

RT-MAT 90-07

**Isomorphic Group (and Loop)
Algebras**

**Guilherme Leal &
C.Polcino Milies**

Novembro 1990

Isomorphic Group (and Loop) Algebras

Guilherme Leal

Instituto de Matemática

Universidade Federal do Rio de Janeiro

RJ - Brazil

C. Polcino Milies¹

Instituto de Matemática e Estatística

Universidade de São Paulo

SP - Brazil

E.G. Goodaire [4] defined *R.A. loops* as those loops whose loop algebra over any ring with no 2-torsion is alternative and O. Chain and E.G. Goodaire [1] gave a description of such loops. If L is an R.A. loop then it contains a group G with $[L : G] = 2$, such that $G' = \{1, e\} = L'$ is a group of order 2 and $Z(G) = Z(L)$, where $G', L', Z(G)$ and $Z(L)$ denote the commutators and centers of G and L respectively. Also, $L/Z(L) \cong C_2 \times C_2 \times C_2$, where C_2 denotes a cyclic group of order 2, and hence $G/Z(G) \cong C_2 \times C_2$.

In this paper we consider the class of all groups G such that $G/Z(G) \cong C_p \times C_p$, where p is a rational prime. In §1 we show that these groups satisfy property (p) in the sense of D.B. Coleman [2] and give a full description in

¹The second author was partially supported by a research grant from CNPq.

terms of direct factors. In §2 we study the isomorphism problem for rational group algebras of groups of this kind, i.e., if G is one such group and $QG \cong QH$ what can be said about G and H ? Finally, in §3 we consider the isomorphic problem for alternative loop algebras over the field of rational numbers.

§1 - Basic Facts.

We wish to show that the groups under consideration have irreducible complex representations of a very special kind. In order to do this, we need to compute their commutators.

(1.1) Lemma. Let G be a group such that $G/Z(G) \cong C_p \times C_p$. Then the commutator subgroup G' is cyclic of order p .

Proof. Set $x, y \in G$. Then

- (i) $[x, y] = [y, x]^{-1}$
- (ii) $[xy, z] = [x, z]^y[y, z]$ and $[x, yz] = [x, z][x, y]^z$.

Since $G/Z(G)$ is abelian, we know that $G' \subset Z(G)$ and hence, in our case, we have:

$$(ii)' [xy, z] = [x, z][y, z] \text{ and } [x, yz] = [x, z][x, y]^z.$$

If $G/Z(G) \cong C_p \times C_p$, there exist elements $x, y \in G$ such that $G = \langle x, y, Z(G) \rangle$, with $x^p, y^p \in Z(G)$. Then:

$$G' = \langle [x^n y^m, x^r y^s] \mid 0 \leq n, m, r, s < p \rangle.$$

Now, (i) and (ii)' readily give that:

$$[x^ny^m, x^ry^s] = [x, y]^{(n+m)(r+s)},$$

hence G' is cyclic, generated by $[x, y]$.

Also, since $y^p \in Z(G)$ we see that:

$$1 = [x, y^p] = [x, y]^p,$$

so $|G'| = p$. \square

(1.2) Theorem. Let G be a group. Then $G/Z(G) \cong C_p \times C_p$ if and only if $G = D \times A$ where A is an abelian group and D is an indecomposable p -group such that $D = \langle x, y, Z(D) \rangle$ where $x^p, y^p \in Z(D)$ and $Z(D)$ can be written in the form $Z(D) = C_{p^{m_1}} \times C_{p^{m_2}} \times C_{p^{m_3}}$ with $m_1 \geq 1$ and $m_2, m_3 \geq 0$.

Proof. Since $G/Z(G) \cong C_p \times C_p$ there exist elements $x'_1, y'_1 \in G$ such that $x'^p_1, y'^p_1 \in Z(G)$ and $G = \langle x'_1, y'_1, Z(G) \rangle$. Set $Z(G) = B \times C$ where B is p -group and $p \nmid |C|$. We can write:

$$x'^p_1 = b.c \quad \text{where} \quad b \in B, c \in C.$$

Let $n = o(c)$. Since the map $x \mapsto x^p$ is surjective in C , we can find an element $\gamma \in C$ such that $\gamma^p = c^{n-1}$. If we set $x' = \gamma x'_1$ we see that $x'^p_1 = \gamma^p x'^p_1 = c^{n-1}bc = b \in B$ and, clearly, $G = \langle x_1, y_1, Z(G) \rangle$. In a similar way we can find y_1 such that $G = \langle x_1, y_1, Z(G) \rangle$ and $x^p_1, y^p_1 \in Z(G)$.

Since $\langle x_1, y_1, B \rangle$ is a p -group, it follows easily that

$$G = \langle x_1, y_1, B \rangle \times C.$$

Also, $G' \subset Z(G)$ is a p -group so $G' \subset B$. We wish to show that we can find a decomposition of B in cyclic factors $B = C_{p^{m_1}} \times \dots \times C_{p^{m_k}}$ such that $G' \subset C_{p^{m_1}}$.

In fact, let $G' = \langle e \mid e^p = 1 \rangle$ and let $C_{p^{m_i}} = \langle t_i \rangle$ be subgroups of a decomposition of B in which e is written as a product with minimal number of factors. We can choose the generators t_i , $i \leq i \leq k$ in such a way that

$$e = t_1^{p^{m_1}-1} \dots t_\ell^{p^{m_\ell}-1} \quad \text{with } \ell \leq k.$$

We wish to show that $\ell = 1$ so, assume that $\ell > 1$ and $m_1 \geq m_2$. Clearly

$$\langle t_1 \rangle \times \langle t_1^{p^{m_1}-m_2} \cdot t_2 \rangle = C_{p^{m_1}} \times C_{p^{m_2}}$$

so

$$B = C_{p^{m_1}} \times \langle t_1^{p^{m_1}-m_2} \cdot t_2 \rangle \times \dots \times C_{p^{m_\ell}}.$$

Since $(t_1^{p^{m_1}-m_2} \cdot t_2)^{m_2-1} = t_1^{m_1-1} \cdot t_2^{m_2-1}$ it follows that $e \in \langle t_1^{p^{m_1}-m_2} \cdot t_2 \rangle \times \dots \times C_{p^{m_\ell}}$, a contradiction.

Like $x_1^p \in B$ so we can write $x_1^p = \alpha_1 \dots \alpha_k$ with $\alpha_i \in C_{p^{m_i}}$. Assume that, for a given index i the corresponding element α_i is not a generator of $C_{p^{m_i}}$. Then $\alpha_i^{o(\alpha_i)-1}$ is not a generator also and we can write $\alpha_i^{o(\alpha_i)-1} = t_i^v$ where $p \mid v$.

