





terms of direct factors. In §2 we study the isomorphism problem for rational
group algebras of groups of this kind, i.e., if G is one such group and
QG 2= QH what can be said about G and H? Finally, in §3 we consider
the isomorphic problem for alternative loop algebras over the field of rational

numbers.

§1 - Basic Facts.
We wish to show that the groups under consideration have irreducible
complex representations of a very special kind. In order to do this, we need

to compute their commutators.

(1.1) Lemma. Let G be a group such that G/Z(G) 2 C, x C,. Then

the commutator subgroup G’ is cyclic of order p.

Proof. Set z,y € G. Then
(@) [z,9] = [, 2]
(ii) [zy,2] = [z,2]"[v, 2] and [z,y2] = [z, 2][=,4]".
Since G/Z(G) is abelian, we know that G’ C Z(G) and hence, in our
case, we have:
@ii) [y, 2] = [2,2]ly, 2] and [z,y2] = [z, 2][=,y}.
f G/Z(G) = C, x C,, there exist elements z,y € G such that
G =< z,y, Z(G) >, with z*,y* € Z(G). Then:

G =< [z"y",2"y"] |0 <n,m,rs<p >.



Now, (i) and (ii)’ readily give that:
lx'y"',z'y'] = [:L', y](ni-m)(ri»a)’

hence G’ is cyclic, generated by [z,y].
Also, since y? € Z(G) we see that:

1= [::,y’] = {z:ylpn

so |[G'|=p. O

(1.2) Theorem. Let G be a group. Then G/Z(G) = C, x C, if and
only if G = DxA where A isan abelian group and D is an indecomposable
p-group such that D =< z,y,Z(D) > whete z°,y* € Z(D) and Z(D)
can be written in the form Z(D) = Cpmi X Cpoa X Cyms with 04y 21 aud

ma, mg > 0.

Proof. Siuce G/Z(G)=C,xC, there exist elements z,y, € G
such that zP,y’ € Z(G) and G =< z{,4},2(G) >. Set Z(G) =B xC
where B is p-group and pt |C|. We can write:

zf =bc whete b€ D, ceC.

Let n = o(c). Since the map z v z*

is surjective in C, we can fipd
an element 7 € C such that 4? = ¢! If we set 2' = ya} we see
that 28 = 9Pzf = *'bc = b€ B and, dearly, G =< 1,3, Z(G) >.
In a similar way we can find y; such that G =< z,¥,4(G) > aund



Since - < 21,41, B > is a p-group, it follows easily that

G =< 2,41, 8 > xC.

Also, G’ C Z(G) is a p-group so G' C B. We wish to show that we can
find a decomposition of B in cyclic factors B = Cpm X ... x Cym such
that G' C Cpm .

In fact, let G’ =<e|e?=1> andlet Cpmi =<1t; > be subgroups
of a decomposition of B in which ¢ is written as a product with minimal
numbe.r of factors. We can choose the generators t;, i <i < k insucha
way that

pmi=l

e=t" " ...7t' with £Zk

We wish to show that ¢ = 1 so, assume that ¢ > 1 and m; = m,. Clearly
<ty > x <t Tty >= Cypm X Cpma
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B = Cpmlx < t’l’"‘l-m’-tg =2 5800 63 C,,me.

Since ° (& )™t = gmmlgpe! it follows that
e€< Tty > X ... X Cyme, a contradiction.
Like z§ € B so we can write 2} = ... with a; € Cpmi. Assume

that, for a given index i the corresponding element a; is not a generator of

i)-1
01 = o

Cymi. Then af("")'l is not a generator also and we can write a
where p | v;.
Now, the element t,-: .z; is such that (t:r‘.z,)’ € B and has no component

in Cpm:. Repeating this process, if necessary we can find an element z such



that < 2,4, B >=< z;,y1,8 > and 32? = 00, ...0;, were a; isa
generator of C’-.-,- , 1 £ j < ¢ Assume that none of these elements belongs

to Cpmi. We can write
Cpmiy X oo X Comig =< @iy 0005, > X <@y > X0 X < @ >

P E<ay X... X a;, >

so, in any case, we can write B intheform B = Cpm X Cpmi' X ... X Cym
where
G’ C CP"'I a-nd 1" E Cpnq X Cpma.

