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Abstract—We present a semiclassical approximation for treating the radiation from classical currents. In partic-
ular, we present exact quantum states of the quantized electromagnetic field interacting with classical currents.
These states are used to calculate a probability of many-photon radiation from the vacuum initial state of the
electromagnetic field. In this manner, in the present article, we study characteristics of electromagnetic radia-
tion of a planar undulator. We find the total radiated energy and its spectral-angular distribution. We compare
our results with ones obtained in the framework of classical electrodynamics, discussing differences introduced
by accurate accounting for the quantum nature of electromagnetic radiation and present results of some numer-
ical calculations that confirm, in particular, the latter discussion. In Appendix we present the calculation of the
radiated energy using an alternative parametrization of the trajectory of electrons moving in a planar undulator.
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1. INTRODUCTION

In the general case, accelerated charged particles
emit an electromagnetic radiation. For example, syn-
chrotron (SR) radiation accompanies a motion of
charged particles along circular trajectories, which can
be consequence of their motion in an external magnetic
field [1]. SR has many important applications in physics,
medicine and industry (see, for example, [2]). Ginzburg
first proposed a practical use of rapidly moving charged
particles as a radiation source [3], see also [4]. Another
source of radiation closely related to SR are periodic
magnetic structures called undulators or wigglers. The
original term “undulator” was introduced by Motz [5],
who proposed several applications for such a radiation
source, namely production of energy in rather specific
spectral bands (millimeter to infrared radiation), speed
monitoring for electron beams produced by accelerating
devices, speed measurement for fast individual electrons
or other particles, including mesons or protons.

In the framework of classical electrodynamics a for-
mula for the angular distribution of the SR power was
obtained by Schott [6]. An alternative derivation of this
result and its deep analysis, especially for high-energy
relativistic electrons, was given by Schwinger [7]. The
essence of quantum corrections to the classical result
was first pointed out in [8]. Consistent calculation of
such corrections first appeared in the works [9] using

Furry picture [10] (or exact solutions of Dirac equations
with a magnetic field). Using his source theory [11]
Schwinger presented an original derivation of similar
results [ 12]. Recently, a description of SR that uses a new
intermediate approach allowing one to consider electron
current classically while taking quantum nature of elec-
tromagnetic field into account exactly was given in [13].

Until now, most of the works on the emission of
electrons moving in undulators were carried out using
methods of classical electrodynamics. In this
approach, the undulator radiation (UR) is calculated
using the Lienard-Wiechert potentials for a moving
high-energy electron. Thus classical expressions for
electric and magnetic fields are calculated and the
energy flux, intensity or power are found through the
Umov—Poynting vector. In 1951, Motz [5] had pre-
sented a planar undulator scheme and studied the cor-
responding radiation from the electrons moving in
such a device. Important contribution to the UR prob-
lem was done in the works by Alferov et al. [14]. In
particular, the authors calculated radiation in a spiral
undulator, presented a spectral-angular distribution of
the radiation intensity in various approximations.
Radiation of relativistic electrons, moving in an undu-
lator, in particular, in the finite length device, was
studied in [15, 16]. The results obtained have often
been interpreted in terms of the photon emission; for
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example, in the works [5, 14]. In their work [17] Baier
et al., using the Schwinger method, and some ade-
quate approximations, studied spectral-angular distri-
bution of the radiation intensity of electrons moving in
periodic magnetic structures.

Arguments given by Schwinger [8] in favor of the
fact that for the description of SR quantum correc-
tions, under certain conditions, may turn out to be sig-
nificant also hold true in the case of description of the
UR. And here arises the following problem. The point
is that a consistent quantum description (in QED) of
the radiation processes of charged particles in strong
external fields, as a rule, is formulated in the so-called
Furry picture [10] and is based on the knowledge of
exact solutions of the Dirac or Klein—Gordon equa-
tions in such fields. Other known methods, for exam-
ple, the Schwinger method, are associated with the use
of additional approximations. If for the purposes of SR
describing exact solutions of the mentioned wave
equations with an uniform and constant magnetic
field are known and well studied, then for the purposes
of describing the UR, solutions in periodic magnetic
structures are still unknown. In this regard, we note
that in our work [13] we have proposed an approach to
describing the quantum properties of the radiation of
charged currents that does not require the use of the
Furry picture, that is, a complex technique operating
with exact solutions. Here electric currents generating
the radiation are considered classically, whereas the
quantum nature of the radiation is taken into account
exactly. Here and in what follows, we call such a way
of radiation calculation the semiclassical approxima-
tion. Naturally, the semiclassical approximation has
its own area of applicability, in particular, it does not
take into account the back reaction of the radiation
field to charged particles. However, it may be helpful
in some cases, for example, it allows one to study one-
photon and multi-photon radiations without compli-
cating calculations by using corresponding solutions of
the Dirac equation. The effectiveness of the semiclas-
sical approximation was demonstrated by the example
of the description of SR.