Now, the element $t_i^{\frac{v}{p}} \cdot x_i$ is such that $(t_i^{\frac{v}{p}} \cdot x_i)^p \in B$ and has no component in $C_{p^{m_i}}$. Repeating this process, if necessary we can find an element x such

that $\langle x, y_1, B \rangle = \langle x_1, y_1, B \rangle$ and $x^p = \alpha_{i_1} \alpha_{i_2} \dots \alpha_{i_\ell}$ were α_{i_j} is a generator of $C_{p^{m_{i_j}}}$, $1 \leq j \leq \ell$. Assume that none of these elements belongs to $C_{p^{m_1}}$. We can write

$$C_{p^{m_{i_1}}} \times \dots \times C_{p^{m_{i_\ell}}} = \langle \alpha_{i_1} \dots \alpha_{i_\ell} \rangle \times \langle \alpha_{i_2} \rangle \times \dots \times \langle \alpha_{i_\ell} \rangle$$

$$x^p \in \langle \alpha_{i_1} \times \dots \times \alpha_{i_\ell} \rangle$$

so, in any case, we can write B in the form $B = C_{p^{m_1}} \times C_{p^{m_2}} \times \dots \times C_{p^{m_k}}$ where

$$G' \subset C_{p^{m_1}} \text{ and } x^p \in C_{p^{m_1}} \times C_{p^{m_2}}.$$

In a similar way, we can find an expression for B and elements $x, y \in G$ such that:

$$G = \langle x, y, B \rangle$$

$$B = C_{p^{m_1}} \times \dots \times C_{p^{m_\ell}}$$

and

$$G' \subset C_{p^{m_1}}, \quad x^p \in C_{p^{m_1}} \times C_{p^{m_2}} \quad \text{and} \quad y^p \in C_{p^{m_1}} \times C_{p^{m_2}} \times C_{p^{m_3}}.$$

Notice that actually we have shown that x^p and y^p belong to a product of *at most* three of these factors.

So, if we set $D = \langle x, y, C_{p^{m_1}} \times C_{p^{m_2}} \times C_{p^{m_3}} \rangle$ where $m_1 \geq 1$ and $m_2, m_3 \geq 0$ and $A = C_{p^{m_4}} \times \dots \times C_{p^{m_\ell}} \times C$ we have that $G = D \times A$ as desired. \square

(1.3) Corollary. Let G be an indecomposable group such that $G/Z(G) \cong C_p \times C_p$. Then, G is a p -group and $Z(G)$ has rank at most 3.

(1.4) Lemma. Let G be a group. Then $G/Z(G) \cong C_p \times C_p$ if and only if $|G'| = p$ and every irreducible complex representation of G has degree equal to either 1 or p .

Proof. Assume that $G/Z(G) \cong C_p \times C_p$. In this case, we see that $|Z(G)| = |G|/p^2$. Hence, since $|G'| = p$, then every conjugacy class has order equal to 1 or p , so the number of conjugacy classes in G is:

$$|Z(G)| + \frac{|G| - |Z(G)|}{p^2} = \frac{|G|}{p^2} + \frac{|G| - |G|/p^2}{p} = \frac{(p^2 + p - 1)|G|}{p^3}.$$

We denote by $\Delta_C(G : G')$ the ideal of CG generated by the set $\{x - 1 \mid x \in G'\}$. We can write [2, lemma (1.1)]:

$$CG \cong C(G/G') \oplus \Delta_C(G : G').$$

Since $|G/G'| = |G|/p$ we have that $C(G/G')$ is isomorphic to a direct sum of $|G|/p$ copies of C . Hence, the number of simple components in the decomposition of $\Delta_C(G : G')$ is:

$$\frac{p^2 + p - 1}{p^3} |G| - \frac{|G|}{p} = \frac{p - 1}{p^3} |G|.$$

Now, we evaluate the dimension of $\Delta_C(G : G')$ in two different ways. On the one hand, we have that:

$$[\Delta_C(G : G') : C] = |G| - [C(G/G') : C] = \frac{p - 1}{p} |G|.$$

On the other hand, since all 1-dimensional components of CG come from $C(G/G')$. By the Theorem (1.2) if G is indecomposable, therefore a p -group, each component of $\Delta_C(G : G')$ has dimension at least equal to p^2 .

If $G \cong D \times A$, $CG \cong CA \otimes CG$ and like A is abelian, again we have that each simple component of $\Delta_C(G : G')$ has dimension at least equal to p^2 . Multiplying by the number of components and comparing with the result above, we see that all simple components of $\Delta_C(G : G')$ must have dimension precisely equal to p^2 .

Hence:

$$CG \cong \underbrace{C \oplus \dots \oplus C}_{\frac{|G|}{p} \text{ times}} \oplus \underbrace{M_p(C) \oplus \dots \oplus M_p(C)}_{\frac{p-1}{p} |G| \text{ times}}$$

where $M_p(C)$ denotes the full ring of $p \times p$ matrices over C . Thus, all the irreducible complex representations of G have degree equal to either 1 or p .

Conversely, assume that the representations are as above. Since $CG \cong C(G/G') \oplus \Delta_C(G : G')$ we can compute:

$$[Z(CG) : C] = \frac{|G|}{p} + \frac{|G| - |G|/p}{p^2} - \frac{p^2 + p - 1}{p^3} \cdot |G|.$$

Since $[Z(CG) : C]$ is equal to the number of conjugacy classes in G we get:

$$\frac{p^2 + p - 1}{p^3} |G| = |Z(G)| + \frac{|G| - |Z(G)|}{p}$$

and thus $|G/Z(G)| = p^2$. Also, we know that G is non abelian, hence $G/Z(G)$ cannot be cyclic and, consequently, $G/Z(G) = C_p \times C_p$. \square

§2 - Group Algebras.

Our first statement is rather elementary but will be repeatedly needed in the sequel.

(2.1) Lemma. Let $C_{p^m} = S_m \supset S_{m-1} \supset \dots \supset S_0 = \{1\}$ be the set of all subgroups of the cyclic group of order p^m and set $\hat{S}_i = \frac{1}{p^i} \sum_{x \in S_i} x$, $0 \leq i \leq m$. Then, the primitive idempotents of the rational group algebra QC_{p^m} are $e_0 = \hat{S}_m$ and $e_i = \hat{S}_{m-i} - \hat{S}_{m-i+1}$, $1 \leq i \leq m$.

In particular, we have that

$$QC_{p^m}(1 - \hat{S}_1) = Q(\zeta)$$

where ζ denotes a primitive root of unity of degree $p^{m-1}(p-1)$.

Proof. We have that

$$QC_{p^m} \cong \frac{Q[X]}{(X^{p^m} - 1)} \cong \bigoplus_{i=0}^m \frac{Q[X]}{(\Phi_{p^i})} \cong \bigoplus_{i=0}^m Q(\zeta_i),$$

where Φ_{p^i} denotes the cyclotomic polynomial of order p^i and ζ_i is a root of Φ_{p^i} , $0 \leq i \leq m$.