In a similar way, we can find an expression for B and elements z,y € G

such that:
G=<z,y,B>
B =Cpm x...%X Cpme
and
G CCymi, 2PE€EC,m XCpma  and y? € Cymy X Cyma X Cyms..

Notice that actually we have shown that z? and y? belong to a product
of at most three of these factors.

So, if we set D =< z,y,Cpm X Cpma X Cpmy > where m; > 1 and
mg,m; 20 an_d A=Cpmi X ... X Cym¢ x C wehavethat G=D x A as

desired.O

(1.3) Corollary. Let G be an indecomposable group such that
G/Z(G) = C, x C,. Then, G is a p-group and Z(G) has rank at most 3.

5



(1.4) Lemma. Let G be a group. Then G/Z(G) = C, x G, if and
only if |G'| = p and every irreducible complex representation of G has

degree equal to either 1 or p.

Proof. Assume that G/Z(G) = C, x C,. In this case, we sec that
|Z(G)| = |G|/p*. Hence, since |G'| = p, then every conjugacy class has

order equal to 1 or p, so the number of conjugacy classes in G is:

G- 12(G)] _[6] , I61=1Cl/s* _ (7*+p=1IC]
1Z(G)| + »? p? + P i )

We denote by Ac(G,G") theideal of CG generated by theset {z—1]|
z € G'}. We can write [2, lemma (1.1)]:

CGC = C(G/C") ® Ac(G : C).

Since |G/G'| = |Gi/p we have that C(G/G’) is isomorphic to a direct
sum of |G|/p copies of C. Hence, the number of simple components in the

decomposition of Ag(G:G') is:

*+p—1 G -1
Prrolig - 222

P P

Now, we evaluate the dimension of Ac(G : G') in two different ways.

On the one hand, we have that:
v ’ = '
[Ac(G s &) : C] = [6] - [C(G/G") : O] = F—=IGl.

On the other hand, since all 1-dimensional componénts of CG come from
C(G/G'). By the Theorem (1.2) if G is indecomposable, therefore a p-

group, each component of Ac(G : G') has dimension at least equal to p?.
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f G2 Dx A, CG 2 CA®CG and like A is abelian, again we have
that each simple component of Ag(G : G') has dimention at least equal
to p?. Multiplying by the number of components and comparing with the
result above, we see that all simple components of Ac(G : G') must have
dimension precisely equal to p®.
Hence:
CCXChH...0CH M(C)d...0 My(C)

9 times !51|crtimm

where M,(C) denotes the full ring of px p matrices over C. Thus, all
the irreducible complex representations of G have degree equal to either 1
or p.

Conversely, assume that the representations are as above. Since CG &

C(G/G’') ® Ac(G : G') we can compute:

cen_ Gl IGI-IGl/lp P +p-1
12(c6): € = B+ =g S

Since [Z(CG) : C] is equal to the number of conjugacy classes in G we

IGl.

get:

+p—1
’%lcl =1Z(G)} +

and thus |G/Z(G)| = p*. Also, we known that G is non abelian, hence
G/Z(G) cannot be cyclic and, consequently, G/Z(G) = C, x C,.0

IGl - 12(G)]
P

§2 - Group Algebras.
Our first statement is rather elementary but will be repeatedly needed in
the sequel.



(2.1) Lemma. Let Cpm = S5p D Spm-1D...D 5o = {1} be the set of
all subgroups of the cyclic group of order p™ and set 8= ;‘; Yies T, 05
i < m. Then, the primitive idempotents of the rational group algebra QCym
are e, = §,,. and ¢; = §,,,,. - A,,‘-;“, 1<i<m.

In particular, we have that

QCym(1 - 81) = Q)

where ( denotes a primitive root of unity of degree p™'(p —1).

Proof. We have tha}.

X
QG = s = am ) = enQl)

where @, denotes the cyclotomic polynomial of order p* and (; is a root
of &,,0<i<m.

