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Abstract. This paper deals with the solvability near the characteris-
tic set Σ = {0} × S1 of operators of the form L = ∂/∂t + (xna(x) +
ixb(x))∂/∂x, b(0) 6= 0 and n ≥ 2, defined on Ωε = (−ε, ε) × S1, ε > 0,
where a and b are real-valued smooth functions in (−ε, ε). For fixed
k ≥ 1, it is shown that given f belonging to a subspace of finite codi-
mension (depending on k) of C∞(Ωε) there is u ∈ Ck solution of the
equation Lu = f in a neighborhood of Σ.

1. Introduction

Let Ωε = (−ε, ε)× S1, ε > 0, and let

(1) L = ∂/∂t+ (a(x) + ib(x))∂/∂x, b 6≡ 0,

be a complex vector field defined on Ωε, where a and b are real-valued smooth
functions in (−ε, ε).

Assume that Σ = {0} × S1 is the characteristic set of the structure asso-
ciated with L and that L is of infinity type along Σ. Hence, L is elliptic on
Ωε \ Σ and a(0) = b(0) = 0. In particular, b(x) 6= 0 if x 6= 0.

Under hypotheses above L satisfies the well-known Nirenberg-Treves con-
dition (P). Hence, the local solvability is well understood (see, for instance,
[5], [13] and [14]).

In this paper we are concerned with solvability in a full neighborhood of
Σ.

We are interested in solving the equation

Lu = f

near the characteristic set Σ, where f ∈ C∞(Ωε), in the sense of Hörmander
(see [11]).

We say that L is solvable at Σ if given f belonging to a subspace of finite
codimension of C∞(Ωε) there exists u ∈ D′(Ωε) solving the equation Lu = f
in a neighborhood of Σ.

The interplay between the order of vanishing of the functions a and b, at
x = 0, has influence in the solvability of L at Σ (see [1], [2], [3], [4], [8], [9],
and [10]). Indeed, in the case where the order of vanishing of the function
b, at x = 0, is greater than 1 the solvability of L at Σ is well understood.

1



2 PAULO L. DATTORI DA SILVA, JORGE MARQUES AND EVANDRO R. DA SILVA

Hence we have the right to restrict ourselves to the case where b vanishes
of order 1 at x = 0. Therefore, by choosing a smaller ε > 0 if necessary, we
can write

(a+ ib)(x) = xna0(x) + ixb0(x),

where n ≥ 1, a0 and b0 are real-valued smooth functions in (−ε, ε), and
b0(x) 6= 0 for all x ∈ (−ε, ε).

It follows from [12] that

(2) λ = b0(0)− ia0(0)

is an invariant of L. Such invariant is known as Meziani number.
Assume that λ ∈ C \ Q. For each fixed k ∈ Z+, it follows from [9] (see

also [7] and [12]) that for all f ∈ C∞(Ωε), satisfying

(3)

∫ 2π

0
f(0, t)dt = 0,

the equation Lu = f has a Ck solution in a neighborhood of Σ. Also, there
is f ∈ C∞(Ωε), satisfying (3), such that the equation Lu = f does not have
C∞ solution in any neighborhood of Σ.

Note that (3) is a necessary condition for the existence of Ck solution of
the equation Lu = f , in a neighborhood of Σ.

The remainder case to be studied is the case where λ ∈ Q. Now, the prob-
lem is a bit different. Indeed, (3) is not a sufficient condition for existence
of Ck solutions.

In this paper we deal with the solvability of L in the case where λ ∈ Q.
By a change of coordinates if necessary, we can assume b0(0) > 0. Let p

and q be positive integers such that b0(0) = p/q and gcd(p, q) = 1.
We will show that for fixed k ∈ Z+ there is N = N(k) ∈ Z+ such that

for all f ∈ C∞(Ωε) satisfying, in addition to (3), conditions involving the
derivatives of f of order up to j0q, where j0 = max{j ∈ Z : jq ≤ N}, there
is u ∈ Ck solution of Lu = f in a neighborhood of Σ. We will present two
examples to clarify these additional conditions.