Hence, we see that QC_{p^m} contains precisely $m+1$ primitive idempotents. Clearly $\hat{S}_{m-i} \cdot \hat{S}_{m-j} = \hat{S}_{m-i}$ if $i \leq j$ so the idempotents e_i , $0 \leq i \leq m$ are pairwise orthogonal and $\sum_{i=0}^m e_i = 1$, as desired.

Also, $QC_{p^m} \cdot \hat{S}_1 \cong Q(C_{p^m}/S_1)$ so $[QC_{p^m} : Q] = p^{m-1}$ hence $[QC_{p^m}(1 - \hat{S}_1) : Q] = p^m - p^{m-1}$. Since $QC_{p^m}(1 - \hat{S}_1)$ is a field, we must have $QC_{p^m}(1 - \hat{S}_1) = Q(\zeta)$ where ζ is a primitive root of unity of degree $p^{m-1}(p-1)$. \square

(2.2) Lemma. Let D be a group such that $|D'| = p$. Then $Z(QD(1 - \widehat{D}')) = Q(Z(D))(1 - \widehat{D}')$, where $\widehat{D}' = p^{-1} \sum_{x \in D'} x$.

Proof. Set $g \in G$ and denote by $Cl(g)$ the conjugacy class of g . Since $|D'| = p$ we have that either $Cl(g) = \{g\}$ or $Cl(g) = gD'$. Thus, an element $\alpha \in Z(QD)$ can be written in the form:

$$\alpha = \sum_{g \in Z(D)} \alpha_g g + \sum_{g \notin Z(D)} \alpha_g gD', \quad \alpha_g \in Q.$$

Since $QD(1 - \widehat{D}')$ is a direct summand we have that $Z(QD(1 - \widehat{D}')) = Z(QD) \cap QD(1 - \widehat{D}')$ so, given an element $\alpha \in (QD(1 - \widehat{D}'))$ it can be written as above, and also $\alpha = \alpha(1 - \widehat{D}')$. Hence, it can be written as:

$$\alpha = \sum_{g \in Z(D)} \alpha_g g(1 - \widehat{D}') \in Q(Z(D))(1 - \widehat{D}').$$

Thus, we see that $Z(QD(1 - \widehat{D}')) \subset Q(Z(D))(1 - \widehat{D}')$. The opposite inclusion is obvious. \square

From now on, D will always denote an indecomposable group which can be written in the form $D = \langle x, y, Z(D) \rangle$ as described in Theorem (1.2). Let E be another group such that $QD \cong QE$. We wish to show that E is also a group of the same kind and that, with a notable exception, the isomorphism occurs if and only if $D/D' \cong E/E'$ and $Z(D) \cong Z(E)$.

So assume that $QD \cong QE$; then also $CD \cong CE$ and we have that:

$$CD \cong C(D/D') \oplus \Delta_C(D : D')CE \cong C(E/E') \oplus \Delta_C(E : E').$$

Since the simple commutative components of CD and CE are those of $C(D/D')$ and $C(E/E')$ respectively [3, p.36], it follows that $C(D/D') \cong C(E/E')$ and thus $|E'| = |D'| = p$. Also $\Delta_C(D : D') \cong \Delta_C(E : E')$.

Since lemma (1.2) shows that all simple components of $\Delta_C(D : D')$ are of the form $M_p(C)$, the same is true for $\Delta_C(E : E')$ and, again because of lemma (1.2), we obtain that $E/Z(E) \cong C_p \times C_p$.

In a similar way, we obtain that $Q(D/D') \cong Q(E/E')$ and thus $D/D' \cong E/E'$ [7, theorem III.2.12]. It now follows easily that $E = \langle u, v, Z(E) \rangle$ where u, v and $Z(E)$ are as described in Theorem (1.2).

In order to simplify notations, from now on, we shall identify E with its image, though an isomorphism $\varphi : QE \rightarrow QD$, in QD .

(2.3) Lemma. With the notations above, if $QD \cong QE$ then $\widehat{D}' = \widehat{E}'$.

Proof. Write $QD = QD \cdot \widehat{D}' \oplus QD(1 - \widehat{D}')$, where $QD \widehat{D}' \cong Q(D/D')$ and $QD(1 - \widehat{D}') = \Delta_Q(D : D')$.

Since D/D' is abelian, all simple components of $QD \cdot \widehat{D}'$ are commutative. On the other hand, we claim that $\Delta_Q(D : D')$ contains no commutative components. In fact, we have that

$$CD \cong C \otimes QD \cong C(D/D') \oplus (C \otimes \Delta_Q(D : D'))$$

so, commutative components in $\Delta_Q(D : D')$ will imply the existence of commutative components in $\Delta_C(D : D')$ contradicting lemma (1.1).

Thus:

$$QD \cdot \widehat{D}' = QE \cdot \widehat{E}' \quad \text{and}$$

$$QD(1 - \widehat{D}') = QE(1 - \widehat{E}').$$

In particular, since \widehat{D}' and \widehat{E}' are the unity elements of $QD \cdot \widehat{D}'$ and $QE \cdot \widehat{E}'$ respectively, it follows that $\widehat{D}' = \widehat{E}'$. \square

Since D and E are groups as described in Theorem (1.2) we can write:

$$Z(D) = C_{p^{n_1}} \times C_{p^{n_2}} \times C_{p^{n_3}}$$

$$Z(E) = C_{p^{m_1}} \times C_{p^{m_2}} \times C_{p^{m_3}}$$

with $n_1, m_1 \geq 1$, $n_i, m_i \geq 0$, $i = 1, 2, 3$.

(2.4) Lemma. With the notations above, if $QD \cong QE$ then $n_1 = m_1$.

Proof. Since $|Z(D)| = |Z(E)| = \frac{|D|}{p^2}$ it follows immediately that

$$n_1 + n_2 + n_3 = m_1 + m_2 + m_3.$$

Now:

$$\begin{aligned} Q(Z(D))(1 - \widehat{D}') &= Q(C_{p^{n_1}} \times C_{p^{n_2}} \times C_{p^{n_3}})(1 - \widehat{D}') = \\ &= [Q(C_{p^{n_1}})(C_{p^{n_2}} \times C_{p^{n_3}})](1 - \widehat{D}'). \end{aligned}$$

In the notation of lemma (2.1) S_1 is the subgroup of $C_{p^{n_1}}$ of order p , i.e., $S_1 = D'$ and thus, that lemma shows that

$$Q(C_{p^{n_1}})(1 - \widehat{D}') \cong Q(\zeta)$$

where ζ is a primitive root of unity of degree $p^{n_1-1}(p-1)$.