Hence, we see that QC,= contains precisely m+-1 primitive idempotents.
Clearly Sn_i.Sm_;j = 8m-i if i <j sotheidempotents e;, 0 <i<m are
pairwise orthogonal and Y72 e; = 1, as desired.

Also, QC.51 = Q(Cpm/S1) s0 [QCpm : Q] = p™' hence
(QC,=(1 = 51) : Q] = p™ — p™1. Since QCpm(l — 51) is a field, we
must have QCpm(l — §,) = Q(¢) where { is a primitive root of unity of

degree p™~'(p—1). O

(2.2) Lemma. Let D be a group such that [D| = p. Then
2(QD(1 - D)) = Q(Z(D)(1 - DY), where D' = p™' T.epr 2.



Proof. Set g € G and denote by Cl(g) the conjugacy class of g¢.
Since |D'| = p we have that either Cl(g) = {9} or Cl(g) = gD’. Thus,
an element a € Z(QD) can be written in the form:

a= 3 ag+ Y. agD, o,€Q.
9€Z(D) 9€Z(D)

Since QD(1 —D') is a direct summand we have that Z(QD(1 - D)) =
Z2(QD)N QD(1 — D") so, given an element a € (QD(1 — D')) it can be
written as above, and also a = o] - 5’) Hence, it can be written as:

a= Y og9(1-D)€Q(Z(D)(1-D)
s€Z(D)

Thus, we see that Z(QD(1 — I’)) € Q(Z(D))(1 — D’). The opposite

inclusion is obvious.O

From now on, D will always denote an indecomposable group which can
be written in the form D =< z,y,Z(D) > as described in Theorem (1.2).
Let E be another group such that QD = QE. We wish to show that
E is also a group of the same kind and that, with a notable exception, the
isomorphism occurs if and only if D/D’' 2 EfE' and Z(D)= Z(E).

So assume that QD = QF; then also CD & CE and we have that:

CD =~ C(D/D')® Ac(D : D')CE = C(E/E’) ® Ac(E : E').

Since the simple commutative components of CD and CE are those of
C(D/D’) and C(E/E'’) respectively [3, p.36], it follows that C(D/D') =
C(E/E') and thus |E'| = |D'| = p. Also Ag(D : D') = Ac(E : E).
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Since lemma (1.2) shows that all simple components of Ac(D : D') are of
the form A,(C), the same is true for Ac(E :'E’') and, again because of
lemma (1.2), we obtain that E/Z(E)=C, x C,.

In a similar way, we obtain that Q(D/D’) ¥ Q(E/E’) and thus D/D'=
EJ/E' [, theorem 111.2.12]. It now follows easily that E =< u,v,Z(£) >
where u,v and Z(E) are as described in Theorem (1.2).

In order to simplify notations, from now on, we shall identify E with-itss

. image, though an isomorphism ¢ : QE — QD, in QD.

(2.3) Lemma. With the notations above, if QD = QE then D=F.

Proof. Write QD = QD.D'® QD(1 — D'), where QDI = Q(D/D')
and QD(1 - D') = Aq(D: D).

Since D/D' is abelian, all simple components of QD.E’ are com-
mutative. On the other hand, we claim that Aq(D : D') contains no

commutative components. In fact, we have that
' CD=CQQD=C(D/D")®(C®Aq(D: D))

so, commutative components in Aq(D : D) will imply the existence of
commutative components in Ac(D : D) contradicting lernma (1.1).
Thus:
QD.D'=QE.E* and
QD(1-D')=QEQ - E').
In particular, since D' and E' are the unity elements of QD.D' and

QE.E' respectively, it follows that D'=F0o
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Since D and E are groups as described in Theorem (1.2) we can write:
Z(D) = Cym X Cyma X Cyrs

Z(E) = C,"'l X Cp"'z X Cp"'s

with n;,m; 21, n;,m; 20, 1=1,2,3.

(2.4) Lemma. With the notations above, if QD = QE tlien n, =m,.

Proof. Since |Z(D)| = 12(E)| = 5! it follows immediately that
n; +ng+nz3=my +my+ms.
Now:
QUZ(D)(1 - D) = Q(Cym X Cyra X Cprs)(1 = D) =
= [Q(Cpm )(Cpma x Cpms))(1 — D).

