

C^k -SOLVABILITY NEAR THE CHARACTERISTIC SET FOR A CLASS OF ELLIPTIC VECTOR FIELDS WITH DEGENERACIES

PAULO L. DATTORI DA SILVA, JORGE MARQUES AND EVANDRO R. DA SILVA

ABSTRACT. This paper deals with the solvability near the characteristic set $\Sigma = \{0\} \times S^1$ of operators of the form $L = \partial/\partial t + (x^n a(x) + ixb(x))\partial/\partial x$, $b(0) \neq 0$ and $n \geq 2$, defined on $\Omega_\epsilon = (-\epsilon, \epsilon) \times S^1$, $\epsilon > 0$, where a and b are real-valued smooth functions in $(-\epsilon, \epsilon)$. For fixed $k \geq 1$, it is shown that given f belonging to a subspace of finite codimension (depending on k) of $C^\infty(\Omega_\epsilon)$ there is $u \in C^k$ solution of the equation $Lu = f$ in a neighborhood of Σ .

1. INTRODUCTION

Let $\Omega_\epsilon = (-\epsilon, \epsilon) \times S^1$, $\epsilon > 0$, and let

$$(1) \quad L = \partial/\partial t + (a(x) + ib(x))\partial/\partial x, \quad b \neq 0,$$

be a complex vector field defined on Ω_ϵ , where a and b are real-valued smooth functions in $(-\epsilon, \epsilon)$.

Assume that $\Sigma = \{0\} \times S^1$ is the characteristic set of the structure associated with L and that L is of infinity type along Σ . Hence, L is elliptic on $\Omega_\epsilon \setminus \Sigma$ and $a(0) = b(0) = 0$. In particular, $b(x) \neq 0$ if $x \neq 0$.

Under hypotheses above L satisfies the well-known *Nirenberg-Treves* condition (\mathcal{P}) . Hence, the local solvability is well understood (see, for instance, [5], [13] and [14]).

In this paper we are concerned with solvability in a full neighborhood of Σ .

We are interested in solving the equation

$$Lu = f$$

near the characteristic set Σ , where $f \in C^\infty(\Omega_\epsilon)$, in the sense of Hörmander (see [11]).

We say that L is solvable at Σ if given f belonging to a subspace of finite codimension of $C^\infty(\Omega_\epsilon)$ there exists $u \in \mathcal{D}'(\Omega_\epsilon)$ solving the equation $Lu = f$ in a neighborhood of Σ .

The interplay between the order of vanishing of the functions a and b , at $x = 0$, has influence in the solvability of L at Σ (see [1], [2], [3], [4], [8], [9], and [10]). Indeed, in the case where the order of vanishing of the function b , at $x = 0$, is greater than 1 the solvability of L at Σ is well understood.

Hence we have the right to restrict ourselves to the case where b vanishes of order 1 at $x = 0$. Therefore, by choosing a smaller $\epsilon > 0$ if necessary, we can write

$$(a + ib)(x) = x^n a_0(x) + i x b_0(x),$$

where $n \geq 1$, a_0 and b_0 are real-valued smooth functions in $(-\epsilon, \epsilon)$, and $b_0(x) \neq 0$ for all $x \in (-\epsilon, \epsilon)$.

It follows from [12] that

$$(2) \quad \lambda = b_0(0) - i a_0(0)$$

is an invariant of L . Such invariant is known as *Meziani number*.

Assume that $\lambda \in \mathbb{C} \setminus \mathbb{Q}$. For each fixed $k \in \mathbb{Z}_+$, it follows from [9] (see also [7] and [12]) that for all $f \in C^\infty(\Omega_\epsilon)$, satisfying

$$(3) \quad \int_0^{2\pi} f(0, t) dt = 0,$$

the equation $Lu = f$ has a C^k solution in a neighborhood of Σ . Also, there is $f \in C^\infty(\Omega_\epsilon)$, satisfying (3), such that the equation $Lu = f$ does not have C^∞ solution in any neighborhood of Σ .

Note that (3) is a necessary condition for the existence of C^k solution of the equation $Lu = f$, in a neighborhood of Σ .

The remainder case to be studied is the case where $\lambda \in \mathbb{Q}$. Now, the problem is a bit different. Indeed, (3) is not a sufficient condition for existence of C^k solutions.

In this paper we deal with the solvability of L in the case where $\lambda \in \mathbb{Q}$.

By a change of coordinates if necessary, we can assume $b_0(0) > 0$. Let p and q be positive integers such that $b_0(0) = p/q$ and $\gcd(p, q) = 1$.

