirical results. In 
Section 5 we close with some final remarks.

2. Cryptocurrency literature review

High-frequency time series usually contain stylized facts that should 
be taken into account when modeling their behavior. Stylized facts can 
be defined as a set of statistical properties emerging from independent 
empirical studies of assets (Cont, 2002) that are partly due to the forma-
tion of prices and market microstructure. They are usually shadowed in 
lower frequencies and other types of time series, but also depend on the 
liquidity of the financial markets in which assets are traded (Dacorogna 
et al., 2001; Zivot & Wang, 2005).

Typical stylized facts for prices are long-range dependence on the 
conditional mean and conditional variance, intraday jumps, volatility 
clusters, fat-tailedness, non-normality, and skewness (Cont, 2002; Da-
corogna et al., 2001). In terms of structure, the data are available in 
the ‘‘tick-by-tick’’ format, which means that the quantities of interest 
are not usually available in homogeneously spaced time, but rather are 
irregularly spaced. Therefore, a regularizing procedure is necessary to 
make the time series homogeneous, so that quantities can be computed 
from the trades and quotes databases.

Cryptocurrencies are not exempt from these stylized facts. In fact, 
Scaillet et al. (2018) discusses the impacts of jumps on market activi-
ties, for example, with jumps commonly occurring at the intraday level. 
However, because cryptocurrency markets operate in a continuous 
24/7 setting and do not have trading hours as other usual markets 
do, Pinto et al. (2023) notes that the magnitude of intraday jumps or 
spikes in prices is less noticeable compared to assets traded in regulated 
markets with regular trading hours.

The presence of price clusters in Bitcoin is discussed in Urquhart 
(2017). It is also possible to identify jump clusters in other cryptocur-
rencies, Pinto et al. (2023), Scaillet et al. (2018). In Conlon et al. (2024) 
the authors study the relationship between volume and volatility of 
Bitcoin in futures and spot markets, using estimated realized volatility 
and a metric based on the Chicago Mercantile Exchange (CME) Bitcoin 
Reference Rate.

In Bariviera et al. (2017), the authors investigate other stylized facts 
of the Bitcoin market, assessing the presence of long-range dependence 
to infer whether it is generated by a self-similar stochastic process.

A study of the cointegration of implied and nominal Bitcoin ex-
change rates is provided in Smith (2016). Auer et al. (2023) explores 
how rising Bitcoin prices drive the entry of new retail users, particularly 
younger and risk-seeking investors, and the effect of exogenous shocks 
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Fig. 1. Daily averages and 2-week moving averages of price, volume, number of trades, and trade size of Bitcoin futures from January 2020 to December 2024.
in the trading volume. In a recent analysis of the liquidity of Bitcoin, Loi 
(2018) concludes that, on average, stocks are more liquid than Bitcoin.

On the matter of the nature of Bitcoin, Alfieri et al. (2019) argues 
that Bitcoin behaves like a common stock, evaluating its performance 
with risk adjusted return models and finding that it offers opportuni-
ties for diversification due to its low correlation with market indexes 
and replicating portfolios. Even though central authorities are usually 
against recognizing Bitcoin as a medium for exchange, central banks 
are considering introducing cryptocurrencies and digital currencies of 
their own (Del Tedesco Lins & Ribeiro Hoffmann, 2024; Hairudin & 
Mohamad, 2024). Ether is rather different, as it exists on a smart 
contract platform used for decentralized applications (DeFi, NFTs, etc.) 
and Ether functions as the utility token to pay for the EVMs, therefore 
attracting not only speculators but also developers, DeFi traders and 
NFT users, for instance (Arslanian, 2022; John et al., 2025).

An analysis by Kajtazi and Moro (2019) discusses the role of Bitcoin 
in optimal portfolios across different constraints using conditional value 
at risk (CVaR), suggesting that it remains a speculative asset with 
potential diversification benefits.

A recent study of Yi et al. (2022) explores the characteristics of 
Bitcoin as an investment asset by comparing it with other major in-
vestment assets. The authors examine Bitcoin’s market efficiency using 
the Hurst exponent and its long-term market equilibrium through Shan-
non’s entropy. Although the findings suggest that the Bitcoin market is 
less efficient than the other markets the authors compared it with, it 
does not differ much in terms of long-run market equilibrium.

Regarding studies on the estimation of the volatility of Bitcoin 
using GARCH models, one can refer to Charles and Darné (2019), 
Katsiampa (2017) and Liu and Serletis (2019). Still regarding volatility, 
in Kim et al. (2021) the authors introduce VCRIX, a volatility index for 
the cryptocurrency market, modeled after the VIX used in traditional 
financial markets.

In a recent study, Chen et al. (2024) shows that Bitcoin returns 
and volatility are influenced by political uncertainty indicators, such as 
geopolitical risk and party conflict indices, especially during financial 
crises. The authors conclude that some investors use Bitcoin as a 
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hedge and a safe-haven asset that mitigates political uncertainty. In 
another sense, Al-Shboul et al. (2023) examined the spillover effects 
between traditional currencies and cryptocurrencies during the COVID-
19 pandemic, concluding that cryptocurrencies acted as ‘‘safe havens’’ 
during this period of market uncertainty. Other studies on this matter 
include (Alexakis et al., 2024; Bouri et al., 2020).

