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E.G. Goodaire [4] defined R.A. loops as those loops whose loop algebra 

over any ring with no 2-t.orsion is alternative and 0. Chain and E.G. Goodaire 

(ll gave a. de:script.iou of 11uch loop11. ll L is a.n R.A. loop then it cont.a.irui a 

group G with [L: GJ = 2, such that G' = {1, e} = L' is a group of order 2 

and Z(G) = Z(L), where G', L', Z(G) 11.Dd Z(L) denote the commutators 

and centers of G and L respectively. Also, L/Z(L) ~ C2 x C2 x C2 , where 

C2 denotes a. cyclic group of order 2, and h_ence G/Z(G) ~ C3 x C2• 

In this paper we consider the class of all groups G such that G/Z(G) ~ 

Cp x Cp, where p is & rational prime. In §1 we show that these groups satisfy 

property (p) in the sense of D.D. Coleman [2) and give a. full description in 

1Tbe lleCOlld author•• parLially aupport.ed by• reaearch gran\ from CNPq. 
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terms of direct factor!. In §2 we study the isomorphism problem for rational 

group algebras of groups of this kind, i.e., if G is one such group and 

QG ~ Qll what can be said about G and H? Finally, in §3 we consider 

the isomorphic problem for alternative loop algebras over the field of rational 

numbers. 

§1 - Basil' Facts. 

We wish to show that the groups under consideration have irreducible 

complex representations of a. very special kind. In order to dot.his, we need 

to compute their commutators. 

(1.1) Lemma. Let G be a group such that G/Z(G) !:!! C,, x C,,. Then 

the commutator subgroup G' is cyclic of order p. 

Proof. Set x,y E G. Then 

{i) [x,y]=[y,xJ-1 

(ii) [xy,z] = (x,z]"(y,zJ and [x,yz) = [x,z)[.z,y]•. 

Since G/Z(G) is abelia.n, we know that G' C Z(G) and hence, in our 

case, we have: 

(ii)' [xy,z) = [x,z)[y,z) and [.z,yz] = [x,z][x,y). 

If G/Z(G) !:!! C,, x C,, there exist elements x,y E G such that 

G =< x,y,Z(G) >, wi~h x',y,, E Z(G). Theo: 
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Now, (i) a.nd (ii)' readily give Lha.t: 

hence G' is cyclic, generaLed by [x,y). 

Also, since y" E Z(G) we see tbaL: 

ao IG'I = p. a 

(1.2) Theorem. Let G be a group. Then G/Z(G) == C,, x C,, if .a.ud 

only if G = DxA where A is a.u abelia.n group and D is au iuJecomposal,le 

p-group such that D =< .r,y,Z(D) > where x",y" E Z(D) and Z(D) 

can be written in the form Z(D) = c., •• X c,-3 X c,,-~ with n,, ~ } a.ud 

m1 , m3 ~ 0. 

Proof. Since G/Z(G) e; C, X C, there exisL elements x~,Y~ E G 

such that zf,yf E Z(G) and G =< x~,y~ 1 Z(G) >. Set Z(G) =Bx C 

where B as p-group and pt ICI, We can write: 

x'f = b.c where be B, c e c. 

LeL n = <>(c). Since the map z t-t zP is su1-ject.ive in C, we can find 

an element -, E C such that .,., = c"- 1 . If we set z' = -,z~ we see 

that z~ = -·,tx~' = c--1bc = b E B and, clearly, G =< :z:1, y~. Z(G) >. 

In a similar way we can find y1 such that G =< x1 ,y11 Z(G) > a.nd 

z~,yr E Z(G). 
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Since . < x., yi, B > is a p-group, it follows easily that 

G =< xi, 111, B > xC. 

Also, G' C Z(G) is & p-group so G' CB. We wish to show that we can 

find a decomposition of B in cyclic factors B = Gp"'• x .. . x Gp"'* such 

that G' C Gp"'• . 

