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ABSTRACT. This paper deals with the solvability near the characteris-
tic set ¥ = {0} x S* of operators of the form L = §/0t + (z"a(z) +
ixb(x))0/dx, b(0) # 0 and n > 2, defined on Qe = (—¢,¢) x S, € > 0,
where a and b are real-valued smooth functions in (—¢,€). For fixed
k > 1, it is shown that given f belonging to a subspace of finite codi-
mension (depending on k) of C*°() there is u € C* solution of the
equation Lu = f in a neighborhood of X.

1. INTRODUCTION
Let Q. = (—€,¢) x S, € > 0, and let
(1) L=0/0t+ (a(z) + ib(x))0/0x, bZD0,

be a complex vector field defined on €2, where a and b are real-valued smooth
functions in (—e,€).

Assume that ¥ = {0} x S! is the characteristic set of the structure asso-
ciated with L and that L is of infinity type along .. Hence, L is elliptic on
Qc\ X and a(0) = b(0) = 0. In particular, b(z) # 0 if x # 0.

Under hypotheses above L satisfies the well-known Nirenberg-Treves con-
dition (P). Hence, the local solvability is well understood (see, for instance,
[5], [13] and [14]).

In this paper we are concerned with solvability in a full neighborhood of
3.

We are interested in solving the equation
Lu=f

near the characteristic set X3, where f € C*°(€),), in the sense of Hérmander
(see [11]).

We say that L is solvable at X if given f belonging to a subspace of finite
codimension of C*°(£,) there exists u € D'(2,) solving the equation Lu = f
in a neighborhood of .

The interplay between the order of vanishing of the functions a and b, at
x = 0, has influence in the solvability of L at ¥ (see [1], [2], [3], [4], [8], [9],
and [10]). Indeed, in the case where the order of vanishing of the function
b, at * = 0, is greater than 1 the solvability of L at 3 is well understood.
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Hence we have the right to restrict ourselves to the case where b vanishes
of order 1 at x = 0. Therefore, by choosing a smaller ¢ > 0 if necessary, we
can write

(a+1ib)(x) = 2"ap(x) + ixbo(x),
where n > 1, ap and by are real-valued smooth functions in (—¢,€), and
bo(z) # 0 for all z € (—¢,€).
It follows from [12] that

(2) A= bo(0) — iag(0)

is an invariant of L. Such invariant is known as Meziani number.
Assume that A € C\ Q. For each fixed k € Z, it follows from [9] (see
also [7] and [12]) that for all f € C*°(£), satisfying
2m
(3) £(0,t)dt =0,
0
the equation Lu = f has a C* solution in a neighborhood of ¥. Also, there
is f € C*°(Q,), satisfying (3), such that the equation Lu = f does not have
C™ solution in any neighborhood of .

Note that (3) is a necessary condition for the existence of C* solution of
the equation Lu = f, in a neighborhood of 3.

The remainder case to be studied is the case where A € Q. Now, the prob-
lem is a bit different. Indeed, (3) is not a sufficient condition for existence
of C* solutions.

In this paper we deal with the solvability of L in the case where A € Q.

By a change of coordinates if necessary, we can assume by(0) > 0. Let p
and ¢ be positive integers such that by(0) = p/q and ged(p, q) = 1.

We will show that for fixed k € Z; there is N = N(k) € Z4 such that
for all f € C*°(Q,) satisfying, in addition to (3), conditions involving the
derivatives of f of order up to jog, where jo = max{j € Z : jq < N}, there
is u € C* solution of Lu = f in a neighborhood of ¥. We will present two
examples to clarify these additional conditions.

Note that our operator L restricted to QF = (0, ¢) x S! is elliptic. Hence,
for all f € C*°(Q) there exists u € C*°(QF) solution of the equation Lu = f
in QF. A natural question appears: is it possible to extend u smoothly to
Q.7 We will address to this question. Indeed, we will show that there is
f € C®(Q,), satisfying the conditions mentioned above, such that there is
no C* function v defined in €. satisfying Lu = f in QF = (0,¢) x S*.