We will show that for fixed $k \in \mathbb{Z}_+$ there is $N = N(k) \in \mathbb{Z}_+$ such that for all $f \in C^\infty(\Omega_\epsilon)$ satisfying, in addition to (3), conditions involving the derivatives of f of order up to $j_0 q$, where $j_0 = \max\{j \in \mathbb{Z} : jq \leq N\}$, there is $u \in C^k$ solution of $Lu = f$ in a neighborhood of Σ . We will present two examples to clarify these additional conditions.

Note that our operator L restricted to $\Omega_\epsilon^+ = (0, \epsilon) \times S^1$ is elliptic. Hence, for all $f \in C^\infty(\Omega_\epsilon)$ there exists $u \in C^\infty(\Omega_\epsilon^+)$ solution of the equation $Lu = f$ in Ω_ϵ^+ . A natural question appears: is it possible to extend u smoothly to Ω_ϵ ? We will address to this question. Indeed, we will show that there is $f \in C^\infty(\Omega_\epsilon)$, satisfying the conditions mentioned above, such that there is no C^∞ function u defined in Ω_ϵ satisfying $Lu = f$ in $\Omega_\epsilon^+ = (0, \epsilon) \times S^1$.

2. RESULTS

Let $\Omega_\epsilon = (-\epsilon, \epsilon) \times S^1$, $\epsilon > 0$, and let

$$(4) \quad L = \partial/\partial t + x(a_0(x) + ib_0(x))\partial/\partial x,$$

be a complex vector field defined on Ω_ϵ , where a_0 and b_0 are real-valued smooth functions in $(-\epsilon, \epsilon)$. Assume that $a_0(0) = 0$, $b_0(x) \neq 0$ for all

$x \in (-\epsilon, \epsilon)$ and $b_0(0) \in \mathbb{Q}$. Without loss of generality we may assume that $b_0(0) > 0$.

Proposition 2.1. *Let L be given by (4). Let p and q be positive integer numbers such that $b_0(0) = p/q$ and $\gcd(p, q) = 1$. For a fixed $N \in \mathbb{Z}_+$ define $j_0 = \max\{j \in \mathbb{Z} : jq \leq N\}$. Given $f \in C^\infty(\Omega_\epsilon)$ satisfying*

$$(5) \quad \int_0^{2\pi} f(0, t) dt = 0$$

and conditions involving the derivatives of f of order up to j_0q , there exists $v \in C^\infty(\Omega_\epsilon)$ such that $Lv - f = O(|x|^N)$.

Proof: Let N be a fixed positive integer. Given $f \in C^\infty(\Omega_\epsilon)$ we will seek $v \in C^\infty(\Omega_\epsilon)$ such that $Lv - f = O(|x|^N)$. By using formal Taylor expansions we write

$$f(x, t) \simeq \sum_{j \geq 0} f_j(t) x^j, \quad (a + ib)(x) \simeq \sum_{j \geq 0} c_j x^j \quad \text{and} \quad v(x, t) \simeq \sum_{j \geq 0} v_j(t) x^j.$$

Note that $c_0 = 0$ and $c_1 = i \frac{p}{q}$.

Hence, $Lv - f = O(|x|^N)$ leads to

$$(6) \quad v'_0(t) = f_0(t)$$

and,

$$(7) \quad v'_j(t) + i \frac{pj}{q} v_j(t) = f_j(t) - \sum_{l=0}^{j-1} l c_{j-l+1} v_l(t), \quad \text{if } 1 \leq j \leq N.$$

Note that (5) is equivalent to

$$\int_0^{2\pi} f_0(s) ds = 0;$$

hence, (6) has a solution given by

$$v_0(t) = \int_0^t f_0(s) ds.$$

For $1 \leq j < q$, by a simple calculation, we have that (7) has a solution given by

$$(8) \quad v_j(t) = \int_0^t \left(f_j(s) - \sum_{l=0}^{j-1} l c_{j-l+1} v_l(s) \right) e^{i \frac{pj}{q} (s-t)} ds + K_j e^{-i \frac{pj}{q} t},$$

where

$$K_j = (1 - e^{-\frac{p}{q} j i 2\pi})^{-1} \int_0^{2\pi} \left(f_j(t) - \sum_{l=0}^{j-1} l c_{j-l+1} v_l(t) \right) e^{\frac{p}{q} j i (t-2\pi)} dt.$$

For $j = q$ we must to assume f satisfies the compatibility condition

$$\int_0^{2\pi} \left(f_q(t) - \sum_{\ell=0}^{q-1} \ell c_{q-\ell+1} v_\ell(t) \right) e^{ipt} dt = 0$$

in order to find a smooth 2π -periodic solution of (7), which is given by

$$v_q(t) = \int_0^t \left(f_q(s) - \sum_{\ell=0}^{q-1} \ell c_{q-\ell+1} v_\ell(s) \right) e^{ip(s-t)} ds.$$

Suppose that we have determined v_0, \dots, v_{j-1} , for $2 \leq j \leq N$. We have that: either $j \notin q\mathbb{Z}_+$ or $j \in q\mathbb{Z}_+$.

