Journal of Software Engineering Research and Development, 2025, 13:9, doi: 10.5753/jserd.2025.4084

© This work is licensed under a Creative Commons Attribution 4.0 International License..

Advancing Test Data Selection by Leveraging Decision Tree
Structures: An Investigation into Decision Tree Coverage and

Mutation Analysis

Beatriz N. C. Silveira ® [ Universidade de Sdo Paulo | beatrizncs@usp.br |

Vinicius H. S. Durelli @ [ Universidade Federal de Sao Carlos | vinicius.durelli@ufscar.br |
Sebastido H. N. Santos ® [ Universidade de Sdo Paulo | sebastiaohns@usp.br ]

Rafael S. Durelli @ [ Universidade Federal de Lavras | rafael.durelli@ufla.br |

Marcio E. Delamaro ® [ Universidade de Sao Paulo | delamaro@icmc.usp.br |

Simone R. S. Souza ® [ Universidade de Sio Paulo | srocio@icmc.usp.br |

Abstract Over the past decade, there has been a significant surge in interest regarding the application of machine
learning (ML) across various tasks. Due to this interest, the adoption of ML-based systems has gone mainstream. It
turns out that it is imperative to conduct thorough software testing on these systems to ensure that they behave as
expected. However, ML-based systems present unique challenges for software testers who are striving to enhance
the quality and reliability of these solutions. To cope with these testing challenges, we propose novel test adequacy
criteria centered on decision tree models. Our criteria diverge from the conventional method of manually collecting
and labeling data. Instead, our criteria relies on the inherent structure of decision tree models to inform the selection
of test inputs. Specifically, we introduce decision tree coverage (DTC) and boundary value analysis (BVA) as ap-
proaches to systematically guide the creation of effective test data that exercises key structural elements of a given
decision tree model. Additionally, we also propose a mutation-based criterion to support the validation of ML-based
systems. Essentially, this approach involves applying mutation analysis to the decision tree structure. The resulting
mutated trees are then used as a reference for selecting test data that can effectively identify incorrect classifica-
tions in ML models. To evaluate these criteria, we carried out an experiment using 16 datasets. We measured the
effectiveness of test inputs in terms of the difference in model’s behavior between the test input and the training
data. According to the results of the experiment, our criteria can be used to improve the test data selection for ML
applications by guiding the generation of diversified test data that negatively impact the prediction performance of

models.
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1 Introduction

In recent years, due to the growing abundance of available
data, machine learning (ML) algorithms have emerged as
an alternative data-driven approach for solving a myriad of
problems (Durelli et al., 2019; Aniche et al., 2022). Given
the escalating popularity of ML algorithms, researchers and
practitioners alike have been exploring ways to evaluate and
improve the reliability and quality of ML-based software sys-
tems (Braiek and Khomh, 2020; Zhang et al., 2022).

Before deploying ML models, testers need to approach
these models like conventional software and carry out testing
efforts to uncover potential issues. This testing phase is an es-
sential part of the training and deployment process. However,
despite its importance, uncovering problems in ML-based ap-
plications presents significant challenges. Many challenges
arise due to the inherent differences between traditional soft-
ware and ML-based software, which is more statistically-
oriented and inherently less deterministic. The behavior of
ML-based software is derived from a data-driven process:
ML algorithms are used to model and understand complex
datasets, and the process of deriving decision logic from
data through training can vary greatly depending on the spe-
cific ML algorithm employed. To address the challenges as-
sociated with testing ML-based systems, researchers have

started adopting proven methods and approaches, such as
structural coverage criteria and mutation testing (Braiek and
Khomh, 2020). Drawing inspiration from white-box testing
approaches, researchers have been probing into how the in-
ternal structure of ML models can be used to generate test
cases (Li et al., 2019; Pei et al., 2019). However, it is worth
noting that the lion’s share of current testing techniques are
not directly applicable to software representations of ML
models. For example, traditional white-box testing methods,
based on a software’s internal elements as branches and con-
ditions do not carry over into the context of testing ML mod-
els because behavior in these models is not encoded as con-
trol flow structures.

In an effort to cope with the shortcomings of some of the re-
cently introduced approaches to testing ML-based software,
we developed two coverage criteria that leverage the inter-
nal structure of decision tree models to help testers devise
test cases. These tree coverage criteria are sufficiently fine-
grained so as to allow for testers to quantify the effectiveness
of test suites by counting the amount of leaves/decisions ac-
tivated by data inputs. Moreover, we devised an approach
that capitalizes on mutation testing to create effective test
suites for uncovering faults in ML models. Specifically, our
approach is centered around mutating some elements of the
internal structure of decision tree models, allowing for the
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selection of inputs (i.e., test cases) that are sensitive enough
to reveal discrepancies in the ensuing predictions (i.e., out-
comes).

A decision tree algorithm involves segmenting the predic-
tor space into non-overlapping regions. The splitting rules
used to segment the predictor space are summarized in a
model that resembles a tree structure in which internal nodes
represent branching decisions and leaf nodes represent the
result of a series of decisions (James et al., 2013). Decision
tree algorithms primarily benefit from their simplicity and in-
terpretability. Internal nodes represent feature relationships,
while leaf nodes indicate potential outcomes, making the re-
sulting models easily understandable.

Given a decision tree, the rationale behind our two tree
coverage criteria is to interpret the resulting model as a tree
structure and come up with test cases that cover all leaf nodes.
Such rationale is similar to that used to evaluate the adequacy
of test data for “conventional” programs, in which an exam-
ple of adequacy criteria is to cover all branches of the pro-
gram under test. Accordingly, our decision tree coverage cri-
teria evaluate a test set for a given decision tree in terms of
how effectively the test cases reach and cover the decisions
represented by the tree’s leaf nodes.

In conventional software testing settings, mutation testing
entails repeatedly making subtle changes in the form of small
syntactic deviations (i.e., mutations) to the software being
tested. The purpose of this is to examine if any test case fails
when executed against the mutated program. A mutated pro-
gram is referred to as a mutant and is said to be killed when at
least one test case detects the introduced mutation (i.e., fails
due to the mutation). When a test case is sensitive enough to
kill a mutant, the main implication is that the test suite is ef-
fective. Thus, the primary goal of mutation testing is to eval-
uate the quality of the test suite by fostering the creation of
test cases that uncover problems that stem from the mutants
(i.e., the small syntactic deviations made to the program un-
der test).

Our decision tree mutation approach focuses on mutating
the decision nodes in tree models. We achieve this by ap-
plying relational and constant mutation operators to the de-
cision nodes. Subsequently, we examine the dataset for in-
stances where the classification provided by the mutated tree
model diverged from that produced by the original decision
tree. This process is performed in hopes of coming up with a
dataset specifically tailored for killing the mutated tree mod-
els. In a manner akin to mutation analysis in traditional test-
ing, new test cases are then generated, thereby enhancing the
original dataset. The process, as illustrated in Figure 1, re-
sults in a test set that can be used to evaluate other models
trained with the original dataset

. 2 Create 3 Create
1 Original Decision Tree Mutant Trees
Dataset

Figure 1. An overview of the proposed mutation-based approach to testing
ML-based models.

4 Test Data
Selection

We conducted an experimental study to evaluate the ef-
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fectiveness of test data produced by our decision tree based
approaches. We compare our approaches with k-fold cross-
validation, a common technique for assessing ML models.
We explored whether our approaches could improve the
choice of a high-quality test dataset. This paper builds upon
the criteria and findings presented in two previous stud-
ies (Santos etal., 2021; Silveira et al., 2023). The scope of our
experiment now includes a two-fold comparison, utilizing
the criteria presented in our earlier research. These improve-
ments are aimed at bolstering the robustness and comprehen-
siveness of our experimental results. The contributions pre-
sented in this paper are as follows:

» We propose three decision tree based criteria. Two test
adequacy criteria based on different aspects of the in-
ternal representation of decision tree models. Addition-
ally, we propose an approach that applies mutation test-
ing to decision tree models. This approach uses rela-
tional and constant mutation operators to mimic faults
in the internal representation of decision tree models. It
is worth mentioning that of the three proposed decision
tree-based criteria, the first two were initially presented
in our previous study, and thus represent an extension
in this expanded version of our article.

* We conduct a comparative analysis between the two
coverage criteria and the decision tree mutation crite-
rion, providing detailed insights into the implications of
these comparative results.

* We demonstrate how these three criteria may be used
to choose test data samples that are more effective than
randomly selected test data. Here, effectiveness is de-
fined by how much the test data can decrease prediction
scores.

The remainder of this paper is organized as follows. Re-
lated work is presented in Section 2. Our decision tree-
based criteria are described in Section 3. The experimental
study for evaluating our testing criteria is presented in Sec-
tion 4. Section 5 describes the experimental results, including
the statistical analysis of our experimental study. Section 6
presents a discussion of the results of our experiment. Threats
to validity are covered in Section 7, and concluding remarks
are presented in Section 8.