2. REsuLTS
Let Q¢ = (—€,€) x St € > 0, and let
(4) L =0/0t + x(ao(x) + iby(z))0/0x,

be a complex vector field defined on €2, where ag and by are real-valued
smooth functions in (—e¢,€). Assume that ag(0) = 0, bo(x) # 0 for all
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x € (—¢,¢) and by(0) € Q. Without loss of generality we may assume that
bo(O) > 0.

Proposition 2.1. Let L be given by (4). Let p and q be positive integer
numbers such that by(0) = p/q and ged(p, q) = 1. For a fired N € Z define
jo=max{j €Z : jqg < N}. Given f € C*(Q¢) satisfying

(5) 7 £(0,t)dt = 0
0

and conditions involving the derivatives of f of order up to joq, there exists
v e C®(Q) such that Lv — f = O(|z|V).

Proof: Let N be a fixed positive integer. Given f € C*°(2) we will seek
v € C®(Q.) such that Lv— f = O(|z|"). By using formal Taylor expansions
we write

f(z,t) ~ ij(t)xj, (a+1ib)(z) ~ ch:vj and ov(z,t) ~ Zvj(t)xj.

Jj=0 Jj=0 Jj=0

Note that ¢g = 0 and ¢; = zg
Hence, Lv — f = O(|z|"V) leads to
(6) vo(t) = fo(t)

. 7j—1
(1) W) +z‘%vj(t) = fi(t) = Y lejrau(t), if 1<j<N.
=0

Note that (5) is equivalent to

27

fo(s)ds = 0;
0

hence, (6) has a solution given by

wolt) = /0 fols)ds.

For 1 < j < ¢, by a simple calculation, we have that (7) has a solution
given by

t j_l . y .p.
(8) vj(t) = / <f](8) - Zlcj—l+lvl(8)> 62%(s_t)d5 + [{je_lﬁjt7
0 1=0

. 27 j—1 B
Kj=(1- 6_5”%)_1/ (fj(t) - Zlcj—mvz(t)) ea? =2 gy,
0 1=0
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For j = ¢ we must to assume f satisfies the compatibility condition

27
/ ( Zﬁcq r+100(t ) ePtdt = 0
0

in order to find a smooth 27-periodic solution of (7), which is given by

v(t) = / ( Zecq porve(s ) in(s=1) g

Suppose that we have determined vy, ...,v;_1, for 2 < 7 < N. We have
that: either j & qZ or j € qZ.

If j € qZ4 then (7) has a solution v; given by formula (8)

If j = mgq, for some m = 1,...,j0, jo = max{j € Z : jq < N}, then we
must to assume that f satisfies the compatibility conditon

mq—1

2 )
(9) /0 (fmq = X fonrind >> ety — 0

in order to find a smooth 27-periodic solution of (7) which is given by

mq—1

Umg(t) = / (fmq Z Cemq—r+1v0(S )) etmp(s—t) Jg

Finally, the function v € C*°(£2) defined by v(z,t) = Z;V:O v;(t)x?, where
v; are obtained above, is such that Lv — f = O(|z|"). [ |

Next, we will give two examples for clarifying the compatibility conditions
of Proposition 2.1.

Example 2.2. Consider the complex vector field
L=0/0t+ <a(a:) + z§x> 8/dz,

defined on ., where p,q € Zy, ged(p,q) = 1, a(x) € C®(—¢,€) and, a is
flat at x = 0.

Let f € C®(Q.). We will seek v € C*®(8,) such that Lv — f = O(|z|V),
for firted N € Z... By using formal Taylor expansions we write

Z fit)z?, a(x)+ Lo~ ils and, v(z,t) ~ Zvj(t)xj.