Note that our operator L restricted to Ω+
ε = (0, ε)×S1 is elliptic. Hence,

for all f ∈ C∞(Ωε) there exists u ∈ C∞(Ω+
ε ) solution of the equation Lu = f

in Ω+
ε . A natural question appears: is it possible to extend u smoothly to

Ωε? We will address to this question. Indeed, we will show that there is
f ∈ C∞(Ωε), satisfying the conditions mentioned above, such that there is
no C∞ function u defined in Ωε satisfying Lu = f in Ω+

ε = (0, ε)× S1.

2. Results

Let Ωε = (−ε, ε)× S1, ε > 0, and let

(4) L = ∂/∂t+ x(a0(x) + ib0(x))∂/∂x,

be a complex vector field defined on Ωε, where a0 and b0 are real-valued
smooth functions in (−ε, ε). Assume that a0(0) = 0, b0(x) 6= 0 for all
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x ∈ (−ε, ε) and b0(0) ∈ Q. Without loss of generality we may assume that
b0(0) > 0.

Proposition 2.1. Let L be given by (4). Let p and q be positive integer
numbers such that b0(0) = p/q and gcd(p, q) = 1. For a fixed N ∈ Z+ define
j0 = max{j ∈ Z : jq ≤ N}. Given f ∈ C∞(Ωε) satisfying

(5)

∫ 2π

0
f(0, t)dt = 0

and conditions involving the derivatives of f of order up to j0q, there exists
v ∈ C∞(Ωε) such that Lv − f = O(|x|N ).

Proof: Let N be a fixed positive integer. Given f ∈ C∞(Ωε) we will seek
v ∈ C∞(Ωε) such that Lv−f = O(|x|N ). By using formal Taylor expansions
we write

f(x, t) '
∑
j≥0

fj(t)x
j , (a+ ib)(x) '

∑
j≥0

cjx
j and v(x, t) '

∑
j≥0

vj(t)x
j .

Note that c0 = 0 and c1 = i
p

q
.

Hence, Lv − f = O(|x|N ) leads to

(6) v′0(t) = f0(t)

and,

(7) v′j(t) + i
pj

q
vj(t) = fj(t)−

j−1∑
l=0

lcj−l+1vl(t), if 1 ≤ j ≤ N.

Note that (5) is equivalent to∫ 2π

0
f0(s)ds = 0;

hence, (6) has a solution given by

v0(t) =

∫ t

0
f0(s)ds.

For 1 ≤ j < q, by a simple calculation, we have that (7) has a solution
given by

(8) vj(t) =

∫ t

0

(
fj(s)−

j−1∑
l=0

lcj−l+1vl(s)

)
e
i pj
q
(s−t)

ds+Kje
−i pj

q
t
,

where

Kj = (1− e−
p
q
ji2π

)−1
∫ 2π

0

(
fj(t)−

j−1∑
l=0

lcj−l+1vl(t)

)
e
p
q
ji(t−2π)

dt.
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For j = q we must to assume f satisfies the compatibility condition∫ 2π

0

(
fq(t)−

q−1∑
`=0

`cq−`+1v`(t)

)
eiptdt = 0

in order to find a smooth 2π-periodic solution of (7), which is given by

vq(t) =

∫ t

0

(
fq(s)−

q−1∑
`=0

`cq−`+1v`(s)

)
eip(s−t)ds.

Suppose that we have determined v0, . . . , vj−1, for 2 ≤ j ≤ N . We have
that: either j 6∈ qZ+ or j ∈ qZ+.

If j 6∈ qZ+ then (7) has a solution vj given by formula (8).
If j = mq, for some m = 1, . . . , j0, j0 = max{j ∈ Z : jq ≤ N}, then we

must to assume that f satisfies the compatibility conditon

(9)

∫ 2π

0

(
fmq(t)−

mq−1∑
`=0

`cmq−`+1v`(t)

)
eipmtdt = 0

in order to find a smooth 2π-periodic solution of (7) which is given by

vmq(t) =

∫ t

0

(
fmq(s)−

mq−1∑
`=0

`cmq−`+1v`(s)

)
eimp(s−t)ds.