2 Related Work

Some papers have presented literature reviews on software
testing for ML-based programs (Sherin et al., 2019; Riccio
et al., 2020; Braiek and Khomh, 2020; Zhang et al., 2022;
Ogrizovi¢ et al., 2024). Panichella and Liem (2021) raise
questions about the extent and rigor with which mutation
testing techniques have been applied to Deep Learning (DL)-
based programs, arguing that these approaches do not al-
ways align with the classical interpretation of mutation test-
ing. Based on these literature reviews, we have selected pa-
pers dealing with mutation testing for ML-based programs.
MuNN is a method for applying mutation analysis to neu-
ral networks (Shen et al., 2018). It provides five mutation
operators designed to build deep-learning models with po-
tential bugs. Given a test set, the mutation score can be cal-
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culated as the fitness of the test set. In this context, the re-
sults from the mutation analysis can guide test generation
and neural network test optimization. The experimental re-
sults indicate that mutation analysis when applied to neural
networks is strongly influenced by domain-specific charac-
teristics, highlighting the need for domain-specific mutation
operators to improve the effectiveness of mutation analysis
in the context of DL-based programs. Additionally, accord-
ing to the results, the depth of a neuron is a sensitive factor
in DL mutation analysis.

DeepMutation is also a framework for applying mutation
testing techniques to DL systems (Ma et al., 2018). This pa-
per proposes a source-level mutation testing technique for
training data and training programs. To this end, a set of
source-level mutation operators are designed. A model-level
mutation testing technique is also proposed, defining a set
of mutation operators that inject faults directly into DL mod-
els, and mutation testing metrics are proposed to measure test
data quality. A follow-up to this study resulted in the Deep-
mutation++ framework (Hu et al., 2019): a mutation testing
framework for Feed-Forward Neural Networks (FNNs) and
Recurrent Neural Networks (RNNs). DeepMutation++ incor-
porates eight model-level operators for FNN models intro-
duced in DeepMutation (Ma et al., 2018) and introduces nine
new specialized operators for RNN models.

The study by Jahangirova and Tonella (2020) also inves-
tigates how mutation testing can be used to drive the test
data generation for DL-based software. The authors focus on
configurations that render mutation operators non-equivalent
and non-trivial. Specifically, the authors propose a new defi-
nition of killed mutants that accounts for the stochastic nature
of DL systems. They compare this approach to the traditional
threshold-based drop in accuracy, demonstrating its inconsis-
tency across different runs.

DeepCrime (Humbatova et al., 2021) also proposes mu-
tation operators for DL systems; However, unlike the previ-
ously mentioned approaches, its set of mutation operators is
grounded in real-world DL faults. Humbatova et al. define 35
DL mutation operators and implement 24 DL mutation oper-
ators in DeepCrime. To evaluate the tool, Humbatova et al.
compared the sensitivity of the tool to changes in the test
data quality with that of DeepMutation++ (Hu et al., 2019).
The results show that DeepCrime produces killable and non-
trivial mutants, can effectively discriminate a weak test set
from a strong one, and significantly outperforms DeepMu-
tation++ in these aspects. In Humbatova et al. (2023), the
authors expanded this work, making new evaluations on the
artifacts of three large-scale studies focusing on real faults in
DL systems. The authors conclude that DeepCrime generates
meaningful mutants that are able to effectively distinguish
between weak and strong test suites.

Riccio et al. (2022) propose DeepMetis (Riccio et al.,
2022), an automated approach to increasing existing test sets
with inputs that kill mutants generated by DeepCrime (Hum-
batova et al., 2021). The goal of this test set augmentation
approach is to increase the mutation score of a test set by gen-
erating new entries that kill mutants not killed by the original
test set. DeepMetis is a search-based test generator for DL
systems that uses mutation fitting as a guideline. An exper-
iment was carried out to evaluate the approach, the results
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would seem to indicate that DeepMetis is effective in aug-
menting a given test set by adding tests that detect, on aver-
age, 63% of the mutants. The experimental evaluation shows
that the augmented test suite can expose hard-to-uncover mu-
tants, which simulates the occurrence of undetected faults.
DeepMetis differs from existing approaches in that its goal
is to increase the ability to kill mutants. With the advent of
DL mutation frameworks such as DeepMutation (Ma et al.,
2018), MuNN (Shen et al., 2018) and DeepCrime (Humbat-
ova et al., 2021), the problem of achieving a high mutation
score is increasingly important, especially when mutants sim-
ulate real faults, as is the case with DeepCrime (Humbatova
etal., 2021).

Lu et al. (2022) describe a mutation testing technique
specifically designed for unsupervised learning (UL) sys-
tems. In this study, Lu et al. detail the mutation operators they
developed to simulate unstable scenarios and potential errors
that UL systems may encounter. The proposed approach in-
corporates an autoencoder to generate contradictory samples,
demonstrating its feasibility across three datasets.

Another paper focused on Deep Learning proposes a Prob-
abilistic Mutation Testing (PMT) approach, which enables
more consistent decisions on whether a mutant is killed. This
approach was evaluated using three models and eight muta-
tion operators (Tambon et al., 2023). The authors also ana-
lyze the trade-off between the approximation error and the
cost of the method, showing that a relatively small error can
be achieved for a manageable cost. The authors argue that
PMT is the first step in this direction that effectively removes
the lack of consistency between test runs of previous meth-
ods caused by the stochasticity of DNN training.

Exploring a somewhat different topic, the approach
FAIRER (Li et al., 2023) addresses fairness in machine learn-
ing models. The authors propose aligning model decisions
with principles of equity, introducing a metric to assess and
interpret classifier impartiality. Practical methods are pre-
sented for testing models’ fairness, identifying, and correct-
ing potential biases. The approach is validated experimen-
tally, demonstrating how decision alignment can enhance
fairness across various classification contexts.

Another research avenue that has been drawing significant
attention focuses on enhancing sample selection for train-
ing ML models. Rittler and Chaudhuri (2023) propose an
active learning approach within the context of the k-NN algo-
rithm (Rittler and Chaudhuri, 2023). The approach splits the
process into two stages: an initial selection of samples to max-
imize learning efficiency, followed by a refinement phase
to improve model precision. According to the results, the
approach enhances both efficiency and accuracy, enabling
the model to learn from fewer labeled data. The approach
was validated on multiple datasets, showing superior per-
formance in sample selection. Another effort related to im-
proving sample selection introduces an approach that consid-
ers the model’s sensitivity (“sharpness”) to small data varia-
tions (Kim et al., 2023). SAAL selects samples that improve
the model’s generalization capabilities, making it more ro-
bust and efficient. This optimizes data selection for label-
ing while maintaining high performance on unseen scenarios.
Empirical results indicate that SAAL outperforms existing
active learning methods in terms of precision and efficiency.
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Also in context of DL systems, Ahmed and Makedon-
ski (2024) draw an analogy between the software develop-
ment process using formal methods and the ML develop-
ment process. They argue that the two processes are similar
when considering the data processing required to generate
both the training data and the model. The authors compare
the proposed state-of-the-art mutant selection criteria, evalu-
ating the metrics used, the extra computational cost incurred,
and the criteria for filtering out trivial, redundant, and equiva-
lent mutants. They conclude that there is a lack of realism in
existing model-level mutation operators and emphasize the
importance of rethinking the hypotheses of mutation testing
for ML.

It is important to note that, although our decision tree-
based coverage criteria were originally designed for test data
selection, they can be adapted to enhance the quality of train-
ing data selection as well. However, this article does not
explore the application of our approaches for training data
sampling in depth. Table 1 provides an overview of the re-
lated work discussed in this section, offering a comparative
analysis of the related work and our decision tree-based ap-
proaches to testing ML-based programs.

3 Decision Tree based Criteria

In the following two subsections, we describe the three cri-
teria based on decision tree models we propose for enhanc-
ing the testing of machine learning models. The first subsec-
tion introduces the decision tree coverage criteria. A more
in-depth discussion of these criteria and an extensive anal-
ysis of their effectiveness in selecting test data is available
in our prior work (Santos et al., 2021). Following this, Sub-
section 3.2 then outlines our third criterion, which revolves
around the application of mutation testing to decision nodes.

3.1 Decision Tree Coverage Criteria

Decision trees are learning algorithms that create tree-
like graphical models, known for their human interpretabil-
ity (James et al., 2013). The core concept of our decision
tree criteria is to use the tree-like internal structure of these
models and the information in decision nodes to guide in-
put selection. We posit that sampling test inputs that increase
leaf/decision coverage is likely to yield more effective test
cases. Additionally, given the intrinsic interpretability of de-
cision tree models, leveraging their internal structure for
guiding test input selection not only improves coverage but
also provides testers with clear insights into the extent of how
much of the model has been covered by the test inputs, offer-
ing an improvement over traditional manual, ad hoc testing
methods for ML-based software. The criteria we propose are
defined as below.

* Decision Tree Coverage (DTC) Definition: given a de-
cision tree model M, a test set 1" is considered DTC-
adequate if it includes tests that traverse the tree from
its root to all leaf nodes at least once.