In fact, let G' =< e I eP = 1 > and Id c,, ... , =< t; > be subgroupS' 

of a decomposition of B in which e is written as a product with minimal 

number of factors. We can choose the genera.tors t;, i :$ i $ k in such a 

way that 

wiLh l ~ k. 

We wish to show that l = 1 so, assume that. l > 1 and m 1 2: m 2 • Clearly 

so 

Since (tr··-..., .t2)m2 - 1 = t;n•-1 .tr2 -
1 it follows that 

tp"'•-"'2 t C t ad' . e E < 1 • 2 > x '. .. x ,, ... , , a con r 1ct1on. 

Like :r~ E B so we can write xr = Ot ••. Ot with O; E c,, ... ;. Assume 

that, for a given index i the corresponding element o; is not a genera.tor of 

c, ... 1, Then of(o;)-l is not a generator also and we can write o~(o;)-t = t;" 

where p I Vi• 

!& !t 
Now, the element tt .x; is such that (t,, .x1)' E B and has no component 

in c, ... 1. Repeating this process, if necessary we can find an element x such 
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that <x,y.,B>=<xi,y1,B> and xP=o,10:13 ••• o:,, were o:,, isa 

generator of Gp••;, 1 5i $ l. Assume that none of these elements belongs 

to Cp"'1. We can write 

so, in any case, we can write B in the form B = Gp•• x Cpaz· x ... x C,•• 

where 

G' C c, ... 1 and x' E c, ... 1 X c, ... 3 • 

In a similar way, we can find an expression for B and elements x, y E G . 

such tha.t: 

G =< x,y,B > 

B = c, .... X ••• X c, ... , 
and 

G' C Cp"'l' 

Notice tha.t a.ctua.lly we ha.ve shown tha.t xP and y' belong to a. product 

of at most three of these factors. 

So, if we set D =< :r,y, c,-1 X Cpaz X c, ... , > where m1 ~ 1 and 

m2, m 1 ~ 0 and A = Gp"'• x ... x c, ... , x C we have that G = D x A a.s 

desired.□ 

(1.3) Corollary. Let G be an indecomposable group such tha.t 

G/Z(G) S! C, x C,. Then, G is a. p-group and Z(G) has rank at most 3. 
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(1.4) Lemma. Let G be a group. Then G/Z(G) ~ C,, X C,, if and 

only if IG'I = JJ and every irreducible complex representation of G has 

degree equal to either 1 or p. 

Proof. Assume that G/Z(G) ~ C,, x C,,. In this case, we sec that 

IZ(G)I = IGl/p2
• Hence, since IG'l = p, then every conjugacy cla.ss has 

order equal to l or p, so the number of conjugacy classes in G is: 

IZ(G)I + IGI - IZ(G)I =Jg+ 101 -1Gl/p
2 = (p2 + p - l)IGI. 

J/l .p2 p p3 . 

We denote by 6c(G, G') the ideal of CG g~nerated by the set {x -1 I 

x E G'}. We can wrii.e [2, lemma (1.1)]: 

CG~ C(G/G') e ~c(G: G'). 

Since IG/G'I = IGl/p we have that C(G/G') is isomorphic to a direct 

sum of IGIJ,, copies of C. Hence, the number of simple components in the 

decomposition of 6c(G: G') is: 

Now, we evaluate the dimension of 6c(G : G') in two different ways. 

On the one hand, we have that: 

[6c(G: G'): C] = IGI - [C(G/G'): CJ= P -
1 

jGj. 
p 

On the o~her hand, since all I-dimensional compon~nts of CG come from 

C(G/G'). By the Theorem (1.2) if G is indecomposable, therefore a p­

group, ea.ch component of 6c(G: G') has dimension at least equal to p2
• 
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If G ~ D x A, CG ~ CA ® CG and like A is abeli&r1, again we have 

that each simple component of t.c(G : G') has dimention at leut equal 

to p3. Multiplying by the number of components and comparing with the 

result above, we see that all simple components of t.c(G: G') must have 

dimension precisely equal to p''. 