Finally, the function v ∈ C∞(Ωε) defined by v(x, t) =
∑N

j=0 vj(t)x
j , where

vj are obtained above, is such that Lv − f = O(|x|N ). �

Next, we will give two examples for clarifying the compatibility conditions
of Proposition 2.1.

Example 2.2. Consider the complex vector field

L = ∂/∂t+

(
a(x) + i

p

q
x

)
∂/∂x,

defined on Ωε, where p, q ∈ Z+, gcd(p, q) = 1, a(x) ∈ C∞(−ε, ε) and, a is
flat at x = 0.

Let f ∈ C∞(Ωε). We will seek v ∈ C∞(Ωε) such that Lv − f = O(|x|N ),
for fixed N ∈ Z+. By using formal Taylor expansions we write

f(x, t) '
∑
j≥0

fj(t)x
j , a(x) + i

p

q
x ' ip

q
x and, v(x, t) '

∑
j≥0

vj(t)x
j .

Hence, Lv − f = O(|x|N ) leads to

v′j(t) + i
pj

q
vj(t) = fj(t), if 0 ≤ j ≤ N.



SOLVABILITY NEAR THE CHARACTERISTIC SET 5

For m = 0, 1, . . . , j0, j0 = max{j ∈ Z : jq ≤ N}, conditions (5) and (9) are
given by

(10)

∫ 2π

0
fmq(s)e

impsds = 0;

consequently, we have

vmq(t) =

∫ t

0
fmq(s)e

imp(s−t)ds.

Moreover, for j 6∈ qZ+, vj is given by formula (8). Hence, for f ∈ C∞(Ωε)
satisfying (10) we can find v ∈ C∞(Ωε) such that Lv − f = O(|x|N ).

�

Remark 2.3. Conditions (10) are in line with conditions presented in [7],
where the function a is considered identically zero.

Example 2.4. For n ∈ Z+, consider the complex vector field

Ln = ∂/∂t+

(
αxnq+1 + i

p

q
x

)
∂/∂x,

defined on Ωε, where α ∈ R \ {0}, p, q ∈ Z+ and gcd(p, q) = 1.
Let f ∈ C∞(Ωε) and let N be an integer greater than nq+1. We will seek

v ∈ C∞(Ωε) such that Lv−f = O(|x|N ). By using formal Taylor expansion,
we can write

f(x, t) '
∑
j≥0

fj(t)x
j , v(x, t) '

∑
j≥0

vj(t)x
j .

Hence, Lv − f = O(|x|N ) leads to

v′j(t) + i
pj

q
vj(t) = fj(t), if 0 ≤ j < nq + 1

and

v′j(t) + i
pj

q
vj(t) = fj(t)− α(j − nq)vj−nq(t), if nq + 1 ≤ j ≤ N.

First, for m = 0, 1, . . . , n conditions (5) and (9) are given by

(11)

∫ 2π

0
fmq(s)e

impsds = 0,

so that we have

(12) vmq(t) =

∫ t

0
fmq(s)e

imp(s−t)ds.

Hence, if j0 = max{j ∈ Z : jq ≤ N} is such that j0 = n then (11) are
the compatibility conditions to find v.

Now, if j0 ≥ n+ 1, , for m = n+ 1, . . . , j0, conditions (9) are reduced to

(13)

∫ 2π

0
fmq(s)e

impsds = α(m− n)q

∫ 2π

0
v(m−n)q(s)e

impsds;
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hence, we can find vmq given by

vmq(t) =

∫ t

0

(
fmq(s)− α(m− n)qv(m−n)q(s)

)
eimp(s−t)ds.

Let r1 = min{j0, 2n}. Then, for m = n + 1, . . . , r1, using (12), Fubini’s
theorem and (11) we obtain∫ 2π

0
eimpsv(m−n)q(s)ds =

∫ 2π

0

∫ s

0
f(m−n)q(r)e

i(m−n)p(r−s)eimpsdrds

=

∫ 2π

0
f(m−n)q(r)e

i(m−n)pr
∫ 2π

r
einpsdsdr

=
1

inp

∫ 2π

0
f(m−n)q(r)e

i(m−n)pr(1− einpr)dr

=− 1

inp

∫ 2π

0
f(m−n)q(r)e

imprdr.