* Boundary Value Analysis (BVA) criterion: test cases
are designed to cover valid boundary values of decision
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nodes. Specifically, when designing test cases, this cri-
terion requires the selection of values that explore ei-
ther the lower or the upper boundary of each decision.
This criterion is based on the common assumption in
software testing that test cases that explore boundary
conditions are needed for effective testing (Myers et al.,
2011).

When applying DTC each root-to-leaf path represents a
test requirement. Given that in decision tree models there
is only one path from the root to each leaf node, the num-
ber of test requirements for DTC is the number of root-to-
leaf paths in a given decision tree. It is worth emphasizing
that by traversing a decision tree from its root to all leaves
BVA places special emphasis on the decision boundaries
(i.e., branches of the tree), which stem from combinations
of thresholding rules inferred from the dataset to represent
the most important features.

When examining the two criteria as a whole, two ap-
proaches are used to generated test data: (i) for DTC, we
design test cases that reach all leaves in the models under
test (i.e., test cases that traverse root-to-leaf paths) and (ii) for
BVA, we include test data with either the lower or upper limit
value concerning decision boundaries of each internal node
along the path to a given leaf node. From a test requirement
perspective, both test case generation approaches are aimed
at satisfying the same number of test requirements: all root-
to-leaf paths in the tree under test.

As mentioned, these criteria are premised on the notion
that the internal structure of decision tree models can help
testers select test data. As an additional benefit of exploring
the internal structure of models, the testing criteria also allow
testers to quantify the effectiveness of test data by analyzing
the number of outputs/decisions covered by such test data.

3.2 Decision Tree Mutation Testing

Mutants are created through mutation operators defined to
specific programming languages or specification techniques.
These operators are designed to mimic the most common mis-
takes typically made by programmers or to fulfill specific
testing objectives (Ammann and Offutt, 2016). Therefore,
mutation operators consist of rules that specify the changes to
be made in the program under test. Applying small changes
to the software under test encourages the tester to produce
test cases that reveal the defects inserted in mutant programs,
improving the quality of the test case set (DeMillo et al.,
1978)

Our Decision Tree Mutation Testing (DTMT) was devel-
oped drawing inspiration from mutation operators specifi-
cally designed for the C language (Agrawal et al., 1989).
Specifically, the following mutation operators are used in our
definition:

* ORRN: this operator replaces every occurrence of a re-
lational operator (<, >, <=, >= and ==) by another
possible relational operator. For instance, original:
a < b;mutant: a <= b.

+ Cccr: this operator replaces every occurrence of a con-
stant with another possible constant. For instance, given
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Table 1. Overview of the related work on testing ML- and DL-based software.

Silveira et al. 2025

Study Year Focus Type of Model Tested Type of Testing Experimental
Evaluation

Shen et al. (2018) | 2018 Mutation testing of neural net- | Neural networks Mutation testing Yes
works

Ma et al. (2018) 2018 Mutation testing of deep learn- | Deep learning models Mutation testing Yes
ing systems

Hu et al. (2019) 2019 Mutation testing framework for | Deep learning models Mutation testing Yes
deep learning

Jahangirova and | 2020 Evaluation of mutation opera- | Deep learning models Mutation testing Yes

Tonella (2020) tors in deep learning

Humbatova et al. | 2021 Real-fault-based mutation test- | Deep learning models Mutation testing with | Yes

(2021) ing for deep learning real faults

Santos et al. | 2021 Decision tree coverage criteria | K-NN Decision tree-based | Yes

(2021) for ML model testing coverage testing

Riccio et al. | 2022 Augmentation of test sets to im- | Deep learning models Mutation-based test set | Yes

(2022) prove mutation score augmentation

Lu et al. (2022) 2022 Mutation testing of unsuper- | Unsupervised learning | Mutation testing Yes
vised learning systems systems

Tambon et al. | 2023 Probabilistic framework for mu- | Deep neural networks Probabilistic mutation | Yes

(2023) tation testing in DNNs testing

Li et al. (2023) 2023 Fairness evaluation and align- | Machine learning clas- | Fairness testing and | Yes
ment in ML models sifiers evaluation

Rittlerand Chaud- | 2023 Active learning algorithm for k- | k-Nearest Neighbors Active learning for im- | Yes

huri (2023) NN classification proved training

Kim et al. (2023) | 2023 Sharpness-aware active learn- | Various ML models Active learning consid- | Yes
ing for model robustness ering model sharpness

Silveira et al. | 2023 Mutation testing applied to deci- | K-NN Decision tree-based mu- | Yes

(2023) sion tree models tation testing

Ahmed and | 2024 Mutation testing of deep learn- | Deep learning models Mutation testing Yes

Makedonski H]g Systems

(2024)

a set of constants [7.5,2.3,3.14]; original a =
mutant: a = 3.14.

7.5;

Based on these mutation operators, DTMT is defined as
follows: given a decision tree model, a test set is considered
suitable for DTMT if it includes tests that generate a differ-
ent classification result between the original and all mutant
tree models. The mutant tree models are mutations of tree
models where the operators ORRN and Cccr are applied to
the intermediate/decision nodes of the original tree.

In the context of DTMT, each mutant tree represents a test
requirement. To satisfy a given test requirement, it is essen-
tial to identify rows in the dataset that yield a different clas-
sification between the mutant and the original model.

The number of mutant trees depends on the number of in-
termediate nodes in the original tree. Thus, when applying
the ORRN operator, we have four mutant trees for each node:
one for each possible relational operator. For instance, con-
sider the decision tree in Figure 2. This tree was generated
from the Iris dataset.! In this tree, eight nodes have relational
operators; therefore, it is possible to generate 32 mutant de-
cision trees for ORRN operator. Figure 3 shows an example
of a mutant decision tree, highlighting the mutated node.

To apply the Cccr operator, each tree node containing a
comparison between a feature and a constant value is se-
lected, and the constant value is replaced by another constant

"https://www.kaggle.com/datasets/uciml/iris

n°o
X[3] <= 0.8
n°1 n°2
class 0 X[3] <=1.75
n°3
X[2] <= 4.95
n°4 n°7 n°13
X[3] <= 1.65 X[3] <= 1.55 X[0] <= 5.95
n°5 n°6 n°g n°9 n° 14 n°15
class 1 class 2 class 2 X[2] <=5.45 class 1 class 2
n°10 n° 1
class 1 class 2

Figure 2. Decision tree model generated from the Iris dataset. In this model,
the features are represented as follows: x[0] corresponds to sepal length, x[1]
to sepal width, x[2] to petal length, and x[3] to petal width.

n°12
X[2] <= 4.85

n° 16
class 2

value used in another relational operation involving the same
feature. The mutation is applied to all decision nodes in our
approach; however, we have imposed a limitation of up to
two changes per feature to prevent an overwhelming number
of mutants. The number of mutant trees can become imprac-
tical, especially when the original decision tree has a large
number of features.

Figure 4 shows an example of a mutant tree generated by
applying the Cccr operator. Considering that the decision tree
has eight decision nodes including relational operators and
eight different constant values, applying the Cccr operator to
generate up to two mutants for each decision node results in



https://www.kaggle.com/datasets/uciml/iris

Advancing Test Data Selection by Leveraging Decision Tree Structures

n°0
X[3] <= 0.8
n°1 n°2
class 0 X[3] >=1.75
n°3
X[2] <= 4.95
n°4 n°7
X[3] <= 1.65 X[3] <= 1.55

n°5 n°6 n°8 n°9 n® 14 n°15
class 1 class 2 class 2 X[2] <= 5.45 class 1 class 2

n° 10 n° 11

class 1 class 2

Figure 3. An example of applying the ORRN operator to a tree node.

n° 12
X[2] <= 4.85

n° 13
X[0] <= 5.95

a total of 10 mutant trees. The number of mutants generated
from a specific decision node is determined by the frequency
with which the same feature is compared to different constant
values in other decision nodes. For example, if a feature is
compared with only one constant, no mutant is generated. In
cases where a feature is part of two different comparisons,
each with a distinct constant, only one mutant is generated
for the current decision node, where the constant is swapped
with the value used in the other decision node’s comparison.
Thus, it is only when a feature is compared to three or more
unique constants across various decision nodes that we cap
the number of mutants to two.

X[3] <= 1.65

n°1 n°2
class 0 X[3] <=1.75

n°3
X[2] <= 4.95

n°4 n°7
X[3] <= 1.65 X[3] <= 1.55
n°5 n°6 n°g n°9 n° 14 n° 15
class 1 class 2 class 2 X[2] <= 5.45 class 1 class 2
n° 10 n° 11
class 1 class 2

Figure 4. Example of mutant tree generated from applying the Cccr operator
to node n° 0.

n° 12
X[2] <= 4.85

n° 13
X[0] <= 5.95

Similar to DTC and BVA, DTMT is also used for generat-
ing test data. However, in terms of test requirements, it dif-
fers from the DTC and BVA approaches, which focus on sat-
isfying the same set of test requirements: covering all paths
from the root to the leaf in the tree under test. Conversely,
DTMT shifts this focus. Instead of path coverage, DTMT em-
phasizes creating test inputs that effectively kill mutant trees
(i.e., lead to classification results that differ from the original
tree).