3. Methodology and data

3.1. The data

Our dataset comprises intraday trades of Bitcoin and Ether futures 
executed on Binance from January 2020 to December 2024.1 We 
therefore observe all transactions executed across years and, from this 
information, we aggregate it into several levels of aggregation: 1-min, 
5-min, 10-min, 15-min, 30-min, 60-min levels for intraday aggregations 
and a daily level of aggregation of four financial metrics: average trans-
action price (denoted hereinafter 𝑃𝑡), transaction rate (trades per time 
unit, 𝑁𝑡), average percentage return variance (𝑆𝑡), average (unsigned) 
number of contracts per transaction (𝑄𝑡) and cumulative trading vol-
ume (𝑉𝑡). We denote the lowercase 𝑝𝑡 = log(𝑃𝑡), 𝑛𝑡 = log(𝑁𝑡), 𝑠𝑡 =
log(𝑆𝑡), 𝑞𝑡 = log(𝑄𝑡), and 𝑣𝑡 = log(𝑉𝑡). Following Andersen et al. (2020), 
the intraday and daily aggregations are calculated by averaging and 
summing over the respective interval of the 1-min level aggregation. 
The choice of using progressively increasing frequencies for the analysis 
diminishes the effects of microstructure noise at very high frequencies 
and reveals whether the hypothesized law persists across time scales. 
This provides a full array of results, analyzing their consistency and 
stability across frequencies.

It is important to stress that, although we include the 1-min aggre-
gation in the analysis, we acknowledge that the data might be too noisy 
and lead to distortions at such a high frequency, since the series can be 
subject to market microstructure effects (e.g. bid–ask bounce, discrete 

1 Data can be obtained from Binance’s Public Market Data webpage.
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Fig. 2. Daily averages and 2 week moving average of prices, volume, number of trades and trade size of Ether futures from January 2020 to December 2024.
price movements, and order book frictions), which have the potential 
to distort volatility and therefore our results. The 5-min interval has 
been shown to generate the most accurate results and forecasts when 
realized volatility is used in microstructure studies of the market (Liu 
et al., 2015). A comprehensive discussion on the impact of frequency 
choice can be found in the works of Andersen et al. (2001), Liu et al. 
(2015), Liu and Serletis (2019) and Ngene and Wang (2024).

The logarithms of each quantity (the lowercase aggregations) are 
straightforward. We recompute the annualized volatility according to 
its corresponding time aggregation and transform it by the square-root 
rule: 𝑆Annual𝑡 = 𝑆𝑡×

√

𝑇 , where 𝑇  represents the number of time intervals 
per year at each respective frequency. Since Bitcoin has no trading 
hours, to annualize 1-min volatility, we use 𝑇 = 525, 600, and use the 
same logic to annualize other frequencies (e.g. 𝑇 = 52,560 for 10-min 
and 𝑇 = 365 for daily data).

Following Andersen et al. (2020), we will also analyze the data 
from the perspective of trading hours, which we hereinafter refer to 
as ‘‘regimes’’. The construction of the trading regimes is adapted and 
based on the segmentation of 24-h central time (CT) to reflect global 
trading activity across major financial markets. They are defined as 
follows.

1. Asia: from 19:00 to 2:00 CT.
2. Europe: from 2:00 to 8:30 CT.
3. Americas: from 8:30 to 15:15 CT.
4. Transition Zone: between 15:15 and 19:00 CT.

The Transition Zone represents a lower liquidity period when the 
US markets have closed and Asian markets are not yet fully open.

Segmentation into these regimes allows for the examination of 
market behavior, such as volatility and trading volume, during each 
trading regime and highlights the impact of overlaps and transitions 
between major global markets.

Figs.  1 and 2 depict the daily aggregation of the four market metrics 
in both datasets. The presence of significant price swings aligns with 
the aforementioned price cycles—particularly the sharp appreciations 
in 2021 and 2024—even though it is more pronounced for BTC than for 
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ETH. The two-week moving average reveals that, while price volatility 
remains high, the long-term growth trajectory follows a structured 
pattern.

From Figs.  1 and 2 one can also note that surges in trading activity 
often coincide with price fluctuations. Peaks in volume during specula-
tive phases could indicate that market participation intensifies during 
periods of high volatility.

The number of trades appears to exhibit a cyclical pattern with 
increased activity during bullish market periods. The increasing fre-
quency of transactions over time is indicative of an evolving market 
structure.

Finally, the bottom right panel of both Figs.  1 and 2 indicates a 
noticeable negative trend in the average trade size. This suggests a 
structural shift in the microstructure of the crypto market, which would 
merit attention and warrant further investigation, as it may stem from 
the growing influence of retail trading or increased order fragmentation 
by institutional investors.

Figs.  3 and 4 depict one of the aggregations (daily) of the data that 
will be used as a test in the methodology and empirical results sections, 
displaying the log transform of the following quantities: 𝑠𝑡 − 𝑛𝑡, 𝑠𝑡, 𝑛𝑡, 
and 𝑞𝑡. There has been a negative trend in the difference between log-
variance and log-trade-count over the years. One can infer that, as the 
number of trades increases, the return variance per trade decreases, an 
observation consistent with increasing market efficiency.

With the exception of some episodic spikes in volatility, there was 
also a decrease in return volatility over time (𝑠𝑡). The increase in the 
trade count of both Bitcoin and Ether futures, 𝑛𝑡, suggests that the depth 
of the crypto futures market has increased over time, leading to greater 
price efficiency. There is a noticeable decrease in trade size over the 
years, following a pattern similar to that of the difference between log 
variance and log-trade-count.