Therefore, for m = n+ 1, . . . , r1, (13) is equivalent to

(14)

∫ 2π

0
fmq(s)e

impsds+
α(m− n)q

inp

∫ 2π

0
f(m−n)q(s)e

impsds = 0.

Hence, if j0 ≤ 2n then the compatibility conditions to find v are given by
(11) and (14).

Finally, if j0 ≥ (k−1)n+1, with k ≥ 3, let rk−1 = min{j0, kn}. Then, for
(k − 1)n+ 1 ≤ m ≤ rk−1, we can prove by induction that (13) is equivalent
to

(15)

∫ 2π

0
eimpsfmq(s)ds =

k−1∑
l=1

(−1)l−1(αq)l
∏l
j=1(m− jn)

l!(npi)l

∫ 2π

0

l∑
j=0

βj,le
i(m−jn)psf(m−nl)q(s)ds,

where βj,l ∈ R are determined by formulae

βj,l = − l!

l − j
βj,l−1 , 0 ≤ j < l

and

βl,l = −
l−1∑
j=0

βj,l,

from β0,1 = −1 and β1,1 = 1.
Therefore, for f ∈ C∞(Ωε) satisfying the compatibility conditions above

we can find v ∈ C∞(Ωε) such that Lv − f = O(|x|N ).
�

Proposition 2.5. Let L be given by (4). Let p and q be positive integer
numbers such that b0(0) = p/q and gcd(p, q) = 1. For each fixed k ∈ Z+

there exists N = N(k) ∈ Z+ such that given g ∈ C∞(Ωε), satisfying g(x) =



SOLVABILITY NEAR THE CHARACTERISTIC SET 7

O(|x|N ), there exists w ∈ Ck(Ωε) solution of the equation Lw = g, in a
neighborhood of Σ.

Proof: Define Z : Ωε → C by

(16) Z(x, t) =


e
−
∫ ε
x

b0(y)

y(a20(y)+b
2
0(y))

dy
· e
−i
(
t+
∫ ε
x

a0(y)

y(a20(y)+b
2
0(y))

dy

)
, x > 0

0, x = 0

e

∫ x
−ε

b0(y)

y(a20(y)+b
2
0(y))

dy
· e
−i
(
t−
∫ x
−ε

a0(y)

y(a20(y)+b
2
0(y))

dy

)
, x < 0

.

Denote Ω+
ε = (0, ε)× S1, Ω−ε = (−ε, 0)× S1 and Ω±ε = Ω+

ε ∪ Ω−ε .
We have that Z ∈ C∞(Ω±ε ), Z(Ω+

ε ) = Z(Ω−ε ) = D(0, 1) \ {0}. Moreover,
by a simple calculation,

LZ = 0 and LZ =
2ib0(x)

b0(x) + ia0(x)
Z.

Now, consider the function F : (−ε, ε)→ C defined by

F (x) = |Z(x, t)| =


e
−
∫ ε
x

b0(y)

y(a20(y)+b
2
0(y))

dy
, x > 0

0, x = 0

e

∫ x
−ε

b0(y)

y(a20(y)+b
2
0(y))

dy
, x < 0

.

By using Taylor’s formula we can write

b0(x)

a20(x) + b20(x)
=
q

p
+O(|x|);

consequently, it follows that

(17) F (x) =


(
x
ε

) q
p e
−
∫ ε
x
O(|y|)
y

dy
, x > 0

0, x = 0(−x
ε

) q
p e
∫ x
−ε

O(|y|)
y

dy
, x < 0

.

Hence, F ∈ C∞((−ε, ε)\{0})∩C0(−ε, ε). Moreover, F is injective in (−ε, 0)
and (0, ε). Thus if x 6= 0 we have x = F−1(|z|), for some z ∈ D(0, 1).