We apply DTMT to the canonical Iris flower
dataset (Fisher, 1936). Applying the decision tree algo-
rithm to the dataset resulted in a tree model with nine leaf
nodes and eight decision nodes, as shown in Figure 2. Using
DTMT to guide the generation of test cases, we generated
a set of 10 test cases. Given that a single test case has the
potential to kill multiple mutants, it is not often the case that
the quantity of test cases directly corresponds to the number
of testing requirements.

To show how a test case can be considered capable of
killing a mutant tree, we use the original tree presented in
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Figure 2, and the mutant tree presented in Figure 3. In this
mutant tree, node n° 2 had its relational expression changed
from X[3] <= 1.75 to X[3] >= 1.75. Considering a test
case in which X[3] = 1 in the original tree, the path would
follow to the left child node (n° 3) and would end at leaf
node n° 5, whereas in the mutant tree, it would be directed
to the right child node (n° 12) and would end at leaf node
n? 16. Thus, achieving different classification outcomes indi-
cates that the mutant under analysis was killed. This implies
that the fault mimicked by this change is not accounted for
by the decision tree. Therefore, this criterion offers the added
benefit of improving the quality of the test suite.

4 Experimental Evaluation

We set out to compare the effectiveness of our three decision
tree based criteria through a two-fold experiment. Given that
mutation testing is widely regarded as the “gold standard”
against which all other types of coverage are measured, it
was hypothesized that DTMT would potentially outperform
DTC and BVA. Thus, the order in which the criteria were
compared is based on this notion of how effective these crite-
ria are at generating test data. Initially, we compared our two
decision tree coverage criteria with cross-validation. This is
grounded on the conjecture that our decision tree coverage
criteria are more suitable to generate test suites for ML-based
programs whose ML component was created using the deci-
sion tree algorithm, compared to a random methodology. Our
hypothesis is based on the fact that our criteria leverage the
internal structure and decision information of decision tree
models during the identification of test requirements. The as-
sumption is that decision nodes play a key role in determin-
ing the model’s behavior. Consequently, more effective test
data can be derived by capitalizing on the inherent decision-
making data of the model under test. Following this initial
comparison, the most effective decision tree coverage crite-
rion was then benchmarked against DTMT to further ascer-
tain relative performance. Therefore, we designed the exper-
iment to answer the following research questions (RQs):

RQq: How does the effectiveness of the test suites derived
from DTC and BVA compare with random test cases from a
10-fold cross-validation?

RQ2: How does the effectiveness of the test suites derived
from DTMT compare to our best-performing decision tree
coverage criterion?

In the context of this experimental study, effectiveness is
quantified using the ML performance metrics mentioned in
Subsection 4.2.

4.1 Scoping

The scope of our experiment is defined by setting its goals,
which is based on the GQM template (Wohlin et al., 2012) as
follows:

Analyze three decision tree based criteria (i.e., DTC, BVA
and DTMT)
for the purpose of evaluation
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with respect to their effectiveness
from the point of view of the researcher
in the context of testing ML-based programs.

4.2 Hypotheses Formulation

To enable the application of statistical tests, we further re-
fined our RQs into specific hypotheses. We defined our
prediction for RQ; as: our decision tree coverage criteria
(DTCC) are more effective than random testing. Thus, RQ;
was turned into the following hypotheses:

Null hypothesis, Hy_ prcc xrandom? there is no differ-
ence in effectiveness between our decision tree coverage cri-
teria and random testing.

Alternative hypothesis, H,_ prccxrandom? there is a
significant difference in effectiveness between our decision
tree coverage criteria and random testing.

As for RQ,, we defined our prediction as: our mutation-
based criterion is more effective than our best-performing
decision tree coverage criterion. Thus, our RQs was turned
into the following hypotheses:

Null hypothesis, Hy_ pryrx proc: there is no differ-
ence in effectiveness between the best-performing decision
tree coverage criterion and DTMT.

Alternative hypothesis, H,_pryrxproc: there is a
significant difference in effectiveness between the best-
performing decision tree coverage criterion and DTMT.

The main goal of this study is to explore the effective-
ness of DTMT in selecting test data, particularly in compar-
ison to the outcomes provided by our decision tree coverage
criteria. To evaluate this assumption, we set out to derive
test suites that satisfy our decision tree coverage criteria and
DTMT when applied to a decision tree model. In our evalua-
tion, these test suites are then used to assess the performance
of models generated from other ML algorithms, such as k-
Nearest Neighbors (k-NN). Specifically, we first train mod-
els using the k-NN algorithm on the original dataset (i.e., the
training data); these models are both trained and tested using
10-fold cross-validation. We then compare the results from
this 10-fold cross-validation with the outcomes from apply-
ing the generated test suites. Figures 5, 6, 7 and 8 give an
overview of the evaluation process.

In the context of traditional software testing, the effective-
ness of a criterion is determined by its ability to generate test
inputs that can reveal more faults. Hence, a criterion C is
deemed more effective than another criterion Cs if the for-
mer leads to test inputs that can uncover more faults than
those derived from applying the latter. This concept also ap-
plies to our study. For a given model M, if the performance
is poorer with test inputs derived from C than those gener-
ated from Cs, then we say that C is more effective than Cs.
Given a metric, denoted as f, to gauge the quality of model
M and a test suite, denoted as T'. The score of running test
suite 7" against model M, according to metric f, is expressed
as f(M(T)). Therefore:

FM(Th)) < f(M(T2))
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indicates that T; is more effective than Ty according to f
because T} revealed more cases in which M fails than T5
did.

Many approaches have been devised to evaluating and
comparing ML models. In our comparative analysis, we de-
cided to take into account several multiple widely used ML
performance metrics. As such, we selected precision, recall,
accuracy, and F1 metrics. Thus, the dependent variable that is
key in answering our RQs is effectiveness: within the frame-
work of this experimental study, effectiveness is quantified
using the ML performance metrics mentioned previously.

4.3 Instrumentation

Prior to conducting our experiment, we created experimen-
tal objects. These objects are primarily divided into two cat-
egories: Python scripts for loading and processing datasets,
including test case generation, and scripts for the analysis of
results. We employed Google Colaboratory (also known as
Colab)?, a cloud-based environment that facilitates the ex-
ecution of Python scripts via a browser. Google Colab en-
ables users to create notebooks, which are essentially Jupyter
notebooks, combining rich text and executable Python code
within a single document.

For data handling and analysis, we utilized the pandas?
library. All the ML algorithms were implemented using
scikit-learn, a leading Python library for machine learn-
ing (Miiller and Guido, 2016). we used Google Drive to store
Predictive Model Markup Language (PMML)* files, which
were employed for generating the mutant decision trees.>.

4.4 Execution

To assess the effectiveness of our mutation-based approach
when compared to our two decision tree coverage criteria,
we chose a sample of 16 publicly available datasets. These
datasets are widely utilized for training machine learning
models. We selected these particular datasets due to their sim-
plicity compared to others. Furthermore, these datasets are
frequently applied to solve more straightforward problems;
consequently, inputting these datasets into a decision tree al-
gorithm yields smaller, more interpretable trees. A summary
of the datasets used in our experiment is provided in Table 2.

We loaded all datasets into the Google Colab (i.e, Python)
environment. To this end, we used pandas library’s meth-
ods for loading external data. Several datasets had NA values,
so we performed some data cleansing (also employing the
pandas library) to create more consistent datasets. After tidy-
ing up the data, we split the datasets into two parts: training
data (i.e., X) and their corresponding outputs or labels (i.e.,
)

The next step was to build decision tree models from the
training data. To fit the models to the training data we used
scikit-learn, which employs the classification and regres-
sion tree (CART) algorithm to train decision trees (Géron,

’https://colab.research.google.com/

3https://pandas.pydata.org

“https://www.ibm.com/docs/pt-br/db2/11.17topic=
analytics-pmml-markup-language-data-mining

SExperiment  repository: https://drive.google.com/drive/
folders/14XpZ3yoF1TW55FVHE6q2-RryqunLYFDJ7usp=sharing
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Table 2. Overview of the datasets used in the experiment.
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Algorithm 1 Function getPaths

[ Datasets

[Samples] Attributes | Classes[Samples per Class|

Cancer Prediction 10,001 5 2 [9,036, 965]
Phoneme 5,404 6 2 [3,818, 1,586]
Mammography 11,183 7 2 [10,923, 260]
Pima Indians Diabetes 768 9 2 [500, 268]
Haberman’s Survival 306 4 2 [225, 81]
Cleveland Heart Disease 297 15 2 [160, 137]
Oil Spill 937 50 2 [896, 41]
Banknote Authentication 1,372 5 2 [762, 610]
Ionosphere 351 35 2 [225, 126]
Sonar, Mines vs. Rocks 208 61 2 [97, 111]
Breast Cancer Wisconsin 569 31 2 [212, 357]
Penguins 345 7 3| [152,69, 124]
Hawks 909 19 3| [71,577,261]
Wheat Seeds 200 7 3 [66, 68, 66]
Wine Recognition 178 14 3 [59, 71, 48]
Iris 150 5 3 [50, 50, 50]

2019). DTs in scikit-learn are implemented in such a
way that the resulting models also contain auxiliary informa-
tion that we used in later steps of the experiment execution.
Specifically, these models also keep information regarding
all nodes, including the rules in decision nodes that resem-
ble if-else code rules from conventional programming lan-
guages.