Hence:

$$Q(Z(D))(1 - \widehat{D}') \cong Q(\zeta)(C_{p^{n_2}} \times C_{p^{n_3}}).$$

In a similar way we obtain that $Q(Z(E))(1 - \widehat{E}') \cong Q(\zeta_1)(C_{p^{m_2}} \times C_{p^{m_3}})$ where ζ_1 is of degree $p^{m_1-1}(p-1)$, thus:

$$Q(\zeta)(C_{p^{n_2}} \times C_{p^{n_3}}) \cong Q(\zeta_1)(C_{p^{m_2}} \times C_{p^{m_3}})$$

and, since $Q(\zeta)$ and $Q(\zeta_1)$ are the components of smaller dimension over Q in both sides of the expression, we see that $n_1 = m_1$. \square

(2.5) Lemma. Let ζ be a root of unity of degree $p^{n-1}(p-1)$ and assume that $Q(\zeta)(C_{p^{n_2}} \times C_{p^{n_3}}) \cong Q(\zeta)(C_{p^{m_2}} \times C_{p^{m_3}})$. Then either:

$$(i) \quad C_{p^{n_2}} \times C_{p^{n_3}} \cong C_{p^{m_2}} \times C_{p^{m_3}}$$

or

$$(ii) \quad n_1 > \max\{n_2, n_3, m_2, m_3\} \text{ and } n_2 + n_3 = m_2 + m_3.$$

Proof. Assume first that $Q(C_{p^{n_2}} \times C_{p^{n_3}}) \cong Q(C_{p^{m_2}} \times C_{p^{m_3}})$ and that $C_{p^{n_2}} \times C_{p^{n_3}} \not\cong C_{p^{m_2}} \times C_{p^{m_3}}$.

Without loss of generality, we may assume that $n_2 = \max\{n_2, n_3, m_2, m_3\}$. Since the groups are not isomorphic we must have that $n_2 > m_2, m_3$.

As in lemma (2.1), $Q(C_{p^{n_2}} \times C_{p^{n_3}})$ contains a simple component isomorphic to $Q(\Theta)$ where $\deg(\Theta) = p^{n_2}(p-1)$. Hence, $Q(\zeta)(C_{p^{n_2}} \times C_{p^{n_3}}) \cong Q(\zeta) \otimes_Q Q(C_{p^{n_2}} \times C_{p^{n_3}})$ contains a component which is isomorphic to $Q(\zeta) \otimes_Q Q(\Theta)$ which, in turn, contains $Q(\Theta)$.

If $n_1 < n_2$, $Q(\zeta) \otimes_Q Q(\Theta) \cong Q(\Theta)$ and $Q(C_{p^{m_2}} \times C_{p^{m_3}})$ contains no simple component isomorphic to $Q(\Theta)$, a contradiction.

If $n_1 = n_2$ then $Q(\zeta)$ is a splitting field for $C_{p^{m_2}} \times C_{p^{m_3}}$ but not for $C_{p^{n_2}} \times C_{p^{n_3}}$ so the corresponding group algebras cannot be isomorphic. \square

Conversely, if (i) holds the statement is obvious so assume that (ii) holds. As before, set $n_2 = \max\{n_2, n_3, m_2, m_3\}$. If $n_1 > n_2$ then $p^{n_1}(p-1) \geq p^{n_2}$

and $\mathbb{Q}(\zeta)$ is a splitting field for both groups so:

$$\mathbb{Q}(\zeta)(C_{p^{n_2}} \times C_{p^{n_3}}) \cong \underbrace{\mathbb{Q}(\zeta) \oplus \dots \oplus \mathbb{Q}(\zeta)}_{(n_2+n_3) \text{ times}} \cong \mathbb{Q}(\zeta)(C_{p^{m_2}} \times C_{p^{m_3}})$$

□

We are now ready to prove the main result of this section.

(2.6) Theorem. Let D be a group as described in Theorem (1.2) and let E be another group. If $\mathbb{Q}D \cong \mathbb{Q}E$ then

(i) $D/D' \cong E/E'$

and either:

(ii) $Z(D) \cong Z(E)$

or

(ii') with the notations above $n_1 = m_1 > \max\{n_2, n_3, m_2, m_3\}$ and $n_2 + n_3 = m_2 + m_3$.

Conversely, if E is also as in Theorem (1.2) and the conditions above hold, we have that:

(1) If $p \neq 2$ then $\mathbb{Q}D \cong \mathbb{Q}E$.

(2) If $p = 2$ and $n_1 > 1$ then $\mathbb{Q}D \cong \mathbb{Q}E$.

Proof. The necessity of the conditions follows directly from the previous lemmas.

To prove the converse, we recall from Lemma (1.2) that every irreducible representation of D and E has degree equal to either 1 or p . Also, as shown in Lemma (2.3), $\mathbb{Q}E(1 - \hat{E}')$ and $\mathbb{Q}D(1 - \hat{D}')$ contain no commutative

simple components, hence:

$$\mathbf{Q}D.\widehat{D}' \cong F_1 \oplus \dots \oplus F_r$$

$$\mathbf{Q}E.\widehat{E}' \cong K_1 \oplus \dots \oplus K_s$$

$$\mathbf{Q}D(1 - \widehat{D}') \cong A_1 \oplus \dots \oplus A_u$$

$$\mathbf{Q}E(1 - \widehat{E}') \cong B_1 \oplus \dots \oplus B_v$$

where F_i, K_j are fields and A_i, B_j are simple algebras of dimension p^2 over their centers.

Since $\mathbf{Q}D.\widehat{D}' \cong \mathbf{Q}(D/D')$ and $\mathbf{Q}E.\widehat{E}' \cong \mathbf{Q}(E/E')$, condition (i) implies that $r = s$ and, in a convenient reordering $F_i \cong K_i$, $1 \leq i \leq r$.

Conditions (ii) or (iii) imply that $\mathbf{Q}(\zeta)(C_{p^{m_2}} \times C_{p^{m_3}}) \cong \mathbf{Q}(\zeta)(C_{p^{m_2}} \times C_{p^{m_3}})$ and, as in Lemma (2.3), we see that:

$$\mathbf{Q}(Z(D))(1 - \widehat{D}') \cong \mathbf{Q}(Z(E))(1 - \widehat{E}')$$

so

$$Z(\mathbf{Q}D(1 - \widehat{D}')) \cong Z(\mathbf{Q}E(1 - \widehat{E}')).$$

Hence, $u = v$ and, in a convenient reordering, $Z(A_i) \cong Z(B_i)$, $1 \leq i \leq u$. If $p \neq 2$ this implies also that $A_i \cong B_i \cong M_p(Z(A_i))$, $1 \leq i \leq u$ (see [2, p.5]) and thus $\mathbf{Q}D(1 - \widehat{D}') \cong \mathbf{Q}D(1 - \widehat{E}')$; consequently, we also have that $\mathbf{Q}D \cong \mathbf{Q}E$.

If $p = 2$ the simple components are algebras of dimension 4 over their centers and can thus be isomorphic either to a full matrix algebra or a quaternion algebra.