>0 1 q Jj=0

Hence, Lv — f = O(|z|Y) leads to

vj(t HZ%%( )= fit), if 0<j<N.
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Form =0,1,...,50, jo=max{j € Z : jq < N}, conditions (5) and (9) are
given by
2
(10) Fmq(8)e™P5ds = 0;
0

consequently, we have

t .
Umg(t) :/0 Fmg(s)emPE=) s,

Moreover, for j & qZ., vj is given by formula (8). Hence, for f € C*(Q)
satisfying (10) we can find v € C*() such that Lv — f = O(|z|").
[l

Remark 2.3. Conditions (10) are in line with conditions presented in [7],
where the function a is considered identically zero.

Example 2.4. Forn € Z,, consider the complex vector field
L, =0/0t + <ax”q+1 + z'px) /0,
q

defined on ., where « € R\ {0}, p,q € Z+ and ged(p,q) = 1.

Let f € C*™(Q) and let N be an integer greater than ng—+1. We will seek
v € C®(,) such that Lv— f = O(|z|™). By using formal Taylor expansion,
we can write

fla,t) ~ ij(t)xj, v(z,t) ~ Zvj(t)xj.

J=0 j=0

Hence, Lv — f = O(|z|V) leads to
v;(t)ﬂ%uj(t) = fi(t), if 0<j<ng+1

and
DJ , . ,
v;-(t) + z;vj(t) = fi(t) —a(j —nq)vj_ng(t), if ng+1<j<N.
First, form =0,1,...,n conditions (5) and (9) are given by
2w

(11) fing(8)e™Psds = 0,
0

so that we have

t .
(12) Umg(t) = /O Fmq(s)e™PE= s,

Hence, if jo = max{j € Z : jq < N} is such that jo = n then (11) are
the compatibility conditions to find v.
Now, if jo>n+1,, form=n+1,...,50, conditions (9) are reduced to
2m

(13 Fos)e ™75 ds = alm = 1) [ v-aygl)e s
0 0
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hence, we can find vi,q given by

VUmg(t) = / (fmg(s) — a(m = n)quin—n)y(s)) oimp(s—t) g6

Let r1 = min{jo,2n}. Then, form =n+1,...,7r1, using (12), Fubini’s
theorem and (11) we obtain

2 2 s
/ eimpsv(m_n)q(s)ds :/ / f(m_n)q(r)ei(m_”)p(r_s)eimpsdrds
0 o Jo

2 2
= f(m_n)q(r)ei(m_")prf e™PS dsdr
0 r
1 21 ( ) )
_ i(m=n)pr({ _ ginpryq
an f(m n) ( )6 ( € ) r

1 2

- imprd )
an fm n)q( ) T

Therefore, form=mn+1,...,r, (15’) 18 equivalent to

27 - o ‘
(14) Jmq(s)e"Pds + M fim—nyq(s)e"P?ds = 0.
0 mp 0

Hence, if jo < 2n then the compatibility conditions to find v are given by
(11) and (14).

Finally, if jo > (k—1)n+1, with k > 3, let rp_1 = min{jo, kn}. Then, for
(k—1)n+1<m <rg_1, we can prove by induction that (13) is equivalent
to

2r
(15) /0 &M fing (5)ds =

k=1 (_qy-1 or | X .
2 D) H) 1(m = jn) |32 B )i
j=0

|
— !(npi)!

where Bj; € R are determined by formulae

! .
B = —lfjﬂj,l—l ,0< g <l

and
-1
Bi==>_Bii
=0

from o1 = —1 and p11 = 1.
Therefore, for f € C™(Q.) satisfying the compatibility conditions above
we can find v € C®(Q.) such that Lv — f = O(|z|V).
O

Proposition 2.5. Let L be given by (4). Let p and q be positive integer
numbers such that by(0) = p/q and ged(p,q) = 1. For each fized k € Z4
there exists N = N (k) € Z4 such that given g € C*(Q), satisfying g(x) =
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O(|z|N), there exists w € C*(Q.) solution of the equation Lw = g, in a
neighborhood of X.

