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We investigate three kinds of instabilities in binary immiscible homogeneous Bose-Einstein condensate,
considering rubidium isotopes 85Rb and 87Rb confined in two-dimensional circular box. Rayleigh-Taylor and
Kelvin-Helmholtz (KH) instability types are studied under strong perturbations. Without external perturba-
tion, instabilities are also probed by immiscible-to-miscible quenching transition, under two different initial
configurations. Our numerical simulations show that all such instability dynamics are dominated by large
vortex production and sound-wave (phonon) propagation. For long-term propagation, vortex dynamics become
dominant over sound waves in the KH instability, while sound-wave excitations predominate in the other cases.
For all the dynamical simulations, the emergence of possible scaling laws are investigated for the compressible
and incompressible parts of the kinetic energy spectra, in terms of the wave number k. The corresponding results
are compared with the classical Kolmogorov scalings, k−5/3 and k−3, for turbulence, which are observed in the
kinetic energy spectra at some specific time intervals.
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I. INTRODUCTION

In classical fluid dynamics, two regimes can be charac-
terized by the flow of a fluid: laminar or turbulent. The first
occurs when viscous forces dominate, leading to smooth and
constant motion, with the turbulent flow dominated by inertial
forces, creating vortices, chaotic eddies, and instabilities. The
Reynolds number serves as a guide to measuring the effect of
fluid friction and viscosity in the fluid, being low for constant
smooth fluid motion (laminar) and high for the case where
the flow is turbulent [1–3]. Most flows observed in nature and
physical systems are turbulent. The structure of turbulence
in classical incompressible fluids was originally proposed by
Kolmogorov [4] in 1941 as related to large Reynolds num-
bers. This and other studies by Kolmogorov on turbulence are
detailed in a review by Frisch [5], together with the related in-
vestigations by several other authors. In quantum fluids, such
as superfluid helium and Bose-Einstein condensate (BEC)
atomic systems, turbulent motions have emerged as a new
interdisciplinary research topic, named quantum turbulence
(QT) in the literature [6]. For an ideal zero-temperature su-
perfluid, the problem in the characterization of turbulence
by the Reynolds number [7] was discussed in Refs. [8,9], in
which the authors define a superfluid Reynolds number via
dynamical similarity to identify a regime transition to turbu-
lence. Also, by considering heat transport and thermal waves
in laminar and turbulent superfluid helium [10], a quantum
analogous Reynolds number for the transition to superfluid
turbulence was defined in Ref. [11], with a related discussion
in the context of BEC formalism in Ref. [12]. Currently, the

studies on QT can be followed by several available works
and reviews [13–19], recently updated in Ref. [20]. The quite
recent works reported in Refs. [21–23] are also indicative
of the actual interest in the analyses of QT in BEC. Some
related numerical analyses and benchmark high-performing
computer simulations are provided in Refs. [24,25]. Turbu-
lence is associated with stochastic movements of vortices
in a fluid, whose properties differ in classical and quantum
physics. Therefore, it is rooted in the fundamental differences
in how vorticity behaves in these two regimes. In the quantum
regime, vortices have quantized circulation, and the flow has
negligible viscosity. Vortices do not decay by viscous diffu-
sion but through other mechanisms like reconnections and
phonon emission, as shown in an experimental and numerical
study of three-dimensional (3D) quantum vortex interactions
in a cigar-shaped atomic BEC [26]. In the classical regime,
vortices can have any circulation value, and vorticity decays
through viscous diffusion, leading to the dissipation of tur-
bulent energy. These differences make quantum turbulence a
fascinating area of study, with implications for understanding
superfluidity, quantum fluids, and the behavior of matter at
very low temperatures.

The first experimental observation of QT was reported
by considering the 4He superfluid [27], with more recent
experiments being extended to atomic BECs [28–33]. The
BEC experiments and related studies have received signif-
icant attention due to the advanced techniques available in
cold-atom laboratories, which allow for precise control over
the condensate parameters. For instance, in BEC researchers
can manipulate the trapping potential, interaction strength,
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and temperature with high accuracy, enabling detailed studies
of quantum turbulence. The characterization of a turbulent
fluid occurs through spectral analysis, with the energy being
distributed across different length scales, whereas in a non-
turbulent fluid, there is no significant energy transfer across
scales. The evolution of large clusters with 87Rb BECs has
been demonstrated in experiments reported in Ref. [34], with
large-scale flow from turbulence being studied experimen-
tally by considering a 2D superfluid [35]. Identified in the
energy spectrum of these experiments, the emergence of the
classical Kolmogorov’s scaling [4] was also previously ob-
served in studies on turbulence at low-temperature superfluid
flows [36]. These experiments collectively advance our un-
derstanding of quantum turbulence, bridging the gap between
classical and quantum fluid dynamics. The observation of Kol-
mogorov’s scaling in these systems is particularly noteworthy,
as it suggests that some aspects of turbulence are universal,
transcending the classical and quantum divide.

Further, theoretical studies on QT have been established by
using appropriate versions of the mean-field Gross-Pitaevskii
(GP) formalism, as one can follow from Refs. [36–39]. In this
regard, one should note that, in the kinetic energy spectrum
over the wave number k of quantum fluids, the occurrence of
the inverse energy cascade phenomenon was clearly verified
in Refs. [40,41], through the analyses of QT in forced 2D,
and related signatures of coherent emerging vortex structures.
Consistent with Kolmogorov’s scaling, the vortex dynamics
follow a k−5/3 power law in the infrared region of the spectrum
and k−3 in the ultraviolet region. Such scaling laws provide in-
sights into the nature of energy transfer in QT, with large-scale
vortices dominating the dynamics in the infrared region, while
the k−3 scaling in the ultraviolet region indicates a turbulent
cascade similar to that observed in classical turbulence, where
energy is transferred from larger to smaller scales.

Meanwhile, the ongoing experimental studies with bi-
nary atomic mixtures and hyperfine spin states of the same
atom [42] provide motivations to extend such studies to turbu-
lence and vortex patterns in BEC multicomponent mixtures.
They are of great interest due to the miscibility proper-
ties [43,44]. In particular, the phase-separated binary mixtures
show a rich variety of pattern formations, recognized as
similar to the classical Rayleigh-Taylor (RT) [45,46] and
Kelvin-Helmholtz (KH) [47,48] instabilities. The RT in-
stability is overviewed in Ref. [49] and more recently in
Ref. [50]; whereas the KH was first studied by consider-
ing instability in superfluids [51,52]. When considering BEC
mixtures, the studies on these instabilities can be followed
by plenty of works from the mid-2000s to now, exemplified
by Refs. [53–65]. From classical fluid experiments, RT in-
stabilities are known to start at the interface between two
plane-parallel immiscible fluids under the gravity field, with
the denser fluid layer at the top of the less dense one. As the
equilibrium is broken, the fluid at the top moves downward,
with an equal volume of the lighter one pushing upward, re-
sulting in mushroom head formations of the denser fluid inside
the space first occupied by the less dense one. Distinguishable
from RT, the KH instabilities occur when there is a differ-
ence in speed between the two fluids at the interface. These
instabilities are investigated theoretically by using mean field
and Bogoliubov theories. Analytical tools are developed for

classical studies on hydrodynamic instabilities and turbulence,
which can be followed by the overview provided in Ref. [66].
However, no extensive studies discuss the QT for homoge-
neous binary immiscible mixtures from the perspective of
analyzing Kolmogorov’s spectrum, which could reveal some
relation between QT and classical turbulence. In conjunction
with Kolmogorov turbulence, a recent study was also reported
in Ref. [65] by considering a strongly stirred immiscible
mixture of two components, in which the authors extract
power-law behaviors associated with the highly or slightly
immiscible conditions.

Given current cold-atom experimental activities on dipolar
systems (see Ref. [67] on the observation of dipolar molecules
and references therein), some of us have also considered
QT in dipolar BECs, generated by an external penetra-
ble Gaussian-type circularly moving obstacle that produces
vortex-antivortex pairs [68], following related studies with
linearly moving obstacles [69]. Along these lines, binary BEC
mixtures have also been studied with the assumptions of mass-
imbalanced components confined in quasi-two-dimensional
(quasi-2D) pancakelike trap potential slightly perturbed el-
liptically by a time-dependent periodic potential [64,70]. In
the analysis of turbulence in mixtures of quantum fluids when
considering quantized vortices [10], another aspect of interest
is to identify the complexity by the corresponding fractal
dimensions and scale distributions [71,72], which can also be
done by following some classical investigations [73,74].

In this work, we aim to perform numerical investigations
on the emergence of instabilities and quantum turbulence in
binary BEC mixtures confined in a quasi-2D circular box,
considering different possible initial conditions for the dy-
namical evolution of the mixture. In all these cases, the
coupled system is initially prepared in an immiscible stable
configuration by solving the GP equation in the imaginary
time. Then, before following the real-time dynamical evolu-
tion, for the onset of instabilities, the initial nonequilibrium
state is prepared by changing the linear and/or nonlinear in-
teractions, as detailed in our numerical simulations. Particular
aspects of the dynamics of each kind of instability that we
are reporting may demand further deep-focused investigation
beyond our present work’s scope. Within our numerical sim-
ulations, we have assumed the coupled 85Rb - 87Rb system.
However, the corresponding results can be easily extended to
other coupled binary mixtures, as well as to coupled spinor
states of the same atomic species, such as the recently reported
experiments on RT instability considering hyperfine states of
23Na [75]. By assuming initial immiscible conditions, with
interspecies interactions larger than the intraspecies ones, ho-
mogeneous density distributions will be considered for both
spatially trapped separated components.

In our following studies of RT and KH kinds of instabili-
ties, the same initial ground-state configurations are assumed,
with the mixtures kept in immiscible regimes along the time
evolution. The RT instability is triggered by introducing an
initial time-independent sinusoidal perturbation in the ground-
state solution (previously prepared in imaginary time) along
the x direction, in the interface between the components ini-
tially represented by y = 0. The perturbation in the real-time
evolution is applied to one of the species over a short time in-
terval. The simulation follows with the sinusoidal perturbation
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replaced by linearly growing potential along the y direction,
providing space constant forces applied to both components
in opposite directions, breaking the stability of the interface
between the immiscible fluids. For the KH instability, to sim-
ulate the difference in speed between the two classical fluids
at the interface, the additional external potentials applied to
both condensed species provide constant spacial forces along
opposite x directions, parallel to the interface between the
immiscible mixture.