Figs.  5 and 6 show intraday variations in trading behavior, ana-
lyzing trade count, trade size, return variance, and volume across the 
different market regimes previously defined and over different years. 
The plots show the average value at the yearly level of 𝑣𝑡, 𝑠𝑡, 𝑛𝑡 and 𝑞𝑡
for each trading hour for the years 2020 to 2024. It is clear from the 
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Fig. 3. Daily aggregation of market metrics for BTC futures used for testing the MDH vs. the ITIH.
Fig. 4. Daily aggregation of market metrics for ETH futures used for testing the MDH 𝑥 the ITIH.
plots that the year 2020 is largely different for both derivatives from the 
remaining years of 2021 to 2024 in terms of volatility, trading volume, 
trade size, and trade counts, which could be related to the COVID-19 
pandemic and its effects on cryptocurrency markets. It could also stand 
out because it was the first trading year of the BTC and ETH futures and 
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the financial instrument may not yet have reached maturity during that 
period.

Analyzing yearly averages of log volatility 𝑠𝑡 per time of day, one 
can note that volatility tends to increase in trading hours close to the 
transitions between regimes, particularly during the Asia-to-Europe and 
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Fig. 5. Average BTC futures metrics per time of day — yearly aggregation.

Fig. 6. Average ETH futures metrics per time of day — yearly aggregation.
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Fig. 7. Average BTC futures metrics per time of day — monthly aggregation for 2022–2024. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
Europe-to-Americas regime changes, which is an interesting stylized 
fact of BTC futures. Years 2020 and 2021 exhibit a clear pattern 
of increased volatility compared to the subsequent years, with less 
pronounced spikes and a lower volatility level. American and Asian 
regimes are associated with higher volatility in the years 2021–2024. 
The transition zone is associated with a lower volatility than the others.

From the annual mean number of trades, 𝑛𝑡, it is clear that trading 
activity follows a strong cyclical pattern, with lower participation dur-
ing the early Asian regime and the Transition Zone, and peak activity 
occurring during the American regime. This has been consistent over 
several years and both cryptocurrencies, maintaining this U-shaped 
pattern of number of trades across the trading day. This observation is 
consistent over years, although 2020 clearly differs from other years, 
indicating a persistent intraday liquidity cycle. Peaks in 𝑛𝑡 apparently 
occur in trading hours associated with regime transitions.

There is a clear trend of a decrease in 𝑞𝑡 as time passes, which is 
consistent with the negative slope noticed in Figs.  1 and 2. Trade sizes 
tend to be larger at regime start and end times, which could be caused 
by liquidity-driven rebalancing at key market intervals, but this matter 
merits further analysis and investigation.

The yearly average trading volume 𝑣𝑡 by time of day exhibits an 
interesting U-shaped pattern. Volumes tend to be higher following 
the European and American trading regimes, peaking in the transition 
between them. During the Transition Zone regime, as expected, trad-
ing volume is lower for all year averages, which suggests that it is 
associated with lower liquidity in markets.

We also explore the intraday cycle with monthly aggregation of 
the data. Since we realized that years 2020 and 2021 were behaving 
differently than the years 2022 onward, we separate out those years 
and compute the monthly average across 2022–2024.

Figs.  7 (BTC futures) and 8 (ETH futures) show the four metrics 
𝑣𝑡, 𝑛𝑡, 𝑠𝑡 and 𝑞𝑡 with their monthly averages over years, excluding 
the years 2020 and 2021. The color palette is adjusted to correspond 
to the seasons of the year in the Northern Hemisphere, thus making 
visualization of seasonal patterns straightforward.
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As expected, Figs.  7 and 8 follow the same hourly pattern seen 
in Figs.  5 and 6, since the latter is an annual aggregation and the 
former is a monthly aggregation. Over the months, the annual pattern 
identified in Figs.  5 and 6 remains stable: trading activity is higher in 
the American regime and during regime transitions, trading activity is 
cyclical and 𝑣𝑡 and 𝑛𝑡 are U-shaped, peaking in the American regime 
and reaching their lowest values in the Transition Zone.

However, a few aspects are worth noting, particularly seasonal 
behavior. For both BTC and ETH futures, the trade volume 𝑣𝑡 appears to 
remain unaffected or less affected by the month of the year, following 
the pattern identified in the annual aggregation. The other variables 
seem to exhibit a more seasonal pattern, with the months of the year 
clearly distinguishable in the plot, even if for 𝑛𝑡 it is to a lesser extent.

The average of the log number of contracts per trade 𝑞𝑡 from 
2022–2024 is lower in April and May, then increasing in June, July, and 
August. In Fig.  7 (BTC futures) it shifts to its higher phase from Septem-
ber to March. It appears to follow a clear seasonal pattern, with a lower 
𝑞𝑡 in months associated with spring and summer months in the Northern 
Hemisphere, and a higher 𝑞𝑡 in months associated with fall and winter 
in the Northern Hemisphere. This could be the results of portfolio 
adjustments before the end of the year and preparations for the market 
trends for Q1. Although the difference between spring/summer and 
fall/winter is less distinct in the case of ETH futures, a discernible 
differentiation remains, following the same overall trend.

A similar but reversed pattern is identified in 𝑛𝑡, even though 
the months are less distinguishable in Figs.  7 and 8: for the years 
2022–2024, there was a higher number of trades in the first semester, 
with 𝑛𝑡 decreasing from January onward. This phenomenon is less 
noticeable in the plot of ETH futures.

Log volatility, 𝑠𝑡, is another variable with clear, distinguishable 
seasonal patterns over the months observed in 2022–2024 for both 
ETH and BTC. January, February, and March have higher volatility, 
followed by a medium level of volatility from April to August and 
lower volatility from September to December. This pattern of volatility 
is associated with new-year and end-year positioning, with risk-off 
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Fig. 8. Average ETH futures metrics per time of day — monthly aggregation for 2022–2024. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
behavior for the latter and more speculation or hedging in the former. 
This suggests trading behavior that is most likely associated with 
institutional investors, and is consistent in both derivatives.

