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Abstract—This paper describes device models for the current-voltage (I–V) and capacitance-voltage (C–V) characteristics of 

ballistic nanotransistors based on two-dimensional (2D) materials. The proposed methodology introduces a novel, fully analytical, 

and explicit approach grounded in fundamental physical principles. This approach enables seamless integration into circuit 

simulators and provides clear insight into device operation. In contrast to the drift-diffusion models commonly found in the 

literature, this approach accurately describes the ballistic transport regime observed in state-of-the-art 2D nanotransistors. The 

proposed model was validated against both experimental and ab initio numerical simulations from the literature for devices based 

on molybdenum disulfide (MoS2) and indium selenide (InSe). The results show excellent agreement with the reference datasets, 

confirming the model's accuracy and its suitability for designing advanced nanoelectronic devices and circuits. 
 

Index Terms—2D materials, analytical model, ballistic nanotransistors, compact model, nanoelectronics. 

 

 

I. INTRODUCTION 

ilicon has long been the dominant material in the 

semiconductor industry, particularly for high-density 

digital-logic integrated circuits (ICs). Major manufacturers 

have strived to adhere to Moore's Law with silicon, given the 

maturity and sophistication of its manufacturing processes. 

The recent breakthrough of stacking gate-all-around 

nanosheets is expected to sustain scaling until around 2028 

[1]. However, as transistor scaling reaches fundamental 

limits, research must focus on exploring nanomaterials for 

long-term technological advancement. 

A promising solution consists of using two-dimensional 

materials. Since the discovery of graphene in 2004, these 

materials have garnered significant scientific interest. 

Among them, several are semiconductors with performance 

potentially superior to silicon, facilitating further transistor 

scaling and industry transition. Their inherent characteristic, 

of establishing the lower limit of channel thickness 

reduction, provides exceptional electrostatic control to the 

field-effect transistor (FET), making them particularly 

attractive for the next generation of electronics. 

Consequently, there has been a surge in research interest 

in the various configurations of nanotransistors based on 

two-dimensional materials (2D-FETs), driven by both 

theoretical investigations, such as ab initio studies and 

device-level simulations, and experimental advances in the 

fabrication and characterization of these devices [2]. Also, 

given the rapid advancement in their fabrication processes, 

developing compact models becomes crucial to enable 

integrated circuit synthesis using these novel nanotransistors. 

Although there are some similarities to silicon MOSFETs, 

the distinct band structure, electrostatic behavior and carrier 

transport mechanisms in 2D-FETs widely justify the 

development of tailored models. As a result, several 

analytical or semi-analytical treatments have been proposed 

recently [3]–[12]. 

Nevertheless, most of the aforementioned analytical 

formulations employ the drift-diffusion formalism and 

disregard ballistic carrier transport, despite recent 

experimental demonstrations of ballistic 2D-FETs [13], [14]. 

The relevant exception regarding ballistic transport is the 

work by Prentki et al. [3] which develops two models based 

on Landauer formalism. Their models are physics-based, but 

their first routine requires an iterative solution for MOS 

electrostatics and Fermi–Dirac statistics, whereas the second 

is valid only above threshold and uses Fermi-Dirac integrals. 

As such, neither solution is fully suitable for standard 

compact modeling. 

In addition, much of the analytical models available in the 

literature are dedicated to Schottky-barrier FETs (SB-FETs) 

and do not apply to the device configuration discussed here. 

Although SB-FETs are well-suited for experimental 

investigations, the development of corresponding compact 

models is less imperative because these devices are not 

intended to be building blocks for high-density or high-
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performance integrated circuits. Instead, SB-FETs are being 

explored for niche applications, such as cryogenic 

electronics and sensing devices [15].  

In contrast, the target of our paper is a device 

configuration similar to the standard metal-oxide-

semiconductor FET (MOSFET) that can attract significant 

interest for nanoelectronics applications, particularly given 

the ability of 2D semiconductors to operate in ballistic 

current regimes. Accordingly, our goal is to develop fully 

explicit, analytical, and physics-based models. In this work, 

we expand and detail the models first described in our 

preliminary publications [16]–[18]. We present a 

comprehensive model to calculate the current-voltage (I–V) 

and capacitance-voltage (C–V) characteristics of several 

distinct configurations of ballistic nanotransistors, 

incorporating distinct features of different two-dimensional 

materials. In contrast to prevailing drift-diffusion 

formalisms, our approach is specifically tailored for the 

ballistic transport regime observed in state-of-the-art 2D 

nanotransistors. The model is validated against recently 

published experimental results that demonstrate ballistic 

transport in InSe [13] and MoS2 [14] based transistors. 