Next, by extending our binary instability analyses, we try
to distinguish the above two cases, in which external linear
forces are responsible for the dynamics, from cases in which
the dynamical instabilities are due to sudden variations of the
nonlinear interactions. Therefore, in this third approach, we
investigate the dynamical response of the system under an
immiscible-to-a-miscible quenching transition (IMQT), im-
plemented by a sudden reduction in the ratio between the
inter- and intraspecies scattering lengths near the transition
threshold. For that, the dynamics is explored by considering
two different initial conditions for the space configuration
and quenching transition. The interest in this case follows
previous studies on phase separation and modulation insta-
bilities with two-component atomic systems [76–80]. As will
be shown, all the above-prescribed instabilities induce numer-
ous vortex dipoles and turbulent flow in the condensates. To
analyze and understand them, we calculate the corresponding
compressible and incompressible kinetic energy parts of the
spectrum, by following an approach detailed in Ref. [81]. As
is known, in a fluid mixture, the compressible part is associ-
ated with density fluctuations and production of sound waves
(phonons), whereas the incompressible part is associated with
vortex dynamics and rotational motion. Their analyses can
provide information on possible universal scaling laws, which
could bring some consistency with the classical Kolmogorov’s
scaling for turbulence, as the studies provided in Ref. [40].

The present study is concerned with the expectation of
improving our understanding of possible similarities and char-
acteristic differences when comparing instabilities of classical
and quantum fluids. In particular, significant differences are
expected to arise due to quantization effects, which do not
occur in classical fluids, such as vortex quantization. On the
other hand, the knowledge of the dynamics of quantum turbu-
lence may also help us improve our understanding of classical
fluid turbulence (which was referred to by Richard Feynman
as the most important unsolved problem in classical physics,
given the lack of a description from first principles [82]).
Within this purpose, we follow similar techniques of analysis
by looking for the corresponding Kolmogorov’s scaling in
the spectrum. For that, the behavior of the compressible and
incompressible parts of the fluid is verified from large to small
scales, in time intervals when the onset of instabilities can
occur, such that a comparison can be established with the
classical counterpart behavior. For longer times, we are not
expecting that a Kolmogorov-like spectral analysis could be
helpful in our comparison, considering that the QT dynamics
should differ from classical dynamics due to the presence of
quantized vortices and the absence of viscosity.

In the next Sec. II, the coupled GP mean-field model
formalism is described together with the corresponding ex-
pressions for the kinetic energy spectrum decomposition. The

instability simulations are described and discussed in Sec. III
by considering the RT and KH instabilities generated by ex-
ternal forces, together with IMQT instabilities obtained by
sudden changes in the miscibility of the coupled system. Fi-
nally, a summary with main conclusions is given in Sec. IV.

II. MEAN-FIELD MODEL FOR BINARY BEC CONFINED
IN A UNIFORM CIRCULAR BOX

In our approach for the coupled BEC system, we are
assuming a quasi-2D pancakelike configuration, with two
atomic species (identified by i = 1, 2, with masses mi) having
the same number of atoms Ni ≡ N , strongly confined by 3D
harmonic traps with aspect ratios λi = ωi,z/ωi,⊥, where ωi,z

and ωi,⊥(≡ωi,x = ωi,y) are, respectively, the longitudinal and
transverse trap frequencies for the species i. Given our units in
terms of the lighter particle 1, in order to have both particles
trapped with about the same aspect ratio λ, one needs m1ω

2
1z =

m2ω
2
2z, implying ω2z/ω1z ≈ 0.99. So with trap frequencies

ωi,⊥ being the same, given by ω⊥ ≡ ωi,⊥ = 2π × 10 Hz, we
can assume λ ≈ λi = 50, with ωi,z = 2π × 500 Hz. Within
such constraints, with the binary system strongly confined to
a pancakelike 2D shape, the original 3D formalism can be
reduced to a quasi-2D one by solving analytically the part
of the Hamiltonian corresponding to the z variable, in which
the trap is given by Vi(z) = miω

2
i,zz

2/2, implying a constant
factor in the 2D formalism. As the 2D system is strongly
confined, for practical purposes, we modify the 2D-harmonic
trap by further assuming the coupled system is confined in a
uniform circular box, as well as eventually modified according
to the different model approaches under analysis. Relying
on the experimental possibilities for tuning the two-species
contact interactions ai j through Feshbach resonance mecha-
nisms [83,84], in all the simulations, we are assuming the
contact interactions ai j are sufficiently repulsive, with iden-
tical and fixed intraspecies scattering lengths for both species,
a11 = a22 = 100a0 (a0 is the Bohr radius), varying the inter-
species a12 to control the miscibility. Looking for sufficiently
controllable instabilities, our numerical choices of inter- and
intraspecies parameters are not too far apart, with their ratio
being close to the miscibility threshold. As already pointed
out, in the real-time evolution, the onset of the instabilities is
provoked by different kinds of changes in the linear or nonlin-
ear interactions, as will be detailed. While linear perturbations
trigger RT and KH instabilities, those due to IMQT are caused
by sudden changes in nonlinear interactions, considering two
types of initial configurations.

Following the above discussion, we have the correspond-
ing mean-field 2D coupled GP formalism. For convenience
and computational purposes, this 2D formalism is cast in a
dimensionless format, using the original harmonic trap param-
eters, with energy, time, and length units given, respectively,
by h̄ω⊥, ω−1

⊥ , and l⊥ ≡ √
h̄/(m1ω⊥), with the first species

being used as the reference for the length unit. Correspond-
ingly, the space and time variables are such that r → l⊥r
and t → t/ω⊥, when going to dimensionless quantities. For
details on how the 2D dimensionless formalism is reached
for a mass-different binary system, one can analogously fol-
low the related expressions given in Ref. [85]. Therefore, the
coupled 2D GP equation, for the wave-function components
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ψi ≡ ψi(x, y; t ), normalized to 1,
∫ ∞
−∞ dx dy |ψi|2 = 1, is

given by

i
∂ψi

∂t
=

{
−m1

2mi
∇2

2 + Vi(x, y) +
∑
j=1,2

gi j |ψ j |2
}

ψi, (1)

where ∇2
2 ≡ ∂2/∂x2 + ∂2/∂y2. The nonlinear strengths gi j

refer to the contact interactions, related to the two-body scat-
tering lengths ai j = a ji, given by

gi j ≡
√

2πλ
m1ai jNj

mi j l⊥
, (2)

where mi j ≡ mimj/(mi + mj ) is the reduced mass. In Eq. (1),
Vi(x, y) is the 2D confining potential, initially assumed to have
an identical form for both species i = 1, 2, which will be al-
tered by linear perturbations along our numerical simulations,
as will be detailed below. So, initially, we consider Vi(x, y) as
given by a uniform circular box with fixed radius R and height
V0, given by

Vi(x, y) =
{

V0, for
√

x2 + y2 > R,

0, for
√

x2 + y2 � R,
(3)

where V0 will be considered much larger than the dimension-
less chemical potentials, V0 	 μi. (With our units defined in
terms of the transversal confining harmonic potential, as in
Ref. [86], the consistency with approaches using the longitu-
dinal frequency ωz, as Ref. [8], requires considering λ = 50,
with l⊥ = √

λ lz.)
Next, within our specific numerical simulations, to be de-

scribed in the next sections, Vi(x, y) will be altered by linear
perturbations that will not have identical form for both species
i = 1, 2. Along this work, together with the same number
of atoms for both species, we also assume the length unit
adjusted to l⊥ = 3.4 µm ≈ 6.425 × 104a0, where a0 is the
Bohr radius, such that ai j can be conveniently given in terms
of a0. The other fixed numerical factors are the size of the
2D circular box potential, defined in (3), which we assume
R = 35 (in units of l⊥), the number of atoms of both compo-
nents N = Ni = 2 × 106 and the equal intraspecies interaction
aii = 100a0.

A. Two-component miscibility

The condition to enter the immiscible regime corresponds
to the one to minimize the energy [43], given by g2

12 > g11g22,
for N1 = N2 and a11 = a22 > 0 [using Eq. (2)]. This defines
the threshold parameter δ, with the immiscible necessary con-
dition:

δ ≡
√

g2
12

g11g22
= m1 + m2

2
√

m1m2

(
a12

a11

)
> 1. (4)

The expression at the right provides the mass-dependent crit-
ical value in terms of the ratio between inter- and intraspecies
two-body scattering lengths for the miscible-immiscible tran-
sition of a homogeneous mixture. In the present case,
this critical value is close to the equal mass case (a12 

0.99993a11). A relation for the density overlap of the coupled
Bose mixtures can provide a closer definition of the misci-
bility, as the ones considered in Refs. [44,77]. In the present

investigation, for the density overlap, we assume the same
definition as the one considered in Ref. [77], given by

� =
[∫ |ψ1|2|ψ2|2 dxdy

]2(∫ |ψ1|4 dxdy
)( ∫ |ψ2|4 dxdy

) , (5)

such that � = 1 for the complete density overlap and zero for
the complete immiscible case.