If $j \notin q\mathbb{Z}_+$ then (7) has a solution v_j given by formula (8).

If $j = mq$, for some $m = 1, \dots, j_0$, $j_0 = \max\{j \in \mathbb{Z} : jq \leq N\}$, then we must to assume that f satisfies the compatibility conditon

$$(9) \quad \int_0^{2\pi} \left(f_{mq}(t) - \sum_{\ell=0}^{mq-1} \ell c_{mq-\ell+1} v_\ell(t) \right) e^{ipmt} dt = 0$$

in order to find a smooth 2π -periodic solution of (7) which is given by

$$v_{mq}(t) = \int_0^t \left(f_{mq}(s) - \sum_{\ell=0}^{mq-1} \ell c_{mq-\ell+1} v_\ell(s) \right) e^{imp(s-t)} ds.$$

Finally, the function $v \in C^\infty(\Omega_\epsilon)$ defined by $v(x, t) = \sum_{j=0}^N v_j(t) x^j$, where v_j are obtained above, is such that $Lv - f = O(|x|^N)$. \blacksquare

Next, we will give two examples for clarifying the compatibility conditions of Proposition 2.1.

Example 2.2. Consider the complex vector field

$$L = \partial/\partial t + \left(a(x) + i \frac{p}{q} x \right) \partial/\partial x,$$

defined on Ω_ϵ , where $p, q \in \mathbb{Z}_+$, $\gcd(p, q) = 1$, $a(x) \in C^\infty(-\epsilon, \epsilon)$ and, a is flat at $x = 0$.

Let $f \in C^\infty(\Omega_\epsilon)$. We will seek $v \in C^\infty(\Omega_\epsilon)$ such that $Lv - f = O(|x|^N)$, for fixed $N \in \mathbb{Z}_+$. By using formal Taylor expansions we write

$$f(x, t) \simeq \sum_{j \geq 0} f_j(t) x^j, \quad a(x) + i \frac{p}{q} x \simeq i \frac{p}{q} x \quad \text{and,} \quad v(x, t) \simeq \sum_{j \geq 0} v_j(t) x^j.$$

Hence, $Lv - f = O(|x|^N)$ leads to

$$v'_j(t) + i \frac{pj}{q} v_j(t) = f_j(t), \quad \text{if } 0 \leq j \leq N.$$

For $m = 0, 1, \dots, j_0$, $j_0 = \max\{j \in \mathbb{Z} : jq \leq N\}$, conditions (5) and (9) are given by

$$(10) \quad \int_0^{2\pi} f_{mq}(s) e^{imps} ds = 0;$$

consequently, we have

$$v_{mq}(t) = \int_0^t f_{mq}(s) e^{imp(s-t)} ds.$$

Moreover, for $j \notin q\mathbb{Z}_+$, v_j is given by formula (8). Hence, for $f \in C^\infty(\Omega_\epsilon)$ satisfying (10) we can find $v \in C^\infty(\Omega_\epsilon)$ such that $Lv - f = O(|x|^N)$. \square

Remark 2.3. Conditions (10) are in line with conditions presented in [7], where the function a is considered identically zero.

Example 2.4. For $n \in \mathbb{Z}_+$, consider the complex vector field

$$L_n = \partial/\partial t + \left(\alpha x^{nq+1} + i \frac{p}{q} x \right) \partial/\partial x,$$

defined on Ω_ϵ , where $\alpha \in \mathbb{R} \setminus \{0\}$, $p, q \in \mathbb{Z}_+$ and $\gcd(p, q) = 1$.