The article is organized as follows. In Section 2 we
describe the semiclassical approximation for treating
the radiation from classical currents. In particular, we
present exact quantum states of the quantized electro-
magnetic field interacting with classical currents.
These states are used to calculate a probability of
many-photon radiation from the vacuum initial state
of the electromagnetic field. In this manner, in Sec-
tion 3, we study characteristics of electromagnetic
radiation of a planar undulator in the semiclassical
approximation. We find the total radiated energy and
its spectral-angular distribution. In Section 4 we com-
pare our results to ones obtained in the framework of
classical electrodynamics, discussing differences
introduced by accurate accounting for the quantum
nature of electromagnetic radiation and present results
of some numerical calculations that confirm, in par-
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ticular, the latter discussion. In Appendix we present
the calculation of the radiated energy using an alterna-
tive parametrization of the trajectory of electrons
moving in a planar undulator.

2. ELECTROMAGNETIC RADIATION
OF CLASSICAL CURRENT
IN SEMICLASSICAL APPROXIMATION

The semiclassical approximation considered in
[13] is based on a possibility to construct exact quan-
tum states of the electromagnetic field interacting with
classical currents. With the help of such states one can
calculate the probability of the photon emission and
derive the spectral-angular distribution of energy
emitted in course of the one-photon and multi-pho-
ton radiation. Below we present these formulas, the
details of the derivation of which the reader can find in
the above mentioned [13].

In the general case, the classical four-current
JMx) = (°(x),/(x), i =1, 2, 3), interacting with electro-
magnetic field, affects its quantum states. The differ-
ential probability P(k,A,, ..., KyAy; ) of the emission
from the vacuum state of N photons each one with the
wave vectors k, and polarization A, a =1, 2, ..., N, for
the time interval #, has the form:

PKA,,...., KAy 1) = p(KA,, ..., KyAy; 1) P(0;1),
2
P(0;1) = exp (—z | dklykx(t)lzl,
A=l

N
Pk kyhys ) = (N DT T, @F
a=1

ey

Here P(0; f) is the vacuum-to-vacuum transition
probability (the probability of a transition without any
photon emission), such that the quantity p(k,A,, ...,
KyAy; 1) can be interpreted as a relative probability of the
N photon emission. The functions y, (f) are defined as:

13
ATl [ s e g
Y (0) _,\/; ! dr' [ ')A Gy
exp[—i(kyct —3 kr)]E;-( o ko =KL
J2k,2m)

where ¢, are polarization vectors of photons with the

quantum numbersk, A. ! They are perpendicular to the
wave vector k and have the properties

(2)

fio(x) =

*
€€ = O €k =0,

2 S (3)
i J% ij iy jn.1—2

E €€y = 8 —-kk |k| .

A=l

! Here and in what follows we use the summation convention for

dummy indices, i.c., a'b’ = zi d bi, unless explicitly stated oth-
erwise.
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SEMICLASSICAL DESCRIPTION OF UNDULATOR RADIATION

In our consideration the introduced vectors are
chosen in the following form:
k = (k,sin O cos @, k, sin Osin @, k, cos 0),
€, = (cos@cosO,sin @cosH,—sin ),
€, = (—=sin@,cos ,0), 4)
€€k = €€ = |,

€€ = €k = €,k = 0.

The energy of N photons with given quantum num-

bers k,A, depends only on their momenta k,, and does
not depend on their polarizations; it is equal to

N
Wk, kyhy) = i) [k, (5)
a=1

Therefore the energy emitted in course of the pro-
cess reads:
W(kA,,...,kyAy;t)
= W(kl}\‘l’""kN}\‘N)P(klxl""’kN}\‘N;t)‘
To find the energy W(N; f), emitted by all N-pho-

ton processes, we sum (6) over all possible quantum
numbersk,, A,

(6)

2 2 2
W(N;f) = he(N ) PO ...
M=lh=1 Ay=l

N N
X j dk,dK,...dK LZ |kb|}g i (0.