In the notation of lemma (2.1) S; is the subgroup of Cy= of order p,

ji.e., Sy = D' and thus, that lemma shows that
QG (1 - D) 2 Q(()

where ¢ is a primitive root of unity of degree ™Y p—-1).

Hence:

Q(Z(D))(1 = D) = Q(¢)(Cpma X Cyma)-
In a similar way we obtain that Q(Z(E))(1 — E') = Q((1)(Cpmz X Cyms)
where (i is of degree p™~'(p — 1), thus:

Q(C)(Cpma X Cpm) = Q(G1)(Cpma X Cpms)
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and, since Q(¢) and Q((:) are the components of smaller dimension over

Q in both sides of the expression, we see that n; =m,;. O

(2.5) Lemma. Let { be a root of unity of degree " '(p—-1) and
assume that Q(C)(Cyma X Cypna) = Q(C)(Cyma X Cyms). Then either:

(i) Cpra X Cpos & Cyma X Cipms '

or

(ii) ny > max{n,, n3,mz, ma} and n; +n3 = my +ms.

Proof. Asswne first that Q(Cpra X Cpns) = Q(Cpmz x Cyms) and that
Cpma X Cpns ¥.C,,-z X Cpms.

. Wit.hput loss of generality, we may assume that n, = max{n2, n3, mz, ms}.
Since Lhe groups are not isomorplic we must have that n; > m,, m3.

As in lemma (2.1), Q(Cpra X Cyp=s) contains a simple component iso-
morhic to Q(©) where deg(©) = p™(p~1). Hence, Q(()(Cpna x C,,n;)é
Q(¢) ®Q Q(Cp=a x Cyns) contains a component which is isomorpliic to
Q(¢) ®q Q(©) which, in turn, contains Q(O).

If n; <nz Q) @q Q(O) = Q(O) and Q(Cpms X Cpms) contains no
simple component isomorphic to Q(©), a contradiction.

If n; =n; then Q({) is a splitting field for Cpma X Cpms but not for
Cpm X Cyms so the corresponding group algebras cannot be isomorphic. O

Conversely; if (i) holds the statement is obvious so assume that (ii) holds.

As before, set n; = max{ng,ns,ma,ma}. If n; > n; then p™(p—1) > p™
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and Q(() is a dplitting field for both groups so:

Q(C)(Cp‘? X Cpma) = Q(C) @Y & Q(Cl = Q(C)(Cr"‘" X Cr"‘-‘)

{na+n3) times

We are now ready to prove the main result of this section.

(2.6) Theorem. Let D be a group as described in Theorem (1.2) and
let E be another group. If QD = QE then
(i) D/D'= E/E’
and either:
(ii)) Z(D) = Z(E)
or
(ii’) with the notations above n; = m; > max{n;, n3,mz,ms} and n; +
ny = my + ma.
Conversely, if E is also as in Theorem (1.2) and the conditions above
hold, we have that:
(1) If p#2 then QD = QE.
(2) f p=2 and n, >1 then QD =QE.
vspace.5cm Proof. The necessity of the conditions follows directly from
the previous lemmas. . ) -
To prove thie converse, we recall from Lemma (1.2) tbat every irreducible

representation of D and E has degree equal to either 1 or p. Also, as shown

in Lemma (2.3), QE(1 - E) and QD(1 - D') contain no commutative
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simple components, hence:
QD.D=FRo...0F

QEE=2K @®..0K,
QDI-DN2AB..0A
QE(l-E)2B®...®B,

where F;, K; are fields and A;, B; are simple algebras of dimensi(;n P
over their centers.
Since QD.D' = Q(D/D') and QE.E' & Q(E/E'), condition (i) implies
that r = s and, in a convenient reordering F; = Ki, 1<:t<r.
Conditions (ii) or (iii) imply that Q({){(Cyms X Cpns) = Q(()(Cpma x Cyms)

and, as in Lemma (2.3), we see that:

Q(Z(D))(1 - D) = Q(Z(E)(1 - E)

50

Z(QD(1 - D) = Z(QE(1 ~ E").