Since $E' = D' = \{1, e\}$ we have that $1 - \widehat{D}' = \frac{1-e}{2}$ is the identity element of $QD(1 - \widehat{D}')$. If $n_1 > 1$ there exists an element $\alpha \in C_p^{n_1}$ such that $\alpha^2 = \ell$. Hence, $\alpha(\frac{1-e}{2}) \in Z(QD(1 - \widehat{D}'))$ is such that $[\alpha(\frac{1-e}{2})]^2 = -(1 - \widehat{D}')$; this means that the centers of all components are fields containing a square root of -1 . Thus, the algebras under consideration cannot be quaternion algebras. Consequently, $QD(1 - \widehat{D}') \cong QE(1 - \widehat{E}')$ and we conclude again that $QD \cong QE$. \square

Notice that in the case where $p = 2$, if $n = 1$ the conditions of the theorem above are not sufficient. In fact, if D_4 and K_8 denote the dihedral and quaternion groups of order 8 respectively, we see that $|D_4'| = |K_8'| = 4$, $Z(D_4) \cong Z(K_8) \cong C_2$ and $D_4/D_4' \cong K_8/K_8' \cong C_2 \times C_2$ but $QD_4 \not\cong QK_8$.

To study this situation we need a few remarks.

Let E be a group such that $QD \cong QE$. As in Theorem (2.6), we have that $D/D' \cong E/E'$ and thus $|E'| = |D'| = 2$ so, Lemma (1.2) shows that $E/Z(E) \cong C_2 \times C_2$. Now,

$$Z(\Delta(D : D')) = Z(QD(1 - \widehat{D}')) = Q(Z(D)(1 - \widehat{D}'))$$

and

$$Z(\Delta E : E') = Z(QE(1 - \widehat{E}')) = Q(Z(E))(1 - \widehat{E}').$$

Since $Q(Z(D)(1 - D')) \cong Q(Z(E)(1 - \widehat{E}'))$, Lemma (2.4) shows that $Z(D) \cong Z(E)$.

In what follows we shall need information about group algebras of indecomposable groups of order 16 such that, factored by their centers, are

isomorphic to $C_2 \times C_2$. There exist two such groups, those of type 16/9 and 16/10 in the table of groups of orders 16 in [8], which we shall denote simply as A and B respectively.

(2.7) Lemma. With the notation above, we have that:

$$QA = 2(Q \oplus Q \oplus Q(i))$$

$$\oplus M_2(Q) \oplus M_2(Q)$$

$$QB = 2(Q \oplus Q \oplus Q(i)) \oplus M_2(Q) \oplus H$$

where H denotes the quaternion algebra over the rational numbers.

Proof. As before:

$$QA \cong Q(A/A') \oplus \Delta(A : A')$$

$$QB \cong Q(B/B') \oplus \Delta(B : B').$$

Since $A/A' \cong B/B' \cong C_2 \times C_4$ it follows easily that

$$Q(A/A') \cong Q(B/B') \cong 2(Q \oplus Q \oplus Q(i)).$$

Set $Z(A) = \langle e \rangle \times \langle r \rangle$ where $A' = \langle e \rangle$ and $o(e) = o(r) = 2$.

Then $A/\langle r \rangle \cong A/\langle er \rangle \cong D_4$. Hence, we have isomorphisms:

$$QA\left(\frac{1+r}{2}\right) \xrightarrow{\varphi} QD_4$$

$$QA\left(\frac{1+er}{2}\right) \xrightarrow{\psi} QD_4.$$

So:

$$QA\left(\frac{1+r}{2}\right)\left(\frac{1-e}{2}\right) \cong QD_4\left(\frac{1-\varphi(e)}{2}\right) \cong M_2(Q)$$

$$QA\left(\frac{1+er}{2}\right)\left(\frac{1-e}{2}\right) \cong QD_4\left(\frac{1-\psi(e)}{2}\right) \cong M_2(Q).$$

Consequently, QA contains two different simple components which are both isomorphic to $M_2(Q)$ then, QA is as stated.

In a similar way, if we write $Z(B) = \langle f \rangle \times \langle s \rangle$ where $B' = \langle f \rangle$ and $o(f) = o(s) = 2$ we see that $B/\langle s \rangle \cong K_8$ and $B/\langle fs \rangle \cong D_4$ so the result follows. \square

Back to our original question, to fully describe the situation where $p = z$, $n = 1$, we shall discuss separately three cases, according to the rank of D , so set $Z(D) = \langle e \rangle \times \langle r \rangle \times \langle s \rangle$ where $o(e) = 2$, $o(r) = 2^m$, $o(s) = 2^n$.

Case 1. Assume $m = n = 0$.

Since this means that $|D| = 8$ it is clear that $QD \approx QE$ if and only if $D \approx E$.

Case 2. Assume $m \geq 1$, $n = 0$.

The proofs of Lemma (2.4) and Lemma (2.1) show that

$$Z(\Delta(D : D')) \cong Q(C_{2^m}) \cong \bigoplus_{i=0}^m Q(\zeta_i).$$

Now, $\Delta(D : D')$ is a direct sum of simple algebra of dimension 4 over their respective centers. Since $m > 1$ implies that $Q(\zeta_i)$ contains a square root of -1, all the corresponding algebras must be isomorphic to $M_2(Q(\zeta_i))$. For $m = 0$ or $m = 1$ the corresponding algebras can be isomorphic to either $M_2(Q)$ or H . Hence, the isomorphic class of QD will be determined by these two simple algebras.

Now, denote $\langle r^2 \rangle = H$. Then $QD\widehat{H} \cong Q(D/H)$ and it is easily seen that D/H is indecomposable, of order 16 and that factored by its center is isomorphic to $C_2 \times C_2$. Hence D/H is isomorphic to either A or B and Lemma (2.7) implies that this fact will determine the isomorphism class of QD .

Case 3. Assume $m \geq 1, n \geq 1$.

Once again we can write $QD \cong Q(D/D') \oplus \Delta(D : D')$ and we know that $Z(\Delta(D : D')) \cong Q(C_{2^m} \times C_{2^n})$ so, it will contain four simple components isomorphic to Q and others, isomorphic to fields of the form $Q(\zeta)$. As in the previous case, we need only to determine the simple components whose centers are isomorphic to Q .

Write $H = \langle r^2 \rangle \times \langle s^2 \rangle$ and $\overline{D} = D/H$. Then, \overline{D} is a group of order 32 fulfilling the same properties as D . Again, [8] shows that there exists only one such group, that of type 32/18 in their notation, which we shall call G .

Since $QD \approx Q\overline{D} \oplus \Delta(D : H)$, $Q\overline{D} \cong QG$ and

$$Z(\Delta(G : G')) \cong Q(C_2 \times C_2) \cong Q \oplus Q \oplus Q \oplus Q$$

we see that the four simple components under consideration, are determined by G . Hence, there is only one possible isomorphism class for QD .

§3 - Loop Algebras.

We shall now extend the results of the previous section to loop algebras.

From now on L will denote an R.A. loop and $D \subset L$ a group such that $[L : D] = 2$, $D' = \{1, e\} = L'$ and $Z(D) = Z(L)$. Furthermore, we shall assume that it can be written as the group D in Theorem (2.1).