Hence: 

7 1Gl times 

where M,(C) denotes the full ring of p x p matrices o~r C. Thus, all 

the irreducible complex representations of G have degree equal to either 1 

or p. 

Conversely, assume that the representations are as above. Since CG ~ 

C(G/G') EB t.c(G: G') we c·an compute: 

(Z(CG): CJ= l~I + IGI -JGl/p - ,2 +;-1.101. 

Since (Z(CG): C) is eqmJ to the number of conjugacy classes in G we 

get: 

p2 + p - 1 IGI = IZ(G)I + IGI - IZ(G)I 
p3 p 

and thus IG/Z(G)I = ,3. Also, we known that G is non abelian, hence 

G/Z(G) cannot be cyclic and, consequently, G/Z(G) = C, x C,.□ 

§2 - Group Algebras. 

Our first statement is rather elementary but will be repeaLedly needed in 

the sequel. 
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(2.1) Lemma. Let Gp• = s. :> S,,._1 :> ... :> S0 = {l} be the set of 

all subgroups of the cyclic group of order pm and set Si = ~ Eses. x, 0 $ 

i S m. Then, the primitive idempotents of the rational group algebra. QCp"' 

are e0 = S.,. and ei = Sm; - Bm-i+h 1 :5 i :5 m. 

In particular, we ha.ve tha.t 

where ( denotes a. primitive root of unity of d~gree pm-t (p - 1 ). 

Proof. We ha.ve tha.L 

where +,.; denotes the cyclotomic polynomia.l of order pi and (i is a root 

of +,.., 0 :5 i $ m. 

Hence, we see that QCp .. contains precisely m+ 1 primitive idempotents. 

Clearly S.-i.Srn-; = S,.._i if i $ j so the idempotents ei, 0 s i $ m are 

pairwise ortbogona.l and E:.o ei = 1, a.s desfred. 

Also, QC,.-.S1 ~ Q(C,.-/ S1) so (QC,.. : Q) = pm- 1 hence 

(QC,.-(1 - Sa) : QJ = P':' - pm-t. Since QCp•(l - Si) is a field, we 

must ha.ve QCp .. (l - Si) = Q(() where ( is a primitive root of unity of 

degree p"'-1(p- 1). a 

(2.2) Lemma. Let D be a group such that ID'I = p. Then 

Z(QD(l - D')) = Q(Z(D))(l - D'), where D' = p-1 EseD' :x. 
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Proof. Set g E G and denote by Cl(g) the conjugacy class of g. 

Since ID'I = p we have that either Cl(g) = (g} or Cl(g) = gD'. ~bus, 

an element a E Z(QD) can be written in the form: 

a, EQ. 

Since . QD(l - D') is a direct summand we have that Z(QD(l - D')) ~ 
Z(QD) n QD(l - D') so, given an element a E (QD(l - D')) it can be 

written as above, and also a = a(l - D'). Hence, it can he written as: 

a = L a,g(l - D') e Q(Z(D))(I - D'). 
,EZ(D) 

Thus, we see that Z(QD(l - .D')) c Q(Z(D))(l - D'). The opposite 

inclusion is obvious.□ 

From now on, D will always denote an indecomposable group which can 

be written in the form D =< x,y, Z(D) > as describeci" in Theorem (1.2). 

Let E be another group such that QD ~ QE. We wish to show that. 

E is .also a group of the same kind and that, with a notable exception, the 

isomorphism occurs if and only if D/D' ~ Ef E' and Z(D) ~ Z(E). 

So assume that QD ~ QE; then also CD ~ CE and we have that: 

CD~ C(D/D') EB Ac(D: D')CE ~ C(E/E1 EB .6.c(E: E'). 