B. Kinetic energy spectrum decomposition

From the Eq. (1), the corresponding total energy for the
binary system is given by

E (ψ1, ψ2) =
∫

dxdy
∑

i

{
m1|∇2ψi|2

2mi
+ Vi(x, y)|ψi|2

}

+
∫

dxdy
∑
i, j

gi j

2
|ψ j |2|ψi|2. (6)

To analyze the turbulent behavior that can occur in the coupled
system, it is appropriate to study the corresponding decom-
position of the kinetic energy spectrum for the present 2D
formalism, as detailed in Refs. [8,81]. For that, in the fluid
dynamics interpretation of the GP equation, we apply the
Madelung transformation, such that the coupled condensate
wave function is given by ψi ≡ √

ni exp (iθi ), where ni ≡
ni(x, y; t ) is the density of the species i, with θi ≡ θi(x, y; t ) the
corresponding fluid macroscopic phase. With the fluid veloc-
ity for each component i being defined as vi(x, y; t ) = ∇2θi,
and with correspondingly density-weighted velocity given by
ui ≡ ui(x, y; t ) ≡ √

nivi(x, y; t ), the kinetic energies of each
component i of the mixture can be expressed by

Ki = m1

2mi

∫
dxdy |ui|2. (7)

The kinetic energy is further decomposed in compress-
ible and incompressible parts, with the incompressible energy
primarily due to the presence of quantized vortices, and the
compressible energy associated to density fluctuation and
production of sound waves (phonons). We write this decom-
position as ui = ui,I + ui,C , in which the incompressible field
ui,I satisfies ∇ · ui,I = 0, with the compressible field ui,C sat-
isfying ∇ × ui,C = 0. Therefore, the kinetic energy terms are
decomposed as Ki = Ki,I + Ki,C , where the respective com-
pressible and incompressible parts are defined as(

Ki,I

Ki,C

)
= m1

2mi

∫
dxdy

( |ui,I |2
|ui,C |2

)
. (8)

We can obtain these compressible and incompressible kinetic
energy spectrum by considering momentum space Fourier
transform, as(

Ki,I

Ki,C

)
= m1

2mi

∫
dkxdky

( |Fi,I (kx, ky)|2
|Fi,C (kx, ky)|2

)
, (9)

where (
Fi,I (k)
Fi,C (k)

)
= 1

2π

∫
dxdy e−ikxx−ikyy

(
ui,I

ui,C

)
. (10)

From Eq. (9), the total incompressible and compressible
kinetic energies can be obtained by extending to two compo-
nents the procedure detailed in Ref. [8]. Within this procedure,
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we first obtain the spectral density in k space in polar coordi-
nates (k, φk), with the final kinetic energies by integrating on
k =

√
k2

x + k2
y , as follows:(

Ki,I

Ki,C

)
=

∫ ∞

0
dk

(
Ki,I (k)
Ki,C (k)

)
, (11)

where(
Ki,I (k)
Ki,C (k)

)
= m1k

2mi

∫ 2π

0
dφk

( |Fi,I (kx, ky)|2
|Fi,C (kx, ky)|2

)
(12)

express (for both components i of the mixture) the respective
incompressible (I) and compressible (C) kinetic energy spec-
trum over the wave number k.

C. Numerical approach

For the numerical simulations, applied to the three different
kinds of instabilities in BEC mixtures that we are reporting,
we use the split-step Crank-Nicolson method to solve Eq. (1).
It is followed by performing the Fourier transforms to reach
the compressible and incompressible kinetic energy spectra.
The details for the numerical calculations of the correspond-
ing velocity power spectra can be obtained in Refs. [8,81].
With the ground-state solutions previously prepared in the
imaginary time, the dynamics are followed by real-time evo-
lutions, in which the applied external potential and miscibility
conditions are responsible for the kinds of instabilities we
are investigating. Within our dimensionless defined quantities
(l⊥ for space and 1/ω⊥ for time), the numerical simulations
are carried out by using a square grid with 400×400 points,
with box length L ≡ Lx,y = 80 (�x = �y = 0.2), with the
corresponding wave-number infrared limit being kL = 2π/L.
The time step �t is chosen to be 10−3. For each species,
the respective full-dimensional healing lengths are assumed
fixed, such that ξi =

√
h̄2/(miμi ) ∼ 0.4 l⊥, implying μ2 =

(m1/m2)μ1. As we are assuming equal number of atoms for
the two species, with identical intraspecies scattering lengths,
only the small mass difference (m1/m2 ≈ 0.98) plays a role
in determining the chemical potential. Given the above length
unit, the corresponding dimensionless healing length is ξ =
0.4, which is covered by approximately two grid points (ξ =
2�x). Consequently, the smallest physically meaningful struc-
tures, on the order of a few ξ , are resolved by multiple grid
points, even at longer time evolution, where fine-scale struc-
tures and vortex tangles are prominent. The corresponding
infrared cut-off wave number (large scale) is kL = 2π/80 ≈
0.0785, while the ultraviolet cut-off wave number (small
scale) imposed by the grid is kmax = π/�x = π/0.2 = 15.7.

III. INSTABILITY SIMULATIONS IN BINARY
BOSE-EINSTEIN CONDENSATES

In our present study, we investigate dynamical processes
that occur with a slight mass-imbalanced binary mixture, rep-
resented by the 85Rb - 87Rb BEC system, prepared initially
in an immiscible space configuration. We explore phenom-
ena analogous to the Kelvin-Helmholtz and Rayleigh-Taylor
instabilities, engineered by externally applied perturbations,
as well as by quenching the nonlinearity of the mixture
from immiscible to miscible, called IMQT. These standard

instabilities typically evolve from stationary states, where in-
finitesimal perturbations grow over time. This is well studied
in classical fluid dynamics and can be extended to quan-
tum gases using the Bogoliubov–de Gennes (BdG) analysis,
a standard tool for examining the onset of instabilities in
quantum systems from stationary states. We must stress that,
in our investigations of what we call instabilities along the
text, the systems are dynamically changed, engineered to
evolve out of equilibrium from the beginning, due to applied
external forces or nonlinear quenching. Specifically, the math-
ematical structure of our problem precludes the use of BdG
analysis, prompting us to investigate these instabilities in a
time-dependent framework. The motivation for this approach
relies on mathematical clarity and the observation that the
resulting patterns are similar to those seen in standard cases.
Apart from several previous studies on this matter, further
motivations are brought from actual ongoing experiments con-
sidering RT and KH instabilities in BEC and quantum fluids,
such as the ones reported in Refs. [87,88] with the observa-
tion of KH instabilities considering single-component atomic
species. More recently, the authors of Ref. [89] are claiming
the first realization of KH instability in inviscid fluid, with the
observation of RT instability in binary quantum fluid being
reported in Ref. [75].

Next, we present numerical simulations leading to three
kinds of instabilities in binary mass-imbalanced mixtures of
two BEC systems, prepared in immiscible conditions. We
present our simulations for the density dynamics, compress-
ible and incompressible kinetic energies, and corresponding
spectra. The first two cases refer to RT and KH kinds of
instabilities, obtained by external forces keeping the same
immiscible initial conditions. In the case of IMQT, which
refers to sudden changes in the nonlinearity of the coupled
system, two kinds of initial conditions are investigated for
the dynamics. Even considering that all simulations can be
easily adapted to other binary atomic systems, particularly
to spinor levels of the same atom, here we are assuming the
mass-imbalanced 85Rb - 87Rb binary BEC mixture. To help us
understand the instability dynamics in the time evolution, for
each one of the density panels that we are going to show,
the corresponding phase profile is included as a twin panel
at the right-hand side of the density. Subtle phase variations
in hue indicate smooth phase gradients (no vortices). In the
complex dynamics, among the increasing number of vortices
that start to be generated, a specific vortex in one of the
species can be verified as a singularity (zero density), which
corresponds to an endpoint of a line (a line segment, having
two endpoints, refers to vortex-antivortex occurrence) in the
phase profiles. Correspondingly, in the other component, no
vortex can be found at the same location: In the density plots,
such a point emerges as a maximum (bright spot), indicating
that the hole (singularity) generated in the density distribution
of a component is filled by the other species.

For all the instabilities we have investigated, the incom-
pressible results are closely related to the production and
motion of quantized vortices, with the compressible parts
being due to sound-wave radiation, density fluctuations, and
other dissipative effects. Both can follow the same scaling
when strongly coupled, with energy transfer between the
modes. However, they do not necessarily follow the same
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energy cascade process, as the kinetic compressible mode can
be radiated away as sound waves or through other mecha-
nisms. This dynamics is discussed in different studies related
to turbulence in BEC systems, such as Refs. [29,36,37]. For
general cases of compressible turbulence, analytic support can
be found in Ref. [90]. The k−3 scaling behavior in the kinetic
energy spectrum is known to arise from the vortex core struc-
ture. Conversely, the infrared regime (when kξ � 1) arises
purely from the configuration of the vortices and turbulence.
The energy injected by the vortices and their interactions
can be observed in the infrared regime, as already noticed in
Ref. [8].

A. Rayleigh-Taylor instability in coupled BECs

In normal classical fluids, the RT instability occurs at the
interface between two different-density fluids. In particular, it
happens when the lighter fluid pushes the heavier one with the
support of the gravitational force. To simulate the occurrence
of a similar effect in ultracold systems, instead of a gravity
force acting among the two species, we assume an immiscible
binary mixture, in which the two elements are under the effect
of external opposite linear forces acting on the two compo-
nents. The mass difference between the components can be
neglected, as the simulation can be done as well with bi-
nary coupled systems having two different levels of the same
atom prepared in immiscible conditions. To contemplate this
model, we prepare the ground state by considering an axially
separated mixture, with the interspecies interaction chosen
to be larger than the intraspecies one, as shown in Fig. 1
with δ = 1.05 (a12 = 105a0 and a11 = a22 = 100a0). In our
simulation, the initial two-component ground-state solutions
of the mixture are obtained by using imaginary-time calcu-
lations, immediately followed by their real-time evolution. In
Fig. 1, the upper panels (a1) and (a2) depict the prepared initial
two-component densities for the immiscible mixture at t = 0,
when starting the real-time propagation. Due to numerical
conditions when concluding the imaginary-time calculations
and starting the real-time evolution, it happens that at t = 0
the borderline separation (between the two immiscible fluids)
starts slightly inclined as related to the horizontal line. As
anticipated, the phase profiles are included at the right-hand
side of the density plots. Related to the ground-state density
panels (a1) and (a2) at t = 0, the phases are zero in the regions
where the homogeneous fluid densities are located, as verified.
However, in the zero-density regions, the respective phases
(both species) are undefined, with the shown results just re-
flecting numerical artifacts, which appear at the threshold
when starting the real-time propagation. In all the other phase
profile panels, the changes in the color-darkness correspond
to phase variations of the fluid circulating around the singu-
larities, which goes from −π (black) to π (bright-yellow).
Interesting vortex dynamics revealed by the phase profiles
can be verified in detail by enlarging the phase-profile panels,
together with the corresponding density panels. Throughout
the temporal evolution, the two-body scattering lengths are
kept constant. To start the dynamical instability, the trap inter-
action (3) is modified by a sinusoidal x direction perturbation
applied to the first component for a short time interval from

t = 0 to t = 2, creating the density oscillation presented in
the panels (b1) and (b2). The simulation follows (for t > 2)
with the sinusoidal perturbation removed from the potential,
and replaced by the linearly varying perturbations ν1y = 1.2 y
and ν2y = −1.2 y, which provides constant forces νi in the
y direction. More explicitly, by using the usual Kronecker
δi, j (=1, for i = j; 0, otherwise) and the step function �(x)
(=1, for x > 0; 0, for x < 0), the modified dimensionless
perturbations Ṽ RT

i can be expressed by

Ṽ RT
i (x, y; t ) = Vi(x, y) + νiy�(t − 2)−δi,1�(2 − t ) cos

( x

2

)
.