The high activity levels in certain months could be due to fiscal 
reporting cycles, risk management adjustments, and portfolio rebalanc-
ing. The lower activity levels in summer in the Northern Hemisphere 
is apparent in both figures.

3.2. Methodology

Our analysis is based mainly on Andersen et al. (2020). The paper 
explores an invariance relationship in high-frequency trading data, 
specifically in the E-mini S&P 500 futures market. The authors es-
tablished that the volatility of the return per transaction is inversely 
proportional to the square of the expected trade size. This relation-
ship holds across both time series and intraday trading cycles, which 
challenges existing models in market microstructure with a trading 
invariance hypothesis.

The Mixture of Distributions Hypothesis (MDH) was presented in 
the seminal paper of Clark (1973) and was further discussed in several 
articles, including those of Harris (1987) and Tauchen and Pitts (1983). 
It offers an explanation for the (positive) linear relationship between 
trading volume and the volatility of returns, assuming that both are 
driven by the same underlying information flow. Before Clark (1973), 
in an initial analysis, Osborne (1962) observed that the trading volume 
was proportional to the number of transactions, implying that the 
volatility of the return is proportional to the volume 𝑆 ∼ 𝑉 . In Andersen 
et al. (2020), the authors describe three formulations for MDH: MDH-V, 
MDH-N and generalized MDH, corresponding respectively to Eqs. (1), 
(2) and (3) as stated below. 
𝑠𝑡 = 𝑐 + 𝑣𝑡 + 𝑢𝑡, (1)

𝑠 = 𝑐 + 𝑛 + 𝑢 , (2)
𝑡 𝑡 𝑡
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𝑠𝑡 − 𝑛𝑡 = 𝑐 + 𝛽𝑞𝑡 + 𝑢𝑡, (3)

where 𝑠𝑡 = log(𝑆𝑡) is the log-volatility of returns, 𝑣𝑡 = log(𝑉𝑡) is the 
log-volume, 𝑛𝑡 = log(𝑁𝑡) is the log trade size, 𝑐 is a constant and 𝑢𝑡 is a 
zero-mean noise process for all three equations. Moreover, 𝛽 ≥ 0 in (3). 
Eqs. (1) and (2) describe a stochastic process evolving as in Mandelbrot 
and Taylor (1967), whereas Eq. (3) encompasses the two previous 
models, with 𝛽 to assume any non-negative value. In Epps and Epps 
(1976), the authors find evidence of 𝛽 > 1 to be consistent, while a 
value of 𝛽 ∈ (0, 1) would be an effect that falls between the predictions 
of MDH-V and MDH-N. More details of the theoretical framework can 
be found in Clark (1973) and Epps and Epps (1976).

Another hypothesis is the one of Andersen et al. (2020) and Kyle 
and Obizhaeva (2016). While Kyle and Obizhaeva (2016) starts from 
a market microstructure invariance (MMI) from large speculative bets 
fragmented into smaller orders, Andersen et al. (2020) proposes an 
intraday trading invariance hypothesis (ITIH), which extends similar 
principles to short-horizon transactions while remaining a purely em-
pirical hypothesis, acknowledging the stringent conditions required 
for invariance relationships to hold in high-frequency settings. The 
equation associated with the ITIH is: 
𝑠𝑡 − 𝑛𝑡 = 𝑐 − 2𝑞𝑡 + 𝑢𝑡. (4)

The difference between general MDH and ITIH is clear: while an 
assumption of (3) is that 𝛽 ≥ 0, (4) requires 𝛽 = −2. More details on 
the formulation of the ITIH and why such a stark difference in 𝛽 arises 
can be found in Andersen et al. (2020).

The empirical capacity of the MDH and the ITIH models has been 
tested in several studies using real data, including Andersen (1996), 
Andersen et al. (2020), Benzaquen et al. (2016), Darolles et al. (2017), 
Richardson and Smith (1994) and Wang et al. (2019). However, to the 
best of our knowledge, the test of the ITIH versus MDH has not been 
previously tested in cryptocurrency markets, and in particular in the 
BTC and ETH futures market.
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Therefore, in this study, we analyze the intraday and daily dynamics 
of cryptocurrency futures contracts to assess which hypothesis—ITIH 
or MDH—better describes the high- and low-frequency behaviors of 
this market. The implications of each market microstructure model are 
sharply different, making it interesting both in a theoretical framework 
and also for market practitioners, investors, players, and risk managers.

If MDH better describes the data, then this means in essence that 
the crypto futures market is primarily information driven, implying that 
successful strategies should focus on news, sentiment and the speed of 
information absorption, as well as macroeconomic and policy effects. 
If, on the other hand, the ITIH better matches the data, then this means 
that the crypto futures market is primarily liquidity-driven, with good 
strategies focusing on market depth, leverage and liquidation risk.

This analysis is important because market microstructure models, in 
their original formulation, were developed in the context of centralized 
exchanges with defined trading hours. Other markets, such as global 
FX markets, also operate continuously, but under different regulatory 
conditions. Our analysis, on the other hand, is of a decentralized market 
with no trading hours, thus making it interesting to understand if these 
theories apply to this market setting.