Since the simple commutative components of CD and CE are those of 

C(D/D') and C(E/E') respectively (3, p.36), it follows that C(D/D') ~ 

C(E/ E') and thus IE'I = · ID'I = p. Also .6.c(D : D') ~ .6.c(E : E'). 
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. . 
• 

Since lemma. (1.2) shows lhat all simple components of Ll.c(D: D') arc of 

the form Mp(C), the same is true for Ac(E : B') and, again because of 

lemma. (1.~), we obtain that E/Z(E) ~ C,, x C,. 

In a similar way, we obtain that Q( D / D') ~ Q( E / E') and thus D / D' ~ 

E/E' f7, theorem IIl.2.12]. It. now follows easily that E =< u,v,Z(E) > 

where u,"11 a.nd Z(E) are as described in Theorem (1.2). 

In order to simplify notations, from now on, we shall identify E with· its• 

. image, though an isomol'phism 'P: QE _.. QD, in QD. 

(2.3) Lemma. With the notations above, if QD E:! QE then D' = E'. 

Proo£. Write QD = QD.D1 © QD(l - D1
), whel'e QDD' e!! Q(D/ D') 

and QD{l - D') = Aq(D : D'). 

Since D/D' is abelian, all simple components of QD.D' a.re com­

mutative. On I.he other hand, we claim tba.t. AQ(D : D') contains no 

commutative components. In fact, we ha.ve tha.t 

CD~ C ® QD ~ C(D/D') e (C ® Ll.Q(D: D')) 

so, commutative components in Aq(D : D') wil1 imply Lhe exii.tence of 

commutative components in Ac(D: D') contradicting lemma. (Li). 

Thus: 

QD.D' = QE.E' and 

QD(l - D') = QE(l - E'). 

1n particular, since D' and E' are the unity el~ments of QD.D' and 

QE.E' respectively, it follows that D' = .E'.□ 



Since D and E a.re groups as described in Theorem (1.2) we can write: • 

with ni, m1 2: 1, n;, m; 2: 0, i = 1, 2,3. 

(2.4) Lemma. With the notations above, if QD ~ QE tlien n 1 = m1• 

Proof. Since IZ(D)I = IZ(E)I = ~l it follows immedi~tely that 

Now: 

Q(Z(D))(1 - D') = Q(c, .. , x c, .. 2 x c, .. 3 )(1 - D') = 

= [Q(C,,n, )(C,,-2 )( c,,.3 )](1 - D'). 

In the notation of lemma (2.1) S1 is the subgroup of c,.., of order p, 

i.e., S1 = D' and thus, that lemma shows that 

where ( is a primitive root of unity of degree p"1-
1(p - I). 

Hence: 

Q(Z(D))(l - D') ~ Q(()(C,"2 X c,, .. a). 

In a similar way we obtain that Q(Z(E)){l -E') ~ Q((1)(C,""2 x c,. .. J) 

where (1 is of degree pm1 -
1(p - 1), thus: 

Q(()(C,"1 x c, .. ,) ~ Q((1)(c,_, x c, ... ,) 
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I • 
and, since Q((} and Q((1) are the components of smaller dimension over 

Q in both sides of the expression, we see that n1 = m 1• D 

(2.5) Lemma. Let ( be a. root of unity of degree p"- 1 (p - 1) and 

assume.that Q(()(C,, .. 2 X c, .. a) £! Q(()(C,,"'2 X c,, ... a), Then either: 

(i) C,,112 X c,, .. 3 ~ C,,--a X C,,mi 

or 

Proof. Asswne first that Q( c, .. 2 X c,,.3) ~ Q( c,, ... 2 X c,, ... 3) a.ud tha.L 

C-,92 X C,,11a 1 C,, ... , X Cp•a . 
• Without loss of generality, we may assume that n2 = max { n 2, n3 , m2, m3}. 