(13)

To observe dynamics analogous to the ones of the RT in-
stability, the constant forces acting on both components are
in opposite y directions to mimic a system under gravity.
However, with the external forces applied as prescribed, there
is no need for the species to have different masses; the same
approach could also be applied to spinor states of the same
atom. The main relevant requirement for starting the dynamics
is the immiscibility provided by the fixed relation between
the inter- and intraspecies scattering lengths, which we are
assuming such that δ = 1.05.

For the mass-imbalanced mixture, we follow a previous
study done in Ref. [86], in which the linear force is introduced
by a small perturbation in the trap. Related experimental and
theoretical proposals for applying linear perturbations have
also been discussed in Refs. [54,55,57–59,91]. Quite similar
to our present numerical simulation, recently it was reported
in Ref. [75] an experimental observation of RT instability in
a binary quantum fluid composed of two hyperfine levels of
23Na, which are trapped by a square potential with minimal
symmetry breaking at y = 0.

In Fig. 1, the first panels (ai) and (bi) of the evolu-
tion display the density separations between the condensates,
showing the sinusoidal perturbation, introduced in the interval
0 < t � 2 [as given by Eq. (13)]. They are helpful to ob-
serve the onset of RT instability in the 85Rb - 87Rb mixture.
The dynamical process in the evolution follows just after the
replacement of the sinusoidal perturbation by the external
forces, at t = 2, with mushroom pattern formations and plenty
of vortex dipoles generated under the head of the mushrooms.
Together with the vortex dynamics, large phonon production
can also be noticed in the evolution of the coupled densities.
The panels (ci) through (gi) provide indicative snapshot results
of the RT instability simulation. In panels (gi), a tendency can
be observed for the components of the immiscible mixture to
occupy distinct spaces inside the trap, in opposite positions as
compared to the original ones. Such dynamics can better be
visualized in the animation corresponding to Fig. 1 provided
in the Supplemental Material [92].

By considering the approach presented in Sec. II B, the
instability is also being analyzed through the kinetic en-
ergy spectrum, in Fig. 2. The vorticity (measured by the
increasing number of vortices) is primarily associated with
the increase in the incompressible part of the kinetic energy,
namely Ki,I , whereas the sound-wave production is related to
the compressible part, Ki,C . The respective behaviors can be
observed from the results shown in Fig. 2, for the evolution
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FIG. 1. RT instability in the binary mixture 85Rb [(a1)–(g1)] and 87Rb [(a2)–(g2)], shown by sample time snapshots of the densities |ψi|2,
together with respective phases (as indicated, with t given inside the panels for the densities). The immiscible condition δ = a12/aii = 1.05 is
kept along the numerical simulations. The color-bar levels for densities and phases are indicated at the top, with the units for time and length
being, respectively, ω−1

⊥ and l⊥. The corresponding full-dynamical evolution is provided in the Supplemental Material [92].

of both kinetic energy parts. Following the legends and cap-
tion of Fig. 2, the solid-blue (dashed-blue) line refers to the
incompressible kinetic energy K85Rb,I (K87Rb,I ), whereas the
solid-green (dashed-green) line refers to the corresponding

compressible part, K85Rb,C (K87Rb,C). As noticed, the vorticity
of both components fast increases in the interval 2 < t <

11, when the incompressible part of the kinetic energy is
dominating the dynamics. The sound-wave production starts
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FIG. 2. Time evolutions of incompressible and compressible ki-
netic energies, KI and KC (units h̄ω⊥), for the 85Rb - 87Rb mixture,
associated with RT instabilities, with convention as indicated inside
the panel. The vertical dashed line at t ≈ 9 identifies the approximate
time instant for the energy transition from incompressible (related to
the vorticity) to a compressible (sound waves) dominated fluid.

to increase for larger times, dominating the dynamics in the
long-time evolution. It corresponds to phonon excitations in
the fluid, which can be attributed to the energy transfer ob-
tained from the production and annihilation dynamics in a
continuous process that persists for longer times [93,94]. As
the external forces are maintained along the dynamics, the Ki,I

behaviors (related to vorticities), which have maxima near t =
10, remain very high for t > 11, besides being lower than the
Ki,C (related to the large sound-wave production). Therefore,
the incompressible energies Ki,I do not decay down to zero
for longer times, as the coupled system has been constantly
driven by the applied forces. As the associated vortex num-
bers remain quite large along all the dynamics, in this case,
the time evolution of the incompressible kinetic energy can
better represent the vorticity. A direct numerical association
between the vortex numbers with the incompressible energies
Ki,I in the long-time evolution can be noticed for moderate
instabilities, not generated by external forces, such as in the
cases we are considering in the final part of the present study.
There, external forces are absent, implying a significant vortex
number reduction.

As indicated in Fig. 2, the vortex production starts near
t ≈ 3.5 in the dynamics, with the corresponding energy Ki,I

(vortex production) being greater than Ki,C (related to sound
waves) for both components of the mixture until t ≈ 9. Plenty
of vortex dipoles are being generated during this time inter-
val, with the phonon (sound-wave) contribution being less
significant. The complete dynamics behavior reflects the in-
terplay between the nonlinear repulsive interactions given by
the immiscible condition a12 > aii with the applied external
potential in both condensates, which is exerting a pressure
between the two clouds that are colliding against each other.
In the initial dynamics, the system is still dominated by non-
linear repulsive interactions (with the incompressible kinetic
energy higher than the compressible one). However, the con-
stant external forces act against the nonlinear repulsion, so
that the coupled system undergoes a transition at some point
(indicated by our results being close to t ∼ 9). Even consid-
ering that the coupled gas maintains the nonlinear conditions
of immiscibility along the simulation, the constant external

forces end up effectively dominating the dynamics, causing
pressure perturbations in the densities that propagate due to
compressibility. The results given in Fig. 2 provide an analysis
through the kinetic energy spectrum of the interacting density
dynamics shown in Fig. 1, reflecting dynamics sharing some
analogy with colliding classical fluids. The vertical dashed
line in Fig. 2 indicates approximately the time position at
which the transition occurs, from the dominance of incom-
pressible kinetic energies (for t � 9) to compressible ones (for
t � 9). Consistently, it is noticeable that the more massive ele-
ment has the components of the kinetic energy slightly greater
than those obtained for the less massive one. The differences
are enhanced particularly in the case of incompressible en-
ergies close to the time when the transition happens from
incompressible to compressible dominance.

The kinetic energy spectra over the wave number k can
provide a better approach for analyzing the instabilities and
turbulent behaviors that can occur in the evolution. For that,
we have Fig. 3, which shows results related to the dynam-
ics presented in Figs. 1 and 2, considering four instants of
interest in the onset of the instability. So, in Fig. 3, we are
displaying in log scales the corresponding spectral functions,
Ki,I (k) and Ki,C (k), given by Eq. (12), as functions of kξ ,
where ξ refers to the assumed common healing lengths of
both elements. The inclined straight lines inside the panels are
just guidelines showing the expected classical scaling behav-
iors for turbulence, k−5/3 (red solid line) and k−3 (red dotted
line), corresponding to the behavior that goes to the infrared
(kξ � 1) and ultraviolet (kξ 	 1) regions, respectively. The
solid vertical line in the infrared regime, at k = kL = 2π/L,
provides the size of the box, with the dotted vertical line indi-
cating the position where k = 1/ξ . These scalings are useful
in identifying possible time intervals at which the dynamics
may follow more closely the classical scalings for turbulence,
such that some similarities can be traced between classical and
quantum behaviors.

As shown in the four panels of Fig. 3, at which we con-
sider four instant sample results in the onset of instability,
the classically predicted scaling behavior k−3 for the ultra-
violet regime (for kξ 	 1) can be recognized approximately
close to the time interval between 4 and 6.4 (units 1/ω⊥),
for both incompressible and compressible kinetic energies.
This interval is consistent with the results shown in Fig. 1
for the dynamical evolution of the densities. Deviations are
noticed outside this interval, particularly for larger times of
Ki,C (k) results. By going to the ultraviolet limit, the spectrum
starts to become more flattened, as noticed in the compress-
ible results. This behavior, which can be verified for t > 9,
is represented in Fig. 3 by the dotted line for t = 11. Also
noticed in Fig. 2, for t > 9, we start having dominance of
compressible effects (sound waves and density fluctuations) in
the dynamics. On the intermediate k region, for 0.2 < kξ < 1,
we can approximately identify the k−5/3 behavior only in case
of the incompressible kinetic energy results (see the results
for t = 4.1 and 6.4), with the results for t = 4.0 and 4.1
indicating a transition behavior from k−2 to k−5/3. Essentially,
the incompressible results are dominated by the motion of
quantized vortices, in the initial time interval. However, in
this case, the compressible energies are not being transferred
through a cascade process as the incompressible ones, which
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FIG. 3. Incompressible (ai) and compressible (bi) kinetic energy spectra, K(k) (units of h̄ω⊥l⊥), for the RT dynamics, shown as functions
of the dimensionless kξ for the 85Rb (upper panels) and 87Rb (lower panels) components of the mixture, considering four time instants t in
the evolution (as indicated). The inclined straight lines provide the k−5/3 and k−3 behaviors, for comparison. The two close instants 4.0 and
4.1 refer to the fast behavior transition following the panels (di) shown in Fig. 1. The vertical lines refer to the size of the box (infrared limit),
kξ = kLξ = 0.01π (solid line), and the starting ultraviolet region kξ = 1 (dotted line), where ξ = 0.4. The allowed maximum (defined by
�x = 0.2) goes to kmax = 5π ∼ 15.7.

is understood due to sound-wave radiation and dissipative
effects.