The RHS of Eq. (7) can be represented as:

2 N-1
A . 2
N P r)(;_l LG J ,

2
A= ey [ dkkolya (.
A=l

(7

W(N;t) =
( (8)

Summing this quantity over N, we find the total
energy W(r) of all emitted photons,

) 2
W@y =Y WWN;t = e [ dikyp o), ©
N=1 A=l

Pa®) = o @)

3. RADIATION OF PLANAR UNDULATOR
IN SEMICLASSICAL APPROXIMATION

Let us consider an electron that moves in a planar
undulator along the axis z in the plane xz (y = 0), per-
forming transverse oscillations along the axis x with
frequency ,. The electron dynamics and radiation
from the relativistic electron moving in such a device
have been first considered in [5] and later in more
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detail in works [ 14, 18], see also [19]. The electron cur-
rent for the case has the form

7' (%) = ev' ()8(x — x(1))d(y — ¥(1)d(z — z(1)),
vi(7) = (X(), 5(), (1)),

x0 = K22 co5@,n, w1 =0,
Y 21

2
2) = Byt + KNy sinQw, ),

v 161

i) = —ey Ksin(o,),  3() =0,
Y 1% (10)
2(t) = Py [l + —zcos(20)pt)},
4y

e\,

2 b
21tmc

2
By = B(l —K—j, B=v/e,
4y

where the parameter K is the so-called parameter of
the undulator strength, lp is the length of a single
undulator period, 7y is the Lorentz factor, v is the par-
ticle velocity, B, is the average velocity of particle dis-
placement along the axis z, m, is the rest mass of the
electron, and H is strength of the magnetic field in the
undulator. In most cases of interest the parameter K
satisfies the inequality K < 1 (weak undulators). For
any realistic K, however, the ratio K/yis very small for
a relativistic electron, K/y < 1, and B, = 3.

Here we calculate the radiation generated by the
current (10) using the formulas given in Section 2.
Substituting the current j/(x) into (2), and using repre-
sentation (4) for wave vector k and polarization vectors
€., We write the functions y, (¢) for the planar undu-
lator as

K =

0)17 = 2TECB07\«;1,

ya(t) = iecBylhck,(2m)’T"?

x [ ar 4,6,0,1) expliv()],
0

2
A(8,9,1) = —sin 9[1 + f—2c05(20)pt)}
Y
—cos(cos OKsin(mpt),
Y
y K.
L(0,9,7) = sin @—=sin(w,7), (11)
Y

K(7) = ckyr(1 — By cos0) —ucosw,t — ssin(2w, 1),

A 2
u= E—”ko sinBcos@, s= kOK—Z—”cos 0,
Y 2n vy lé6m
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and the functions py, (¢) as

2 2n2 2
e c Py

Pal =t ! di' 4,6, .1 explix()] . (12)

Next, we transform the exponent in Eq. (12) using
the following expansions of trigonometric functions in
terms of the Bessel functions [20],

+o0
exp(—iucosm,f) = Y (=)"J,(u) exp(=inw,f),

(13)
exp(—issin 2m,f) = z Jn(8) exp(=i2mw, 1),
to obtain
JRpers. o -
pot) = —— J, @), (s)e™"™
T heky(2my ;m
, 2
x j dr' 4,(8,¢,1') explio, ' R,y ]| » (14)
0

R, = Cko(l);l(l —BycosO) —n—2m.

The integration over df' can be carried out explic-
itly. To this end we define the functions B, ; (R,,,, 1),

t
B(R,,.1) = jdz'exp[im,,z'an]
0

= texp(iR,,®,t/2)sinc(R,,®,t/2),
sinc(x) = sin x/x,

t
By(R,,.1) = J-dt'sin((opt') explio, ' R,,]
0

= -2""it{expli(R,,
—expli(R,,

+ Dw,t/2fsinc[(R,,, + Dw,?/2] (15)
—Do,¢/2sinc[(R,,, — Dw,?/2]},

t
By(R,,.1) = jdt'cos(zm,,f)exp[ioapt'Rn,,,]
0

= 2"'H{expli(R,,, + 2)w,t/2sinc[(R,,,
+expli(R,, — 2)w,t/2]sinc[(R,,

+2)w,1/2]
- 2)w,t/2]}.