44.1 DTC and BVA

The first step in the initial phase of our experiment which in-
volved a comparative analysis of our decision tree coverage
criteria against a random methodology, was building deci-
sion tree models for the training data. As mentioned, to fit
the models to the training data we used scikit-learn. De-
cision trees in scikit-learn are implemented in such a way
that the resulting models also contain ancillary information,
which was instrumental in the later stages of the experiment
execution. Specifically, these models also keep information
regarding the number of nodes in a given tree, left and right
children of each node, the thresholds for all decision nodes,
and a list of all leaf nodes.

Following the generation of the models, we devised a re-
cursive approach aimed at identifying distinct paths from the
root to every leaf node (Algorithm 1). Given that each leaf
node is connected to the root by a unique path, there is a
unique representation of each root-to-leaf path. As a result,
starting from the root and applying post-order traversal (visit-
ing all the nodes of the right subtree followed by all the nodes
of the left subtree), our recursive implementation keeps track
of each unique path from root to leaf. Internally, we use ar-
rays to keep path-related information.

When selecting test data that satisfies the DTC criterion,
we randomly select from the dataset inputs that cover each
unique path from root to leaf. As a result, the algorithm is
designed to generate test inputs that effectively cover each
leaf of the tree model under examination.

When applying BVA, we adopt a more robust approach
to test data selection: the algorithm, while traversing each
root-to-leaf path, analyzes decision nodes and generates test
inputs that are specifically tailored to be slightly greater or
lesser (i.e., at boundary values) than the actual values at the
nodes. Consequently, the test inputs for features encountered
along the root-to-leaf paths may comprise values that are un-

1: function getPaths(node, is leaves, right children,
left_children, paths=None, current_path=None)

2: if paths is None then

3: Initialize paths as an empty list

4 end if

5: if current_path is None then

6: Initialize current_path as an empty list
7: end if

8: Add node to current_path

9: if is_leaves[node] is true then 1> If the current node

is a leaf

10: Add current_path to paths

11: else > Explore right subtree
12: Call getPaths(right_children[node],

is_leaves, right_children, left children, paths,
copy of current_path)
> Explore left subtree
13: Call getPaths(left children[node], is_leaves,
right_children, left children, paths, copy of
current_path)
14: end if
15: return paths
16: end function

likely to be found in the original dataset. This methodical in-
clusion of boundary values aims to provide a thorough eval-
uation of the decision tree’s behavior under diverse data con-
ditions.

The original datasets were employed for the training and
testing of k-NN models: training and testing were carried out
using k-fold cross-validation. Subsequently, the resulting k-
NN models were subjected to testing using test suites appro-
priate for DTC and BVA. The outcomes of these tests were
then compared with the results derived from the k-fold cross-
validation conducted previously.

As mentioned, our evaluation is twofold: (i) we evaluate
our decision tree coverage criteria in the context of a straight-
forward train-test split procedure and (7i) we also investigate
the effectiveness of our criteria within the context of a strati-
fied k-fold cross-validation procedure. In the former, we fita
decision tree model on the whole dataset. The DTC-adequate
test data is based on the resulting tree model. More specif-
ically, DTC-adequate test data are produced by extracting
from the dataset one observation to traverse each path of the
resulting tree model. BVA-adequate test data are computed
based on the DTC-adequate test data. We then fit a k-NN
model (using k£ = 3) on the remaining observations, which
were not used for the DTC-adequate test data generation, and
evaluate its performance on the DTC- and BVA-adequate test
data. Thus, it is worth emphasizing that the DTC-adequate
test data set is a part of the training set that is held out (the k-
NN model is not trained on it). Moreover, BVA-adequate test
data is computed from this held out data. Figure 5 gives an
overview of this procedure. Using the stratified k-fold cross-
validation procedure, the training set is split into 10 different
subsets (i.e., folds), which are used to build and evaluate the
decision tree model 10 times: a different subset is used for
evaluation and the decision tree is trained on the other nine
folds. In each iteration of the 10-fold cross-validation pro-
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cedure, the nine training subsets are used to generate DTC-
and BVA-adequate test data (as shown in Figure 6). During
the evaluation (i.e., testing) step, the k-NN model is tested
on the DTC- and BVA-adequate test data as well as the test
data from the cross-validation split (as shown in Figure 7). In
these two comparisons, we are interested in the results from
applying the DTC- and BVA-adequate test suites to the afore-
mentioned k-NN model.

4 CAD
test set

2 Create
Decision Tree

3 Train

Figure 5. Train-test split steps conducted in the context of the experiment.

1 Original
Dataset

AL 5 KNN 6 Metrics
test set

ol

5 Decision Tree

6 CAD
test set

Figure 6. Overview of the test data generation process for the two decision
tree coverage criteria.

4 Metrics

Figure 7. Overview of the test suite evaluation process.

442 DTMT

Figure 8 highlights the main steps entailed in the application
of the DTMT. Essentially, applying DTMT is a two-pronged
process. Initially, the process involves the construction of
decision tree models, which is succeeded by the generation
of mutant trees. Subsequently, test inputs capable of killing
these mutant trees are gleaned from the dataset. The latter
phase encompasses the training and evaluation of a kNN
model, utilizing the mutant-killing test data extracted from
the dataset in the initial phase. The process culminates with
an analytical comparison of the results obtained from the 10-
fold cross-validation using both the conventional dataset and
the curated mutant-killing test suite developed throughout
the process.

After creating decision tree models by fitting the complete
datasets to the decision tree algorithm, the resulting mod-
els are rendered into XML-based format files, specifically
predictive model markup language (PMML). These PMML
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Figure 8. Experiment flow illustration.
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files are then used during mutant generation. Given the XML-
based structure of PMML files, the parsing of each PMML
model starts at the root and decision nodes are mutated as
the tree is traversed. To extract model information from the
resulting XML Schema in PMML files, we used Beautiful-
Soup, a Python library for parsing XML and HTML files.

After the generation of mutant trees, our method involves
the random selection of instances (i.e., rows) from the dataset.
This is followed by a comparison between the predictions
made by the original tree and those of each mutant tree. More
precisely, for each mutant tree, our approach entails a ran-
dom traversal through the dataset to identify an instance that
effectively kills the mutant under analysis.

This focus on model predictions (i.e., outcomes) to com-
pare DTs emphasizes the selection of instances that contain
values that cause mutant trees to make predictions that dif-
fer from the predictions made by the original tree model:
mutants that result in different predictions are deemed dead,
while those that generate predictions matching those of the
original model are classified as alive.

Our mutant-based criterion then carries out an exhaustive
examination of the dataset to ascertain if there exists at least
one instance capable of killing the live mutant tree being an-
alyzed. Alternatively, it determines if the dataset is devoid
of any instance that can achieve this. In scenarios where an
instance is found that can kill the mutant, it is selected. Con-
versely, if no such instance is present, the mutant tree is con-
sidered equivalent to the original tree. Through this process
of identifying and selecting mutant-killing instances, while
simultaneously eliminating duplicates, we derive a subset of
the dataset. This subset, composed exclusively of mutant-
killing instances, is presumed to be a high-quality test dataset.
It serves as an ideal foundation for the validation of other ML
models.

We initially used the original datasets to train and test k-
NN models, employing a 10-fold cross-validation process.
Subsequently, we generated new k-NN models that were
trained on data from the original datasets, that is, excluding
the data selected for the test set generated by mutation (i.e.,
a subset of the dataset that does not contain instances that
kill mutants). The outcomes of these tests were then com-
pared with the results from the previously run 10-fold cross-
validation.
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5 Experimental Results

In this section, we examine the effectiveness of our crite-
ria by looking at the performance of models when they are
cross-validated versus when tested with test suites tailored
for each criterion. Then, we compared the result of the best-
performing decision tree coverage criterion with the results
of applying DTMT.

5.1 Decision Tree Coverage Criteria: Objects
Characteristics

Table 3 gives an overview of the basic properties of the de-
cision tree models generated from the datasets. As shown in
Table 3, the resulting model with the most nodes was gener-
ated from the Cancer Prediction dataset: 2,161 nodes out
of which 1,181 are leaf nodes. Iris is the dataset that led to
the creation of the simplest model, which is comprised of 17
nodes out of which nine are leaves.