Let $f \in C^\infty(\Omega_\epsilon)$ and let N be an integer greater than $nq+1$. We will seek $v \in C^\infty(\Omega_\epsilon)$ such that $Lv - f = O(|x|^N)$. By using formal Taylor expansion, we can write

$$f(x, t) \simeq \sum_{j \geq 0} f_j(t) x^j, \quad v(x, t) \simeq \sum_{j \geq 0} v_j(t) x^j.$$

Hence, $Lv - f = O(|x|^N)$ leads to

$$v'_j(t) + i \frac{pj}{q} v_j(t) = f_j(t), \quad \text{if } 0 \leq j < nq+1$$

and

$$v'_j(t) + i \frac{pj}{q} v_j(t) = f_j(t) - \alpha(j - nq) v_{j-nq}(t), \quad \text{if } nq+1 \leq j \leq N.$$

First, for $m = 0, 1, \dots, n$ conditions (5) and (9) are given by

$$(11) \quad \int_0^{2\pi} f_{mq}(s) e^{imps} ds = 0,$$

so that we have

$$(12) \quad v_{mq}(t) = \int_0^t f_{mq}(s) e^{imp(s-t)} ds.$$

Hence, if $j_0 = \max\{j \in \mathbb{Z} : jq \leq N\}$ is such that $j_0 = n$ then (11) are the compatibility conditions to find v .

Now, if $j_0 \geq n+1$, for $m = n+1, \dots, j_0$, conditions (9) are reduced to

$$(13) \quad \int_0^{2\pi} f_{mq}(s) e^{imps} ds = \alpha(m-n)q \int_0^{2\pi} v_{(m-n)q}(s) e^{imps} ds;$$

hence, we can find v_{mq} given by

$$v_{mq}(t) = \int_0^t (f_{mq}(s) - \alpha(m-n)qv_{(m-n)q}(s)) e^{imp(s-t)} ds.$$

Let $r_1 = \min\{j_0, 2n\}$. Then, for $m = n+1, \dots, r_1$, using (12), Fubini's theorem and (11) we obtain

$$\begin{aligned} \int_0^{2\pi} e^{imp s} v_{(m-n)q}(s) ds &= \int_0^{2\pi} \int_0^s f_{(m-n)q}(r) e^{i(m-n)p(r-s)} e^{imp s} dr ds \\ &= \int_0^{2\pi} f_{(m-n)q}(r) e^{i(m-n)pr} \int_r^{2\pi} e^{inps} ds dr \\ &= \frac{1}{inp} \int_0^{2\pi} f_{(m-n)q}(r) e^{i(m-n)pr} (1 - e^{inpr}) dr \\ &= -\frac{1}{inp} \int_0^{2\pi} f_{(m-n)q}(r) e^{imp r} dr. \end{aligned}$$

Therefore, for $m = n+1, \dots, r_1$, (13) is equivalent to

$$(14) \quad \int_0^{2\pi} f_{mq}(s) e^{imp s} ds + \frac{\alpha(m-n)q}{inp} \int_0^{2\pi} f_{(m-n)q}(s) e^{imp s} ds = 0.$$

Hence, if $j_0 \leq 2n$ then the compatibility conditions to find v are given by (11) and (14).

Finally, if $j_0 \geq (k-1)n+1$, with $k \geq 3$, let $r_{k-1} = \min\{j_0, kn\}$. Then, for $(k-1)n+1 \leq m \leq r_{k-1}$, we can prove by induction that (13) is equivalent to

$$(15) \quad \int_0^{2\pi} e^{imp s} f_{mq}(s) ds = \sum_{l=1}^{k-1} \frac{(-1)^{l-1} (\alpha q)^l \prod_{j=1}^l (m - jn)}{l!(npi)^l} \int_0^{2\pi} \sum_{j=0}^l \beta_{j,l} e^{i(m-jn)ps} f_{(m-nl)q}(s) ds,$$

where $\beta_{j,l} \in \mathbb{R}$ are determined by formulae

$$\beta_{j,l} = -\frac{l!}{l-j} \beta_{j,l-1}, \quad 0 \leq j < l$$

and

$$\beta_{l,l} = -\sum_{j=0}^{l-1} \beta_{j,l},$$

from $\beta_{0,1} = -1$ and $\beta_{1,1} = 1$.

Therefore, for $f \in C^\infty(\Omega_\epsilon)$ satisfying the compatibility conditions above we can find $v \in C^\infty(\Omega_\epsilon)$ such that $Lv - f = O(|x|^N)$. □

Proposition 2.5. Let L be given by (4). Let p and q be positive integer numbers such that $b_0(0) = p/q$ and $\gcd(p, q) = 1$. For each fixed $k \in \mathbb{Z}_+$ there exists $N = N(k) \in \mathbb{Z}_+$ such that given $g \in C^\infty(\Omega_\epsilon)$, satisfying $g(x) =$

$O(|x|^N)$, there exists $w \in C^k(\Omega_\epsilon)$ solution of the equation $Lw = g$, in a neighborhood of Σ .