B. Kelvin-Helmholtz instability in coupled BECs

The KH instability occurs due to velocity differences
across the interface in the classical two-fluid system. The KH
instability significantly influences the topology of the inter-
face between different-density fluids. This can be developed
by introducing a velocity difference between the immiscible
mixtures. On quantum KH instability, some recent experi-
ments and analyses were reported in Ref. [89]. In our present
numerical simulations for the onset of KH instability, we are
assuming the phase-separated 85Rb - 87Rb BEC mixture. The
ground state is prepared as in the case we have used for RT
instability [see panels (ai) in Fig. 4], such that it will help us
to analyze the main differences in both dynamics. To obtain
an effective velocity difference between the species across
the interface, in this case, the linear interactions are applied
to both components, in opposite x directions, along all the
real-time dynamics. The applied constant forces are such that
ν1 = 0.7 for the first component (85Rb), and ν2 = −0.7 for the
second component (87Rb), with the modified dimensionless
potential Ṽ KH

i given by

Ṽ KH
i (x, y; t ) = Vi(x, y) + νix. (14)

The instability can be observed in Fig. 4 by a series of pan-
els for the coupled mixture along the time evolution. As in
the RT case, for all the density panels, we are showing the
corresponding phases as twin panels in the right-hand side

of the densities. With the two species being prepared in the
same way as in the RT case, at t = 0 the phases are zero
in the regions where the homogeneous densities are located,
being undefined in the zero-density region. Here, for the KH
instabilities, by an examination of the phase profiles along
the dynamics, we can observe that the occurrence of vorticity
is stronger near the interface between high- and low-density
regions, as well as inside the low-density region, which can be
seen more clearly by enlarging the phase-profile panels. One
should notice, at t = 1.4, the fluid motion going to the right
in (bi) and to the left in (bii). Due to the radial confinement
and the initial configuration of the two condensates, the two
clouds move in opposite directions, with velocity initially
given by ±vx (vy = 0). Once reaching the curved surface of
the confinement, the elements of the fluid going right receive
a nonzero velocity upward, +vy; with the other fluid receiving
a velocity component downward, −vy. Together with the im-
miscibility of the two species, the net effect on the two clouds
is given by a rotation of the full coupled system. As the con-
figuration geometry changes over time, with the forces kept
in the same opposite directions for both condensed clouds,
the full system starts to be fractalized, as shown in the (fi)
and (gi) panels of Fig. 4. Roll-up structures forming vortices
can be observed, which are generated by producing vortices
with the same signs. This vortex production can be detected
by using a package for vortex distribution studies, available
in Ref. [95]. The vortex production and distribution are main-
tained in the evolution for times much longer than in the case
of RT instability, as noticed by comparing Figs. 4 and 1. In this
respect, the different dynamics observed for the RT and KH
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FIG. 4. KH instability in the binary mixture 85Rb [panels (ai)–(gi)] and 87Rb [panels (aii)–(gi)], shown by sample time snapshots (with
t given inside the left panels) of the respective densities |ψi|2 and phases, obtained by numerical simulations with the immiscible condition
δ = 1.05. Here a constant linear force νi = (−)i+10.7 (in the x direction) is applied to the components. With the color-bar levels for densities
and phases indicated at the top, the units for time and length are, respectively, ω−1

⊥ and l⊥. The corresponding full-dynamical evolution is
provided in the Supplemental Material [92].

instabilities can be examined from the respective evolutions
of the incompressible and compressible kinetic energies. In
the case of KH instability, corresponding to Figs. 4 and 5

shows that the vorticity dominates all the evolution dynamics,
with the incompressible kinetic energies for both components
being more than three times larger than the corresponding
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FIG. 5. Time evolution of the incompressible (empty symbols)
and compressible (filled symbols) kinetic energies K (units h̄ω⊥)
of the two components, evidencing KH instabilities. The incom-
pressible results become larger than the compressible ones due to
the dominance of vortex emission with their interaction. As legends
indicate, the solid lines are for 85Rb, with dashed ones for 87Rb
results.

compressible kinetic energies (which are related to sound-
wave propagation). The KH dynamics is quite different from
that observed for RT instability. A common feature they share
is in the respective results for the incompressible energy,
which do not decrease to zero, as both systems are driven
by external forces. In the case of RT instability, the vorticity
dominance occurs only for t < 11. This behavior relies on the
fact that the constant perturbation is initially introduced along
the surface separating the immiscible fluid, which causes both
components to move to opposite borders of the trap. As the
forces continue acting in such immiscible coupled fluid, one

of the immiscible components tries to occupy spaces not
occupied by the other component in an almost permanent
movement.

Also, in this case, as related to the KH instability dynam-
ics shown in Figs. 4 and 5, to help us look for similarities
with corresponding classical behaviors for turbulence, we
have the Fig. 6 with the corresponding results for the incom-
pressible (left panels) and compressible (right panels) kinetic
energy spectra over the wave number k. As shown, both ele-
ments, in this case, have quite similar spectral distributions
(incompressible and compressible), as functions of kξ < 1,
practically not varying as time evolves along the period of
instabilities, represented four time instants, t = 1.6, 1.9, 2.5,
and 2.9ω−1

⊥ , as indicated. In the ultraviolet region, the results
follow more consistently the k−3 behavior, as such behavior
starts already near kξ ∼ 0.5. However, going to smaller values
of k, the Kolmogorov behavior, k−5/3, is being followed more
closely in the interval kL < k < 0.5/ξ . Both compressible
and incompressible energies have similar trend behavior, with
the incompressible kinetic energy behavior deviating slightly
down, such that the cascade change from k−5/3 to k−3 is
less pronounced. It is known that the compressible energy
spectrum may follow the same Kolmogorov-like scaling k−5/3

as for the incompressible one if the two modes are strongly
coupled [8,20]. This is observed in the KH instability results
given in Fig. 6, clarifying that the density oscillations and
other compressible effects responsible for the compressible
effects are not so strong to modify the behavior. Also, in this
case, the similar scalings for both incompressible and com-
pressible modes indicate that the external forces are exciting
equally such modes. Comparatively, we can see a different

FIG. 6. Related to the KH instability represented in Figs. 4 and 5, it is shown the incompressible [panels (ai)] and compressible [panels
(bi)] kinetic energy spectra, K(k) (units of h̄ω⊥l⊥), as functions of kξ for the first (85Rb) (upper panels) and second (87Rb) (lower panels)
components of the mixture, considering four different time instants t in the evolution (as indicated inside the panels). The line conventions,
units, and definitions follow the same as given in the caption of Fig. 3.
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FIG. 7. Time evolution of � (dimensionless) [Eq. (5)], repre-
senting the density overlaps for the RT (solid line) and KH (dashed
line) instabilities in the 85Rb - 87Rb mixture. Respectively, the density
evolutions are in Figs. 1 and 4).

behavior in the compressible kinetic energy of RT, shown
in Fig. 3, in which stronger oscillations are observed at all
different instability instants that we have selected. The ex-
pected turbulent-like behavior is quite restricted in time, for
the RT instabilities, mainly due to the strong dominance of
compressible effects, as shown in Fig. 2 and panels (bi) of
Fig. 3.

1. The RT and KH instabilities and the miscibility

Concluding the analysis of the RT and KH instabilities,
discussed in Secs. III A and III B above, with Fig. 7 we are
verifying how the initial immiscibility regime of the mixture
behaves throughout the temporal evolution, considering the
density overlap parameter � defined by Eq. (5). As observed,
because the interspecies and intraspecies interactions are kept
the same along the process of evolution, the mixture remains
almost immiscible, besides the attractive force applied be-
tween the two species, which makes both components of the
mixture share overlapping regions. In the case when we have
RT instability, there is a tendency for the system to become
more miscible during the time interval when the main insta-
bility is being observed, with a maximum for � near t = 9
(close to the time instant when compressible effects, leading to
stronger density oscillations, start dominating the dynamics,
as seen in Fig. 2). Still, the overlap represented by � re-
mains below 20%, next decreasing below 2% in the long-time
evolution. For the case of dynamics reminiscent of the KH in-
stability, with the density evolution of the mixture represented
by Fig. 4, � increases slightly from zero and becomes stable
near 3% for longer-time simulations. Therefore, the Fig. 7
results show that, for both RT and KH cases produced by the
linear-force perturbation, there are no immiscible to miscible
transitions. The tendency of the RT instability to become
more miscible occurs only in a shorter time interval when one
can notice a transition in the kinetic energy spectrum from
incompressible to compressible kinetic energy dominance.

C. Immiscible to miscible quenching transition instability
in coupled BECs

The following simulations with the binary 85Rb - 87Rb mix-
ture consider the dynamical IMQT instability by preparing the

original coupled system in an immiscible condition (δ > 1),
with the interspecies two-body interaction larger than the
intraspecies one, a12 > aii (also here, a11 = a22). Different
from our simulations for RT and KH instabilities, here we
are not applying linear perturbations to obtain the dynamical
evolution. Instead, a quench-induced transition is applied by
introducing a sudden reduction in the two-body interspecies
scattering length, such that the coupled system moves from
immiscible (δ > 1) to miscible (δ < 1) conditions. The mo-
tivation for studying the dynamic behavior of cases where
instability arises from nonlinear interactions is to compare it
with the previous studies in which the onset of instabilities
was carried out through external forces. Therefore, we apply
the same approach as before. Here we find it appropriate to
probe two different initial immiscible 2D spatial configura-
tions for the ground state, as follows: (i) first, with tennis-ball
projected format, with one species at the central part, identi-
fied as “central,” and (ii) second, with the species side by side,
identified as “axial.”.

