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Abstract
In this paper we consider some global dynamical aspects of the generalized Sprott E differential
system
t=ayz+b, y=z’—y, z=1—14z,
where a,b € R are parameters and a # 0. This is a very interesting chaotic differential system with
one equilibria for all values of the parameters. We show that for b sufficiently small it can exhibit two
limit cycles emerging from the classical Hopf bifurcation at the equilibrium point p = (1/4,1/16,0).
We use the Poincaré compactification for a polynomial vector field in R® to do a global analysis of
the dynamics on the sphere at infinity. To show how the solutions reach the infinity we study the
existence of invariant algebraic surfaces and its Darboux integrability.
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1 Introduction and statement of the main results

Chaos, an interesting phenomenon in nonlinear dynamical systems, has been developed and intensively
studied in the past decades. A chaotic system is a nonlinear deterministic system that presents a complex
and unpredictable behavior. The now-classic Lorenz system has motivated a great deal of interest and
investigation of 3D-autonomous chaotic systems with simple nonlinearities, such as the Lorenz system
[8], the Réssler system [9] and the Chen system[2]. All these system have seven terms and have two or
one quadratic nonlinearities. Sprott [10] found 19 simple chaotic systems (called Sprott systems) with no
more than three equilibria, one or two quadratic nonlinearities and with less than seven terms.

In [II], Wang and Chen proposed a generalization of the Sprott E system (that we will call the
Wang—Chen system) with a single stable node—focus equilibria and 1-scroll chaotic attractor. This new
system is very interesting because for a 3-dimensional autonomous quadratic system with a single stable
node—focus equilibrium one typically would expect the non existence of a chaotic attractor. We recall
that the Lorenz system and the Rossler system are all of hyperbolic type, while the Wang—Chen system
is not hyperbolic. In fact, they proposed a system which is the original Sprott E system with a new
parameter that causes a delay feedback. Since the stability of the single equilibrium changes from one
system to the other the Wang—Chen system is not topologically equivalent to the Sprott E system.

In the investigation of chaos theory and its applications it is very important to generate new chaotic
systems or enhance complex dynamics and topological structure based on the existing of chaotic attrac-
tors. It is also very important to study the stability of the equilibria of the system. This is a very
challenging task, but one of the mechanisms could be the addition of new parameters to a given system.



Figure 1: The chaotic atractor of system when a = 1.1 and b = 0.006: 2D views on the zy-plane,
yz-plane, xz-plane and the 3Dview.

In this paper we modify the Wang—Chen system by considering more parameters in the nonlinear
part, expecting to cause more chaotic behavior. Although the most natural way would be to add two
parameters in the quadratic part (the system has only two quadratic terms) it is easy to see that with
a linear change of coordinates the system with two additional parameters can be reduced to a system
with only one additional parameter. More precisely, we study the following generalization of the Sprott
E system

T =ayz+ b,
y:x2_ya (1)
z=1-—4zx.

where a,b € R are parameters and a # 0. This system for a # 1 (when a = 1 system (|1)) is the Wang—Chen
system) also generates a 1-scroll chaotic attractor as shown in Figure

The first goal is to study all possible bifurcations which occurs at the equilibrium point p =
(1/4,a/16,—-16b/a) of system (I)). The first bifurcations that we may study are the codimension one
bifurcations. Three elementary static bifurcations are associated with a simple zero eigenvalue of the
Jacobian matrix at the equilibrium point: saddle-node, transcritical and pitchfork bifurcations. Easy
calculations show that for any value of a,b € R with a # 0 system has never a zero eigenvalue. So we
will study the other codimension one bifurcation: the Hopf bifurcation. We recall that for the arguments
above we will not have a zero—Hopf bifurcation. For the same reason our system will not exhibit the
well known codimension two bifurcation of Bogdanov—Takens.

We will study analytically all possible classical and degenerate Hopf bifurcations that occurs at the
equilibrium point p of system . For this, we will use the classical projection method to compute the



Lyapunov coefficients associated to the Hopf bifurcations. More precisely, our first main result, concerning
Hopf bifurcations is the following.

Theorem 1. The following statements hold

(a) Let C = {(a,b) € R? : a > 0,b = 0}. If (a,b) € C then the Jacobian matriz of system in p has
one real eigenvalue —1 and a pair of purely imaginary eigenvalues +i/a/2.

(b) The first Lyapunov coefficient at p for the parameter values in C is given by

a®(16 — 40a + a?)
(14 a)(4 + a)(256 + 69a + a2)”

ll(a,O) = —

If 16 — 40a + a® # 0 then system has a transversal Hopf point at p for b =10 and a > 0. More
precisely, if a < 4(5 — 2v/6) or a > 4(5 + 2v/6) then the Hopf point at p is asymptotic stable (weak
attractor focus) and for each b > 0 but sufficiently close to zero there exists a stable limit cycle near
the unstable equilibrium point p. If 4(5—2v/6) < a < 4(542+v/6) then the Hopf point at p is unstable
(weak repelling focus) and for each b < 0 but sufficiently close to zero there exists an unstable limit
cycle near the asymptotically stable equilibrium point p.