Proof: Define $Z : \Omega_\epsilon \rightarrow \mathbb{C}$ by

$$(16) \quad Z(x, t) = \begin{cases} e^{-\int_x^\epsilon \frac{b_0(y)}{y(a_0^2(y) + b_0^2(y))} dy} \cdot e^{-i\left(t + \int_x^\epsilon \frac{a_0(y)}{y(a_0^2(y) + b_0^2(y))} dy\right)}, & x > 0 \\ 0, & x = 0 \\ e^{\int_{-\epsilon}^x \frac{b_0(y)}{y(a_0^2(y) + b_0^2(y))} dy} \cdot e^{-i\left(t - \int_{-\epsilon}^x \frac{a_0(y)}{y(a_0^2(y) + b_0^2(y))} dy\right)}, & x < 0 \end{cases}.$$

Denote $\Omega_\epsilon^+ = (0, \epsilon) \times S^1$, $\Omega_\epsilon^- = (-\epsilon, 0) \times S^1$ and $\Omega_\epsilon^\pm = \Omega_\epsilon^+ \cup \Omega_\epsilon^-$.

We have that $Z \in C^\infty(\Omega_\epsilon^\pm)$, $Z(\Omega_\epsilon^+) = Z(\Omega_\epsilon^-) = D(0, 1) \setminus \{0\}$. Moreover, by a simple calculation,

$$\mathcal{L}Z = 0 \quad \text{and} \quad \mathcal{L}\bar{Z} = \frac{2ib_0(x)}{b_0(x) + ia_0(x)} \bar{Z}.$$

Now, consider the function $F : (-\epsilon, \epsilon) \rightarrow \mathbb{C}$ defined by

$$F(x) = |Z(x, t)| = \begin{cases} e^{-\int_x^\epsilon \frac{b_0(y)}{y(a_0^2(y) + b_0^2(y))} dy}, & x > 0 \\ 0, & x = 0 \\ e^{\int_{-\epsilon}^x \frac{b_0(y)}{y(a_0^2(y) + b_0^2(y))} dy}, & x < 0 \end{cases}.$$

By using Taylor's formula we can write

$$\frac{b_0(x)}{a_0^2(x) + b_0^2(x)} = \frac{q}{p} + O(|x|);$$

consequently, it follows that

$$(17) \quad F(x) = \begin{cases} \left(\frac{x}{\epsilon}\right)^{\frac{q}{p}} e^{-\int_x^\epsilon \frac{O(|y|)}{y} dy}, & x > 0 \\ 0, & x = 0 \\ \left(\frac{-x}{\epsilon}\right)^{\frac{q}{p}} e^{\int_{-\epsilon}^x \frac{O(|y|)}{y} dy}, & x < 0 \end{cases}.$$

Hence, $F \in C^\infty((- \epsilon, \epsilon) \setminus \{0\}) \cap C^0(-\epsilon, \epsilon)$. Moreover, F is injective in $(-\epsilon, 0)$ and $(0, \epsilon)$. Thus if $x \neq 0$ we have $x = F^{-1}(|z|)$, for some $z \in D(0, 1)$.

From (17) we can find $\alpha, \beta > 0$ such that

$$\alpha|Z(x, t)|^{\frac{p}{q}} \leq |x| \leq \beta|Z(x, t)|^{\frac{p}{q}};$$

equivalently,

$$(18) \quad \alpha|z|^{\frac{p}{q}} \leq |F^{-1}(|z|)| \leq \beta|z|^{\frac{p}{q}}.$$

Let $g = x^N h$, where $h \in C^\infty(\Omega_\epsilon)$. The pushforward of the equations

$$Lw = g, \quad \text{in } \Omega_\epsilon^\pm,$$

via the map Z are given by

$$\frac{2ib_0(F^{-1}(|z|))}{b_0(F^{-1}(|z|)) + ia_0(F^{-1}(|z|)))} \bar{z} \frac{\partial \tilde{w}^\pm}{\partial \bar{z}} = \tilde{g}^\pm \quad \text{in } D(0, 1) \setminus \{0\},$$

where \tilde{w}^\pm and \tilde{g}^\pm are the pushforward of functions w and g in Ω_ϵ^+ and Ω_ϵ^- , respectively. Taking $z = |z|e^{i\theta}$, we can write

$$\frac{\partial \tilde{w}^\pm}{\partial \bar{z}} = \frac{[b_0(F^{-1}(|z|)) + ia_0(F^{-1}(|z|))]e^{i\theta}}{2ib_0(F^{-1}(|z|))} \frac{\tilde{g}^\pm}{|z|};$$

equivalently,

$$(19) \quad \frac{\partial \tilde{w}^\pm}{\partial \bar{z}} = \frac{[b_0(F^{-1}(|z|)) + ia_0(F^{-1}(|z|))]e^{i\theta}(F^{-1}(|z|))^N \tilde{h}^\pm}{2ib_0(F^{-1}(|z|))|z|},$$

where \tilde{h}^\pm are the pushforward of h in Ω_ϵ^+ and Ω_ϵ^- .