Given the outliers in our data regarding the height of the
resulting tree models (i.e., amount of nodes), we consider the
median values in Table 3 to be a more accurate measure of
central tendency than the mean. Thus, on average (median),
the models in our experiment have 49 nodes, of which 25 are
leaves.

Table 3. Number of nodes in the resulting decision tree models and
the number of test cases generated from applying our criteria to
these models.

Datasets Nodes | DTC/BVA

Cancer Prediction 2,161 1,081
Phoneme 1,041 521
Mammography 319 160
Pima Indians Diabetes 255 128
Haberman’s Survival 207 104
Cleveland Heart Disease 99 50
Oil Spill 69 35
Banknote Authentication 53 27
Ionosphere 45 23
Sonar, Mines vs. Rocks 45 23
Breast Cancer Wisconsin 43 22
Penguins 31 6/16
Hawks 27 7/14
Wheat Seeds 25 13
Wine Recognition 23 12
Iris 17 9
Descriptive Statistics

Max | 2,161 1,181

Min 17 9

Mean | 278.75 139.88

Median | 49.00 25.00

Std Dev | 562.52 281.26

Each root-to-leaf path within a decision tree model con-
stitutes a testing criterion. Consequently, the volume of test
cases generated by our decision tree coverage criteria is di-
rectly proportional to the quantity of leaf nodes present in
a given model. Thus, the application of our criteria to the
ensuing models has, on average (median), generated approx-
imately 25 test requirements, as shown in Table 3.
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5.2 DTMT: Objects Characteristics

Our experiment took into account 12,333 mutant trees gener-
ated from the 16 chosen datasets. Table 4 shows an overview
of the amount of mutants generated for each dataset. The ta-
ble presents, for each dataset, the amount of non-terminal
DT nodes, the number of relational mutants created (ORRN
Mut), the number of constant mutants generated (Cccr Mut),
and the total number of mutants generated (Total Mut). It
also includes the quantity of test data used to kill the rela-
tional (ORRN Test Data) and constant mutants (Cccr Test
Data). Additionally, Table 4 lists the total volume of test
data, which is the combination of “ORRN Test Data” and
“Cccr Test Data” after removing duplicates. Furthermore, it
provides the proportion of the resulting test set concerning
the number of instances in the original dataset (represented
as “Test Data/Dataset”) and, finally, the amount of mutants
that have not been killed (“Live Mut”) and the Score Muta-
tion (“Score Mut”). As shown in Table 4, most mutants were
generated from the decision tree model of the Cancer Predic-
tion dataset (totaling 5,508 mutants). The Iris dataset led to
the simplest tree model, which resulted in 42 mutants.

Given the outliers in our data regarding the number of mu-
tants and test data generated, we consider the median values
to be a more accurate measure of central tendency than the
mean. Thus, on average (median), the models in our experi-
ment have 125 mutants.Regarding the size of our test set, we
have an average of 34 test data for each dataset, which corre-
sponds to 7.21% of the original dataset. As for the number of
mutants that were not killed, we have an average of 27.5, and
this implies that using our test dataset, we achieved a median
mutation score of 79.42%.

As each mutant represents a test requirement, the amount
of test cases generated by our criteria is proportional to the
number of decision nodes in a given model. Therefore, apply-
ing our criteria to the resulting models, on average (median),
approximately 125 test requirements.

5.2.1 Analysis of Live Mutants

In our analysis of live mutants, we observed that mutants
generated by the Relational Operator Replacement (ORRN)
Mutator, specifically those where a relational operator was
replaced with <, remained live across all models. A closer
examination of the decision tree algorithms reveals that al-
tering the relational operator from <= to < typically results
in an equivalent mutant, as this modification does not impact
the data split or the final classification that occurs at decision
nodes.

This behavior is particularly evident in decision tree algo-
rithms like CART and C4.5, where cut-off points for numer-
ical attributes are determined by intermediate values (such
as medians or means) calculated to maximize child node pu-
rity. Consequently, when a decision node compares a feature
using either <= or < with a specific value, both operators gen-
erally produce identical effects on data separation. This is be-
cause, in practice, no data point exactly matches the cut-off
value, leading to the same split for both conditions. This ap-
plies to both continuous data, where the distinction between
<= and < does not alter the partition, and discrete data, where
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Table 4. Overview of data generated in the experiment.
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Datasets Decision Nodes ‘ ORRN Mut | Ccer Mut | Total Mut ‘ ORRN Test Data | Ccer Test Data ‘ Total Test Data | Test Data/Dataset (%) ‘ Live Mut ‘ Score Mut ‘
Cancer Prediction 1,080 4,320 1,188 5,508 808 626 984 9.84 1,145 79.21
Phoneme 521 2,084 1,032 3,116 516 465 624 11.55 532 82.93
Mammography 159 636 306 942 151 165 205 1.83 173 81.63
Pima Indians Diabetes 126 504 235 739 107 113 156 20.31 140 81.06
Haberman’s Survival 101 404 187 591 69 92 111 36.27 116 80.37
Cleveland Heart Disease 100 400 148 548 79 75 103 34.68 118 78.47
Oil Spill 34 136 26 162 33 17 39 4.16 38 76.54
Banknote Authentication 26 104 44 148 33 26 45 3.28 29 80.41
Tonosphere 22 88 14 102 22 7 26 7.41 26 74.51
Sonar, Mines vs. Rocks 22 88 4 92 20 3 21 10.10 22 76.09
Breast Cancer Wisconsin 21 84 14 98 24 11 29 5.10 23 76.53
Penguins 15 60 15 75 18 9 20 5.80 17 77.33
Hawks 13 52 4 56 12 2 13 1.43 15 73.21
Wheat Seeds 12 48 12 60 11 6 14 7.00 12 80.00
Wine Recognition 11 44 10 54 12 8 14 7.87 11 79.63
Iris 8 32 10 42 7 6 10 6.67 8 80.95

Descriptive Statistics
Max 1,080 4,320 1,188 5,508 808 626 984 36.27 1,145 82.93
Min 8 32 4 42 7 2 10 1.43 8 73.21
Mean 141.94 567.75 203.06 770.81 120.13 101.94 150.88 10.83 151.56 78.68
Median 24 96 20.50 125 28.50 14 34 7.21 27.50 79.42
Std Dev 280.57 1,122.29 367.51 1,476.88 221.80 182.08 269.48 10.61 295.32 2.73

the split remains unchanged for either condition (Breiman
et al., 1983). The Cccr mutation operator did not produce
equivalent mutants.

5.3 Hypothesis Testing

Consistent with the methodology employed in our previous
experiments (Santos et al., 2021; Silveira et al., 2023), to in-
vestigate which decision tree-based criterion leads to the se-
lection of test data that are more effective in evaluating the
performance of ML models, we used parametric tests (i.e.,
two-tailed unpaired two-sample t-test) and non-parametric
tests to assess differences in the mean value of the metrics
used in our experiment (i.e., precision, recall, accuracy, and
Fy).

We checked for normality using the Shapiro-Wilk test be-
fore running the tests. According to the results of the Shapiro-
Wilk test, all distributions of the results of applying the DTC,
BVA and DTMT test data are normal. Nevertheless, the re-
sults of the Shapiro-Wilk test also show that all distributions
of the results of the 10-fold cross-validation approach devi-
ate from normality (as shown in Table 5). Consequently, we
resorted to employing a non-parametric test, specifically the
Wilcoxon signed-rank test, for the purpose of comparing this
approach with the other criteria.

The statistical analysis summarized in Table 6 presents a
comparison of the performance metrics between DTC, BVA,
and 10-fold cross-validation using the Wilcoxon signed-rank
test.

The results for precision indicate statistically significant
differences when comparing both DTC and BVA against 10-
fold cross-validation, with W values of 5.0 (p < 0.0018) and
7.0 (p < 0.00006), respectively. These low p-values suggest
a strong significance in the differences of precision scores
between the criteria when compared to 10-fold cross valida-
tion.

For recall, the analysis also seems to suggest that there
is a difference, especially between DTC and 10-fold cross-
validation (W = 0.0, p < 0.0007), and also between BVA and
10-fold cross-validation (W = 5.0, p < 0.0003).

Similar to recall, the accuracy metric shows a significant

difference in performance between DTC (W = 0.0, p <
0.0007) and BVA (W = 5.0, p < 0.0003) compared to 10-
fold cross-validation. The F; scores also reflect a significant
disparity, with DTC exhibiting a W value of 1.0 (p < 0.0008)
and BVA a W value of 5.0 (p < 0.0003) when compared
against 10-fold cross-validation. These results further corrob-
orate the significant differences observed in the other met-
rics.

Overall, the statistical tests reveal that both DTC and BVA
exhibit significant differences in performance metrics when
compared to 10-fold cross-validation. The results indicate
a consistent trend of significant differences across these ap-
proaches, suggesting that DTC and BVA may offer distinct
advantages over traditional 10-fold cross-validation in terms
of model evaluation.