Writing:

$$QL = QL\left(\frac{1+e}{2}\right) \oplus QL\left(\frac{1-e}{2}\right)$$

we obtain, as in §2 that:

$$QL \cong Q(L/L') \oplus \Delta_Q(L : L')$$

where all simple commutative components of QL are present in the decomposition of $Q(L/L')$. Hence

$$Z(QL) \cong Q(L/L') \oplus Z(\Delta_Q(L : L')).$$

$$(3.1) \text{ Lemma. } Z(\Delta_Q(L : L')) = Q(Z(D))\left(\frac{1-e}{2}\right).$$

Proof. Since $Z(QD) \cong Q(D/D') \oplus Q(Z(D))\left(\frac{1-e}{2}\right)$ it follows readily that $Q(Z(D))\left(\frac{1-e}{2}\right) \subset Z(\Delta_Q(L : L'))$.

Computing dimensions, we obtain:

$$[Z(QL) : Q] = |Z(L)| + \frac{|L| - |Z(L)|}{2} = |Z(D)| + \frac{2|D| - |Z(D)|}{2} = \frac{9}{8}|D|.$$

Hence:

$$[Z(\Delta_Q(L : L')) : Q] = [Z(QL) : Q] - [Q(L/L') : Q] = \frac{1}{8}|D|.$$

Since we also see that $[Q(Z(D))\left(\frac{1-e}{2}\right) : Q] = \frac{1}{8}|D|$, equality follows. \square

(3.2) Theorem. Let L be an R.A. loop and $D \subset L$ a group, as above. Furthermore, assume that there exists an element $\alpha \in Z(D)$ such that $\alpha^2 = e$. Let M be another loop. Then $QL \cong QM$ if and only if $L/L' \cong M/M'$ and $Z(QL) \cong Z(QM)$.

Proof. Assume first that $QL \cong QM$ since $Q(L/L')$ and $Q(M/M')$ are the sums of the corresponding commutative components, it follows that $Q(L/L') \cong Q(M/M')$, thus $L/L' \cong M/M'$. Also, since

$$Q(L/L') \oplus Q(Z(D))\left(\frac{1-e}{2}\right) \cong Q(M/M') \oplus Q(Z(E))\left(\frac{1-e}{2}\right)$$

where $E \subset M$ denotes a convenient subgroup of M , we obtain:

$$Q(Z(D))\left(\frac{1-e}{2}\right) \cong Q(Z(E))\left(\frac{1-e}{2}\right)$$

using Theorem (2.6) we obtain $Z(L) \cong Z(M)$.

Conversely, assume that $L/L' \cong M/M'$ and $Z(L) \cong Z(M)$. Then

$$Q(Z(D))\left(\frac{1-e}{2}\right) \cong Q(Z(L))\left(\frac{1-e}{2}\right)$$

$$Q(L/L') \cong Q(D/D')$$

so

$$Z(QL) \cong Z(QM).$$

Since QL and QM are semisimple alternative algebras [5, Corollary 8] we can write:

$$QL \cong Q(L/L') \oplus A_1 \oplus \dots \oplus A_n$$

$$QM \cong Q(M/M') \oplus B_1 \oplus \dots \oplus B_m.$$

Comparing the respective centers, we obtain $n = m$ and $Z(A_i) = Z(B_i)$, $1 \leq i \leq n$. Since $\alpha^2 = e$ we see, as in Theorem (2.6) that the algebras A_i , B_i must be split Cayley algebras and these are unique over each center [6, Lemma (3.16)], hence $A_i \cong B_i$, $1 \leq i \leq n$ and thus $QL \cong QM$.

References

- [1] O. Chein and E.G. Goodaire, *Loops whose loop rings are alternative*, Comm. in Algebra, **14** (1986), 293-310.
- [2] D.B. Coleman, *Finite groups with isomorphic group algebras*, Trans. Amer. Math. Soc. **105** (1962), 1-8.
- [3] C.W. Curtis and I. Reiner, *Representation Theory of Finite Groups and Associative Algebras*, Interscience, New York, 1962.
- [4] E.G. Goodaire, *Alternative Loop Rings*, Publ. Math. Debrecen, **30** (1983), 31-38.
- [5] E.G. Goodaire and M.M. Parmenter, *Semi-Simplicity of Alternative Loop Rings*, Acta Math. Hung. **50** (1987), 241-247.
- [6] R.D. Schafer, *An Introduction to Nonassociative Algebras*, Academic Press, New York, 1966.
- [7] S.K. Sehgal, *Topics in Group Rings*, M. Dekker, New York, 1978.
- [8] A.D. Thomas and G.V. Woods, *Group Tables*, Shiva Publishing Ltd., Devon, 1980.

TRABALHOS DO DEPARTAMENTO DE MATEMATICA

TITULOS PUBLICADOS

80-01 PLETCH, A. Local freeness of profinite groups. 10 p.
80-02 PLETCH, A. Strong completeness in profinite groups.
8 p.
80-03 CARNIELLI, W.A. & ALCANTARA, L.P. de Transfinite induction on ordinal configurations. 22 p.
80-04 JONES RODRIGUES, A.R. Integral representations of cyclic p-groups. 13 p.
80-05 CORRADA, M. & ALCANTARA, L.P. de Notes on many-sorted systems. 25 p.
80-06 POLCINO MILIES, F.C. & SEHGAL, S.K. FC-elements in a group ring. 10 p.
80-07 CHEN, C.C. On the Ricci condition and minimal surfaces with constantly curved Gauss map. 10 p.
80-08 CHEN, C.C. Total curvature and topological structure of complete minimal surfaces. 21 p.
80-09 CHEN, C.C. On the image of the generalized Gauss map of a complete minimal surface in R^4 . 8 p.
81-10 JONES RODRIGUES, A.R. Units of $ZCpn$. 7 p.
81-11 KOTAS, J. & COSTA, N.C.A. da Problems of model and discussive logics. 35 p.
81-12 BRITO, F.B. & GONÇALVES, D.L. Algebras não associativas, sistemas diferenciais polinomiais homogêneos e classes características. 7 p.
81-13 POLCINO MILIES, F.C. Group rings whose torsion units from a subgroup II. Iv. (não paginado).
81-14 CHEN, C.C. An elementary proof of Calabi's theorems on holomorphic curves. 5 p.
81-15 COSTA, N.C.A. da & ALVES, E.H. Relations between paraconsistent logic and many-valued logic. 8 p.
81-16 CASTILLA, M.S.A.C. On Przymusinski's theorem. 6 p.
81-17 CHEN, C.C. & GOES, C.C. Degenerate minimal surfaces in R^4 . 21 p.
81-18 CASTILLA, M.S.A.C. Imagens inversas de algumas aplicações fechadas. ii p.
81-19 ARAGONA VALLEJO, A.J. & EXEL FILHO, R. An infinite dimensional version of Hartogs' extension theorem. 9 p.
81-20 GONÇALVES, J.Z. Groups rings with solvable unit groups. 15p.
81-21 CARNIELLI, W.A. & ALCANTARA, L.P. de Paraconsistent algebras. 16 p.
81-22 GONÇALVES, D.L. Nilpotent actions. 10 p.
81-23 COELHO, S.P. Group rings with units of bounded exponent over the center. 25 p.
81-24 PARMENTER, M.M. & POLCINO MILIES, F.C. A note on isomorphic group rings. 4 p.
81-25 MERKLEN GOLDSCHMIDT, H.A. Hereditary algebras with maximum spectra are of finite type. 10 p.
81-26 POLCINO MILIES, F.C. Units of group rings: a short survey. 32 p.