(¢c) The second Lyapunov coefficient at p for a = 4(5 — 23/6) and b = 0 is given by

~ 256(—267817529746 + 109358484143+/6)

Lo (4(5 — 2
2(4(5 - 2v6),0) 8101385991833

> 0.

Since l3(4(5 — 2v/6),0) > 0 system has a transversal Hopf point of codimension 2 at p for the
parameters a = 4(5 — 2v/6) and b = 0 which is unstable.

(d) The second Lyapunov coefficient at p for a = 4(5 + 2v/6) and b= 0 is given by

_ 256(267817529746 + 109358484143/6)

A(5+2 =
12(4(5 + 2V/6),0) 18101385991833

> 0.

Since lo(4(5 + 2v/6),0) < 0 system has a transversal Hopf point of codimension 2 at p for the
parameters a = 4(5 + 2v/6) and b = 0 which is stable.

In Theorem |1| we have analyzed the Hopf and degenerate Hopf bifurcations of system . We have
analytically proved that there exist two points in the parameter space for which the equilibrium point p
is a codimension 2 Hopf point. With the analytical data provided in the analysis of the proof of Theorem
we will conclude a qualitative information of the dynamical aspects of system . There are regions
in the parameter space where system has two limit cycles bifurcating from the equilibrium point p
which are described as follows: for I; < 0 and b > 0 with |l;| > b > 0 for the parameters where [z > 0
and for {; > 0 and b < 0 with {3 > |b] > 0 for the parameters where [y < 0.

Theorem 1| will be proved in Section 3] For a review of the projection method described in [5] and
the calculation of the first and second Lyapunov coefficients, see Section [2.1

We note that system Sprott E has no parameters so it can not present any bifurcation and the
Wang—Chen system has no codimension two transversal Hopf points.

Now we continue the study of the global dynamics of system by studying its behavior at infinity.
For that we shall use the Poincaré compactification for a polynomial vector field in R3 (see Section
for a brief description of this technique and for the definition of Poincaré sphere).

Theorem 2. For all values of a € R\ {0} and b € R, the phase portrait of system on the Poincaré
sphere S? is topologically equivalent to the one shown in Figure|d.



Figure 2: Global phase portrait of system on the Poincaré sphere at infinity.

Theorem [2]is proved in Section [d] Note that the dynamics at infinity do not depend on the value of
the parameter b because it appears in the constant terms of system . It depends on the parameter a
but the global phase portraits at the Poincaré sphere for different values of a are topologically equivalent.
From Figure [2| we have four equilibrium points at infinity, two nodes and two cusps and there are no
periodic orbits on the sphere.

The Poincaré sphere at infinity is invariant by the flow of the compactified systems. A good way
to understand how the solutions approach the infinity is studying the behavior of the system along of
invariant algebraic surfaces, if they exist. More precisely, if system has an invariant algebraic surface
S, then for any orbit y not starting on S either a(y) C S and w(y) C S, or a(y) C S* and a(y) C S* (for
more details see Theorem 1.2 of [1I]) and, a(v) and w(v) are the a—limit and w—limit of v, respectively
(for more details on the w— and a-limit sets see for instance Section 1.4 of [4]). This property is the key
result which allows to describe completely the global flow of our system when it has an invariant algebraic
surface and, consequently, how the dynamics approach the infinity. Guided by this we will study the
existence of invariant algebraic surfaces for system . The knowledge of the algebraic surfaces and the
so called exponential factors (see again Section for definitions) allow us to characterize the existence of
Darboux first integrals. It is worth mentioning that the existence of one or two first integrals for system
will much contribute to understand its dynamics and so its chaotic behavior.

Theorem 3. The following statements holds for system
(a) It has neither invariant algebraic surfaces, nor polynomial first integrals.

(b) The unique exponential factor is exp(z) and linear combinations of it. Moreover the cofactor of
exp(z) is 1 —4a.

(¢) It has no Darboux first integrals.

The paper is organized as follows. In Section [2] we present some preliminaries. In Section [3] we prove
Theorem [T} The dynamics at infinity is studied in Section[d] In Section [f] we prove Theorem

2 Preliminaries

2.1 Hopf bifurcation



In this section we present a review of the projection method used to compute the Lyapunov constants
associated to Hopf bifurcations described in [5].

