

ESTRATÉGIAS ADAPTATIVAS HÍBRIDAS PARA REABILITAÇÃO MOTORA UTILIZANDO ESTIMULAÇÃO ELÉTRICA E EXOESQUELETO

Juliana de Oliveira Martins

José Yecid Moreno Villamizar

Orientador: Adriano Almeida Gonçalves Siqueira

Universidade de São Paulo

julianamartins12@usp.br

Objetivos

O principal objetivo deste projeto é desenvolver um controle de malha fechada envolvendo um exoesqueleto modular de membros inferiores Exo-TAO (Santos et al., 2017) e Estimulação Elétrica Funcional (FES, do inglês Functional Electrical Stimulation) para reabilitação motora. Pretende-se desenvolver um sistema integrado de controle robô/FES que será utilizado em associação com o controle de impedância variável do exoesqueleto, desenvolvido por Santos e Siqueira (2019). As estratégias adaptativas híbridas serão inicialmente avaliadas considerando os movimentos da articulação o joelho e com voluntários saudáveis. Além disso, buscamos modelar a fadiga muscular para integrá-la ao controle, ajustando dinamicamente a atuação da FES e do exoesqueleto com base nos parâmetros de fadiga muscular do paciente.

Métodos e Procedimentos

O exoesqueleto modular Exo-TAO foi utilizado como ferramenta para reabilitação motora, uma vez que exoesqueletos podem promover a reorganização cortical (Hoffman; Field-Fote, 2007) de forma a melhorar o padrão de marcha dos pacientes com lesões medulares ou que

sofreram AVC (Hornby et al., 2011). Além disso, foi utilizado a Estimulação Elétrica Funcional (FES) que tem como principal vantagem a geração de torque na articulação ao provocar a contração muscular através de pulsos elétricos, podendo restaurar a função muscular após a paralisia (Riener; Quintern; Schmidt, 1996), porém, essa estimulação pode levar à exaustão muscular rapidamente, não fornecendo torque suficiente para um movimento completo.

No primeiro semestre do projeto, foram realizados experimentos focados na obtenção dos parâmetros necessários para a modelagem da fadiga muscular de acordo com Santos et al. (2017), utilizando a chamada fitness function, descrita como o inverso da fadiga. Nos testes subsequentes, o Exo-TAO foi combinado com a FES para controlar a articulação do joelho durante movimentos de flexão e extensão seguindo uma trajetória senoidal. Inicialmente, os níveis de estimulação e assistência foram mantidos fixos, mas posteriormente, os níveis de assistência fornecidos pelo exoesqueleto foram ajustados em tempo real, conforme as estimativas de fadiga muscular calculadas.

Resultados

Os resultados preliminares indicam que a combinação de FES com o exoesqueleto Exo-TAO permite uma maior adaptabilidade durante a reabilitação motora, ajustando o nível de assistência conforme a fadiga muscular se desenvolve. Gráficos experimentais demonstram a rapidez em que ocorre a fadiga muscular.

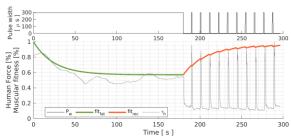


Figura 1: Gráficos do pulso enviado pela FES e seu efeito no músculo quadríceps, a função *fitness* (colorido) e a força muscular normalizada.

Além disso, observou-se que a combinação do FES com o exoesqueleto resultou em um tempo maior até a fadiga muscular, permitindo que o exercício fosse realizado por mais tempo.

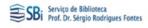
Conclusões

Os resultados deste estudo indicam que a integração de estratégias adaptativas híbridas, combinando o exoesqueleto Exo-TAO com a Estimulação Elétrica Funcional (FES), é promissora para a reabilitação motora, ao menos em um contexto experimental com voluntários saudáveis. A combinação dos dois sistemas permitiu prolongar o tempo até a fadiga muscular, o que pode ser vantajoso para aumentar a duração e a eficácia das sessões de reabilitação.

A modelagem da fadiga muscular foi eficaz para ajustar dinamicamente a aplicação da FES, garantindo que o esforço do paciente fosse otimizado sem causar fadiga excessiva. Esse controle híbrido mostrou-se importante para manter a continuidade do exercício de forma segura e eficaz.

Embora os experimentos tenham sido conduzidos apenas em voluntários saudáveis, os resultados sugerem que a abordagem tem potencial para ser explorada em cenários clínicos no futuro. No entanto, mais estudos são necessários para avaliar a eficácia em pacientes ambulatoriais e os benefícios em um contexto de reabilitação clínica.

Referências


HOFFMAN, L. R.; FIELD-FOTE, E. C. Cortical reorganization following bimanual training and somatosensory stimulation in cervical spinal cord injury: a case report. *Physical Therapy*, 2007.

HORNBY, G. T.; STRAUBE, D. S.; KINNAIRD, C. R.; HOLLERAN, C. L.; ECHAUZ, A. J.; RODRIGUEZ, K. S.; et al. Importance of specificity, amount, and intensity of locomotor training to improve ambulatory function in patients poststroke. *Topics in Stroke Rehabilitation*, v. 18, p. 293–307, 2011.

RIENER, R.; QUINTERN, J.; SCHMIDT, G. Biomechanical model of the human knee evaluated by neuromuscular stimulation. *Journal of Biomechanics*, v. 29, n. 9, p. 1157–1167, 1996.

SANTOS, W. M. dos; NOGUEIRA, S. L.; OLIVEIRA, G. C. de; PEÑA, G. G.; SIQUEIRA, A. A. G. Design and evaluation of a modular lower limb exoskeleton for rehabilitation. In: *Proceedings of 2017 IEEE International Conference on Rehabilitation Robotics*, London, UK, 2017. p. 447-451.

SANTOS, W. M. dos; SIQUEIRA, A. A. G. Optimal impedance via model predictive control for robot-aided rehabilitation. *Control Engineering Practice*, v. 93, p. 1-8, 2019.