81-27 CHEN, C.C. & GACKSTATTER, F. Elliptic and hyper-elliptic functions and complete minimal surfaces with handles. 14 p.

81-28 POLCINO MILIES, F.C. A glance at the early history of group rings. 22 p.

81-29 FERRER SANTOS, W.R. Reductive actions of algebraic groups on affine varieties. 52 p.

81-30 COSTA, N.C.A. da The philosophical import of paraconsistent logic. 26 p.

81-31 GONCALVES, D.L. Generalized classes of groups, spaces c-nilpotent and 'the Hurewicz theorem'. 30 p.

81-32 COSTA, N.C.A. da & MORTENSEN, Chris. Notes on the theory of variable binding term operators. 18 p.

81-33 MERKLEN GOLDSCHMIDT, H.A. Homogeneous 1-hereditary algebras with maximum spectra. 32 p.

81-34 PERESI, L.A. A note on semiprime generalized alternative algebras. 10 p.

81-35 MIRAGLIA NETO, F. On the preservation of elementary equivalence and embedding by filtered powers and structures of stable continuous functions. 9 p.

81-36 FIGUEIREDO, G.V.R. Catastrophe theory: some global theory a full proof. 91 p.

82-37 COSTA, R.C.F. On the derivations of gametic algebras. 17 p.

82-38 FIGUEIREDO, G.V.R. A shorter proof of the Thom-Zeeman global theorem for catastrophes of cod ≤ 5 . 7 p.

82-39 VELOSO, J.M.M. Lie equations and Lie algebras: the intransitive case. 97 p.

82-40 GOES, C.C. Some results about minimal immersions having flat normal bundle. 37 p.

82-41 FERRER SANTOS, W.R. Cohomology of comodules II. 15 p.

82-42 SOUZA, V.H.G. Classification of closed sets and diffeos of one-dimensional manifolds. 15 p.

82-43 GOES, C.C. The stability of minimal cones of codimension greater than one in R^n . 27 p.

82-44 PERESI, L.A. On automorphisms of gametic algebras. 27 p.

82-45 POLCINO MILIES, F.C. & SEHGAL, S.K. Torsion units in integral group rings of metacyclic groups. 18 p.

82-46 GONCALVES, J.Z. Free subgroups of units in group rings. 8 p.

82-47 VELOSO, J.M.M. New classes of intransitive simple Lie pseudogroups. 8 p.

82-48 CHEN, C.C. The generalized curvature ellipses and minimal surfaces. 10 p.

82-49 COSTA, R.C.F. On the derivation algebra of zygotic algebras for polyploidy with multiple alleles. 24 p.

83-50 GONCALVES, J.Z. Free subgroups in the group of units of group rings over algebraic integers. 3 p.

83-51 MANDEL, A. & GONCALVES, J.Z. Free k-triples in linear groups. 7 p.

83-52 BRITO, F.G.B. A remark on closed minimal hypersurfaces of S^4 with second fundamental form of constant length. 12 p.

83-53 KIHL, J.C.S. U-structures and sphere bundles. 8 p.

83-54 COSTA, R.C.F. On genetic algebras with prescribed derivations. 23 p.

83-55 SALVITTI, R. Integrabilidade das distribuições dadas por subálgebras de Lie de codimensão finita no $gh(n, C)$. 4 p.

83-56 MANDEL, A. & GONCALVES, J.Z. Construction of open sets of free k-Tuples of matrices. 18 p.

83-57 BRITO, F.G.B. A remark on minimal foliations of codimension two. 24 p.

83-58 GONCALVES, J.Z. Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings. 9 p.

83-59 BELOQUI, J.A. Modulus of stability for vector fields on 3-manifolds. 40 p.

83-60 GONCALVES, J.Z. Some groups not subnormal in the group of units of its integral group ring. 8 p.

84-61 GOES, C.C. & SIMOES, P.A.Q. Imersões mínimas nos espaços hiperbólicos. 15 p.

84-62 GIANBRUNO, A.; MISSO, P. & POLCINO MILIES, F.C. Derivations with invertible values in rings with involution. 12 p.

84-63 FERRER SANTOS, W.R. A note on affine quotients. 6 p.

84-64 GONCALVES, J.Z. Free-subgroups and the residual nilpotence of the group of units of modular and p-adic group rings. 12 p.

84-65 GONCALVES, D.L. Fixed points of S^1 -fibrations. 18 p.

84-66 RODRIGUES, A.A.M. Contact and equivalence of submanifolds of homogenous spaces. 15 p.

84-67 LOURENCO, M.L. A projective limit representation of (DFC)-spaces with the approximation property. 20 p.

84-68 FORNARI, S. Total absolute curvature of surfaces with boundary. 25 p.

84-69 BRITO, F.G.B. & WALCZAK, P.G. Totally geodesic foliations with integral normal bundles. 6 p.

84-70 LANGEVIN, R. & POSSANI, C. Quase-folheações e integrais de curvatura no plano. 26 p.

84-71 OLIVEIRA, M.E.G.G. de Non-orientable minimal surfaces in R^N . 41 p.

84-72 PERESI, L.A. On baric algebras with prescribed automorphisms. 42 p.

84-73 MIRAGLIA NETO, F. & ROCHA FILHO, G.C. The measurability of Riemann integrable-function with values in Banach spaces and applications. 27 p.

84-74 MERKLEN GOLDSCHMIDT, H.A. Artin algebras which are equivalent to a hereditary algebra modulo pre-projectives. 38 p.

84-75 GOES, C.C. & SIMOES, P.A.Q. The generalized Gauss map of minimal surfaces in H^3 and H^4 . 16 p.

84-76 GONCALVES, J.Z. Normal and subnormal subgroups in the group of units of a group rings. 13 p.

85-77 ARAGONA VALLEJO, A.J. On existence theorems for the ∂ -operator on generalized differential forms. 13 p.

85-78 POLCINO MILIES, C.; RITTER, J. & SEHGAL, S.K. On a conjecture of Zassenhaus on torsion units in integral group rings II. 14 p.

85-79 JONES RODRIGUEZ, A.R. & MICHLER, G.O. On the structure of the integral Green ring of a cyclic group of order p^2 . The Jacobson radical of the integral Green ring of a cyclic group of order p^2 . 26 p.