Consider the differential system

x= f(Xa N)7 (2)

where x € R? and p € R3 are respectively vectors and parameters. Assume that f is quadratic and that
(x, ) = (X0, o) is an equilibrium point of the system. Denoting the variable x — 2y by x we write

F(x) = f(x,p0) as F(x)=Ax+ %B(X, X), (3)

where A = f4(0, po) and, for i = 1,2,3

Bi(x,y) = Z OE (1)

3
k=1 8,uj8uk )M:O

TjYk- (4)

Suppose that (xo, t0) is an equilibrium point of (2)) where the Jacobian matrix A has a pair of purely
imaginary eigenvalues Ay 3 = Ziwg, wp > 0, and admits no other eigenvalues with zero real part. Let
T° be the generalized eigenspace of A corresponding to A, 3, i.e., the largest subspace invariant by A on
which the eigenvalues are A 3.

Let p,q € C? be vectors such that

3
Ag=iwog, A'p=iwp, <pq>=)» P =1,
i=1

where AT denotes the transposed matrix of A and 7 is the conjugate of p. Note that any y € T° can
be represented by y = wq + wq, where w =< p,q >€ C. The 2-dimensional center manifold associated
to the eigenvalues A\ 3 = Fiwy can be parameterized by the variables w and w by the immersion of the
form x = H(w,w), where H : C? — R? has a Taylor expansion of the form

1 .
H(w,w) =wq+wq+ Z Tk,hjkwj o+ O(|w|7),
2<j+k<6” "

with hj, € C? and hj, = hy;. So substituting this expression in We get the following equation
Hyi + Hyo = F(H(w,0)) (5)

where F' is given by . The vectors hjj, are obtained solving the linear systems defined by the coefficients
of (), taking into account the coefficients of F' in the expressions (3)) and (4). So system (f]) on the chart
w for a central manifold, is writing as

1

6 8

1 1
W = iwow + §w|w|2 + EG32w|w\4 +

with ij eC.

More precisely, we have
hll = 7AilB(qa 5)7

hao = (2iwols — A) "' B(q, q),

where I is the identity matrix. For the cubic terms, the coefficients of the terms w? in , we have

hsg = 3(3@'(,«}0]3 — 1‘1)_1B(q7 hgo).



From the coefficients of the terms w?w in , in order to solve hg; must take
G21 =<p, B(av hQO) + 2B(Q7 hll) >

We define the first Lyapunov coefficient [; by

1
ll = §R6G21.

The complex vector ho; can be found by solving the 4-dimensional system

(=2 Y () (emene)

with the condition < p, hoy >= 0.

From the coefficients of the terms w*, w?w and w?w? in one obtain respectively
hao = (diwols — A) ™' (3B(hoo, hao) + 4B(q; hso)),
ha1 = (2iwgls — A) "' (3B(q, ha1) + B(q, hso) + 3B(hao, h11) — 3Ga21hao),
has = —A~1(2B(h11, ha1) + 2B(gq, ha1) + 2B(q, ha1) + B(ho, h2o))-

Defining
Hso =6B(h11, ho1) + B(hao, hso) + 3B(hot, hao) + 3B(q, haz) 4+ 2B(q, ha1) — 6Ga1har — 3Ga1ho,

we have that the second Lyapunov coefficient 5 is
1
ly = §R€G32,

where Gz =< p, Hzo >.

2.2 Poincaré compactification

Consider in R3 the polynomial differential system
fb:Pl(xvywz)v y:PQ(m7yaZ)7 é:.Pg(iC,y,Z),

or equivalently its associated polynomial vector field X = (Py, Py, P3). The degree n of X is defined as
n = max {deg(P;) : i = 1,2,3}. Let S* = {y = (y1,y2,3,94) : ||y|]| = 1} be the unit sphere in R* and
Sy ={yeS®:y; >0} and S_ = {y € S* : y4 < 0} be the northern and southern hemispheres of S,
respectively. The tangent space of S* at the point y is denoted by T}, S®. Then the tangent plane

T(0,001)S* = {(z1,22,23,1) € R* : (1,22, 23) € R*}

can be identified with R3.

Consider the identification R? = T{9,0,1)S? and the central projection fi: T 0,0,1)S* — S+ defined
by

fa(z) = iw, where A(z) = (1 4 ix2> 1/2.
A=) i=1 '

Using these central projections R is identified with the northern and southern hemispheres. The equator
of S?is §? = {y € S$* : y4 = 0}.

The maps f. define two copies of X on S?, one Df, o X in the northern hemisphere and the other
Df_ o X in the southern one. Denote by X the vector field on S? \ S? =S, US_, which restricted to S,



coincides with Df; o X and restricted to S_ coincides with Df_ o X. Now we can extend analytically
the vector field X (y) to the whole sphere S? by p(X) = y4 *X(y). This extended vector field p(X) is
called the Poincaré compactification of X on S3.

As S? is a differentiable manifold in order to compute the expression for p(X), we can consider the
eight local charts (U;, F;), (Vi, G;), where
U={yeS:y; >0} and V,;={yeS*:y; <0}

for i = 1,2,3,4. The diffeomorphisms F;: U; — R? and G;: V; — R3 for i = 1,2, 3,4 are the inverse of
the central projections from the origin to the tangent hyperplane at the points (+1,0,0,0), (0,+1,0,0),
(0,0,+1,0) and (0,0,0,£1), respectively.