Moreover, it was designed to be suitable for seamless 

integration into circuit simulators, while providing clear 

physical insight into device operation. 

The paper is structured as follows: Section II introduces 

the device and its electrostatic model, including the analysis 

of carrier concentration, the band diagram, and an 

approximate analytical solution to the Poisson equation for 

the entire operating range. Next, we elaborate on the current 

characteristics in the ballistic regime, calculated based on 

Landauer formalism, and the capacitance characteristics. 

Section III validates the model with numerical and 

experimental data concerning different two-dimensional 

materials, highlighting their unique features. Finally, we 

draw our conclusions in Section IV. 

II. METHODS AND PROCEDURES 

Fig. 1 depicts the device of interest. The layer structure 

starts from the substrate, usually highly-doped silicon, 

followed by an insulator, typically silicon dioxide. On top of 

the insulator lies the two-dimensional semiconductor, 

followed by the gate oxide, which can also be made of silicon 

dioxide or other insulating material with a higher dielectric 

constant. Without loss of generality, we assume an n-type 

device with a density of donor impurity 𝑁𝐷 given in cm-2. In 

any case, the formulation presented here can be easily 

extended to the p-type transistor. 

The first step in the modeling process is to establish a 

charge-control relationship between the carrier concentration 

in the channel and the bias voltage applied to the gate 

terminal, considering there is no carrier flow. Therefore, we 

set 𝑉𝑑𝑠 = 0 and the Fermi level potential is invariant along 

the channel. 

 

A. Carrier Concentration 

The carrier (electron) concentration in the 2D 

semiconductor is given by 

𝑛𝑠 = ∫ 𝑔2𝐷(𝐸)𝑓(𝐸 − 𝐸𝐹)𝑑𝐸

∞

𝐸𝑐

, (1) 

where 𝑔2𝐷(𝐸) is the two-dimensional density of states, 

𝑓(𝐸 − 𝐸𝐹) is the Fermi-Dirac distribution, and 𝐸𝐹  is the 

Fermi level energy. Due to quantum size effects, the 

conduction band of 2D materials consists of discrete energy 

levels. However, since carriers are confined within a 

thickness of ~1 nm, these levels are widely spaced and 

typically only the first level is significantly occupied. As a 

consequence, only the ground state will be considered in the 

ensuing calculations. This ground state position corresponds 

to the bottom of the conduction band for these materials and 

will be denoted simply as 𝐸𝑐 throughout the paper. 

The density of states in two-dimensional systems is 

constant at each energy level and can be formally described 

by the Heaviside step function, that is, 

𝑔2𝐷(𝐸) = ∑𝑔𝑗

𝑗

H(𝐸 − 𝐸𝑗), (2) 

where 𝑗 is the index labeling each discrete energy level 

within the conduction band. Again, in practice, only the first 

level needs to be considered, and the notation is simplified to 

a constant value 𝑔2𝐷. Additionally, since 𝑔2𝐷 takes into 

account the specific features of each two-dimensional 

material, such as the contribution of multiple valleys, we will 

leave a more detailed discussion to Section III. 

Next, we can define 𝐸𝑐 = −𝑞φ, the channel electrostatic 

potential distribution, and 𝐸𝐹 = −𝑞𝑉, so that we have that 

𝑛𝑠 =
𝑚∗𝑘𝐵𝑇

πℏ2
ln [1 + exp (

φ − 𝑉

ϕT

)] (3) 

is the carrier concentration density within the framework of 

Fermi-Dirac statistics. In this expression, ϕT = 𝑘𝐵𝑇/𝑞 is the 

thermal voltage, being 𝑘𝐵 the Boltzmann constant, 𝑇 the 

temperature, and 𝑞 the fundamental charge. 