Since Lhe groups are not isomorphic we must have that n 2 > m2, m3 • 

As in lemma (2.1), Q(C,.., x c,, .. 3) contains a simple component iso­

morhic to Q(0) where deg(0) = p"2 (p - 1). Hence, Q(()(C,, .. , x C,,"a) e!! 

Q(() ®q Q(C,, .. , x C,,.") contains a component which is isomorphic to 

Q(() ®Q Q(0) which, in turn, contains Q(0). 

If n1 < n2 , Q(() ®q Q(0). ~ Q(0) and Q(C,,,n, x c,, .. ,3) contains no 

simple component isomorphic to Q(0), a contradiction. 

U n1 = n2 then Q(() is a splitting field for C,m2 x C,, ... 3 but not for 

c.,,., · x C,,•a so the corresponding group algebras cannot be isomorphic. D 

Convei·sely, if (i) holds the statement is obvious so assume that (ii) holds. 

As before, set n2 = ma.x{n2~n3, m2, m3}. If n1 > ni · then p"1 (p- 1) ~ p"2 
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• • 
and Q(() is a Jplitting field for both groups so: 

□ 

We are now ready to prove the main result of this section. 

(2.6) Theorem. Let D be a group as described in Theorem (1.2) and 

let E be another group. If QD ~ QE then 

(i) D/D' 'i:f!. E/E' 

and either: 

(ii) Z(D) ::! Z(E) 

or 

(ii') with the notations above n1 = m 1 > max { n2, n3, m2, m3} and n2 + 
n3 = m2 + m3. 

Conversely, if E is also as in Theorem (1.2) and the conditions above 

hold, we have that: 

(1) lf p-::/-2 then QD'i::!.QE. 

(2) If p = 2 and n1 > 1 then QD 'i::!. QE. 

vspace0.5cm Proof. The necessity of the conditions follows directly from 

the previous lemmas. 

To prove t.lie converse, we recall from Lemma (1.2) that every irreducible 

representation of D and E has degree equal Lo either l or p. Also, as shown 

in Lemma (2.3), QE(l - E') and QD(l - D') contain no commutative 
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simple components, hence: 

QE.E' ~ I<, EB ••• EB I<. 

QD( 1 - D') ~ A1 EB ••. EB A. 

QE(l - E') ~ B, EB ••• fB ~• 

1 .. 
• 

where Fi, I(; a.re fields and A;, B; are sim~le algebras of dimension p, 

over their centers. 

Since QD.D' ~ Q(D/D') and QE.E' ~ Q(E/E'), condition (i) imJ>lies 

that r = ~ and, in a convenient reordering Fi~!(;, 1 ~ i ~ r. 

Conditions (ii) or (iii) imply lha.l Q(()(C,..., x C,. .. ,.) ~ Q(()(C"' .. , x Cp ... 3) 

and, as in Lemma. (2.3), we see that: 

Q(Z(D))(l - D') ~ Q(Z(E))(l - E') 

so 

Z(QD(l - D')) ~ Z(QE(I - E'). 

Hence, u = v and, in a convenient reordering, Z(A;) ~ Z(B), 1 $ i $ u. 

If p ::/:- 2 this implies also that A; ~ B; ~ M,(Z(A;)), I $ i $ u (see (2, 

p.51) and thus QD(l - D') ~ QD(l - E'); consequently, we also h11VP that 

QD~QE. 

If p = 2 the simple components a.re algebras of dimension 4 over their 

centers and can thus be isomorphic eiter to a. full matrix algebra or a c1uater­

nion algebra. 
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, ... 

I 

.. 
• 

Since E' = D' = { 1, e} we ha\'e that 1-D' = 1r is the identity element 

of _QD(l - D1. If n1 > l there exists an element a E c;• such t~at 
o2 = l. Hence, a( ly) E Z(QD(l-D')) is such that (a0 ;e>p :z -(1-D'); 

this mean!' that the centers of all components are fields containing a square 

root of -1. Thus, the algebras under consideration cannot be quaternion 

algebras. Consequently, QD(l - D') ~ QE(l - E') and we conclude again •• that QD ~ QE.□ 

Notice that in the case where p = 2, if n = 1 the conditions of the 

theorem above are not sufficient.. In fact, if D4 "and K 8 denote the 

dihedral and quaternion groups of orde:r 8 respedivdy, we i,ee that l~I = 
IK~I = 4, Z(D4) ~ Z(K8 ) ~ Ci and D4/~ ~ K,/K~ ~ C2 x Ci but 

QD4 9!QK11. 