Now we do the computations on U;. Suppose that the origin (0,0, 0,0), the point (y1,y2,y3,%4) € S
and the point (1, z1, 29, 23) in the tangent hyperplane to S® at (1,0,0,0) are collinear. Then we have

1 Z1 Z9 z3

Vi Y2 Y3 W
and, consequently
Fi(y) = (y2/y1,y3/y1,ya/y1) = (21, 22, 23)

defines the coordinates on U;. As

—y2/yi 1y 0 0
DFy(y)=|-vys/y3 0 1/y1 O
—ya/yi 0 1/y1 O

and y} ! = (23/A(2)""1), the analytical vector field p(X) in the local chart U; becomes

2y
A(Z)"_l
where P; = P;(1/23,21/23,22/23).

In a similar way, we can deduce the expressions of p(X) in Us and Us. These are

(—21P1+ Py, —z P + Ps, z3P1),

zy

A(z)n 1
where P; = P;(21/23,1/23,22/23), in Uy and

(= 21Py+ Py, —2 P2 + Ps, 23P),

25
A(Z)n—l
with Pz = 3(21/23,2’2/23, 1/23), in Ug.

The expression for p(X) in Uy is ngrl(Pl, P,, P;) and the expression for p(X) in the local chart V;
is the same as in U; multiplied by (—1)""!, where n is the degree of X, for all i = 1,2, 3, 4.

(= 21P3 + Py, —2P3 + Py, 23P3),

Note that we can omit the common factor 1/(A(z))"~! in the expression of the compactification
vector field p(X) in the local charts doing a rescaling of the time variable.

From now on we will consider only the orthogonal projection of p(X) from the northern hemisphere
to y4 = 0 which we will denote by p(X) again. Observe that the projection of the closed northern
hemisphere is a closed ball of radius one denoted by B, whose interior is diffeomorphic to R? and whose
boundary S? corresponds to the infinity of R3. Moreover, p(X) is defined in the whole closed ball B in
such way that the flow on the boundary is invariant. The vector field induced by p(X) on B is called the
Poincaré compactification of X and B is called the Poincaré sphere.

All the points on the invariant sphere S? at infinity in the coordinates of any local chart U; and V;
have z3 = 0.



2.3 Integrability theory

We start this subsection with the Darboux theory of integrability. As usual C[z,y, 2] denotes the ring
of polynomial functions in the variables x,y and z. Given f € C[z,y,z] \ C we say that the surface
f(z,y,z) = 0is an invariant algebraic surface of system if there exists k € C[z,y, 2] such that
of 2 of of

ayz +b)=— + (z° —y)=— 1 —dx)— =kf. 7

(ayz +b) 57+ ( y)8y+( )5, =kf (7)
The polynomial % is called the cofactor of the invariant algebraic surface f = 0 and it has degree at
most 1. When k = 0, f is a polynomial first integral. When a real polynomial differential system has a
complex invariant algebraic surface, then it has also its conjugate. It is important to consider the complex
invariant algebraic surfaces of the real polynomial differential systems because sometimes these forces the
real integrability of the system.

Let f,g € Clz,y, z] and assume that f and g are relatively prime in the ring C|x, y, 2], or that g = 1.
Then the function exp(f/g) ¢ C is called an exponential factor of system if for some polynomial
L € C[z,y, 2] of degree at most 1 we have

oz oy 0z

As before we say that L is the cofactor of the exponential factor exp (f/g). We observe that in the
definition of exponential factor if f,g € C[z,y, 2| then the exponential factor is a complex function.
Again when a real polynomial differential system has a complex exponential factor surface, then it has
also its conjugate, and both are important for the existence of real first integrals of the system. The
exponential factors are related with the multiplicity of the invariant algebraic surfaces, for more details
see [3], Chapter 8 of [4], and [0 [7].

Let U be an open and dense subset of R?, we say that a nonconstant function H: U — R is a
first integral of system on U if H(x(t),y(t),2(t)) is constant for all of the values of ¢ for which
(x(t),y(t), 2(t)) is a solution of system contained in U. Obviously H is a first integral of system
if and only if

(ayz +b) + (2® —y) + (1 — 4x) =L exp(f/g). (8)

oH ., OH oH
(ayz+b)%+(a; _y)67y+(1_4x)5_0’

for all (z,y,2) € U.
A first integral is called a Darboux first integral if it is a first integral of the form

A1 A 153 “w
1 ...fppFl ...qu’

where f; = 0 are invariant algebraic surfaces of system fori=1,...p, and F} are exponential factors
of system forj=1,...,q, \i,u; € C.
The next result, proved in [4], explain how to find Darboux first integrals.

Proposition 4. Suppose that a polynomial system of degree m admits p invariant algebraic surfaces
fi = 0 with cofactors k; for i = 1,....,p and q exponential factors exp(g;/h;) with cofactors L; for
j=1,....q. Then, there exist \; and p; € C not all zero such that

Z)\ZKZ- +3 piL; =0, 9)

if and only if the function

is a Darboux first integral of system .