To use the above equation to obtain an expression for the 

I–V characteristics of the device would require special 

functions or lead to integrals that need to be numerically 

 
Fig. 1. Three-dimensional schematic of a 2D-FET, showing the substrate, 

insulator, semiconductor channel (highlighted), gate oxide, and the source 

(S), gate (G), and drain (D) contacts. 
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solved. Therefore, to obtain fully analytical expressions, it is 

convenient to assume a non-degenerate semiconductor and 

employ the Maxwell-Boltzmann approximation: 

𝑛𝑠 = 𝑁DoS exp (
φ − 𝑉

ϕT

), (4) 

where 𝑁DoS = 𝑔2𝐷𝑘𝐵𝑇. 

The use of the Boltzmann statistics is justified because 

doping 2D materials remains a significant technological 

challenge and the assumption of an undoped or lightly doped 

channel is not only realistic but also consistent with typical 

experimental conditions so far.  

Also, an in-depth analysis, developed by Cao et al. [7] in 

the context of transition metal dichalcogenides (TMDs), 

shows that the high density of states prevents the Fermi level 

from penetrating deeply into the conduction band. In 

particular, even though a higher doping concentration would 

naturally place the Fermi level closer to the conduction band 

at 𝑉𝑔𝑠 =  0, such that degeneracy would occur more readily 

as the gate bias increases, this effect is mitigated by the large 

density of states, thereby preserving the validity of the non-

degenerate approximation over a wider bias operating range, 

even for doped channels. This shielding effect should be 

even more pronounced in the case of very anisotropic 

materials, such as phosphorene, for instance, due to their 

higher density-of-states effective mass, when compared to 

TMDs.  

B. Conduction Band Profile 

Fig. 2 depicts the conduction band profile for a 2D-FET. 

Analyzing from left to right, we first encounter the gate metal 

contact, characterized by the work function ϕ𝑀, given in 

volts. The applied gate voltage (𝑉𝑔𝑠) represents the shift of 

the Fermi level in the metal with respect to the 

semiconductor. Next, we have the potential drop across the 

gate oxide (φ𝑜𝑥), and the semiconductor channel, 

characterized by the electron affinity (χ𝑆), given in electron-

volts. The work function of the two-dimensional 

semiconductor can be calculated by 

ϕ𝑆 =
χ𝑆

𝑞
+

𝐸𝑔

2𝑞
− ϕ𝑇 ln (

𝑁𝐷

𝑛𝑖

), (5) 

where 𝐸𝑔 is the bandgap energy and 𝑛𝑖 is the intrinsic carrier 

concentration. 

In general, 𝑁𝐷 ≅ 𝑛𝑖 for these nanotransistors, which places 

the Fermi level of the semiconductor near the middle of the 

bandgap. Consequently, these nanotransistors are 

accumulation FETs. In other words, the semiconductor 

transitions from a regime of carrier depletion in the OFF state 

to a regime of carrier accumulation in the ON state [19]. 

The flatband voltage is defined from the band diagram as 

𝑉𝐹𝐵 = ϕ𝑀𝑆. (6) 

As such, oxide charges and interface traps are not included 

into the model, since we are focusing on the upper limit of 

high-performance devices. 

 
Next, the substrate is typically made of highly n-doped 

silicon, so the work function of silicon is approximately 

χ𝑆𝑖/𝑞. A fixed voltage 𝑉𝑏𝑠 can be applied to shift the 

electrostatic profile along the channel with respect to the 

Fermi level at the source side, thereby altering the 

electrostatic characteristics of the nanotransistor. Assuming 

a highly doped semiconductor substrate and a thick insulator, 

the band bending within the silicon substrate can be 

neglected. 

Finally, the structures in Figs. 1 and 2 can also be modified 

to model a double-gate (DG) device. In this case, the 

insulator and substrate are replaced by the gate oxide and 

gate metal, respectively, and the gate voltage 𝑉𝑔𝑠 is applied 

symmetrically at both ends, instead of the fixed voltage 𝑉𝑏𝑠 

on the substrate. 

C. Poisson Equation 

To establish the charge control relation, it is first necessary 

to solve the Poisson equation governing this family of 

devices. Following the approach by Cao et al. [7], the 2D-

FET can be analyzed according to the schematic shown in 

Fig. 3. 