The null hypothesis, Hy_ prcc xrandom, posits no differ-
ence in effectiveness between our decision tree coverage
criteria and random testing. However, the p-values across
all metrics for both DTC and BVA against cross-validation
strongly suggest rejecting this null hypothesis. The alterna-
tive hypothesis, Hi — prcc xrandom, Which asserts that there
is a significant difference in effectiveness is borne out by the
results of the comparisons we carried out. The results for pre-
cision, recall, accuracy, and F; score indicate that both DTC
and BVA are significantly different (and likely more effec-
tive) than random testing in evaluating the performance of
ML models.

The statistical test outcomes presented in Table 7, compar-
ing DTMT with BVA, provide insightful data regarding the
effectiveness of these two decision tree based criteria.

Firstly, the paired samples t-test results for accuracy, re-
call, and F; scores indicate that there are no statistically sig-
nificant differences in terms of these metrics between DTMT
and BVA. This suggests that, in terms of accuracy, recall, and
F; scores, DTMT and BVA perform comparably. However,
the precision metric shows a different trend. With a p-value
0f 0.041, there is a statistically significant difference between
DTMT and BVA. This suggests that, in terms of precision,
DTMT and BVA do not perform equally, and according to
the results one criterion is more effective than the other.

In the context of your research question and hypotheses,
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Table 5. Results in terms of the evaluated metrics for the DTC, BVA, DTMT approach and 10-fold cross-validation.

Dataset I DTC BVA I DTMT I 10-fold Cross-Validation |
| Precision | Recall | Accuracy | Fi | Precision | Recall [ Accuracy | Fi | Precision | Recall [ Accuracy [ Fi | Precision | Recall [ Accuracy |  Fi |
Cancer Prediction 0.76 0.85 0.85 0.80 0.99 0.97 0.97 0.98 0.84 0.88 0.88 0.84 0.82 0.88 0.88 0.85
Phoneme 0.61 0.61 0.61 0.60 0.52 0.52 0.52 0.52 0.64 0.64 0.64 0.63 0.89 0.90 0.90 0.89
Mammography 0.63 0.62 0.63 0.57 0.58 0.59 0.59 0.55 0.70 0.70 0.70 0.67 0.99 0.99 0.99 0.99
Pima Indians Diabetes 0.45 0.46 0.46 0.45 0.52 0.53 0.53 0.50 0.48 0.49 0.49 0.48 0.68 0.68 0.68 0.68
Haberman’s Survival 0.56 0.56 0.56 0.48 0.63 0.64 0.64 0.62 0.62 0.62 0.62 0.57 0.66 0.69 0.69 0.67
Cleveland Heart Disease 0.45 0.44 0.44 0.44 0.59 0.56 0.56 0.55 0.13 0.29 0.29 0.17 0.35 0.48 0.48 0.40
Oil Spill 0.21 0.40 0.40 0.28 0.24 0.49 0.49 0.32 0.39 0.56 0.56 0.46 0.93 0.95 0.95 0.94
Banknote Authentication 1.00 1.00 1.00 1.00 0.47 0.48 0.48 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Tonosphere 0.78 0.48 0.48 0.39 0.15 0.39 0.39 0.22 0.80 0.50 0.50 0.45 0.87 0.85 0.85 0.84
Sonar, Mines vs. Rocks 0.63 0.64 0.64 0.61 0.47 0.50 0.50 0.48 0.69 0.62 0.62 0.59 0.84 0.83 0.83 0.82
Breast Cancer Wisconsin 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.71 0.69 0.69 0.69 0.93 0.93 0.93 0.93
Penguins 0.67 0.67 0.67 0.61 0.50 0.50 0.50 0.33 0.86 0.90 0.90 0.88 0.97 0.97 0.97 0.97
Hawks 0.74 0.71 0.71 0.70 0.36 0.14 0.14 0.57 0.67 0.69 0.69 0.67 0.95 0.95 0.95 0.95
Wheat Seeds 0.58 0.62 0.62 0.59 0.48 0.62 0.62 0.51 0.56 0.57 0.57 0.56 0.92 0.92 0.92 0.92
Wine Recognition 0.64 0.33 0.33 0.32 0.29 0.42 0.42 0.34 0.71 0.50 0.50 0.49 0.70 0.69 0.69 0.67
Iris 0.69 0.67 0.67 0.67 0.69 0.67 0.67 0.67 0.73 0.70 0.70 0.71 0.97 0.96 0.97 0.96
Descriptive Statistics and Tests of Normality

Max 1.00 1.00 1.00 1.00 0.99 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Min 0.21 0.33 0.33 0.28 0.15 0.14 0.14 0.22 0.13 0.29 0.29 0.17 0.35 0.48 0.48 0.40

Mean 0.63 0.61 0.61 0.57 0.51 0.54 0.54 0.52 0.66 0.65 0.65 0.62 0.84 0.85 0.85 0.84

Median 0.64 0.62 0.63 0.60 0.51 0.52 0.52 0.52 0.70 0.63 0.63 0.61 091 0.91 0.91 091

Std Dev 0.17 0.17 0.17 0.18 0.20 0.17 0.17 0.18 0.20 0.18 0.18 0.20 0.17 0.15 0.15 0.16
Shapiro-Wilk (W) W=0.937, W=0.949, | W=0.949, W=0.961, | W=0.949, W=0.905, | W=0.905, W=0.925,| W=0.928, W=0.957, | W=0.957, W=0.967,| W=0.807, | W=0.839, | W=0.840, W=0.829,

p=0315 | p=0481 | p=0477 p=0.678 | p=0473 | p=0.096 | p=0.096 p=0200 | p=0.224 | p=0.606 | p=0.606 p=0.792 | p=0.003 | p=0.010 | p=0.010 p=0.007

Table 6. Summary of the results from the statistical tests DTC, BVL and 10-fold cross-validation.

Wilcoxon Signed-Rank Test (1)
Metric DTC x Cross-validation BVA x Cross-validation
Precision W =5.0, valor-p < 0.0018 W =17.0, valor-p < 0.0006
Recall W =0.0, valor-p < 0.0007 W =35.0, valor-p < 0.0003
Accuracy W =0.0, valor-p < 0.0007 W =5.0, valor-p < 0.0003
F; W = 1.0, valor-p < 0.0008 W =5.0, valor-p < 0.0003

these results offer nuanced insights. The null hypothesis,
Ho_prymrxprec, posits no difference in effectiveness be-
tween the best-performing decision tree coverage criterion
(i.e., BVA) and DTMT. Considering that BVA is the best-
performing decision tree coverage criterion according to the
results of the first comparison, the results for accuracy, recall,
and F; do not provide enough evidence to reject the null hy-
pothesis — indicating that DTMT does not significantly out-
perform BVA. However, the results for precision do allow
for the rejection of the null hypothesis, suggesting that there
is a significant difference in effectiveness between DTMT
and BVA in terms of precision. This aligns with the alterna-
tive hypothesis, Hy _ prprx proce, indicating that there is a
significant difference between DTMT and BVA. It is worth
noting that these results imply that BVA outperforms DTMT
in precision; a lower performance of the resulting model us-
ing the generated test data is indicative of a more effective
testing approach.

Overall, the results present a nuanced contradiction to the
prediction that DTMT would surpass the best-performing
decision tree coverage criterion in effectiveness. Although
DTMT does not seem to perform as well as BVA in terms
of precision, it demonstrates comparable performance in
accuracy, recall, and F; scores. This pattern suggests that
DTMT’s effectiveness, when compared to other decision tree
coverage criteria, may vary depending on the specific metric
under consideration.

Table 7. Statistical test outcomes comparing BVA and DTMT.

Paired Samples Test (%)

Metric BVA x DTMT
Accuracy | t=-1.75, p-value = 0.091
Recall t=-1.75, p-value = 0.091
F; t=-1.51, p-value = 0.142
Precision | ¢t =-2.13, p-value = 0.041

6 Discussion

To address our RQ1, we looked into the effectiveness of our
decision tree coverage criteria at selecting test inputs capable
of negatively impacting the performance of the model under
evaluation. Our hypothesis was grounded in the potential to
select stronger test data using our criteria since this test data
selection is based on the internal structure of decision tree
models, as opposed to random test data selection.

In this context, we measure how effective the test input is
for an ML model against the data the model was trained on: as
mentioned, effectiveness was assessed by the impact of test
data on the predictive performance of the model under evalu-
ation. The more detrimental the test data was to the model’s
performance, the more effective it was considered. In the con-
text of RQq, random testing is a 10-fold cross-validation, a
technique that involves dividing the dataset into 10 parts and
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repeating the model training and testing 10 times, resulting
in a general performance estimate.

The results from the comparison between decision tree
coverage criteria (DTC and BVA) and 10-fold cross-
validation reveal significant differences in performance met-
rics. Notably, both DTC and BVA demonstrate superior pre-
cision, recall, accuracy, and F1 scores compared to 10-fold
cross-validation. This suggests that decision tree coverage
criteria, particularly DTC and BVA, may offer more robust
mechanisms for evaluating ML models than traditional cross-
validation methods. Furthermore, our results appear to indi-
cate that BVA outperforms DTC in selecting test inputs capa-
ble of negatively impacting the performance of the evaluated
model.