The following result whose proof is given in [6, [7] will be useful to prove statement (b) of Theorem

Bl
Lemma 5. The following statements hold.

(a) Ifexp(f/g) is an exponential factor for the polynomial differential system and g is not a constant
polynomial, then g = 0 is an invariant algebraic surface.

(b) Eventually exp(f) can be an exponential factor, coming from the multiplicity of the infinity invariant
plane.

3 Hopf bifurcation

In this section we prove Theorem [II We will separate each of the statements in Theorem [1| in different
subsections.

Proof of Theorem[lj(a). System has the equilibrium point p = (1/4,a/16, —16b/a) with a # 0. The
proof is made computing directly the eigenvalues at the equilibrium point. The characteristic polynomial
of the linear part of system at the equilibrium point p is
a
) =——— (= +8b)A— AT = \3
p(N) =-7-(5+8b)

As p()\) is a polynomial of degree 3, it has either one, two (then one has multiplicity 2), or three real
zeros. Imposing the condition

p(A) = (A = k)(\* +5%) (10)
with k, 8 € R, k # 0 and 5 > 0 we obtain a system of three equations that correspond to the coefficients

of the terms of degree 0,1 and 2 in A of the polynomial in . This system has only the solution
k=-1,b=0,8=+/a/2, with a > 0. This completes the proof. O

Proof of Theorem ( b). We will compute the first Lyapunov coefficient at the equilibrium point p of
system with (a,b) € C. We will use the projection method described in Section with wy = v/a/2,

X0 =p, p = (a,b) and po = (a,0).
The linear part of system at the equilibrium point p is

0 0 a6
A=[1/2 -1 0
-4 0 0

The eigenvalues of A are +iv/a/2 and —1. In this case, the bilinear form B evaluated at two vectors
u = (u1,us,us) and v = (v, ve,vs3) is given by

a
B(u, U) = <2(U3U2 + UQU3), U1, 0) .

The normalized eigenvector q of A associated to the eigenvalue i/a/2 normalized so that G-q =1 is

—va(d+a) ( a4+ a) )
= 7, —. —8va .
1= /o561 69ata®\ Va2 Va

The normalized adjoint eigenvector p such that ATp = —ip, where A7 is the transpose of the matrix A,
sothat p-q=11is
—V/256 4 69a + a? ( 0 \/§>
= 1,0, —— ).
2v/a(4+ a) 8



The vectors hi; and hog are

a
hy=——————(0,4+a,12
M T256 + 69a + a2 (07 +a, 8>7
L ;  a(16/a + (44 + 3a)i) .
o = 32 2 —128 91 ).
B 3(256+69a+a2)< ailva+2), ——— 25— T128ValVa+2)
Moreover,

~ 2a%2(12v/a + 15a%/% + (8 — 46a + 6a2)1)
177 3(Va — i) (Va — 2i)(256 + 69a + a?)
The first Lyapunov coefficient is given by

B a?(16 — 40a + a?)
O = G+ 4)(256 + 690 + )

If 16 — 40a + a? # 0 then system has a transversal Hopf point at p for b = 0 and a > 0. Note
that the denominator of I1((a,0)) is positive because a > 0.

If 16 —40a+a? > 0 which corresponds to a < 4(5—2v/6) or a > 4(5+2v/6) then 1, ((a, 0)) is negative,
so the Hopf point at p is a asymptotic stable (weak attractor focus).

If 16 — 40a + a? < 0 which corresponds to 4(5 — 2v/6) < a < 4(5 + 21/6) then [1((a,0)) is positive,
so the Hopf point at p is unstable (weak repelling focus). This completes the proof. O

Proof of Theorem[]|(c) and (d). We will only proof statement (c) of Theorem [I] because the proof os
statement (d) is analogous. We consider system with b = 0 and a = 4(5 — 2v/6). Guided by Section
first we compute hsq, solving system @ Doing that we get s =0 and

—608v/2 ( \/—20546 — 1815v/6 4 9(29635v/2 + 24189+/3) 4>

21 = 1, 4.
\/1809817388739 + 7388542733431/6 114v2

The vectors hsg, hso, h31 and hoo are, respectively

\/2 4
° (507 ’ 9\/6) ( 51503 h§07 hgo),

h3o = h
07 /80881 (61446 — 25082v/6 + (55200v/3 — 67692+/2)i)
256

- = o (pl 2 3
o = T56s250471535 40 M0 o),
B 64 o
ha1 = Seaesisoazor e Man e,
512
hop = s =1 (0,5(24716931 — 10079780V/6), 16(—56419784 + 23146371/6)),

where

hiy = 94944 — 38760v/6 + (131641/5 — 2v/6 — 53761/6(5 — 2v/6))i,
h2, = 19785 — 80776 — (23731/5 — 2v/6 + 9671/ 6(5 — 2v/6))i,
h3y = —17552 + 7168v/6 + (128001/5 — 2v/6 — 52161/ 6(5 — 2v/6))i,

hlo = 16(—1953106124 + 803446490/6 4 (70176310v2 — 80224605v/3)i),

6541736161 (—7445240v/2 + 6079280+/3 + (—12387403 + 5057280+/6)1)
1935(5770036+/2 — 4714916+/3 + (651169 — 263780/6)1)

hiy = 16(100321195 + 10048295v/6 + (4572333462 — 346213144+/3)i),

)