In this two-dimensional representation, the gate voltage is 

applied along the 𝑧-axis, and the current flow occurs in the 

𝑥-direction. There is no potential difference along the 𝑦-axis, 

which is parallel to the cross-sectional area of the channel, of 

width 𝑊 and length 𝐿. The gate oxide, semiconductor, and 

insulator have thicknesses 𝑡𝑜𝑥, 𝑡𝑠 and 𝑡𝑖, and electric 

permittivities ε𝑜𝑥, ε𝑠 and ε𝑖, respectively. 

 

 
Fig. 2. Conduction band profile of a 2D-FET in the accumulation condition 

(𝑉𝑔𝑠 > 𝑉𝐹𝐵). A highly-doped n-type silicon substrate is assumed.  
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Fig. 3. Two-dimensional schematic of a 2D-FET for electrostatic analysis. 
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Because the channel consists of only a few layers of a 2D 

material, it is reasonable to assume that 𝜑(𝑥, 𝑦, 𝑧) ≈ 𝜑(𝑥). 

In other words, any variations of the electrostatic potential in 

the 𝑦 and 𝑧 directions can be disregarded and the Poisson 

equation, which is valid for all bias regimes, can be written 

as 

𝑑2φ

𝑑𝑥2
−

φ

λ2
+

𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡)

ε𝑠𝑡𝑠
=

𝑞𝑁DoS

ε𝑠𝑡𝑠
exp (

φ − 𝑉

ϕT

), (7) 

where 𝐶𝑜𝑥 = ε𝑜𝑥/𝑡𝑜𝑥 is the oxide capacitance, λ is the 

characteristic length of the 2D-FET, given by 

λ = √
ε𝑠𝑡𝑠𝑡𝑜𝑥𝑡𝑖

ε𝑜𝑥𝑡𝑖 + ε𝑖𝑡𝑜𝑥

, (8) 

and 𝑉𝑡 is the threshold voltage, expressed as 

𝑉𝑡 = 𝑉𝐹𝐵 +
𝐶𝑖(𝑉𝑏𝑠 − 𝑉𝑖) − 𝑞𝑁𝐷

𝐶𝑜𝑥

, (9) 

where the term 𝑉𝑖 corresponds to the difference between the 

work functions of the semiconductor and the substrate, 

whereas 𝐶i = ε𝑖/𝑡𝑖 is the capacitance of the insulator. 

With slight modifications, the Poisson equation for a 

double-gate 2D-FET becomes: 

𝑑2φDG

𝑑𝑥2
−

φDG

λDG
2 +

2𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡DG
)

ε𝑠𝑡𝑠

=
𝑞𝑁DoS

ε𝑠𝑡𝑠
exp (

φDG − 𝑉

ϕT

), 

(10) 

where λDG is the characteristic length of the double-gate 2D-

FET, given by 

λDG = √
ε𝑠𝑡𝑠𝑡𝑜𝑥

2ε𝑜𝑥

, (11) 

and 𝑉𝑡DG
 is the threshold voltage of the double-gate 2D-FET, 

expressed as 

𝑉𝑡DG
= 𝑉𝐹𝐵 −

𝑞𝑁𝐷

2𝐶𝑜𝑥

. (12) 

D. Approximate Analytical Solution of the Poisson 

Equation 

Next, it is necessary to analytically solve the Poisson 

equation above to obtain the behavior of the electrostatic 

potential along the channel and subsequently derive 

expressions for the current and capacitance characteristics. 

Taking the gradual channel approximation, the second 

derivative in (7) can be set to zero. Rearranging the terms, 

we derive an equation that relates the electrostatic potential 

of the channel to the bias voltage at the gate contact: 

(𝐶𝑜𝑥 + 𝐶𝑖)φ + 𝑞𝑁DoS exp (
φ − 𝑉

ϕT

) = 𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡). (13) 

Equation (13) is a transcendental equation for φ(𝑥); 

therefore, analytical approximations are required to obtain an 

explicit solution for the potential as a function of the applied 

bias voltages. Specifically, to obtain a fully analytical and 

explicit expression for the potential, one can expand the 

exponential term in (13) into a Taylor series about a fixed 

expansion point Φ. 

exp (
φ

ϕT

) = exp (
Φ

ϕT

)∑
1

𝑗!
(
φ − Φ

ϕT

)
𝑗∞

𝑗=0

. (14) 

The accuracy of this expansion within a range of interest 

will primarily depend on the number of terms retained in the 

approximation and the choice of the expansion point Φ. 