1. IMQT with “tennis-ball” shaped initial state

The first initial configuration considered in our study of
IMQT instability is by having the two species within a
tennis-ball 2D projected shape, within a three-sliced initial
configuration, having the 85Rb in the central part, with the
other species, 87Rb, located at both sides of the centrally
localized component. This configuration is shown just af-
ter the start of the dynamics by the panels (ai) and (aii)
of Fig. 8 for the densities together with respective phases.
The quench-induced interaction is introduced by a sudden
reduction of a12, such that the miscibility of the mixture goes
from δ = 1.02 (with a12 = 102a0, aii = 100a0) to δ = 0.75
(with a12 = 75a0). Here we are assuming a value of δ = 1.02
slightly smaller than δ = 1.05, which we are going to assume
in the other IMQT simulation, considering that we would
like to explore further the effect of a slightly different δ in
the observed initial interference fringes of the densities to be
discussed.

Given the initial configuration and quenching, the misci-
bility starts to occur from both sides of the centrally located
component, at the two spatial borders shared by the two
species. The dynamics can be followed through the snap-
shots (ai)–(fi) for the time evolution of the densities with
corresponding phase profiles, shown in Fig. 8. The respective
kinetic energy evolutions, with the associated vortex dynam-
ics, and spectral analyses follow, respectively, through Figs. 9
and 10. The onset of the instability dynamics can be observed
in the overlap of both densities, in the initial transient period
to t ≈ 2.4 [as shown in the panels (bi)–(ei) of Fig. 8], when
going from the immiscible to a miscible configuration, with
nonlinear interference patterns being noticed. Particularly en-
hanced by the phase profiles, the formation and propagation of
dark solitons in the fluid can be associated with these patterns.
Along the dynamics, we can observe the breaking of these
soliton structures in vortex-antivortex pairs. In this regard,
see panel (dii) as an example, where vortex-antivortex pairs
are generated near the center of the trap. Correspondingly, at
the same locations, bright dots can be observed in the other
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FIG. 8. IMQT instability for the 85Rb - 87Rb mixture is shown through the evolution of the densities and phases. The ground state is
prepared in an immiscible regime (with δ = 1.02) in a projected “tennis-ball” shape configuration, with the 85Rb centrally located [(ai)] and
87Rb in the remaining trap confinement [(aii)]. The evolution starts with a sudden reduction of a12, going to δ = 0.75, which remains along
the dynamics. The snapshot instants t are indicated inside the density panels. The units for time and length are, respectively, ω−1

⊥ and l⊥. The
corresponding full-dynamical evolution is provided in the Supplemental Material [92].

component of the fluid, as shown in the density panel (di).
This indicates that species 1 fills the hole left by species 2.

Similarly to the ones experimentally observed in Ref. [96]
for the interference of two Bose condensates, these patterns
are attributed to the difference between the initial and fi-
nal miscibility factor δ, which in this case corresponds to a
quenching reduction of the repulsive interspecies parameter
a12 of about 27a0. The connection between the observed in-
terferences obtained in the GP mean-field theory with dark

solitons (which can be generated for repulsive nonlinear inter-
actions) was discussed in Ref. [97]. The interference patterns
noticed in Fig. 8 resemble planar dark solitons in propagation
through the binary mixture. Among several related studies of
dark solitons in BEC we can mention the Refs. [98–100].
Planar dark solitons are subject to snake instability, where the
dark solitons decay into vortex dipoles [101]. These vortex
dipoles are indeed observed in our simulation. For fermionic
superfluids, snake instability of dark solitons was also studied
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FIG. 9. For the IMQT instability given in Fig. 8, with the first
species, 85Rb, initially, at the central part, it is shown the time evo-
lutions of the compressible and incompressible kinetic energies K
(units h̄ω⊥) (upper frame) and the corresponding number of vortices
Nv (lower frame), with convention as indicated inside the frames.

in Ref. [102], within the Bogoliubov–de Gennes theory of the
BEC to BCS crossover. The particular geometric form of the
interference fringes shown in Fig. 8 in the evolution of the
miscibility also occurs due to the initial condition of the pre-
pared immiscible coupled states, with 87Rb fragmented in two
distinct regions. With the sudden reduction in the interspecies
repulsive interaction, the 87Rb atom species move towards the
center from both sides, interacting with the 85Rb located in
the central region, as seen in the panels (ci) of Fig. 8. Plenty
of vortex dipoles and sound waves (phonon excitations) are
produced in both densities, as one can observe in the corre-
sponding time evolution, which are supported by the results
shown in Fig. 9 for the incompressible (related to vorticity)
and compressible (related to sound waves) parts of the kinetic
energy spectrum. The vortices are spontaneously generated
when the components are interacting, leading to annihilations
and sound-wave production. As noticed from the two panels
of Fig. 9 there is a close relation between the incompressible
part of the kinetic energy with the vortex numbers Nv , in the
evolution of the mixture, with the peaks of Nv slightly shifted
to the right of the corresponding peaks observed for the Ki,I

(i = 85Rb, 87Rb).
In the onset of instabilities, near t ∼ 5, one can also ob-

serve a strong peak that occurs in the results for the 87Rb
density (element 2), much larger than the maximum obtained
for the other element, 85Rb. This result can be explained, con-
sidering that the component 87Rb is initially located outside
the center, such that the intermediate space (occupied by the
85Rb) works as an effective barrier inside the 87Rb conden-
sate (as a double well). As discussed in Refs. [103,104], one

cannot neglect the hidden vortices inside this internal low-
density region, because they carry angular momentum and are
essential to satisfy the Feynman’s rule of vortices [82]. As the
coupled system is under an immiscible to miscible configu-
ration, the number of vortices (for both species) converge to
similar results for longer times.

In the long-time evolution of the mixture, we notice that
sound-wave propagations due to phonon excitations become
dominant, as noticed in the upper panel of Fig. 9. Ki,I and Nv ,
representing the vorticity of both species, decrease to more
or less permanent stable limits. In this asymptotic limit, one
can follow the dynamics of the vortex propagation inside the
coupled fluid. The particular vortices observed in the densities
of one of the components can be followed in the numerical
simulations, which are represented by holes in movement
inside the density profile. Correspondingly, one can observe
a density increase of the other species at the same positions,
implying one component fills the spatial holes opened by the
other component inside the trap. Related to this, we notice that
a similar effect has been reported in Ref. [105] when charac-
terizing superfluid KH instability of a fluid in the presence
of a second component. Such long-time dynamics can still
be distinguished in both coupled fluids, since they are still
in a condition not fully miscible, with δ = 0.75. This will
be further discussed, considering the asymptotic incomplete
overlap � of the densities.

The spectral behavior of the incompressible and compress-
ible kinetic energies, respectively given by KI (k) and KC (k),
can be analyzed through the results shown in Fig. 10 for the
two components, in which the turbulent dynamics are being
identified in the initial period of the evolution by considering
four instants. As noticed, the classical Kolmogorov k−5/3 can
be evidenced approximately for kξ < 0.5 (by averaging the
oscillations) only at some particular time interval close to
t ≈ 1.6, being clearer in case of incompressible kinetic en-
ergies. In the ultraviolet region, the k−3 behavior can also be
approximately distinguished at a short time interval t < 2.8,
when the onset of instabilities occurs. For longer times, the
classical spectral behavior does not occur anymore. The re-
maining vorticity and density fluctuations in the evolution can
be followed by the incompressible and compressible energy
results shown in Fig. 9, as well as, visually, by the evolution
of the coupled densities shown in Fig. 8. For all selected
time instants of the dynamics, shown in this Fig. 10, transient
energy increases (incompressible and compressible) are also
noticed occurring in an intermediate k interval, starting near
kξ ≈ 0.8, when the classical behavior, expected at least for
the incompressible part, should change from k−5/3 to k−3.
This kind of effect, which is deviating from the expected
Kolmogorov’s cascade transition in the energy spectra, can be
associated with the strong oscillations between the coupled
species. Due to nonlinear dynamical interactions at interme-
diate scales, with energies temporarily accumulated before
being fully transferred between the scales, the effect can also
be recognized as similar to the quantum superfluid 3D bottle-
neck effect, at which energy piles up at scales just before the
dissipation range [106,107]. Often seen in 3D turbulence, such
an effect can also occur in 2D or quasi-2D systems. Within a
2D approach, the authors of Ref. [108] have pointed out that
such an effect is not only observable at small scales but also
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FIG. 10. Related to IMQT instability represented in Figs. 8 and 9, the incompressible [panels (ai)] and compressible [panels (bi)] kinetic
energy spectra, K(k) (units of h̄ω⊥l⊥), as functions of kξ for the first (85Rb) (upper panels) and second (87Rb) (lower panels) components of
the mixture, considering four different time instants t in the evolution (as indicated inside the panels) are shown. The line conventions, units,
and definitions follow the same as given in the caption of Fig. 3.

can be artificially created at large scales. Within the perspec-
tive of further studies, one can also notice that such an effect
is more pronounced in the results obtained for the element
not initially at the center, which can be associated with the
existence of two surface borders separating the species.

2. IMQT with axial shaped initial state

The other initial configuration considered for the IMQT
instability is represented by both immiscible densities located
side by side, as shown in panels (ai) and (aii) of Fig. 11,
with the time evolution of densities and corresponding phase
profiles represented by the other panels of this figure. In this
case, the initial immiscible condition (δ = 1.05) and spatial
configuration (for the ground state prepared in imaginary
time) are the same as in the cases of Figs. 1 and 4. For
each density panel along the evolution, we are showing the
corresponding phase profile as a twin panel on the right-hand
side of the respective density. Related to the density panels (ai)
and (aii) at t = 0, the ground state shows zero phase, with the
observed break in the uniformity related to random noise in
the threshold when starting the real-time propagation. As pre-
viously explained, when discussing the initial condition of the
simulations shown by Fig. 8, here the ground state is initially
prepared with a12 = 105a0 (δ = 1.05). With a different value
for the starting immiscibility, we aim to explore the effect
of a slightly different δ in the observed initial interference
fringes of the densities, as the systems evolve to miscible
configurations. In this regard, see panels (ci) and (di) of both
Figs. 8 and 11. By comparing the results obtained with the
two different initial spatial configurations, in this Fig. 11, we

notice a more symmetric formation of interference patterns
as the mixture evolves than the ones observed in Fig. 8.
The vortex-antivortex pair formations start to occur near the
extreme borders of the trap, instead of at the center.