Substituting (14) in (9) and taking into account
(15), we obtain the expression for the total energy
W),
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et T
W(t) = (@j j k2dk, f sin 040
2 ) 9 0
2n
X d(p(
!

K>
X{W B(R,,..t) + B;(R,,, t)} sin

i T (s)e"™"

n,m=—o0

(16)

2

+ B,(R,,,, t)Kcos ¢cos 6}
v

=

2
oy Jn(u)Jm(s)e_i"”/2B2(an,t)%sin@{ J

n,m=—co

4. COMPARISON WITH THE CLASSICAL
TREATMENT

Comparing expression (16) obtained in the semi-
classical approximation with the spectral-angular dis-
tribution of the radiated energy obtained in the frame-
work of classical electrodynamics (see for example
[19]), one can see that in the semiclassical approxima-
tion the angular distribution for the photons with the
polarization A = 1 and A = 2 is different from the one
given by the classical treatment, while spectral distri-
butions (note that the quantity ck, corresponds to
photon’s frequency) are the same. We note that in the
main direction of the radiation 8 = 0, ¢ = 0 (on axis
radiation) the semiclassical approximation and the
classical treatment give the same results.

For sufficiently large time period ¢, i.e., for an
undulator with a large number of sections, the radia-
tion spectrum is determined by the integrand of
Eq. (16) and degenerates into a set of narrow peaks at
the values of k that are defined by the conditions:

an = 0’ an + 1 = 0’ an
R, +2=0,

—-1=0, (17)
R, —2=0.

In particular, the case ¢t — oo formally corresponds
to an infinite undulator. In this case one can use the
relation:

lim S0 7d(x).
x

t—o0

(18)

This means that for the infinite undulator the
energy spectrum is concentrated in points that are
defined by conditions (17).

Let us compare the spectral-angular distribution
obtained in the semiclassical approximation with the
Vol. 132
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one obtained in the framework of the classical electro-
dynamics. It follows from Eq. (16) that

W@ _ (eck0B0)2
d(cky)dQ 2n

x{ X

sin e[q(z) ny Q(t)}
+cos@cosB K G, ()
Y

4y

sinpX (1)
Y

(19)

2
+

2}
dQ = sin 0d0d o,

where the functions C , ;(7) are:

t
() = [dre™,
0

t
Cy(t) = jdfsin(mpz')e”‘("’, (20)
0

t
Cy(1) = j dr' cos2,ie™ .
0

At the same time, the spectral-angular distribution
of the radiated energy obtained in the framework of
the classical electrodynamics has the form:

2 2
AW _ ¢! (—eCkOBO) |Dx + Dy + Dy,
d(cky)dQ 2n

D = KC'Z - 5@4 cos’ (psin2 0
Y Y

SRR

+cos@sinBcosO| C, + —C; |,

L S

‘- 1)

D, =—-=C,sin@cos@sin’ 0
Y

kT

+cos @sin Bcos O C1+4—C3 ,

Dy = —56'4 cos@sinBcos O
Y
~ 2 ~
+(c0326—l)[CI +K—c3]
4y

where X, y, and z are unit vectors in the direction of cor-
responding coordinate axes, and the functions C , ; , are:

/2 t/2
C = '[dt'e_m("), G, = j dr'sin(o,)e”™",
) )
t/2
G, = j dr'cosQu,t)e™ ", (22)
—1/2
12
C, = JAdt'cos(copt')e_’K(’v).
/2

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

251

We see that distributions (19) and (21) obtained by
the semiclassical and classical methods, respectively,
are essentially different in the general case. Neverthe-
less, both expressions (19) and (21) can be reduced to
the same form

W@ _ - (e[iockojz
d(cky)dQ m

X{Gz cos’ oG, |2 + 0’ sin? oG |2 (23)

2
+%|c2|2 + %6005 WCCE + cl*cz)}

for planar undulators, for which K/y < 1 and for 6 < 1,
taking at the same time into account that the electron

flight time through the undulator is 7 = 2712N0);,l. The
numerical analysis of both formulas also confirms the
latest findings. The corresponding results are repre-
sented in Fig. 1.