Hence, u = v and, in a convenient reordering, Z(A;) = Z(B),1 <1< u
If p+£2 thisimplies also that A; & B; @ My(Z(A;)), 1<i<u (see [2,
p.5]) and thus QD(1 — D)= QD(1 - E'); consequently, we also have that
QD = QE.

i p=2 the simple components are algebras of dimension 4 over their
centers and can thus be isomorphic eiter to a full matrix algebra or a quater-

nion algebra.
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- Since E'= D' = {1,e} wehavethat 1-D' = L=¢ ig the identity element
of QD(1—~D". If ny > 1 there exists an element a € C,' such that
o? = £. Hence, a(15%) € Z(QD(1 = D)) is such that 859 = —(1-D7);
this means that the centers of all components are fields containing a square
root of —1. Thus, the algebras under consideration cannot be quaternion
algebras. Consequently, QD(1 — 5’) & QE(1- £’) and we conclude again
that QD = QE.O '

Notice that in the case where p'= 2,if n =1 the conditions of the
theorem above are not sufficient. In fact, if D, ‘and K, denote the
dihedral and quaternion groups of order 8 respectively, we see that |D}| =
IKal = 4, Z(Dy) = Z(Ks) 2 C; and D,/D, = Ke¢/K} = C; x C; but
QD, # QK,.

To study this situation we need a few remarks.

Let E be a group such that QD = QE. Asin Theorem (2.6), we have
that D/D'= E/E’ and thus |E'|=|D’| =2 so, Lemma (1.2) shows that
E|Z(E) 2 Cy; x C;. Now,

Z(A(D : D) = Z(QD(1 - D)) = Q(Z(D)(1 - D)

and

Z(AE: E') = Z(QE(1 - E")) = Q(Z(E))() - E'). °

Since Q(Z(D)(1 -~ D)) = Q(Z(E)(1 - E'), Lemma (2.4) shows that
Z(D) = Z(E).
In what follows we shall need information about group algebras of in-

decomposable groups of order 16 such that, factored by their centers, are
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isomorphic to Cz x C3. There exist two such groups, those of type 16/9
and 16/10 in the table of groups of orders 16 in (8], which we shall denote

simply as .A and B respectively.
(2.7) Le;nma. With the notation above, we have that:
QA =2Q Q& Q)
& Mi(Q) ® Ma(Q)

QB=2QeQeQ:) & M(Q)eH

where H denotes the quaternion algebra over the rational numbers.

Proof. As belore:
QA Q(A/A) & A(A: A)
QB =Q(B/B) & A(B: B).
Since AJA’' B/B' = C; x C, it follows easily that
Q(A/A") = Q(B/B') = 2Q & Q & Q).

Set Z(A)=<e> x <r> where A'=<e> and o(e) = ofr) = 2.
Then A/ <r > A/ <er>= D,. Hence, we have isomorphisms:

l+r

QA( )% QD,

QA(1+")‘*QD4

NS = ent =2 = @)
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QAN S0 = an, (=)

Consequently, QA contains two different simple components which are
both isomorphic to M;(Q) then, QA is as stated.

In a similar way, if we write Z(B) =< f > x <s> where B'=< [ >
and o(f) =o(s) =2 weseethat B/ <s>X Ky and B/ < fs > D, so
the result follows.O

Ma(Q).

Back to our original question, to fully describe the situation where p = 2,
n =1, we shall discuss separately three cases, according to the rank of D,
soset Z(D) =< e> x < r > x < 38> where o(e) = 2, ofr) = 2™,

ofs) =2»

Case 1. Assume m=n"=0.
Since this means that |D| =8 it is clear that QD =~ QE if and only if
D=~ E.

Case 2. Assume m 2> 1, n=0.