By (18) we have that

$$H(z) = \frac{[b_0(F^{-1}(|z|)) + ia_0(F^{-1}(|z|))]e^{i\theta}(F^{-1}(|z|))^N \tilde{h}^\pm}{2ib_0(F^{-1}(|z|))|z|} \in C^r(D(0, 1)),$$

where r is the bigger integer less than or equal to $\frac{Np}{q} - 1$.

Hence, the solutions

$$\tilde{w}^\pm(z) = \frac{1}{2\pi i} \iint_{D(0,1)} \frac{H(\zeta)}{\zeta - z} d\zeta \wedge d\bar{\zeta}$$

belong to $C^{r+1}(D(0, 1))$ (see, for instance, chapter III of [15]). Thus, for fixed $\ell \in \mathbb{Z}_+$ such that $\ell < r - k$, we can write

$$\tilde{w}^\pm(z) = \sum_{0 \leq j \leq \ell-1} c_j^\pm z^j + |z|^\ell \tilde{v}^\pm(z),$$

where $\tilde{v}^\pm(z)$ belongs to $C^{r-\ell+1}(D(0, 1))$. Note that $|z|^\ell \tilde{v}^+(z)$ and $|z|^\ell \tilde{v}^-(z)$ also satisfy (19).

Define $w : \Omega_\epsilon \rightarrow \mathbb{C}$ by

$$w(x, t) = \begin{cases} |Z(x, t)|^\ell \tilde{v}^+(Z(x, t)), & x > 0 \\ 0, & x = 0 \\ |Z(x, t)|^\ell \tilde{v}^-(Z(x, t)), & x < 0 \end{cases};$$

that is,

$$w(x, t) = \begin{cases} \left(\frac{x}{\epsilon}\right)^{\frac{\ell q}{p}} e^{-\ell \int_x^\epsilon \frac{O(|y|)}{y} dy} \tilde{v}^+(Z(x, t)), & x > 0 \\ 0, & x = 0 \\ \left(\frac{-x}{\epsilon}\right)^{\frac{\ell q}{p}} e^{\ell \int_{-\epsilon}^x \frac{O(|y|)}{y} dy} \tilde{v}^-(Z(x, t)), & x < 0 \end{cases}.$$

By construction we have $Lw = g$, in a neighborhood of Σ . Therefore, it is enough to choose N and ℓ sufficiently large to obtain $w \in C^k(\Omega_\epsilon)$. \blacksquare

Finally, we are ready to state our main result:

Theorem 2.6. *Let L be given by (4). Let p and q be positive integer numbers such that $b_0(0) = p/q$ and $\gcd(p, q) = 1$. For each fixed $k \in \mathbb{Z}_+$ there exists $N = N(k) \in \mathbb{Z}_+$ such that given $f \in C^\infty(\Omega_\epsilon)$, satisfying (5) and conditions involving the derivatives of f of order up to $j_0 q$, where $j_0 = \max\{j \in \mathbb{Z} : j \leq k, j \equiv 0 \pmod{q}\}$, there exists a solution $u \in C^k(\Omega_\epsilon)$ of $Lu = f$.*

$jq \leq N\}$, there exists $u \in C^k(\Omega_\epsilon)$ solution of the equation $Lu = f$, in a neighborhood of Σ .

Proof: Fixed $k \geq 1$ choose N given by Proposition 2.5. Hence, by Proposition 2.1, given $f \in C^\infty(\Omega_\epsilon)$, satisfying (5) and conditions involving the derivatives of f of order up to $j_0 q$, where $j_0 = \max\{j \in \mathbb{Z} : jq \leq N\}$, there exists $v \in C^\infty(\Omega_\epsilon)$ such that $Lv - f = O(|x|^N)$.