We note that often, while describing polarization
properties of the radiated energy W(¥) one uses the so-
called ¢ and & radiation modes. We recall that the
o-mode characterizes the radiation emitted perpen-
dicular to the magnetic field direction while the
n-mode characterizes the radiation emitted parallel to
the magnetic field direction. For a planar undulator
the o-mode is formed by components of the electric
field in the x and z directions, while the m-mode is
formed by electric field component in the y (see, e.g.,
[19] for details).

Let us determine the contributions corresponding
to the ¢ and © modes in Eq. (16). This can be done as
follows. First, let us note that the scalar product of the

electric current j(x) with polarization vectors e:(;h can
be interpreted as the projection of the electric current

vector on the directions of polarization vectors €y,

B0 = ebleg,  lia®) =1/ xen].  (24)

The vectors J}ix (x) = ji1(x) can be decomposed into
components in the directions of the axes x, y, and z;

we also recall that the vector €, is situated on the
xy plane,

Ju) =1 J/ (x)eﬁk](xcos(pcosﬁ + ysin@cosO — zsinb),
. j ; . 25
() = U/ e ] (xsing +ycosg). >

It can be seen from (2) that the functions |y (1)
can be represented as

kal(t)|2 = |ykl(t)|2
x(xzcos2(pcosze + y2sin2(pc0529 + zzsinze),

Die@ = Dia@)f (X’ sin’ @ + y’cos’@),

(26)
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0.5 1.0 1.5 2.0

Fig. 1. The total spatial angular distribution of total radiated energy for the first three harmonic calculated in semiclassical approximation.

where we kept squares of unit vectors X, y, z to keep
track of the polarization directions. Since the mag-
netic field in a planar undulator is directed along the
axis y, contributions from the terms multiplied by x>
and 2z’ correspond to 6-mode, while contributions
from the terms multiplied by y? correspond to T-mode.

Thus, the expressions for the energy radiated in G-
and m-mode have the form

9 n 21
_(ecBy 2 .
Wi(t) = (_21: ) _([kodko ! sin edel dopo (1),

9 oo T 2n
W(f) = (%) j kodky j sin 046 j dopg(1),  (27)
2TC 0 0 0

Pro®) = (0 (cos’gcos™® + sin’6) + |y, (1)’sin’e,
Pia®) = D () sin’ 9 cos® 0 + |y, ()f cos” .
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It is easy to verify that the following relations hold
true,

Pa(?) + Do) = pyo(t) + pin(D),
W (1) = W(t) + Wi(1).

We demonstrate our numerical analysis of the
energy distribution for the first three harmonics in
Figs. 2, 3, 4. Note that while the total radiated energy
distribution coincides in main with the classical one,
the semiclassical approach shows different and more
detailed distribution of the radiated energy in wand ¢
modes.

In conclusion, note that the expressions for the
radiation characteristics obtained in the semiclassical
approximation, even in those cases when they do not
differ quantitatively from the corresponding classical
expressions, have a much simpler analytical form and
their derivation is technically much simpler.

(28)
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Flux, arb.u.
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Fig. 2. Spatial angular distribution of ¢ (top) and © (bottom) modes for the first harmonic calculated by classical method (left)

and in semiclassical approximation (right).

(a) Flux, arb.u.

(=

Flux, arb.u.

x(y0)

(b) Flux, arb.u.
2 3

Flux, arb.u.
1.2
1.0
0.8
0.6
0.4
0.2

x(y0)

Fig. 3. Spatial angular distribution of ¢ (top) and © (bottom) modes for the second harmonic calculated by classical method (left)

and in semiclassical approximation (right).

APPENDIX

Calculating Radiation of Planar Undulator
in Semiclassical Approximation Using an Alternative
Parametrization of Trajectory

In [15] a special trajectory for electrons moving in

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

a plane undulator were used to calculate their radia-
tion. It is supposed that the trajectory of electrons is
plane and symmetrical relatively to the axis x, and
consists of circular arcs of length / and radius R. This
representation provides an alternative parametrization
of the electron trajectory in plane undulator. In this
Vol. 132
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Flux, arb.u.

0
x(y0)
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(b) Flux, arb.u.

8
!
¢
)

x(y0)

Fig. 4. Spatial angular distribution of ¢ (top) and 7 (bottom) modes for the third harmonic calculated by classical method (left)

and in semiclassical approximation (right).

appendix we apply the semiclassical method to calcu-
late the radiation from electrons moving in such a tra-
jectory.