Upon analyzing the outcomes of the first part of our
experiment, it was established that BVA represents the
best-performing decision tree coverage criterion. Conse-
quently, to answer our RQs, we proceeded to conduct a com-
parative analysis between BVA and DTMT. The experimen-
tal results of comparing DTMT with BVA, particularly in
terms of precision, offer a multifaceted view of the effec-
tiveness of a decision tree coverage criterion and a mutation-
based criterion. While DTMT and BVA exhibit comparable
performance in accuracy, recall, and F; scores, a significant
difference is observed in precision. This suggests that BVA
may have an edge over DTMT in precision-focused scenar-
ios. This finding partially contradicts the notion that DTMT
could be more effective than the best-performing decision
tree coverage criterion.

Figure 9 provides an overview of the effectiveness of
the four approaches. According to the results shown in Fig-
ure 9, 10-fold cross-validation showed the worst perfor-
mance in selecting stronger test cases, whereas DTMT and
DTC achieved similar performances. On the other hand, BVA
stood out as the most effective at identifying stronger test
cases.

Median for Each Metric Across Each Criterion

#10-fold Cross-Validation ® DTMT @ DTC ® BVA

0,91 0,91 0,91 0,91

08
0,70
0,63 063 061 060 0,64 0,63 0,62
06 052 052 0,51 052
04
02
00
F1

Accuracy Precision Recall
Metric

Figure 9. Overview of the effectiveness of the four approaches.

6.1 Comparative Analysis: From Initial Find-
ings to Current Results

Table 8 provides a comparative summary of the results from
our early research and results from the current study. A de-
tailed analysis reveals that the metrics of maximum and min-
imum precision, recall, and accuracy maintain similar pat-
terns across the different approaches. The low standard devi-
ation observed in all approaches indicates minimal variation
in the results, reflecting the stability of the evaluated meth-
ods.

Silveira et al. 2025

It is important to mention that our use of random selec-
tion was not intended as a comparison with sequential selec-
tion but rather as a design choice aimed at introducing diver-
sity in the initial selection process. Therefore, we understand
that random selection is not strictly necessary, given that we
subsequently perform an exhaustive search to identify an in-
stance (i.e., dataset entry) capable of killing the mutant. We
hypothesize this approach facilitates a broader distribution of
entries at the outset.

The results suggest that the approaches proposed in our
early research show consistency, and the overall performance
of the approaches is stable.

7 Threats to Validity

We took several precautions to alleviate potential threats to
the validity of our experiment and the findings thereof. How-
ever, as is typical with most experimental studies, it is impos-
sible to remedy all threats to validity completely. A potential
threat to validity is that we employed the same metrics used
in our previous research. As a result, all threats associated
with these elements also carry over into our study.

While we have enhanced our sample by incorporating
four new datasets, there remains a potential threat to exter-
nal validity. This is due to the possibility that our dataset
sample might not sufficiently represent the target population.
Our chosen datasets are smaller and cleaner than those com-
monly encountered in practice. Therefore, we cannot dismiss
the possibility that the results could have differed if larger
datasets had been selected. The measures used in the experi-
ment may be considered a potential threat to construct valid-
ity as they may not be adequate to assess the effects we set out
to investigate. Specifically, precision, recall, accuracy, and
F; score may not be key predictors of test data suitability for
ML-based programs. However, it is worth mentioning that
these four measures are widely used to evaluate ML models,
which mitigates the risk of this threat.

A fundamental limitation of our criteria is that they assume
that only numerical values appear at decision nodes. In addi-
tion, regarding the implementation of the decision tree cov-
erage criteria, the exhaustive search in the original dataset
is currently done sequentially, which impacts performance
when creating our set of test cases.

8 Concluding Remarks

ML-based systems have gained popularity due to their suc-
cess in various domains. Despite their widespread adoption,
ML classifiers are not without issues, which can lead to sig-
nificant practical consequences. This brings to the limelight
the need for approaches tailored to evaluating and improving
the quality of ML-based systems. Since this is a relatively
new research area, testing ML-based systems remains a sub-
stantial challenge. In response to this challenge, adapting cri-
teria that have been effective in testing traditional software
systems to the context of ML-based systems has emerged as a
promising strategy. To this end, in previous work we propose
novel test adequacy criteria for ML-based systems. Two of
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Table 8. Comparison of results from early research and the current study.

Approach Metric Prior Research Current Research
Precision Recall Accuracy F1 Precision Recall Accuracy F1
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Min 0.21 0.33 0.33 0.28 0.21 0.33 0.33 0.28
Mean 0.61 0.57 0.57 0.54 0.63 0.61 0.61 0.57
DTC Median 0.63 0.59 0.59 0.53 0.64 0.62 0.63 0.60
Std Dev 0.19 0.17 0.17 0.19 0.17 0.17 0.17 0.18
Shapiro-Wilk (W) W=0.94, W=0.89, W=0.89, W=0.92, W=0.937, | W=0.949, | W=0.949, W=0.961,
p=0.49 p=0.13 p=0.13 p=0.29 p=0.315 p=0.481 | p=0.477 p=0.678
Max 0.69 0.67 0.67 0.67 0.99 0.97 0.97 0.98
Min 0.15 0.39 0.39 0.22 0.15 0.14 0.14 0.22
Mean 0.48 0.53 0.53 0.49 0.51 0.54 0.54 0.52
BVA Median 0.52 0.53 0.53 0.51 0.51 0.52 0.52 0.52
Std Dev 0.17 0.09 0.09 0.14 0.20 0.17 0.17 0.18
Shapiro-Wilk (W) W=0.90, W=0.96, W=0.96, W=0.94, W=0.949, | W=0.905, | W=0.905, W=0.925,
p=0.18 p=0.81 p=0.81 p=0.47 p=0.473 p=0.096 | p=0.096 p=0.200
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Min 0.13 0.29 0.29 0.17 0.13 0.29 0.29 0.17
Mean 0.63 0.61 0.61 0.57 0.66 0.65 0.65 0.62
DTMT Median 0.70 0.62 0.62 0.58 0.70 0.63 0.63 0.61
Std Dev 0.22 0.17 0.17 0.20 0.20 0.18 0.18 0.20
Shapiro-Wilk (W) W=0.908, | W=0.925, | W=0.926, W=0.939, | W=0.928, | W=0.957, | W=0.957, W=0.967,
p=0.202 p=0.330 p=0.336 p=0.486 p=0.224 p=0.606 p=0.606 p=0.792
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Min 0.35 0.48 0.48 0.40 0.35 0.48 0.48 0.40
Mean 0.82 0.83 0.83 0.82 0.84 0.85 0.85 0.84
10-fold Cross-Validation | Median 0.88 0.88 0.88 0.87 0.91 0.91 0.91 0.91
Std Dev 0.19 0.16 0.16 0.18 0.17 0.15 0.15 0.16
Shapiro-Wilk (W) W=0.843, | W=0.885, | W=0.885, W=0.871, | W=0.807, | W=0.839, | W=0.840, W=0.829,
p=0.030 p=0.102 p=0.102 p=0.068 p=0.003 p=0.010 p=0.010 p=0.007

these criteria draw upon the traditional notion that the under-
lying structure of models can be explored in such a way as to
help testers sample test data that increases structural cover-
age. Specifically, DTC and BVA are premised on the notion
that the internal structure of decision tree models can be uti-
lized to sample test data that is more effective than randomly
selected training data. We also propose a mutation-based ap-
proach, grounded on the premise that it is possible to utilize
the internal structure of decision tree models. This approach
allows for the creation of mutant trees, which can then guide
the selection of test data more effectively compared to the
use of randomly selected test data.

We believe that our research adds to the relatively limited
literature on how researchers and practitioners can leverage
the knowledge of the internal structure of ML models to de-
vise test data.

To probe into the effectiveness of these criteria and also
gauge how they compare with each other, we designed and
conducted a two-part experiment. In the first part, we evalu-
ated our two decision tree coverage criteria against random
testing (specifically, 10-fold cross-validation) to identify the
best-performing decision tree coverage criterion. In the sec-
ond part, we explored how this decision tree coverage crite-
rion fares in comparison to DTMT. It turns out that the ef-
fectiveness of DTC, BVA, and DTMT at generating test data
that is able to negatively impact ML models is borne out by
the results of our experiment. Our findings indicate that
BVA stands out as the best-performing criterion among
the three. We surmise that BVA’s superior performance com-
pared to the other two criteria can be ascribed to its approach

of generating new test inputs: currently, BVA achieves this
by randomly selecting values that exceed the upper limit or
fall below the lower limit of conditions in decision trees. In
contrast, applying DTC and DTMT primarily involves select-
ing existing input values from the dataset. In a follow-up ex-
periment, we plan to look into the implications of creating
new test data when applying BVA.
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