Let $g = Lv - f$. Now, applying again Proposition 2.5 we can find $w \in C^k$ solution of the equation $Lw = g$, in a neighborhood of Σ . Finally, define $u = v - w$. We have that $u \in C^k$ and $Lu = Lv - Lw = f + g - g = f$, in a neighborhood of Σ . \blacksquare

In the next result we will show that for each fixed $N \in \mathbb{Z}_+$, there exists $f \in C^\infty(\Omega_\epsilon)$, satisfying $f = O(|x|^N)$, such that the equation $Lu = f$ does not have C^∞ solution in any neighborhood of Σ . More precisely, we will show that there is no C^∞ function u defined in Ω_ϵ and satisfying $Lu = f$ in Ω_ϵ^+ .

Theorem 2.7. *Let L be given by (4). Let p and q be positive integer numbers such that $b_0(0) = p/q$ and $\gcd(p, q) = 1$. Assume that $b_0(0)^{-1} \notin \mathbb{Z}$. Then for each fixed $N \in \mathbb{Z}_+$, there exists $f = O(|x|^N)$ of C^∞ class in Ω_ϵ such that there is no $u \in C^\infty(\Omega_\epsilon)$ satisfying $Lu = f$ in Ω_ϵ^+ .*

Proof: The proof is an adaption of the arguments presented by Bergamasco and Meziani in [3] (see Theorem 3.2).

Let

$$(20) \quad \sum_{m=0}^{\infty} \alpha_{pm+1} z^{pm+1}$$

be a series in one complex variable, with radius of convergence equal to zero. By using Borel's theorem we can construct $g \in C^\infty(D(0, 1))$ whose Taylor series at $z = 0$ is given by (20). Since, for each $M \in \mathbb{Z}_+$, we can write

$$g(z) = \sum_{m=0}^M \alpha_{pm+1} z^{pm+1} + O(|z|^{pM+1})$$

we have that

$$\frac{\partial g}{\partial \bar{z}}(z) = O(|z|^{pM+1}), \quad \forall M \in \mathbb{Z}_+.$$

Hence, the function $\frac{\partial g}{\partial \bar{z}}$ belongs to $C^\infty(D(0, 1))$ and is flat at $z = 0$.

Define $f : \Omega_\epsilon \rightarrow \mathbb{C}$ by

$$f(x, t) = \begin{cases} \frac{2ib_0(x)}{b_0(x) + ia_0(x)} \bar{Z}(x, t) \frac{\partial g}{\partial \bar{z}}(Z(x, t)), & x > 0 \\ 0, & x \leq 0 \end{cases},$$

where Z is given by (16). Note that $f \in C^\infty(\Omega_\epsilon)$ and is flat along to Σ .

Suppose, by contradiction, that there is $u \in C^\infty(\Omega_\epsilon)$ solution of the equation $Lu = f$ in Ω_ϵ^+ .

The pushforward of $Lu = f$ in Ω_ϵ^+ , via the map Z , yields

$$\frac{2ib_0(F^{-1}(|z|))}{b_0(F^{-1}(|z|)) + ia_0(F^{-1}(|z|))} \bar{z} \frac{\partial \tilde{u}^+}{\partial \bar{z}} = \frac{2ib_0(F^{-1}(|z|))}{b_0(F^{-1}(|z|)) + ia_0(F^{-1}(|z|))} \bar{z} \frac{\partial g}{\partial \bar{z}}(z)$$

in $D(0, 1) \setminus \{0\}$; hence, \tilde{u}^+ is a solution of the CR-equation

$$\frac{\partial \tilde{u}^+}{\partial \bar{z}} = \frac{\partial g}{\partial \bar{z}}(z), \quad \text{in } D(0, 1) \setminus \{0\}.$$

Therefore,

$$\tilde{u}^+ = g + h,$$

where h is a holomorphic function defined in $D(0, 1)$. Let (c_m) be a sequence of complex numbers such that

$$h(z) = \sum_{j=0}^{\infty} c_j z^j.$$

Since (20) has radius of convergence equal to zero, there exists $m_0 \in \mathbb{Z}_+$ such that $\alpha_{pm_0+1} + c_{pm_0+1} \neq 0$. Take $k \in \mathbb{Z}_+$ such that $k > pm_0 + 1$. From $\tilde{u}^+ = g + h$ we have

$$\tilde{u}^+(z) = \sum_{j=0}^k (\alpha_j + c_j) z^j + O(|z|^k),$$

where $\alpha_j = 0$ if $j - 1 \notin p\mathbb{Z}$.