Consider electrons moving in a periodic magnetic
field parallel to the axis z, such that in each period the
magnetic field is homogeneous and constant. The
undulator is assumed to be of infinite length. A length
[ of each individual arc is related to the effective radius
of curvature R via the so-called injection angle o =
I/R, 0 < oo < 1. The velocity of the electronsis v = c¢ff =
®R, where ® is the angular velocity. The electrons

move along the axis x with an average velocity v, = cE,
and perform periodic oscillations along the axes x
and y. This implies

B =Bsinc(a/2), T =2me, =20, 29
0, = oo = nPel .

The trajectory at the time interval (0, 7) can be
presented as [15]

= {R[sin(oc/2) +sin(of —o/2)], te T,
R[3sin(0/2) + sin(wf — a/2)], te 15, (30)

) = {R[cos(mt —0/2) —cos(/2)], teT,
R[cos(0/2) — cos(wt — a/2)], te T,

where the time intervals 7, and T, are defined as

L =10,T/2]; T,=(T/2T]. (31)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

The current j/(x) formed by electrons moving in the
trajectory (30) has the form

J'(x) = ev' ()8(x — x(1))8(y — y())(z — z(¢t)),
v'(1) = F(t) = (@), (1), 0),

) = WRcos[o/2 —wt], te T, (32)
WRcos[3a/2 —wt], teT,,

0) = ORsin[o/2 —wt], te T,

Y= _oRsinpBo/2 - wf], te T,

Let us calculate the radiation energy during a single
period T. The functions yy, (?) at the interval # = 7 can
be calculated as

YlT) = ya (1) + yio(T). (33)

Using the definitions (4) for the wave vector k and
polarization vectors €, , we obtain

out
T

J
ya(T) = z,¢® cosej o 'd,
o

X [cB cos @ + WR cos T, |exp[in(T;)],

(34)
YTy = _Zjei¢/ _[ O)ildrj
Tij-"
X [cBsin @ + (=1)' ' @Rsin T,]explin(t;)],
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where we used the notation

wT;) = ckOO)_l’Cj —-&sint;, & = Rk,sin®,
2, = ieexp[—iEf (@, o) [hckym)’T"?,  j=1,2,
fi(@,00) = sin(0,/2) cos @ — cos(0,/2) sin @,

£H(0,0) = cos(a/2)sin @ + 3sin(o/2) cos @,

35
T=0—0/2+¢, T,=0t-30/2-0, (35)

" =p-0/2, T =@+0/2
=a/2 -0,

0, = (D_IK((p + 30,/2).

out

T =—0-0/2, 1
o = 0 'K(0/2 - @),

Using the known expansions of trigonometric
functions in terms of Bessel functions,

exp(—i&sin 1) = i J, (&) exp(—inT),

N=—oc0

sin Texp(—i&sin 1) = ii J, (& exp(=int),  (36)

N=—oo

oo

cos texp(—i€sin 1) = z g]n(ﬁ) exp(—int),

Nn=—oo0

we rewrite (34) as

oo
() = z,e" Z cos O[n(k, sin 6)”'

Hn=—o00

15
+® cB COS(P]JH(E.')Kn(T})’ (37)

Vo) =z, > [w 'cBsin ¢/, )

N=—oc0

+(=D"iR,©)IK(T)),
where functions K,(7)) have the form

I dt, expli(w 'cky — n)t,]
(38)
sinfo® 'cky — n)/2]

(o 'cky —n)2

T

K.(T)) =

= exp[(=1)/i(w 'cky — )]

The functions py,(7) on the time interval 7 have
the form

20(T) = (D = (1) + ya (D)

Substituting expressions (37) into (39), we obtain

(39)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

too 2
Pa(T)= 2 [n(k,sin®) " + @ 'cBeos@lcosdl,(E)S)| |
= )
P(T) = | D [0 'cBsin J,©)S, +iRI,©)S,] ,

S, = 2" K, (T) + 2,6 K (T»),
Sy = 2" K, (T) = ¢ K,(T>).
The total radiated energy W(T) takes the form

1

) 2n
W(T) = [ kodk, [ sin0d6 [ dolpu(T) + pa(D (41)
0 0

0
where py,(T) and py,(T) are given by Eq. (40).
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