Furthermore, traditional futures markets (e.g., S&P 500 E-mini) 
are dominated by institutional players, while cryptocurrency markets 
involve a large proportion of retail traders. All of these differences make 
testing the validity of these theories and assessing their limitations to 
the crypto market intriguing.

To identify which hypothesis best matches the data, we propose a 
regression model based on (3) and test whether 𝛽 = 0, 𝛽 = 1, 𝛽 = −2
or 𝛽 > 0, for daily and intraday minute-by-minute aggregations. Our 
estimates 𝛽 will then be used to assess the validity of either hypothesis 
in the BTC and ETH futures markets.

Since we have seen from the analysis of Fig.  5 that trading regimes 
affect our target metrics, we will also perform this regression for 
each regime, for all time aggregations of the data, and for all four 
aforementioned hourly trading regimes.

Finally, we implement quantile regressions in order to better mea-
sure how the relationship changes as the distributional features of 
the dependent variable change. Traditional ordinary least squares re-
gression is based on restrictive hypotheses, such as homoscedasticity 
and linearity across the entire distribution (Seber, 2015). However, 
as previously discussed, financial data tend to exhibit asymmetries 
and heavy-tailedness, which become more noticeable as the frequency 
increases. Although we can use techniques to avoid some of those 
specification problems, such as robust standard errors, we choose to 
employ quantile regression to account for potential nonlinearities and 
stylized facts in the financial data.

Formally, we can write (3) for the quantile regression as: 
𝑄𝜏 (𝑦𝑡 ∣ 𝑞𝑡) = 𝛽0,𝜏 + 𝛽1,𝜏𝑞𝑡, (5)

where 𝑦𝑡 = 𝑠𝑡 − 𝑛𝑡 and 𝑄𝜏 (⋅|𝑞𝑡) denotes the conditional 𝜏th quantile. In 
(5), we will have quantile-specific 𝛽0,𝜏 and 𝛽1,𝜏 capturing the effect of 
trade size on volatility per trade across different quantiles 𝜏.

This method allows us to examine not only the average effect 
for each frequency aggregation, but throughout the conditional dis-
tribution of the dependent variable, providing a more comprehensive 
understanding of the dynamics of the cryptocurrency futures market. 
This is particularly useful for analyzing the tails, where extreme market 
behavior might occur, and to determine if the response is homoge-
neous or not. For a complete review of quantile regression and its 
justifications, see Davino et al. (2013) and Koenker and Bassett (1978).

4. Empirical results

4.1. Linear regression

We fit a regression model for the daily level of aggregation of the 
data and for the intraday data for the following time aggregations: 1-
min, 5-min, 10-min, 15-min, 30-min and 60-min. Since high frequency 
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minute-by-minute data are noisier, it is expected that the linear re-
gression will be less explanatory at the 1-min level of aggregation. 
Aggregating data at progressively decreasing levels of frequency (or 
equivalently, increasing time-intervals) captures the change in the esti-
mated dynamics as frequency varies, and measures how much the effect 
of the intraday frictions can impact the results.

The results of the standard regression tests can be seen in Table  1 
for both BTC and ETH futures. The coefficients are such that 𝛽 > 2 for 
all cases and all derivatives. The estimates at 1-min and 5-min levels of 
aggregation differ slightly from the remaining ones. 𝑅2 was noticeably 
lower for intraday regression, especially in the case of BTC futures, 
and improves for aggregation levels larger than 5 min. A performance 
decrease was expected, as the minute-by-minute data is much noisier 
than the daily-level data. The explanatory power is relatively strong 
as data is aggregated over larger time spans, indicating that 𝑞𝑡 plays a 
significant role in the volatility per trade. The BTC data seems much 
noisier than that of the ETH, as seen in the 𝑅2 value of the 1-min 
aggregation level. Still, for both currencies, the estimates for 𝛽 are more 
or less consistent throughout the whole range of frequencies, with more 
significant changes in the BTC for daily data than for ETH. In agreement 
with the previous literature, the 5-min level of aggregation appears to 
be the highest frequency at which estimates seem reliable, as it is more 
consistent with other intraday estimates at lower frequencies. After 
the 10-min level of aggregation, the intraday estimates are practically 
unchanged.

The Durbin-Watson statistics for all models at all levels of aggrega-
tion indicated the presence of autocorrelation in the residuals. For this 
reason, we report the Newey–West HAC robust standard errors (Newey 
& West, 1987) in Table  1. There was no statistically significant evidence 
of multicolinearity.

The results suggest a rejection of the ITIH, since larger trade sizes 
correspond to higher, not lower, return variance per trade. The point 
estimates for 𝛽 > 1 might indicate that large trades tend to occur in 
more volatile market conditions, rather than stabilizing returns as the 
ITIH suggests. These results are aligned with the plots in Fig.  3, which 
indicated a positive relation between 𝑠𝑡−𝑛𝑡 and 𝑞𝑡. Interestingly, despite 
the lower explanatory power of the regression at the 1-min level of 
aggregation (especially for BTC), the 𝛽 did not disagree much from the 
point estimates from other frequencies, with a larger difference for BTC 
compared to ETH.

Since we understood from Figs.  5 and 6 that different trading 
regimes are associated with different intraday behavior patterns, we 
calculate the regression for the regime using intraday data in order 
to assess whether the analysis separating each regime yields different 
estimates for 𝛽. The results are reported in Tables  2 and 3.