To study this situation we need a few rem&rks. 

Let E be a group such that. QD ~ QE. As in Theorem (2.6), we ha\'e 

that D/D' ~ E/E' and thus IE'I = ID'I = 2 so, Lemma (1.2) shows that 

E/Z(E) ~ Ci x C2• Now, 

Z(~(D: D')) = Z(QD(l - Y)) = Q(Z(D)(l - Y) 

and 

Z(6.E: E')) = Z(QE(l - E')) = Q(Z(E})(l - E'). 

Since Q(Z(D)(l - D')) 9! Q(Z(E)(l - E'), Lemma (2.4) sho~s t.hat. 

Z(D) ~ Z(E). 

In what. follows we shall need information about group algebras of in­

decomposable groups of order 16 such that, factored by their ·centers, are 
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isomorphic to C2 x C2• There exist two such groups, those of type 16/9 

&nd 16/10 in the table of groups of orders 16 in [8}, which we shall denote 

simply u A and B respectively. 

(2.~) Lemma. With the notation above, we have that: 

QA= 2(Q $ Q EB Q(i)) 

EB M2(Q) EB M2(Q) 

QB? 2(Q EB Q e Q(i)) EB M2(Q) EB H 

where H denotes the quaternion algebra over the rational numbers. 

Proof. As befo1·e: 

QA~ Q(A/A') EB A(A : A') · 

QB::! Q(B/B') EB A(B: B'). 

Since A/ A' ::! B / B' ~ C2 x C4 it follows easily that 

Q(A/A') :l! Q(B/ B') ~ 2(Q EB Q EB Q(i)). 

Set. Z(A) =< e > x < r > where A'=< e > a.nd o(e) = o(,·) = 2. 

Then A/ < r >~ A/ < er >~ D4 • Hence, we have isomorphisms: 

So: 
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QA(l ~ er)(l; e) ~ QDt(l -:(e)) ~ M2(Q). 

Consequently, QA contains two different simple components which are 

both isomorphic to M2(Q) then, QA is as stated. 

In a similar way, if we write Z(B) =< f > X < s > where B' =< f > 
and o(/) = o(s) = 2 we see that Bf< s >~ Ka and Bf< f s >~ Dt so 

the resuit follows.□ 

Back to our original question, to fully describe the situation where p = z, 

n = 1, we shall discuss separately three cases, according to the rank of D, 

so set Z(D) =< e > x < r > X < ti > where o(e) = 2, o(r) = 2m, 

o(s) = 2". 

Case 1. Assume m = n· = 0. 

Since this means that IDI = 8 it is clear that QD ~ QE if and only if 

D~E. 

Case 2. Assume m ~ 1, n = 0. 

The proofs of Lemma (2.4) and Lemma (2.1) show that 

Now, t!t.(D : D') is a. direct sum of simple algebra of dimension 4 over 

their respectiv~ centers. Since m > I implies that Q((;) contains a. square 

root. of -1, all the corresponding algebras must be isomorphic to M2(Q((;)). 

For m = 0 or m = 1 the corresponding algebras can be isomorphic to either 

M2(Q) or H. Hence, the isomorphic class of QD will be determined by 

these two simple algebras. 
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Now, denote < r 2 >= H. Then QDH ~ Q(D/ll) and it. is easily seen 

that D/ JI is indecomposable, of order 16 and that factored by its center is 

isomorphic to C2 x C2• Hence D/H is isomorphic to either A or B and 

Lemma (2. 7) implies that this fact will determine the isomorphism class of 

QD. 