From (17) we can find α, β > 0 such that

α|Z(x, t)|
p
q ≤ |x| ≤ β|Z(x, t)|

p
q ;

equivalently,

(18) α|z|
p
q ≤| F−1(|z|) |≤ β|z|

p
q .

Let g = xNh, where h ∈ C∞(Ωε). The pushforward of the equations

Lw = g, in Ω±ε ,

via the map Z are given by

2ib0(F
−1(|z|))

b0(F−1(|z|)) + ia0(F−1(|z|))
z
∂w̃±

∂z
= g̃± in D(0, 1) \ {0},
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where w̃± and g̃± are the pushforward of functions w and g in Ω+
ε and Ω−ε ,

respectively. Taking z = |z|eiθ, we can write

∂w̃±

∂z
=

[b0(F
−1(|z|)) + ia0(F

−1(|z|))]eiθ

2ib0(F−1(|z|))
g̃±

|z|
;

equivalently,

(19)
∂w̃±

∂z
=

[b0(F
−1(|z|)) + ia0(F

−1(|z|))]eiθ(F−1(|z|))N h̃±

2ib0(F−1(|z|))|z|
,

where h̃± are the pushforward of h in Ω+
ε and Ω−ε .

By (18) we have that

H(z) =
[b0(F

−1(|z|)) + ia0(F
−1(|z|))]eiθ(F−1(|z|))N h̃±

2ib0(F−1(|z|))|z|
∈ Cr(D(0, 1)),

where r is the bigger integer less than or equal to
Np

q
− 1.

Hence, the solutions

w̃±(z) =
1

2πi

∫∫
D(0,1)

H(ζ)

ζ − z
dζ ∧ dζ

belong to Cr+1(D(0, 1)) (see, for instance, chapter III of [15]). Thus, for
fixed ` ∈ Z+ such that ` < r − k, we can write

w̃±(z) =
∑

0≤j≤`−1
c±j z

j + |z|`ṽ±(z),

where ṽ±(z) belongs to Cr−`+1(D(0, 1)). Note that |z|`ṽ+(z) and |z|`ṽ−(z)
also satisfy (19).

Define w : Ωε → C by

w(x, t) =

 |Z(x, t)|`ṽ+(Z(x, t)), x > 0
0, x = 0

|Z(x, t)|`ṽ−(Z(x, t)), x < 0
;

that is,

w(x, t) =


(
x
ε

) `q
p e
−`
∫ ε
x
O(|y|)
y

dy
ṽ+(Z(x, t)), x > 0

0, x = 0(−x
ε

) `q
p e

`
∫ x
−ε

O(|y|)
y

dy
ṽ−(Z(x, t)), x < 0

.

By construction we have Lw = g, in a neighborhood of Σ. Therefore, it is
enough to choose N and ` sufficiently large to obtain w ∈ Ck(Ωε). �

Finally, we are ready to state our main result:

Theorem 2.6. Let L be given by (4). Let p and q be positive integer numbers
such that b0(0) = p/q and gcd(p, q) = 1. For each fixed k ∈ Z+ there exists
N = N(k) ∈ Z+ such that given f ∈ C∞(Ωε), satisfying (5) and conditions
involving the derivatives of f of order up to j0q, where j0 = max{j ∈ Z :
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jq ≤ N}, there exists u ∈ Ck(Ωε) solution of the equation Lu = f , in a
neighborhood of Σ.

Proof: Fixed k ≥ 1 choose N given by Proposition 2.5. Hence, by Propo-
sition 2.1, given f ∈ C∞(Ωε), satisfying (5) and conditions involving the
derivatives of f of order up to j0q, where j0 = max{j ∈ Z : jq ≤ N}, there
exists v ∈ C∞(Ωε) such that Lv − f = O(|x|N ).