Note that not only are the 𝛽 for each regime comparable, but the 
constants also remain practically unchanged, and all of the coefficients 
are comparable with the intraday regression outputs in Table  1. This 
suggests that, although different regimes exhibit different intraday 
patterns, the relationship between trading 𝑠𝑡−𝑛𝑡 and 𝑞𝑡 (or equivalently 
between 𝑆𝑡∕𝑁𝑡 ∼ 𝑄𝑡) remains practically unchanged across different 
regimes. The 𝑅2 for each regime for each time aggregation is consistent 
with that of the regression without regimes, which was expected since 
the coefficients remained practically unchanged.

Since we noted that the 1-min level of aggregation can result in 
noisy data and that there are some data points that could distort 
the estimation, we performed the same regressions considering the 
Huber loss to estimate 𝛽 in a more robust approach for all levels of 
aggregation. The result is practically unchanged, with a 𝛽 > 1 and 
confidence intervals indicating 𝛽 > 2 for all regressions. For the sake of 
parsimony, this is not included here, but tables will be made available 
upon request.

In general, point estimates of 𝛽 all lie within the interval [2.6; 2.9]
for both the ETH and BTC regressions, which might suggest a shared 
dynamics driving the microstructure of both BTC and ETH futures, 
and this would merit further attention and investigation. A Wald test 
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Table 1
Regression output for testing the ITIH × the MDH in crypto futures.
 Freq. BTC ETH

 Const. SE 𝑞𝑡 SE 𝑅2 Const. SE 𝑞𝑡 SE 𝑅2  
 Daily −28.549 0.266 2.648 0.131 0.508 −36.690 0.182 2.761 0.238 0.601 
 60 min −25.197 0.057 2.855 0.027 0.516 −33.686 0.098 2.796 0.131 0.567 
 30 min −24.490 0.041 2.888 0.020 0.514 −33.025 0.071 2.793 0.094 0.557 
 15 min −23.827 0.030 2.900 0.014 0.508 −32.359 0.051 2.772 0.068 0.544 
 10 min −23.466 0.024 2.893 0.012 0.502 −31.964 0.042 2.746 0.056 0.533 
 5 min −22.908 0.018 2.853 0.008 0.487 −31.280 0.031 2.676 0.040 0.510 
 1 min −23.842 0.005 2.312 0.002 0.170 −29.632 0.015 2.272 0.019 0.404 
Table 2
Regime-wise regression for different frequency aggregations for BTC futures.
 (a) Asia (b) Europe
 Const. SE 𝑞𝑡 SE 𝑅2 Const. SE 𝑞𝑡 SE 𝑅2  
 60 m −25.0547 0.505 2.8292 0.242 0.516 60 m −24.8525 0.502 2.9897 0.248 0.554 
 30 m −24.3387 0.372 2.8677 0.178 0.515 30 m −24.1993 0.359 2.9997 0.177 0.548 
 15 m −23.6757 0.270 2.8796 0.128 0.510 15 m −23.5582 0.262 2.9954 0.128 0.540 
 10 m −23.3157 0.224 2.8726 0.106 0.504 10 m −23.2097 0.217 2.9801 0.105 0.532 
 5 m −22.7599 0.162 2.8323 0.076 0.489 5 m −22.6788 0.158 2.9233 0.076 0.513 
 1 m −23.7103 0.052 2.2930 0.022 0.171 1 m −23.7098 0.053 2.3366 0.022 0.178

 (c) America (d) Transition Zone
 Const. SE 𝑞𝑡 SE 𝑅2 Const. SE 𝑞𝑡 SE 𝑅2  
 60 m −25.3691 0.510 2.8588 0.254 0.512 60 m −25.4975 0.666 2.7628 0.326 0.485 
 30 m −24.6698 0.391 2.8924 0.193 0.510 30 m −24.7747 0.500 2.8073 0.244 0.484 
 15 m −24.0049 0.279 2.9100 0.137 0.504 15 m −24.0773 0.375 2.8314 0.183 0.482 
 10 m −23.6353 0.233 2.9076 0.114 0.499 10 m −23.7072 0.309 2.8331 0.150 0.477 
 5 m −23.0634 0.167 2.8754 0.081 0.485 5 m −23.1189 0.227 2.8079 0.109 0.464 
 1 m −23.9450 0.053 2.3538 0.023 0.171 1 m −23.9673 0.072 2.3041 0.031 0.163 
Table 3
Regime-wise regression for different frequency aggregations for ETH futures.
 (a) Asia (b) Europe
 Const. SE 𝑞𝑡 SE 𝑅2 Const. SE 𝑞𝑡 SE 𝑅2  
 60 m −33.4842 0.1780 2.7843 0.2270 0.5690 60 m −33.6285 0.1940 2.8653 0.2420 0.5850 
 30 m −32.8260 0.1290 2.7831 0.1670 0.5590 30 m −32.9766 0.1350 2.8453 0.1740 0.5730 
 15 m −32.1595 0.0930 2.7595 0.1220 0.5460 15 m −32.3023 0.0970 2.8158 0.1260 0.5580 
 10 m −31.7653 0.0770 2.7329 0.1010 0.5350 10 m −31.9035 0.0800 2.7851 0.1040 0.5470 
 5 m −31.0832 0.0560 2.6607 0.0730 0.5110 5 m −31.2150 0.0580 2.7056 0.0750 0.5220 
 1 m −29.4453 0.0280 2.2348 0.0340 0.4000 1 m −29.5604 0.0290 2.2680 0.0350 0.4080