2 _
h’40_

10



hi, = —8(—T926775675 + 32357273356 + (—5501563156v/2 + 4489741563v/3)i),

2 —92397528797 + 37723310264+/6 + (107493145530+/2 — 87106977438+/3)7)
31 — )
19

h3, = —16(—4076702851 4 1668298723/6 + (21392332462 — 1752971219V/3)i).

Finally
G — 512(951258+/2 + 741120/3 + (1035205 4 346030+/6)i
2 387(350363749v/2 + 286072179/3) ’
and so 7
256(—267817529746 + 109358484143+/6)
12(4(5 = 2v6),0) = :
2(4(5 - 2V6),0) 48101385991833
Since l5(4(5 —2\/6), 0) > 0, system has a transversal Hopf point of codimension 2 at p. This completes
the proof. ]

4 Compactification of Poincaré

In this section we investigate the flow of system at infinity by analyzing the Poincaré compactification
of the system in the local charts U;,V; for i = 1,2, 3.

From the results of Section the expression of the Poincaré compactification p(X) of system
in the local chart U is given by

Z1=1-— az%zz — 2123 — bzlzg,
39 = —az125 — 4z + 25 — bzp2s, (11)

23 = —z3(az122 + b23).
For z3 = 0 (which correspond to the points on the sphere S? at infinity) system becomes

z21=1— azfzz,,

Zo = —azlzg.

This system has no equilibria. It follows from the Flow Box Theorem that the dynamics on local chart
U; is equivalent to the one shown in Figure 7?7, whose the solutions are given by parallel straight lines.

The flow in the local chart V; is the same as the flow in the local chart U; because the compacted
vector field p(X) in Vi coincides with the vector field p(X) in U; multiplied by —1. Hence the phase
portrait on the chart V; is the same as the one shown in the Figure [3| reserving in an appropriate way
the direction of the time.

In order to obtain the expression of the Poincaré compactification p(X) of system in the local
chart Us we use again the results given in Section 2} From there we get the system

; 3 2

21 = —2] +az + 2123 + b2z,

. 2 2

Zo = —2iz9 — 42123 + 2923 + 23, (12)
. 2

Z3 = —(2]{ — 23)23.

System restricted to z3 = 0 becomes

. 3
zZ1 = —27 + azg,

22 = _Z%ZQ.

11
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Figure 3: Phase portrait of system on the Poincaré sphere at infinity in the local charts U; (on the
left-hand side), Us (on the center) and Us (on the right-hand side).

The origin is the unique equilibria of system and it is a nilpotent point. Applying Theorem 3.5 in
[4] we conclude that the origin is an stable node. It local dynamics on the local chart Us is topologically
equivalent to the one shown in Figure

Again the flow in the local chart V5 is the same as the flow in the local chart U; shown in Figure
by reversing in an appropriate way the direction of the time.

Finally, the expression of the Poincaré compactification p(X) of system in the local chart Us is
21 = azg + 42;%23 + bz§ — zlzg,
2o = zf — 2923 + 4212923 — zgzg, (14)
23 = (421 — 23)23.
Observe that system restricted to the invariant z1zo-plane reduces to
1 = azs,
2y = 22

The solutions of this system behave as in Figure [3| which corresponds to the dynamics of system
in the local chart Us. Indeed the origin is a nilpotent equilibrium point and from Theorem 3.5 in [4] we
conclude that the origin is a cusp (in this case f(x) = 0, F(z) = B(x,0) = 22 and G(z) = 0, with m
even). The flow at infinity in the local chart V5 is the same as the flow in the local chart Us reversing
appropriately the time.

Proof of Theorem[3 Considering the analysis made before and gluing the flow in the three studied charts,
taking into account its orientation shown in Figure [d] we have a global picture of the dynamical behavior
of system at infinity. The system has four equilibrium points on the sphere, two nodes and two cusps
and there are no periodic orbits. We observe that the description of the complete phase portrait of system
on the sphere at infinity was possible because of the invariance of these sets under the flow of the
compactified system. This proves Theorem [2, We remark that the behavior of the flow at infinity does
not depend on the parameter b and the global phase portrait at the sphere for different values of a are

topologically equivalent.
O

5 Darboux integrability
In this section we prove Theorem [3 We first prove statement (a) proceeding by contradiction. Let f €

Clz,y, 2]\ C be an invariant algebraic surface of system with cofactor k. Then k = ko+kix+koy+ksz
for some kg, k1, ko, k3 € C.