Let g = Lv− f . Now, applying again Proposition 2.5 we can find w ∈ Ck
solution of the equation Lw = g, in a neighborhood of Σ. Finally, define
u = v − w. We have that u ∈ Ck and Lu = Lv − Lw = f + g − g = f , in a
neighborhood of Σ. �

In the next result we will show that for each fixed N ∈ Z+, there exists
f ∈ C∞(Ωε), satisfying f = O(|x|N ), such that the equation Lu = f does
not have C∞ solution in any neighborhood of Σ. More precisely, we will
show that there is no C∞ function u defined in Ωε and satisfying Lu = f in
Ω+
ε .

Theorem 2.7. Let L be given by (4). Let p and q be positive integer numbers
such that b0(0) = p/q and gcd(p, q) = 1. Assume that b0(0)−1 6∈ Z. Then
for each fixed N ∈ Z+, there exists f = O(|x|N ) of C∞ class in Ωε such that
there is no u ∈ C∞(Ωε) satisfying Lu = f in Ω+

ε .

Proof: The proof is an adaption of the arguments presented by Bergamasco
and Meziani in [3] (see Theorem 3.2).

Let

(20)
∞∑
m=0

αpm+1z
pm+1

be a series in one complex variable, with radius of convergence equal to zero.
By using Borel’s theorem we can construct g ∈ C∞(D(0, 1)) whose Taylor
series at z = 0 is given by (20). Since, for each M ∈ Z+, we can write

g(z) =

M∑
m=0

αpm+1z
pm+1 +O(|z|pM+1)

we have that
∂g

∂z
(z) = O(|z|pM+1), ∀M ∈ Z+.

Hence, the function
∂g

∂z
belongs to C∞(D(0, 1)) and is flat at z = 0.

Define f : Ωε → C by

f(x, t) =

{
2ib0(x)

b0(x)+ia0(x)
Z(x, t)∂g∂z (Z(x, t)), x > 0

0, x ≤ 0
,

where Z is given by (16). Note that f ∈ C∞(Ωε) and is flat along to Σ.
Suppose, by contradiction, that there is u ∈ C∞(Ωε) solution of the equa-

tion Lu = f in Ω+
ε .
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The pushforward of Lu = f in Ω+
ε , via the map Z, yields

2ib0(F
−1(|z|))

b0(F−1(|z|)) + ia0(F−1(|z|))
z
∂ũ+

∂z
=

2ib0(F
−1(|z|))

b0(F−1(|z|)) + ia0(F−1(|z|))
z
∂g

∂z
(z)

in D(0, 1) \ {0}; hence, ũ+ is a solution of the CR-equation

∂ũ+

∂z
=
∂g

∂z
(z), in D(0, 1) \ {0}.

Therefore,

ũ+ = g + h,

where h is a holomorphic function defined in D(0, 1). Let (cm) be a sequence
of complex numbers such that

h(z) =

∞∑
j=0

cjz
j .

Since (20) has radius of convergence equal to zero, there exists m0 ∈ Z+

such that αpm0+1 + cpm0+1 6= 0. Take k ∈ Z+ such that k > pm0 + 1. From
ũ+ = g + h we have

ũ+(z) =

k∑
j=0

(αj + cj)z
j +O(|z|k),

where αj = 0 if j − 1 6∈ pZ.
Hence, for x > 0 we have

u(x, t) =
k∑
j=0

(αj + cj)Z
j(x, t) +O

((x
ε

) kq
p
e
−k
∫ ε
x
O(|y|)
y

dy
)
,

which is a contradiction since, for k0 = pm0 + 1,

Zk0 =


(
x
ε

) qk0
p e
−k0

[∫ ε
x
O(|y|)
y

dy−i
(
t+
∫ ε
x

a0(y)

y(a20(y)+b
2
0(y))

dy

)]
, x > 0

0, x = 0(−x
ε

) qk0
p e

k0

[∫ x
−ε

O(|y|)
y

dy−i
(
t−
∫ x
−ε

a0(y)

y(a20(y)+b
2
0(y))

dy

)]
, x < 0

is no C∞ in Ωε. �

Remark 2.8. A slight modification of the arguments in the proof of Theorem
2.7 allow us to prove a version for the case where the Meziani number λ,
given by (2), satisfies λ−1 ∈ C \ Z.
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