Figure 12 shows the time evolution of the kinetic energy
(compressible and incompressible) and vortex number de-
tected for both species. These results should be compared
with the ones given in Fig. 9 (when the species 1 is centrally
located) to observe the effect of the initial conditions (spatial
configuration and initial value of a12). In the present case, the
sudden quenching of a12 again will be to a12 = 75a0, such that
we will have the same miscible δ = 0.75 along the dynamical
evolution. As shown, the final miscible configuration is simi-
lar in both cases, as shown in the respective panels (fi) of both
Figs. 8 and 11. However, the dynamical process noticed in
Fig. 11 can be distinguished from the one observed in Fig. 8,
in the same initial time interval of instabilities. This happens
because, with the spatial configuration of Fig. 11, both species
are symmetrically occupying the trap region. In the two panels
of Fig. 12, a similar behavior can be observed as in Fig. 9 in
the long-time evolution, with the dominance of the compress-
ible modes. The main difference occurs in the initial evolution,
t � 6. Given the symmetric spatial distribution at t = 0, the
Ki,I and Nv peaks associated with the vorticities are located
at the same time position for both components. The peaks for
Nv are slightly shifted relative to the Ki,I peaks, as the vortex
dynamics follow the incompressible energy behavior. In the
long-term interval, with the condensate mixture searching for
miscible configuration equilibrium, the vortex numbers of
both components reduce to about the same number below 20.
In this time interval, both parts of the kinetic energy converge
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FIG. 11. IMQT instability for the 85Rb - 87Rb mixture is shown through the evolution of the densities and phases. The ground state is
prepared in an immiscible regime (with δ = 1.05) in an axial geometrical configuration, with 85Rb located in the lower part [shown in (ai)]
and 87Rb in the upper part [shown in (aii)]. The evolution starts with a sudden reduction of a12, going to δ = 0.75, which remains along the
dynamics. The snapshot instants t are indicated inside the left panels. The units for time and length are, respectively, ω−1

⊥ and l⊥. Among the
Supplemental Material [92], we show the corresponding full-dynamical evolution.)

to different asymptotic limits, with the incompressible part
being reduced to less than 1/8 of the compressible part. This
behavior reflects the dominance of density fluctuations and
sound-wave production, with reduced vortex dynamics, as one
can better appreciate in the corresponding animations (see the
Supplemental Material [92]).

In the four panels of Fig. 13 we are showing the results
for the incompressible and compressible kinetic energy spec-
tra over the product of the wave number k with the healing

length ξ . Quite illustrative of the common behavior of the
two components of the mixture, when they start with similar
space configurations, in their initial condition [see panels (ai)
of Fig. 11], are the results observed in the spontaneous pro-
duction of vortices, shown in Fig. 12. In this case, the small
mass difference between the species only appears in the long
time interval, with the smaller-mass component, 85Rb, corre-
sponding to a slightly greater number of vortices than the ones
generated in the 85Rb. These results follow the ones obtained
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FIG. 12. For the IMQT instability given in Fig. 11 with axial ini-
tially separated elements, 85Rb (solid lines) and 87Rb (dashed lines),
the above results are for time evolutions of the kinetic energies K
(units h̄ω⊥) (upper frame) and the corresponding number of vortices
Nv (lower frame), with convention as indicated inside the frames.

by the incompressible and compressible modes of the kinetic
energy observed in Fig. 12, in which in the long-time interval
we have more production of sound waves, within a behavior
similar to the case of the density distribution evolution of
Fig. 8, which was discussed before.

When in the initial condition, we have the light element
located in the sliced central part (seen in Fig. 8), the time
evolution of the spectrum (shown by the k behavior in Fig. 10)
presents fluctuations stronger than the corresponding case,
Fig. 11, with elements axially located at t = 0. In Fig. 10, the
k−5/3 behavior can be observed in the incompressible spec-
trum only at some particular time of the instability, with the
compressible modes related to sound waves having stronger
and nonuniform behavior, which affects the incompressible
mode. As related to Fig. 11, with axial spatial configura-
tion, the spectrum shown by Fig. 13 becomes quite stable
in the interval kξ < 1, as time evolves. For both species,
the approximate behavior of k−5/3 is observed in the interval
kξ < 1, although the cascading behavior k−3 has not been
clearly characterized for kξ > 1. The strongest changes in the
dynamical behavior of the spectrum, observed in Fig. 10, can
be attributed to the fact that the two densities in the miscible
dynamical process have the atomic interspecies interactions
happening in two regional borders near the center of the trap.
In the axially separated case, shown in Fig. 11, the dynamics
is mainly dictated by the interspecies interactions starting in
just one border separation between the species, in a more
symmetric form.

Similarly to the case discussed for Fig. 10, in an interme-
diate range of k, close to kξ ≈ 0.8 shown in Fig. 13, transient

increases can also be observed in the compressible and in-
compressible components of the energy. As already discussed,
this effect looks similar to the 3D bottleneck effect [106,107].
Since both cases are related to sudden nonlinear changes in
the interactions, such an effect confirms that it should be
interpreted as due to nonlinear dynamical interactions at in-
termediate scales, with the energies temporarily accumulated
before being fully transferred across the scales.

3. The IMQT instabilities and the miscibility

For these two cases of IMQT instabilities, the real-time
propagation of the overlap between the two densities is pro-
vided by the time dependence of � [given in (5)], with the
results displayed in Fig. 14. � shows how dynamically the
miscibility evolves, when the two-body interspecies is sud-
denly reduced, such that δ goes from 1.02 to 0.75 in case
of the coupled densities are represented by Fig. 8; and goes
from 1.05 to 0.75 in case they are represented by Fig. 11.
The effect of the initial conditions in the long-time evolution
can better be appreciated by the results shown in Fig. 14,
as indicating how the two kinds of mixtures go dynamically
from immiscible to miscible configurations due to the sudden
changes in the value of δ. In the first time interval, t < 10,
the differences are recognized as due to the distinct spatial
configurations when the sudden reduction was applied to the
interspecies interaction. In the other extreme, asymptotically,
for both cases, the averaging values of the time evolutions
of � converge consistently to about the same value near
0.8, which is quite close to 0.75, the final quenched value
of δ. Such behavior, as well as the results obtained in both
simulations shown in Figs. 8 and 11, indicates that, in the
asymptotic limit what remains from the initial conditions are
the averaged value of � (close to 0.8 for both cases) and the
oscillating behaviors. Apparently, from the results of Figs. 8
and 11, for t > 20, the vortex dynamics are very similar in
both cases, such that the initial spatial configurations have
limited relevance for the behavior in the asymptotic limit.
However, a striking difference between the two cases occurs
not in the averaged limit of λ but in the different oscillating
cycles of the miscibility overlap �, which we interpret as
reflecting the initial sudden change of δ. In the first case,
with initial three sliced regions, named central (considering
that the species 1 is at the central slice), the δ quenching
varies from 1.02 to 0.75, such that �δC = 0.27, whereas in
the second case, when the confining region was split into two
parts, �δA = 0.30. The central case implies a slightly faster
transition, which results in a larger frequency (and smaller
amplitude) than the second case. Another point to consider is
that, with the initial configuration given by Fig. 8, the main re-
gion for the interspecies interaction and possible interferences
is located at the central part [see panels (ci) and (di) of Fig. 8].
In the case of Fig. 11, the interactions occur symmetrically
on both sides, with densities increasingly closer to the trap
limits, where one can verify the main interference patterns
[see panels (ci) and (di) of Fig. 11]. By a close observation
of the miscibility parameter results shown in Fig. 14, com-
paring both coupled systems, brought from different initial
immiscible conditions (central, with δ = 1.02 and axial, with
δ = 1.05) to the same miscible configurations with δ = 0.75,
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FIG. 13. Related to the IMQT results given in Figs. 11 and 12, the incompressible [panels (ai)] and compressible [panels (bi)] kinetic
energy spectra, K(k) (units of h̄ω⊥l⊥), are shown as functions of kξ for the first (85Rb) (upper panels) and second (87Rb) (lower panels)
components of the mixture, considering four different time instants t in the evolution (as indicated inside the panels). The line conventions,
units, and definitions follow the same as given in the caption of Fig. 3.

focusing in the time interval when both coupled systems are
expected to keep only the residual main characteristics of the
quenching transition, such as in the time interval between
t = 20 and t = 50, we have 10 oscillations in case of central
initial configuration, against 6 oscillations in the case of axial
configuration. So we can extract the asymptotic ratio limit
between the oscillating frequencies of �, which is given by
R� ≈ 5/3 (five cycles of the central case corresponding to
three cycles of the axial case). By looking for a relation
between the asymptotic oscillating frequencies with the initial
quenching condition, we can observe that such oscillation may
be induced by the quenching differences, which is �δA =

FIG. 14. Time evolution of � (dimensionless) [Eq. (5)], repre-
senting the density overlaps for the IMQT instabilities, with central
(solid line) and axial (dashed line) initially space separated 85Rb and
87Rb components. Respectively, the density evolutions are shown in
Figs. 8 and 11).

0.30 for the axial case, and �δC = 0.27 for the central case.
The ratio of these two quantities, �δA/�δC = 10/9, turns out
to be identical to (2/3)R�. This may be a curious coincidence
when considering that, initially, the central case has three
regions for interspecies interactions, whereas the axial case
has only two regions. Indeed, it looks like an interesting topic
for further investigations to consider long-time evolutions of
binary mixtures under different time-dependent transitions
from immiscible to miscible regimes. To this aim, a time-
dependent interspecies scattering length could be assumed as
in Ref. [109] to study possible resonant patterns in the BEC
mixture. Another interesting perspective is to extend from 1D
to 2D the recent investigation on the miscibility management
reported in Ref. [110], by considering linear coupling between
the species and controllable time-dependent immiscible to
miscible transitions.