12



Figure 4: Orientation of the local charts U;, i = 1,2, 3 in the positive endpoints of coordinate axis x,y, z,
used to drawn the phase portrait of system on the Poincaré sphere at infinity (Figure . The charts
Vi, i = 1,2,3 are diametrically opposed to U, in the negative endpoints of the coordinate axis.

First we will show that ko = k3 = 0. Expanding f in powers of the variable y we get f =
Z;n:o fi(z,2)y’ where f; are polynomials in the variables z,z and m € NU {0}. Computing the terms
of y™ ! in (7)) we obtain

O fm
—— =kafm.
az o 2fm
Solving this linear differential equation we get
k2$
fm:gm(z)eXp( )7
az

where g,, is an arbitrary smooth function in z. Since f,, must be a polynomial we must have that either
fm =0o0r ko =0. If kg # 0 then f = f(x,2) and so by it must satisfy

0 7]
(ayz—i—b)—f +(1 —4x)—f = (ko + k1x + koy + k32) f. (15)
ox 0z
The linear terms in y in ([15)) satisfy
6f _ . o kgx
azg- = kof, thatis, f=g(z)exp (E)’

for some arbitrary smooth function g. Since f must be a polynomial and ks # 0 we must have that f =0
in contradiction with the fact that f is an invariant algebraic surface. In short, ko = 0.

Expanding f in powers of the variable z we get f = ZT:O fi(z,y)27 where f; are polynomials in the
variables x,y and m € NU {0}. Computing the terms of 2"*! in we get

8fm k‘gl‘

ay% = kam and so fm = gm(y) exp (Ty)»

where g,, is an arbitrary smooth function in the variable y. Since f,, must be a polynomial we must have
that either f,, =0 or k3 = 0. If k3 # 0 then f = f(x,y) and so by (7)

(ayz + b)% + (22 — y)% = (ko + k12 + k32) f. (16)

13



The linear terms in the variable z in satisfy

7] . ksx
gy =laf, thatis, f =glexp ()

for some arbitrary smooth function g. Since f must be a polynomial and k3 # 0 we must have that f =0
in contradiction with the fact that f is an invariant algebraic surface. So, k3 = 0.

Let n be the degree of f. Expanding the invariant algebraic surface f in sum of its homogeneous
parts we get f = Z?:o fi(z,y,z) where each f;(z,y, z) is a homogeneous polynomial in x,y, z of degree
j. Without loss of generality we can assume that f,, # 0 and n > 1.

Computing the terms of degree n + 1 in we have

Ofn | 20fn

ayz—— +<x

o ay =kizfn (17)

or in other words, if we consider the linear partial differential operator of the form

0 5 0
M = ayz o +x oy (18)

then equation can be written as
Mfn = kizfn. (19)

The characteristic equations associated with the linear partial differential equation in are

dz dr ayz

dy 0 dy 2%
This system of equations has the general solution
3 2
L Y
z=dy, — —azZ* =da,
1 3 9 2

where dy and dy are constants of integration. According with the method of characteristics, we make the
change of variables

uz;—az%, v=y, w=2z. (20)
Its inverse transformation is
02 1/3
T = <3u + 3aw2> , y=v, z=uw. (21)

Under changes and , equation becomes the following ordinary differential equation (for fixed

u, w):
02 1/3df B
. AL
(3u+3aw 5 > » 1.fn;

where f, is f,, written in the variables u, v and w. In what follows, we always use 6 to denote a function
0(x,y, z) written in terms of the variables u,v and w. Using that

dv 21/3 ’1/3F1(1 13 anw)7

, 1/3 7 31/3 3792792 4 (22)
<3u+3aw”2>
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where F is the hypergeometric function defined as

- b
Fi(a,b,c,2) =Y Mzk, with (@), =z(z4+1)---(x+k—1) (23)
=0 (C)kk!
we get that
_ B 113 av’w
fn = k121/3gn(u7w)vu 1/?’F‘l (ga 57 ia - U )7
being g, an arbitrary smooth function in u and w. So,
- z3 y? k121/3y 113 ay’z
fn(xayvz) = fn(u,v,w) = gn(i - 0,21*,21) 1/3 1(77 ara) _ﬁ>
3 2 (2 - w%)/ 372727 2 g%

z2 y=
3 — Az

a homogeneous polynomial of degree n we must have that k; = 0 and f, is a polynomial in the variables
u and w. Consequently, the cofactor of every invariant algebraic surface of system is constant, i.e,
k = ky and

Note that it follows from that Fy (%, %, %, —13‘”’%) is never a polynomial. So, in order that f, is

[n/3] 2

Z aiz"” 31( —az%)l, (24)

where [-] stands for the integer part functlon of a real number.
The terms of degree n in are