Proof: Define Z : Q). — C by

e bo (v) d _il+ € ag(y) d
e L @zmezan @ e ’( o v@dw)+53 ) Y Cz>0
(16) Z(x,t) = 0, =0 .
S €) B S [} N
effe v(@Z(w)+62w) Y e < - v(@Z )+ Y . <0

Denote QF = (0,¢) x S*, Q7 = (—¢,0) x S* and QF = QF U Q.
We have that Z € C®(QF), Z(0}) = Z(Q27) = D(0,1) \ {0}. Moreover,
by a simple calculation,

—— .
bo(x) + iap(x)
Now, consider the function F': (—e, €) — C defined by

_ f:z; bo(v) dy

LZ=0 and LZ=

2
y(ad () +b2 (1)) , x>0
F(x) = [Z(z,t)] = 0, =0 .
I bo(y) Y
e v T g < ()

By using Taylor’s formula we can write
bo(z) g

==+ O(|z|);
B+ 5@ p U
consequently, it follows that
CIT A
(17) F(x) = 0, z=0 .

2oyt eln My g

Hence, F € C*°((—¢,¢€)\ {0})NC%(—¢, €). Moreover, F is injective in (—¢, 0)
and (0,¢€). Thus if z # 0 we have x = F~!(|z]), for some z € D(0,1).
From (17) we can find «, 5 > 0 such that

a|Z(x,t)|7 < |z| < B1Z(x, )|
equivalently,
(18) afz|v <| F72(|2]) [< Bles.
Let g = 2V h, where h € C™(Q.). The pushforward of the equations
Lw=g, in Qei,
via the map Z are given by

di(F =) _owt
n(F1(=0) + faa(P() " 92 0 PO
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where @* and §* are the pushforward of functions w and g in QF and Q_,
respectively. Taking z = |z[e??, we can write

doE  [bo(FY(|2])) + dao(F~1(|2])]e g+

oz 2ibo(F~1(|2])) El

equivalently,

a) 28 _ Io(F(D) +iao(F (D)l (P (2]) Y b
5z 2ibo(F~1(|2]))| 2] ’

where h® are the pushforward of h in QF and Q..
By (18) we have that

[Bo(F~"(I21) + dao(F~*(|21))]e” (F " (=) N h*

H(z) = 2ibo(F1(|2]))]2|

€ C"(D(0,1)),

N
where r is the bigger integer less than or equal to 2P
q

Hence, the solutions

N H(¢) =
W (z)—QM,//D(OJ)C_ZdC/\dC

belong to C™T1(D(0,1)) (see, for instance, chapter III of [15]). Thus, for
fixed ¢ € Z4 such that ¢ < r — k, we can write

b (z) = Y+ 2|0 (2),
0<j<t—1
where 7% (z) belongs to C"“+1(D(0,1)). Note that |z|*07(2) and |2[*07(2)
also satisfy (19).
Define w : Q¢ — C by

|Z(z, )0 (Z(x,1), >0
w(z,t) = 0, =0 ;
| Z (z, )| (Z(2,1)), =<0

that is,

£q

£q e O(lyl)
(2)7 e e e (Z(a,t)), 2> 0

€
w(z,t) = 0, =0 .
] oD

(&) 7 5T e (2(a,1), w <0

€

By construction we have Lw = g, in a neighborhood of . Therefore, it is
enough to choose N and / sufficiently large to obtain w € C*(Q,). [ ]

Finally, we are ready to state our main result:

Theorem 2.6. Let L be given by (4). Let p and q be positive integer numbers
such that by(0) = p/q and ged(p,q) = 1. For each fized k € Z there exists
N = N(k) € Zy such that given f € C*(S), satisfying (5) and conditions
involving the derivatives of f of order up to joq, where jo = max{j € Z :
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jq < N}, there exists u € C*(Q.) solution of the equation Lu = f, in a
neighborhood of X.