 (c) America (d) Transition Zone
 Const. SE 𝑞𝑡 SE 𝑅2 Const. SE 𝑞𝑡 SE 𝑅2  
 60 m −33.8712 0.1790 2.8103 0.2300 0.5730 60 m −33.8047 0.2370 2.7557 0.3020 0.5450 
 30 m −33.2148 0.1340 2.8100 0.1760 0.5640 30 m −33.1510 0.1720 2.7618 0.2270 0.5370 
 15 m −32.5584 0.0950 2.7934 0.1260 0.5490 15 m −32.4761 0.1290 2.7491 0.1710 0.5270 
 10 m −32.1635 0.0790 2.7708 0.1050 0.5400 10 m −32.0871 0.1060 2.7287 0.1400 0.5170 
 5 m −31.4830 0.0570 2.7076 0.0750 0.5170 5 m −31.4045 0.0770 2.6690 0.1020 0.4970 
 1 m −29.8324 0.0280 2.3378 0.0350 0.4180 1 m −29.7552 0.0380 2.2992 0.0480 0.3990 
statistic for the ITIH, which means 𝑊 = (𝛽+2)2∕(se(𝛽))2, strongly rejects 
the hypothesis of 𝛽 = −2 for all models. This indicates that volatility per 
trade increases more than proportionally with trade size, which means 
that trades tend to occur in more volatile market conditions rather than 
when prices are more stable. Therefore, the high-frequency dynamics 
of cryptocurrency futures on Binance resembles traditional speculative 
markets where volatility increases with trading volume, which could 
be due to the absence of a stabilizing mechanism.

4.2. Quantile regression

Following the analysis of Section 4.1, we perform quantile regres-
sions for the BTC and ETH futures data. We consider the regression over 
the following quantiles: 𝜏 = 0.1, 𝜏 = 0.25, 𝜏 = 0.5, 𝜏 = 0.75, and 𝜏 = 0.9
for the same frequency aggregations as before. The resulting estimates 
of 𝛽1,𝜏 are reported in Figs.  9 (BTC futures) and 10 (ETH futures).

The quantile regressions reinforce the findings from the previous 
section, as they agree with the standard regressions in Table  1. For 
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both BTC and ETH, the positive and statistically significant slope co-
efficients across both the quantiles and frequencies support the MDH, 
which suggests that the return volatility per trade increases with trade 
size. However, the quantile-specific patterns diverge notably. Bitcoin 
futures display a monotonically decreasing slope profile, suggesting a 
stronger sensitivity of volatility to trade size in low-volatility regimes. 
In contrast, Ether futures exhibit a hump-shaped pattern, with the 
strongest effect near the median quantile, indicating a more symmetric 
and stable volatility response. These findings are theoretically relevant 
and warrant further investigation: they indicate that, while MDH might 
broadly hold, the impact of trade size could be shaped by distributional 
regimes and might also be instrument-specific.

It is also important to stress that the results at the 1-min level of 
aggregation confirm the presence of microstructure noise, especially 
for BTC, as indicated by lower 𝑅2 and flatter quantile profiles, but mi-
crostructure noise also appears in ETH data. This is consistent with the 
previous Section 4.1 and with previous literature statements that 5-min 



M. Gonzalez de Freitas Pinto Borsa Istanbul Review 25 (2025) 1378–1390 
Fig. 9. Estimates of 𝛽1,𝑡𝑎𝑢 in quantile regression for BTC futures under different levels of aggregation.
Fig. 10. Estimates of 𝛽1,𝑡𝑎𝑢 in quantile regression for ETH futures under different levels of aggregation.
aggregation is the highest frequency at which market microstructure 
noise is not too distorting.

From Figs.  9 and 10, one can also see that the asymmetry in the 
𝛽𝜏 slope coefficient across the array of quantiles indicates that market 
responses to trade size are not totally uniform. The change in estimates 
of 𝛽𝜏 across different quantiles strongly confirms heteroskedasticity in 
the relationship, which justifies the usage of robust standard errors in 
Section 4.1.

Overall, for BTC futures, the quantile regressions reveal heterogene-
ity: volatility per trade responds more strongly to trade size at lower 
quantiles and less strongly in higher tails. For ETH futures, the hump-
shaped plot indicates that the impact of the trade size is strongest at 
median volatility levels. Irrespective of these differences, all results 
support the MDH over the ITIH.
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4.3. Discussion of results

A consistent finding of 𝛽 > 0 across multiple time frequencies for 
both BTC and ETH futures implies that volatility per trade increases 
with average trade size, supporting the MDH. This suggests that both 
markets are information-sensitive and reflect latent information flows, 
with implications for risk management, price formation, and strategic 
trade execution in cryptocurrency futures.

This might indicate that there is limited depth in the market, since 
larger trades tend to be executed during volatile periods, suggesting 
that the market reacts disproportionally to large trades. Reasons for this 
might vary: for instance, it could be due to a thin liquidity pool, mean-
ing that large orders are not absorbed efficiently and suggesting the 
potential for order book imbalance, especially in fast-moving settings.
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Since a value of 𝛽 > 0 goes against the proposition of Andersen 
et al. (2020), this suggests that the risk-transfer mechanism is not scale-
invariant in BTC and ETH futures. As such, this ‘‘invariance efficiency’’ 
could be a characteristic of a very mature institutional futures market, 
like the S&P 500 E-Mini studied in Andersen et al. (2020), while the 
crypto market still carries frictions such as asymmetric information, 
shallow order books, or retail-driven businesses in market settings, or 
it could be market/instrument specific.

A positive value of 𝛽 reinforces the idea that the arrival of infor-
mation drives both volume and volatility, agreeing with the MDH as 
in Clark (1973) and Epps and Epps (1976). A value of 𝛽 > 2 might 
also indicate that crypto futures exhibit liquidity fragmentation, where 
large trades disproportionately impact market volatility. This could 
also indicate that market order imbalances play a critical role in price 
fluctuations. These results align with the evolving nature of the Bitcoin 
and Ether futures microstructures, where market depth and liquidity 
may still be maturing compared to traditional futures markets, which 
merits further analysis.