85-80 VELOSO, J.M.M. & VERDERESI, J.A. Three dimensional Cauchy-Riemann manifolds. 19 p.

85-81 PERESI, L.A. On baric algebras with prescribed automorphisms II. 18 p.

85-82 KNUDSEN, C.A. O impasse aritmo-geométrico e a evolução do conceito de número na Grécia antiga. 43p.

85-83 VELOSO, J.M.M. & VERDERESI, J.A. La géometrie, le problème d'équivalence et la classification des CR-varietés homogènes en dimension 3. 30 p.

85-84 GONCALVES, J.Z. Integral group rings whose group is solvable, an elementary proof. 11 p.

85-85 LUCIANO, O.O. Nebuleuses infinitesimamente fibrées. 5 p.

85-86 ASPERTI, A.C. & DAJCZER, M. Conformally flat Riemannian manifolds as hypersurfaces of the light cone. 8 p.

85-87 BELOQUI, J.A. A quasi-transversal Hopf bifurcations. 11 p.

85-88 POLCINO MILIES, F.C. & RAPHAEL, D.M. A note on derivations with power central values in prime rings. 7 p.

85-89 POLCINO MILIES, F.C. Torsion units in group rings and a conjecture of H.J.Zassenhaus. 14 p.

86-90 LOURENCO, M.L. Riemann domains over. (DFC) spaces. 32 p.

86-91 ARAGONA VALLEJO, A.J. & FERNANDES, J.C.D. The Hartogs extension theorem for holomorphic generalized functions. 9 p.

86-92 CARRARA ZANETIC, V.L. Extensions of immersions in dimension two. 27 p.

86-93 PERESI, L.A. The derivation algebra of gametic and zygotic algebras for linked loci. 25 p.

86-94 COELHO, S.P. A note on central idempotents in group ring. 5 p.

86-95 PERESI, L.A. On derivations of baric algebras with prescribed automorphisms. 21 p.

86-96 COELHO, F.U. A generalization of a theorem of Todorov on preprojectives partitions. 18 p.

86-97 ASPERTI, A.C. A note on the minimal immersions of the two-sphere. 11 p.

86-98 COELHO, S.P. & POLCINO MILIES, F.C. A note on central idempotents in group rings II. 8 p.

86-99 EXEL FILHO, R. Hankel matrices over right ordered amenable groups. 18 p.

NOVA SERIE

86-01 GOODAIRE, E.G. & POLCINO MILIES, F.C. Isomorphisms of integral alternative loop rings. 11 p.

86-02 WALCZAK, P.G. Foliations which admit the most mean curvature functions. 11 p.

86-03 OLIVEIRA, M.E.G.G. Minimal Klein bottles with one end in R^3 and R^4 . 12 p.

86-04 MICALI, A. & VILLAMAYOR, O.E. Homologie de Hochschild de certaines algèbres de groupes. 11 p.

86-05 OLIVEIRA, M.E.G.G. Minimal Klein bottles in R^3 with finite total curvature. 9 p.

86-06 CARRARA ZANETIC, V.L. Classification of stable maps between 2-manifolds with given singular set image. 22 p.

87-01 BRITO, F.G.B. & WALCZAK, P.G. Total curvature of orthogonal vector fields on three-manifolds. 4 p.

87-02 BRITO, F.G.B. & LEITE, M.L. A remark on rotational hypersurfaces of S^n . 13 p.

87-03 GONCALVES, J., RITTER, J. & SEHGAL, S. Subnormal subgroups in $U(ZG)$. 13 p.

87-04 ARAGONA VALLEJO, A.J. & COLOMBEAU, J.F. The interpolation theorem for holomorphic generalized functions. 12 p.

87-05 ALMEIDA, S.C. de & BRITO, F.G.B. Immersed hypersurfaces of a space form with distinct principal curvatures. 9 p.

87-06 ASPERTI, A.C. Generic minimal surfaces. 21 p.

87-07 GOODAIRE, E.G. & POLCINO MILIES, F.C. Torsion units in alternative group rings. 17 p.

87-08 MERKLEN GOLDSCHMIDT, H.A. Algebras which are equivalent to a hereditary algebra modulo preprojectives II. 27 p.

87-09 REYNOL FILHO, A. P -localization of some classes of groups. 30 p.

88-01 CARLSON, J.F. & JONES, A. An exponential property of lattices over group rings. 22 p.

88-02 CARLSON, J.F. & JONES, A. Wild categories - of periodic modules. 6 p.

88-03 SALLUM, E.M. The nonwandering set of flows on a Reeb foliation. 13 p.

88-04 ALMEIDA, R. Cohomologie des suites d'Atiyah. 14 p.

88-05 GUZZO JR., H. Alguns teoremas de caracterização para álgebras alternativas à direita. 16 p.

88-06 HARLE, C.E. Subvariedades isoparamétricas homogêneas. 5 p.

88-07 LANGEVIN, R. Vers une classification des difféomorphismes Morse-Smale d'une surface. 18 p.

88-08 ARAGONA VALLEJO, A. J. & BIAGIONI, H. A. An intrinsic definition of the Colombeau algebra of generalized functions. 48 p.

88-09 BORSARI, H.D. A Cohomological characterization of reductive algebraic groups. 20 p.

88-10 COELHO, S.P. & POLCINO MILIES, F.C. Finite conjugacy in group rings. 20 p.

88-11 FERNANDEZ, R. Characterization of the dual of an Orlicz Space. 19 p.

89-01 GONCALVES, J.Z. & MANDEL, A. Embedding the Free Group Ring into Formal Series. 4 p.

89-02 REYNOL FQ, A. Nilpotent spaces: some inequalities on nilpotency degrees. 17 p.

89-03 GOUVEA, F.Q. Deforming Galois Representations: Controlling the Conductor. 22 p.

89-04 CORDARO, P. & TREVES, F. Homology & Cohomology in Hypo-Analytic Structures of the Hypersurfaces Type. 108p.

89-05 ARAGONA VALLEJO, A. J. & VILLARREAL ALVARADO, F. Colombeau's theory and shock Waves in a problem of Hydrodynamics. 48 p.

90-01 MANDEL, A. & GONCALVES, J.Z. Semigroup laws and free semigroups in the group of units of group rings. 11 p.

90-02 LINTZ, R.G. Generation of Quantum-fields by non-deterministic fields. 32p.

90-03 LINTZ, R.G. A critical study on the foundations of Geometry. 4lp.

90-04 LINTZ, R.G. The theory of manifolds from the non-deterministic point of view. 32p.

90-05 GUIDORIZZI, H.L. Oscillating and Periodic solutions of Lienard equations. 18p.

90-06 BIANCONI, R. Model Completeness Results for Elliptic and Abelian Functions. 2ip.

90-07 LEAL, G. & MILIES, C.P. Isomorphic Group (and Loop) Algebras. 2ip.