Hence, for $x > 0$ we have

$$u(x, t) = \sum_{j=0}^k (\alpha_j + c_j) Z^j(x, t) + O\left(\left(\frac{x}{\epsilon}\right)^{\frac{kq}{p}} e^{-k \int_x^\epsilon \frac{O(|y|)}{y} dy}\right),$$

which is a contradiction since, for $k_0 = pm_0 + 1$,

$$Z^{k_0} = \begin{cases} \left(\frac{x}{\epsilon}\right)^{\frac{qk_0}{p}} e^{-k_0 \left[\int_x^\epsilon \frac{O(|y|)}{y} dy - i \left(t + \int_x^\epsilon \frac{a_0(y)}{y(a_0^2(y) + b_0^2(y))} dy\right)\right]}, & x > 0 \\ 0, & x = 0 \\ \left(\frac{-x}{\epsilon}\right)^{\frac{qk_0}{p}} e^{k_0 \left[\int_{-\epsilon}^x \frac{O(|y|)}{y} dy - i \left(t - \int_{-\epsilon}^x \frac{a_0(y)}{y(a_0^2(y) + b_0^2(y))} dy\right)\right]}, & x < 0 \end{cases}$$

is no C^∞ in Ω_ϵ . ■

Remark 2.8. *A slight modification of the arguments in the proof of Theorem 2.7 allow us to prove a version for the case where the Meziani number λ , given by (2), satisfies $\lambda^{-1} \in \mathbb{C} \setminus \mathbb{Z}$.*

REFERENCES

- [1] A. P. Bergamasco and P. L. Dattori da Silva, Global solvability for a special class of vector fields on the torus, *Contemp. Math.*, **400** (2006), 11–20.
- [2] A. P. Bergamasco and P. L. Dattori da Silva, Solvability in the large for a class of vector fields on the torus, *J. Math. Pures Appl.*, **86** (2006), 427–477.
- [3] A. P. Bergamasco and A. Meziani, Semiglobal solvability of a class of planar vector fields of infinite type, *Mat. Contemporânea*, **18** (2000), 31–42.
- [4] A. P. Bergamasco and A. Meziani, Solvability near the characteristic set for a class of planar vector fields of infinite type, *Ann. Inst. Fourier, Grenoble*, **55** (1) (2005), 77–112.
- [5] S. Berhanu, P. D. Cordaro and J. Hounie, *An introduction to involutive structures*, Cambridge University Press, 2008.
- [6] S. Berhanu and A. Meziani, On rotationally invariant vector fields in the plane, *Manuscripta Math.*, **89** (1996), 355–371.
- [7] W. A. Cerniauskas and A. Kirilov, C^k solvability near the characteristic set for a class of vector fields of infinite type. *Mat. Contemp.*, **36** (2009), 91–106.
- [8] P. L. Dattori da Silva, Nonexistence of Global Solutions for a Class of Complex Vector Fields on two-torus, *J. Math. Anal. Appl.*, **351** (2009), 543–555.
- [9] P. L. Dattori da Silva, C^k -Solvability Near the Characteristic Set for a Class of Planar Complex Vector Fields of Infinite Type, *Ann. Mat. Pura Appl.*, **189** (2010), 403–413.
- [10] P. L. Dattori da Silva and E. R. da Silva, Solvability near the characteristic set for a special class of complex vector fields, *Archiv der Mathematik*, **98** (2012), 183–192.
- [11] L. Hörmander, *The analysis of linear partial differential operators IV*, Springer-Verlag, 1984.
- [12] A. Meziani, On planar elliptic structures with infinite type degeneracy, *J. Funct. Anal.*, **179** (2) (2001), 333–373.
- [13] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, *Comm. Pure Applied Math.*, **16** (1963), 331–351.
- [14] F. Treves, *Hypo-analytic structures. Local theory*, Princeton University Press, Princeton, 1992.
- [15] I. V. Vekua, *Generalized Analytic Functions*, Pergamon Press, Oxford, 1962.

PAULO L. DATTORI DA SILVA: DEPARTAMENTO DE MATEMÁTICA, INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO, UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 668, 13560-970 SÃO CARLOS SP, BRAZIL. PARTIALLY SUPPORTED BY CNPQ AND FAPESP.

E-mail address: dattori@icmc.usp.br

JORGE MARQUES: FACULDADE DE ECONOMIA, UNIVERSIDADE DE COIMBRA, AV. DIAS DA SILVA, 165, 3004 - 512, COIMBRA, PORTUGAL. PARTIALLY SUPPORTED BY FCT - PORTUGUESE FUNDING AGENCY FOR SCIENCE, RESEARCH AND TECHNOLOGY.

E-mail address: jmarques@fe.uc.pt

EVANDRO R. DA SILVA: DEPARTAMENTO DE MATEMÁTICA, INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO, UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 668, 13560-970 SÃO CARLOS SP, BRAZIL

E-mail address: evandro@icmc.usp.br