Ofn Ofn
Moy =hofu+ —af g
[n/3] 2. [n/3] 3 2, 1-1
n—3l Y 2 n—3l (T Y
=ho ) iz (5 - ) —oo 2 iz (5 -=%) (25)

[n/3] 2 [n/3]

l 2\ 1-1
—|—4xZal n — 31)z" 30 1(3 az%) —2axy22alz" 3l(3 —az%) .
1=0

Using transformations and and working in a similar way to solve f,, we get the following ordinary
differential equation (for fixed u and w):

2/3df ) [n/3] [n/3]
<3u+3aw 2> P =k Z aw" 3t — quwo® Z aylw™ 3yt

[n/3] [n/3]
+ 4(3u + 3aw— 5 ) Z ar(n — 3w 3yt — <3u + 3aw— ) 2 Z aglw™ 3y
1=0

Integrating this equation with respect to v and using the formula in together with

22/3 1 2 2
o 25 = qasvu F (7’7’3_&1} w)’
J\ % 32/ 2732 U
3u + 3aw G
v2dv 21/332/3 ) 21/332/3 113 a’w
- B2 2 BB ER (- 22
A\ VP Taw v(utav'w) Taw 0 Fl(?)’ 12’ U )’
<3u+3aw”2>
v2dv 22/331/3 5 1 22/331/3 123 a’w
_ /3 _ 2o 1/3F(777_ )
L\ 23 Saw v(u+ aviw) baw 0 TN\ 3T Ty )
<3u+3aw”2>
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we obtain

i 22/3 123 alwy LY 31N s s
_ = 4 - a4 WU et n— —-2/3
fn_lfgn_l(u,w)Jr32/311F1(2,3,2, " ) lEOaz<ko+ 5>w u
92/331/3 /3] 94/332/3 [n/3] )
— T3U(u+ av2w)1/3 Z aylw™ 31 — %v(quavzw)Z/?’ Z alw™ 31yl
=0 =0
[n/3]
113 cw2w 6
94/332/3 ), 7, ( ) <4 _ 7) n—3l—1, 1—-1/3
+ 3 332 a E a;(4(n —31) + 7l w u ,

where g,,_1 is an arbitrary smooth function in v and w. Since f,_1 must be a homogeneous polynomial

2 . 2 .
of degree n — 1 and neither F} (2, g, 3, %) nor F (3, ;, ‘;, %) are polynomials we must have

al(kzo—&—%l) fori=0,...,[n/3], 26)
al(4(n -3l + gl) for1=0,...,[n/3].

Note that the second condition in implies that
a;=0 forl=0,...,[n/3]

because [ > 0 and n — 3] > 0 with n > 1. Therefore, from we get that f, = 0 which is not possible.
Note that a polynomial first integral is an algebraic invariant surface with cofactor k = 0. Proceeding
as above with kg = k1 = ko = k3 = 0 we also obtain that there are no polynomial first integrals. This
concludes the proof of statement (a).

Now we prove statement (b). Let F = exp(f/g) ¢ C be an exponential factor of system with
cofactor L. Then L = Lo+ Lix + Loy + L3z, where f, g € C[z,y, z] with (f,g) = 1. From Theorem a)
and Lemma [5| we have that E = exp(f) with f = f(z,y,2) € C[z,y, 2] ¢ C.

It follows from equation that f satisfies

(ayz—f—b)g—f—&-(x —y)?—f—(l— )aff Lo+ Lyix + Loy + L3z, (27)

where we have simplified the common factor exp(f).

Let n be the degree of f. We write f = Y7 fi(x,y,2), where f; is a homogeneous polynomial of
degree i. Without loss of generality we can assume that f,, # 0. Assume n > 1. Computing the terms of
degree n + 1 in (8) we obtain

Ofn | 20fn
ayzaw +x ay

or using the operator M in we have M f,, = 0. Proceeding as we did to solve we obtain that f,
becomes as in . Computing the terms of degree n in we obtain

=0

[n/3]

2(1-1
Mf,_1 = ya—J;L + 4x % —azy? Z allz"" 3l( az%)

[n/3] 9 3

3 N [n/3] " yz -1
+ 4x Z ay(n — 30)z" 3= 1( 3 az;) — 2axy? Z allznfg'l(? - az;) .
1=0 1=0

which is with kg = 0. Proceeding exactly in the same way as we did to solve we get that f,, =0,
which is not possible. So n = 1.

16



We can write f = a1z + agy + asz with a; € C. Imposing that f must satisfy we get f = a3z
with cofactor ag(1 — 42). This concludes the proof of statement (b) of Theorem

It follows from Proposition 4| and statements (a) and (b) that if system has a Darboux first
integral then there exist 4 € C\ {0} such that (9) holds, that is, such that u(1 —4z) = 0. But this is
not possible. Hence, there are no Darboux first integrals for system and the proof of statement (c) of
Theorem [3] is completed.
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