IV. CONCLUSIONS AND SUMMARY

In this work, we have systematically investigated three dis-
tinct types of instabilities, each with its unique characteristics
and underlying mechanisms. The onsets of RT and KH insta-
bilities are driven by linear perturbations, consistent with their
classical counterparts. In contrast, the IMQT instabilities arise
from nonlinearity changes, triggered by sudden reductions in
the two-body interspecies scattering length a12. These IMQT
instabilities were explored under two distinct initial condi-
tions, highlighting the critical role of nonlinear dynamics in
their evolution. All numerical simulations were conducted for
coupled condensates initially confined in a uniform 2D circu-
lar box, prepared in immiscible configurations. Our findings
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not only deepen the understanding of these instabilities in
quantum systems but also provide a foundation for further
exploration of nonlinear phenomena in multicomponent Bose-
Einstein condensates. Results of this study suggest dedicated
investigations for each kind of instability by exploring exten-
sions to more complex geometries, different initial conditions,
or by looking for new insights into the interplay between
linear and nonlinear instabilities in quantum fluids.

A. RT dynamics

Within an immiscible state, kept constant by δ = 1.05, with
both species axially separated, this instability is initiated by
an oscillatory perturbation applied to one of the components
for t � 2. Subsequently, constant forces are applied to both
species, perpendicularly to the border interface between the
species, in opposite directions throughout the process, driving
the development of the instability. The combination of the
initial perturbation and the opposing forces leads to the char-
acteristic interpenetration and mixing patterns associated with
the RT instability, highlighting the role of competing forces in
destabilizing the system.

With the main results provided in Figs. 1–3, the onset of RT
instability presents a striking similarity with standard results
obtained with a mixture of two classical immiscible fluids sub-
ject to attractive forces between them. As shown in Fig. 2 by
the analyses of the incompressible and compressible parts of
the kinetic energy, the vorticity dominates the dynamics dur-
ing the first stage of time evolution, to t ≈ 10ω−1

⊥ , with plenty
of vortex-antivortex production in the interval 4 < t < 10.
For longer-time evolution, sound-wave production starts dom-
inating the dynamics, with part of the kinetic energy being
transferred from incompressible to compressible. However,
the vorticity remains high enough within the mixture (further
observed in comparison to other cases we have studied). The
dynamical overlap of the densities � (shown in Fig. 9) reflects
the applied immiscible condition. The coupled system has a
small tendency to become more miscible near the time interval
when the compressible modes start dominating the dynamics.
Our analysis in Fig. 3 of the corresponding spectra shows
that for both incompressible and compressible energies, the
k−3 behavior can be identified for kξ > 1, in the interval t ≈
4.1 to 6.4ω−1

⊥ . However, in the same specific time interval,
the classical scaling law k−5/3 expected for turbulence on the
intermediate k region (kξ < 1) can only be identified in the
case of the incompressible kinetic energy results (dominated
by the motion of quantized vortices). In this case, the com-
pressible energies are not being transferred through a cascade
process, as the incompressible ones, which is understood as
due to sound-wave radiation and dissipative effects. At large
times, t > 20ω−1

⊥ , as seen in Fig. 2, the compressible and
incompressible modes converge to constant values, with the
corresponding compressible spectra becoming flatter in the
ultraviolet limit. Such results imply approximate equilibrium
with no significant energy transfer across scales.

B. KH dynamics

With the same initial immiscible condition as in the RT
case (δ = 1.05), this instability is generated by applying

constant forces to both components in opposite directions.
They act parallel to the interface (borderline surface) between
the species, creating a velocity shear across the boundary.
The resulting velocity differences between the fluids trigger
the KH instability, leading to characteristic rolling patterns
at the interface. This mechanism highlights the critical role
of shear flow in driving interfacial instabilities in coupled
condensates.

The main results in this case are given in Figs. 4–6,
showing that the KH dynamics is dominated by vorticity
throughout the time evolution, in contrast with results ob-
tained for the RT dynamics. The two-component spectra over
the wave number k also present a behavior more uniform
than the RT instability case during the onset of instability.
As shown in Fig. 6 for the kinetic energy spectra of both
species, in the ultraviolet limit, the expected k−3 behavior
is noticed for both compressible and incompressible kinetic
energy cases. This behavior starts close to kξ ∼ 0.5. In the
interval kLξ < kξ < 0.5, the k−5/3 behavior is better observed
in the compressible energy modes, deviating to ∼k−2 in the
incompressible cases. Essentially, the similar scaling for both
incompressible and compressible modes is implying that the
specific external forces are equally exciting these modes in
the KH instability case, with the constraints homogenizing
the energy transfer processes. In the long-time evolution, the
vorticity and sound-wave production remain approximately
stable, kept by the constant forces.

As related to the evolution of the overlap between the
densities, the KH instability differs from the RT instability
mainly during the onset of instabilities, as shown in Fig. 7.
Along all the KH dynamics, � remains below 0.03 (less than
3% miscible).

C. IMQT dynamics

Here the critical role of nonlinearity changes in destabi-
lizing the system is highlighted. The study underscores the
interplay between interaction strength and phase separation in
coupled condensates. The instability is triggered by quenching
the nonlinearity of the system, through a sudden transition
from an immiscible to a miscible condition, with the miscible
condition remaining throughout the dynamics.

Two possible initial immiscible configurations are as-
sumed. The first, with δ = 1.02, having the two species
occupying three distinct regions inside the trap, in a kind
of projected “tennis-ball” configuration, as seen in the t = 0
panel (ai) of Fig. 8. Symmetrically, the 85Rb is placed in the
central part, with 87Rb split in the other two parts. The second,
with δ = 1.05. in an axially symmetric configuration, with
each species having half of the trapping region, as seen in
the t = 0 panel (ai) of Fig. 11. In both cases, the quenching
from an immiscible to a miscible system is performed by
a sudden change in the interspecies interaction, such that
the onset of the dynamics is developed with δ = 0.75. As
observed in the first case, we have an asymmetric initial
production of vortices, with the component located in the
center (85Rb) presenting less vorticity than the other com-
ponent. This is an expected result, considering the sudden
change from immiscible to miscible configuration, with the
element outside the center, 87Rb, moving to the central part
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through two boundary edges between the species, while the
element in the center, 87Rb, remains more confined by the
pressure of the second component. In the second case, with the
initial configuration having both components symmetrically
positioned, similar production of vortices and sound waves are
noted throughout the temporal evolution, as seen in Fig. 12 for
the incompressible kinetic energy part (upper panel), with the
corresponding number of vortices (lower panel). The respec-
tive spectra, given in Figs. 10 and 13, show similar behavior
for the incompressible and compressible modes, with energy
oscillations between the two modes (indicating energy trans-
fer) for both species. When averaging the oscillations, the
behaviors of the incompressible mode (for kξ < 0.5) are close
to k−5/3 in the first case, as seen in Fig. 10; and deviating
slightly towards k−2 in the case shown in Fig. 13. The results
also indicate the coupling between the compressible and in-
compressible modes, as both follow approximately the same
behavior.

Characteristic of both IMQT instabilities and distinguish-
able from RT and KH instabilities, a kind of bottleneck effect
is noted in the energy spectra [106,107]. It arises due to mis-
matches between the energy transfer rate and the dissipation
rate on small scales. Thus, before the onset of the dissipation
range, an increase in energy occurs on intermediate scales,
within the enstrophy cascade range, where the Kolmogorov
scale breaks. It is interpreted as associated with nonlinear
interactions, with energies temporarily accumulating before
being dissipated on small scales.

In all processes examined, many dipoles and turbulent
flows are observed in the binary mixture, in the onset of
instabilities, which induce spontaneous occurrence of vor-
tex dipoles followed by sound-wave (phonon) production.
All the instability cases were confronted with the expected
classical scaling law behaviors, by spectral analyses. The
Kolmogorov’s scaling k−5/3 behavior, expected in the kinetic
energy interval in which the wave number is smaller than
the inverse of the healing length (k < 1/ξ ), is approximately
confirmed in particular time intervals when the instabilities
emerge. This behavior appears to be more limited in the
time interval for the RT case, which we interpret as being
due to the two-step perturbation procedure leading to strong
compressible density fluctuations during the initial dynam-
ics. In the ultraviolet region (for k > 1/ξ ), the k−3 behavior
is recognized at specific times of the onset of instabilities
for all the cases, particularly for the incompressible part
of the energy. In the spectral analyses of the IMQT cases
(when only the nonlinear interactions are suddenly modi-

fied), the expected classical Kolmogorov scaling behavior
is also not followed in an intermediate region before the
ultraviolet region, which is associated with a kind of bottle-
neck effect occurring before the energy dissipation at small
scales.

In summary, in this work, we have presented numerical
simulations of three kinds of instabilities in a binary coupled
BEC mixture, obtained by using the coupled GP formalism,
initially prepared in immiscible configurations. The cases
are understood as accessible for experimental realizations,
considering the actual cold-atom facilities. The RT and KH in-
stabilities are investigated by keeping the coupled condensates
in an immiscible configuration along the dynamics, whereas
the IMQT instability is obtained by quenching the nonlinear
two-body parameter, from immiscible to miscible configura-
tion, considering two different initial conditions. Our main
objective was to explore different kinds of engineered instabil-
ities in a comparative way, which can emerge when coupling
two initial immiscible condensates. Several interesting aspects
of the dynamics, such as those related to vorticity in the
long-term evolution, or associated with interference patterns
in the coupled densities, are highlighted. However, such anal-
yses are beyond the scope of the present work. Deep-focus
investigations are demanding in such cases. Regarding pos-
sible similarities between classical and quantum turbulence,
the main outcome was derived from spectral analyses of nu-
merical simulations that occur in the short time intervals at
which the onset of the instabilities can be followed through
the compressible and incompressible spectral behaviors. As
expected, for longer times, the simulated dynamics for the
different cases under study deviates from the classical one,
reflecting the fact that we have zero viscosity in quantum
fluids, with vortex dynamics and quantum interactions being
primarily responsible for dissipation.
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