Nevertheless, a value of 𝛽 > 0 is also important for risk manage-
ment. Under this assumption, especially the case of 𝛽 > 2, monitoring 
trade size becomes predictive of volatility, as larger trade sizes can 
signal incoming volatility spikes. This is useful not only for market 
participants but also for the exchange’s risk management and internal 
controls. For example, it might be interesting to incorporate trade-size 
covariates to enhance GARCH-type models for volatility forecasting.

When analyzing the quantile regression, BTC futures’ declining 𝛽𝜏
coefficient implies that larger trades lose explanatory power under 
extreme conditions. This has important trading implications because, 
at the tails, trade size no longer predicts volatility as effectively. For 
risk management, this stresses the importance of nonlinear modeling 
in Value-at-Risk (VaR) or tail risk settings with extreme value theory.

Since larger trades are associated with a much higher return vari-
ance, investors may experience significant price slippage and market 
impact. This suggests that liquidity in the market may not be sufficient 
to absorb large trades. Furthermore, the strong link between trade 
size and volatility creates opportunities for volatility-based trading 
strategies, such as market-making and statistical arbitrage arising from 
low information diffusion.

There are a few particularities of the BTC and ETH futures market 
that could explain why the MDH matches the data better than the 
ITIH. First, since the crypto market operates in a continuous 24/7 
regime, with no trading hours, information arrives asynchronously 
across different time zones. The different reactions of traders to these 
information arrivals might lead to heterogeneous returns distributions. 
Moreover, the greater proportion of retail traders might make the 
market more sensitive to the arrival of information, perhaps due to 
emotional trading and sentiment-driven moves. If the latter applies, it 
would be possible to see a change in 𝛽 over time as the proportion 
of institutional traders increases. It is, nonetheless interesting that a 
foundational microstructure model originally developed for equity and 
FX markets extends well to decentralized crypto derivatives.

5. Final remarks

Figs.  1 to 4 give the impression that Bitcoin and Ether futures 
markets are maturing, with increasing participation and reduced return 
variance. The intraday trading patterns observed in Figs.  5 and 6 reveal 
the strong effects of the market structure, with clear regime-dependent 
liquidity cycles throughout the trading day.

Figs.  7 and 8 might suggest seasonal patterns are a stylized fact 
in crypto futures, since it was clear in the years 2022–2024. This 
is a potential topic of investigation for researchers interested in the 
behavior of cryptocurrencies markets and, in particular, of futures.

Therefore, these preliminary analyses of stylized facts could spur 
further research related to structural breaks, nonlinear dependencies, 
and market microstructure models to further dissect the complexities 
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of cryptocurrency trading dynamics and, in particular, to theoretically 
explain some of the stylized facts and to investigate whether they are 
noticeable in other cryptocurrencies and trading platforms.

This result is important for both investors and policymakers. For 
market participants, evidence favoring MDH implies that volatility is 
primarily information driven, which has direct implications for trad-
ing strategies, execution timing, and volatility forecasting, as well as 
for risk management strategies. For trading platforms, regulators, and 
portfolio managers, a rejection of the ITIH suggests that the market 
invariance conditions observed in Andersen et al. (2020) do not hold for 
this particular dataset, highlighting potential idiosyncrasies in crypto 
futures markets. By investigating how the different derivatives conform 
to or deviate from theoretical predictions, our aim is to provide another 
framework for assessing the maturity and structure of crypto derivative 
markets, thus filling the gap between theoretical models and practical 
market behavior.

Our analysis finds consistent evidence favoring the MDH over the 
ITIH—for both BTC and ETH futures—to empirically explain the behav-
ior of these futures markets, with more explanatory power at the daily 
level of aggregation and at lower frequencies. At the 1-min aggregation 
level, we notice the strong effects of microstructure noise, distorting 
the results and the explanatory power of the regression. This effect is 
stronger for BTC futures, but is also seen in ETH futures.

We recognize that aggregation issues may affect our analysis pri-
marily due to data availability constraints. Specifically, it is not always 
possible to report all contracts traded at an identical price against an 
incoming order as a single combined transaction quantity, as was done 
in Andersen et al. (2020). If these data limitations were overcome, 
future research could beneficially explore the MDH vs. ITIH test under 
the conditions outlined above, provided sufficient data are available.

Further advances in the theory of market microstructure could be 
beneficial in explaining this non-linear relationship. This could involve 
a test assuming other market microstructure models, such as the Order 
Flow Toxicity of Easley et al. (2012), which lies beyond the scope of 
this paper.

Further research would be beneficial to associate macroeconomic 
and corporate events with months linked to higher volatility and in-
creased market activity, and the effect of institutional behavior on 
the microstructure of the cryptocurrency futures market. A systematic 
analysis encompassing other liquid futures traded on the same platform 
and on other platforms would be interesting. Finally, in order to assess 
whether retail traders are more sensitive to the arrival of information, 
as discussed in the previous section, further studies could test this using 
the VIX index, which measures sentiment-driven trading by retail and 
institutional investors.

Finally, our study focuses exclusively on data from Binance. Al-
though it is a major exchange, it would be interesting to investigate 
the coherence of the identified behavior on other trading platforms 
and exchanges. Cross-exchange comparisons of this type would be an 
worthwhile continuation of this line of research.
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