Proof: Fixed k > 1 choose N given by Proposition 2.5. Hence, by Propo-
sition 2.1, given f € C°°(f.), satisfying (5) and conditions involving the
derivatives of f of order up to jog, where jo = max{j € Z : jq < N}, there
exists v € C*(£,) such that Lv — f = O(|z|V).

Let g = Lv — f. Now, applying again Proposition 2.5 we can find w € C*
solution of the equation Lw = g, in a neighborhood of . Finally, define
u=v—w. We have that u € C* and Lu =Lv —Lw = f+g—g=f,in a
neighborhood of X. [ ]

In the next result we will show that for each fixed N € Z,, there exists
f € C™(Q.), satisfying f = O(|z|"), such that the equation Lu = f does
not have C'*° solution in any neighborhood of . More precisely, we will
show that there is no C*° function u defined in €2, and satisfying Lu = f in
O,
Theorem 2.7. Let L be given by (4). Let p and q be positive integer numbers
such that bo(0) = p/q and ged(p,q) = 1. Assume that by(0)~! & Z. Then

for each fivzed N € 7, there exists f = O(|z|N) of C* class in Q. such that
there is no u € C*(Q) satisfying Lu = f in QF.

Proof: The proof is an adaption of the arguments presented by Bergamasco
and Meziani in [3] (see Theorem 3.2).
Let

[o.¢]
(20) > apmpr 2
m=0

be a series in one complex variable, with radius of convergence equal to zero.
By using Borel’s theorem we can construct g € C°°(D(0,1)) whose Taylor
series at z = 0 is given by (20). Since, for each M € Z, we can write
M
9(z) = Y apmer 2™+ O(|2PM )
m=0

we have that
dg

0z
Hence, the function gg belongs to C*°(D(0,1)) and is flat at z = 0.
z
Define f: Q. — C by
2ibp(x) 7= 0,
0, <0
where Z is given by (16). Note that f € C°°(£) and is flat along to 3.

Suppose, by contradiction, that there is u € C°°(£2) solution of the equa-
tion Lu = f in Q.

(2) = O(|z[PM*), VM € Z;.
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The pushforward of Lu = f in Q}, via the map Z, yields

2ibo(F~1(|2])) _out 2ibo (£~ (|2])) _9g

bo(F1(12])) T tao(F (=) 0% bo(F1(2])) + iao(F (D)) 07 °)

in D(0,1) \ {0}; hence, @ is a solution of the CR-equation

out  dg .
5 = aZ( z), in D(0,1)\ {0}.

Therefore,
T=g+h,

where h is a holomorphic function defined in D(0,1). Let (¢,,) be a sequence
of complex numbers such that

o0
z) = Z ¢z’
§=0

Since (20) has radius of convergence equal to zero, there exists mg € Z4
such that apmg+1 + cpmo+1 # 0. Take k € Z such that k > pmg + 1. From
T = g+ h we have

k
= (o +¢))7 +0(|2["),
7=0

where o =0if j — 1 & pZ.
Hence, for z > 0 we have

k , T\ e oldy
= Z(aj +¢j)Z7 (x,t)+ O <(€> Pk T y> ,

j=0

which is a contradiction since, for kg = pmg + 1,

ko — € Oyl g,,_ 4 e agly)
o oI ydy(”ﬁw%W%mﬂ@L z>0

(F) 7 e
Zko = 0, =0
k z Oyl __agly)
(%)% eko [Le dy= Z( -5 y<a3<y>+bg<y>>dy)}’ <0
is no C* in €. [ |

Remark 2.8. A slight modification of the arguments in the proof of Theorem
2.7 allow us to prove a version for the case where the Meziani number X,
given by (2), satisfies A=t € C \ Z.
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