The proofs of Lemma (2.4) and Lemma (2.1) show that
Z(A(D: D) = Q(Com) = @20Q(6)-

Now, A(D : D') is a direct sum of simple algebra of dimension 4 over
their respective centers. Since m > 1 implies that Q((;) contains a square
root of -1, all the corresponding algebras must be isomorphic to M,(Q(¢;:))-
For m =0 or m = 1 the corresponding algebras can be isomorphic to either
M,(Q) or H. Hence, the isomorphic class of QD will be determined by

these two simple algebras.
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Now, denote < r? >= H. Then QDI 2 Q(D/H) and it is easily seen
that D/H is indecomposable, of order 16 and that factored by its center is
isomorphic to Cy x C;. Hence D/H is isomorphic to either A or B and

Lemma (2.7) implies that this fact will determine the isomorphism class of

QD.

Case 3. Assume m2>1, n2> 1.

Once again we can write QD & Q(D/D') @ A(D : D') and we know that
Z(A(D : D)) = Q(Cam % Cya) - 50, it will contain four simple components
isomorphic to Q and others, isomorphic to ﬁel'ds‘ of the form Q((¢). Asin
the previous case, we need only to determine the simple components whose
centers are isomorphic to Q.

Write H=<1r?> x <s?> and D= D/H. Then, D is a group of
order 32 fullfilling the same properties as D. Again, [8] shows that there
exists only one such group, that of type 32/18 in their notation, which we
shall call G.

Since QD = QD © A(D:H), QD= QG and

ZAG: ) =QC:xC)EZQOQOQDQ

we see that the four simple components under consideration, are determined

by G. Hence, there is only one possible isomorphism class for QD.

§3 - Loop Algebras.

We shall now extend the results of the previous section to loop algebras.
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From now on L will denote an R.A. loop and D C L a group such that
[L:D)=2, D= {l,e} = L' and Z(D) = Z(L). Furthermore, we shall
assume that it can be written as the group D in Theorem (2.1).

Writing:
l+e
QL=QL(——

we obtain, as in §2 that:

)eQL(l—;‘f)

QL= Q(L/L')® Aq(L: L')

where all simple commutative components of QL are present in the decom-

position of Q(L/L'). Hence

Z(QL) = Q(L/L') ® Z(Bq(L : L)).

(3.1) Lemma. Z(AqQ(L: L)) = Q(Z(D))(}32).

Proof. Since Z(QD) = Q(D/D’') ® Q(Z(D))(15%) it follows readily
that Q(Z(D))(}5%) C Z(Bq(L: L')).
Computing dimensions, we obtain:

1Ll - |Z(L)]
2

[2(QL) : Q] = |Z2(L)l +

= [2(D)| + A2L=1ZD)

9
= 51Dl

Hence:
[2(Aq(L : 1Y) : Q] = [2(QL) : Q1 - [Q(L/L) : Q] = 51D

Since we also see that [Q(Z(D))(}5%): Q] = 1D, equality follows.O
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(3.2) Theorem. Let L be an R.A. loop and D C L a group, as
above. Furthermore, assume that there exists an element a € Z(D) such
that of = e. Let M be another loop. Then QL = QM if and only if
L/L' = M/M’ and Z(QL) 2 Z(QM).

Proof. Assume first that QL = QM since Q(L/L') -and Q(M/M')
are the sums of the corresponding commutative components, it follows that

Q(L/L') = Q(M/M"), thus L/L' = M/M". Also, since

QUL/E) & QD25 = QUMM B QZEN(5)

where E C M denotes a convenient subgroup of M, we obtain:

QzEN(55) = QZENF)

using Theorem (2.6) we obtain Z(L) = Z(M).
Conversely, assume that L/L' > M/M’ and Z(L) = Z(M). Then

)

QUZDNC55) = AZLNF)

Q(L/L') = Q(D/D')

Z(QL) = Z(QM).

Since QL and QM are semisimple alternative algebras [5, Corollary 8] we

can write:

QLEQUL/L)® A ®...0 A,

QM = Q(M/M") & B, ®...® Bnm.
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Comparing the respective centers, we obtain n = m and Z(A;) =
Z(B;), 1 £i < n. Since a® = ¢ we see, as in Theorem (2.6) that the
algébra.s A;, B; must be split Cayley algebras and these are unique o;'er
each center [6, Lemma (3.16)], hence A; = B;, 1 < { < n and thus
QL= QM.
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