Case 3. Assume m ~ 1, n ~ 1. 

Once again we can write QD ~ Q(D/ D') (B A(D: D') and we know I.hat 

Z(ti.(D: D')) :::! Q(C2 ... x C2 .. ) · so, it will contain four simple components 

isomorphic to Q and others, isomorphic to fields~ of the form Q((). As in 

the previous case, we need only to determine the simple components whose 

centers are isomorphic to Q. 

Write H =< r 2 > x < s 2 > and D = D/H. Then, D is a group of 

order 32 fullfilling the same properties as D. Again, (8) shows that there 

exists only one such group, that of type 32/18 in their notation, which we 

shall call G. 

Since qn ::::: QD EB 6(D : H), QD ~ QG and 

Z(ti.(G: G")) ~ Q(C2 x C,) ~ Q EB Q EB Q EB Q 

we see that the four simple components under consideration, are determined 

by G. Hence, there is only one possible isomorphism class for QD. 

§3 - Loop Algebras. 

We shall now extend the results of the previous section to loop algebras. 
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From now on L will denote an R.A. loop and D CL a group such that 

[L: DJ= 2, D' = {1,e} = L' and Z(D) = Z(L). Furthermore, we shall 

asswne that it can be written as the group D in Theorem (2.1). 

Writing: 

QL = QL( 1 + e) EB QL( 1 - e) 
2 2 

we obtain, as in §2 that: 

QL ~ Q(L/ L') ED Aq(L: L') 

where all simple commutative components of QL are present in the decom­

position of Q(L/L'). Hence 

Z(QL) :l! Q(L/L') EB Z(Aq(L: L')). 

(3.1) Lemma. Z(Aq(L: L')) = Q(Z(D))(1?), 

Proof. Since Z(QD) :l! Q{D/D') EB Q{Z{D))(4') it. follows rea.<lily 

that Q(Z(D))(4') C Z(Aq(L: L')). 

Computing dimensions, we obtain: 

Hence: 

(Z(Aq(L: L')): Q) = [Z(QL): Q)- IQ(L/L'): Q) = ilDI, 

Since we also see that [Q(Z(D))(1?): Q} = lD, equality follov.:s.D 
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(3.2) Theorem. Let L be an R.A. loop and D C L a group, as 

above. Furthermore, assume that there exists an element o E Z(D) such 

that a-7 = e. Let M be another loop. Then QL ~ QM if and only if 

L/L' :=f M/M' and Z(QL) ~ Z(QM). 

Proof. Assume first that QL ~ QM smce Q{L/L') -and Q(M/M') 

are the sums of the corresponding commutative components, it follows that 

Q(L/L') ~ Q(M/M'), thus L/ L' 9'! M/M'. Also, since 

Q(L/ L') fB Q(Z(D))( l ; e) ~ Q(M/ M') "@ Q(Z(E))( l ; e) 

where E C M denotes a convenient subgroup of M, we obt11.in: 

using Theorem (2.6) we obtain Z(L) ~ Z(M). 

Conversely, assume that L/L' 9'! M/M' and Z(L) ~ Z(.M). Then 

Q(L/L') ~ Q(D/D') 

so 

Z(QL) ~ Z(QM). 

Since QL and QM are semisimple alternative algebras [5, Corollary 8} we 

can writ.e: 

QL ~ Q(LJ L') © A1 © ... ©A,. 

QM~ Q(M/M1 © B1 © .•• © B,,.. 
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Comparing the respective centers, we obtain n = m and Z(A;) = 
Z(B;), 1 .S i :5 u. Since a 2 = e we see, as in Theorem (2.6) that the 

algebras A;, B; must be split Cayley algebras and these are .unique over 

each center (6, Lemma (3.16)), hence A; !::! B;, 1 .S i .S n and thus 

QL~QM. 
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