Since the expansion results in a polynomial function, 

retaining 𝑛 terms implies finding the roots of an 𝑛th-degree 

polynomial, which is a rather laborious task for 𝑛 >  2. 

Also, the use of a single and static expansion might not be 

suitable to provide accurate roots for the whole range of 

interest. 

As an alternative, we have worked out a new approach, 

which we originally applied to find the eigenstates of 

asymmetric quantum wells [20]. In this approach, we use a 

sliding expansion point Φ, which varies accordingly to a 

mapping function obtained on the basis of a graphical 

inspection of φ within a given range of interest. In our case, 

this analysis to obtain the mapping function is facilitated 

since the asymptotic behavior of φ(𝑉𝑔𝑠) at the end points of 

the range of interest can be easily computed and typical 

values for the transistor fabrication parameters are known. 

We have found that a simple function of the form 

Φ = 2ϕ𝑇 +
2[𝛼(𝑉0 − 𝑉𝑡) − 2ϕ𝑇]

1 + exp[𝑑(𝑉𝑔𝑠 − 𝑉0)]
 (15) 

is an optimal choice, where 𝑉0 and 𝑑 are fixed parameters, 

and 𝛼 = 𝐶𝑜𝑥/(𝐶𝑜𝑥 + 𝐶𝑖) [17]. The parameter 𝑉0 essentially 

governs the behavior in deep subthreshold regime, 𝑉𝑔𝑠 ≪ 𝑉𝑡, 

whereas 𝑑 assures a smooth transition between the 

asymptotic behaviors of φ when 𝑉𝑔𝑠 ≈ 𝑉𝑡. 

It is worth mentioning that the mapping function, eq. (15), 

and its associated parameters are always the same for each 

device analyzed and remains unaltered throughout the 

simulations. As such, the solution for φ (and the overall 

model) will remain explicit, and one only needs to find the 

root of a second-order polynomial. 

As it will be shown in the next subsection, calculating the 

drain current using the Landauer ballistic transport 

formalism requires knowing the potential only at the source 

side of the channel. Therefore, eq. (13) needs to be solved 

only in the special case that 𝑉 = 0. Then, further analysis of 

eq. (13), reveals that only the first two terms of the expansion 

in eq (14), are necessary to obtain fair accuracy, resulting in 

a simple compact expression for φ(𝑉𝑔𝑠) at the source side: 

φ =
𝑞𝑁DoS(Φ − ϕ𝑇) exp (

Φ
ϕ𝑇

) + ϕ𝑇𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡)

𝑞𝑁DoS exp (
Φ
ϕ𝑇

) + ϕ𝑇(𝐶𝑜𝑥 + 𝐶𝑖)
. (16) 

As shown in Fig. 4(a), the proposed approximation shows 

excellent agreement with the exact solution. Furthermore, if 

necessary, the accuracy of this method can be readily 

improved by retaining one more term in eq. (14) and finding 

the roots of a quadratic polynomial. 
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In addition, for a double-gate nanotransistor, we have the 

following relation: 

2𝐶𝑜𝑥φDG(𝑥) + 𝑞𝑁DoS exp [
φDG − 𝑉

ϕT

]

= 2𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡). 
(17) 

Applying the same steps as before, a simple compact 

expression for φDG(𝑉𝑔𝑠) is obtained as 

φDG

=
𝑞𝑁DoS(ΦDG − ϕ𝑇) exp (

ΦDG

ϕ𝑇
) + 2ϕ𝑇𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡)

𝑞𝑁DoS exp (
ΦDG

ϕ𝑇
) + 2ϕ𝑇𝐶𝑜𝑥

, 
(18) 

where the expansion value can be determined by [16] 

ΦDG = 4ϕ𝑇 +
2(𝑉0 − 𝑉𝑡DG

− 4ϕ𝑇)

1 + exp[𝑑(𝑉𝑔𝑠 − 𝑉0)]
. (19) 

Fig. 4(b) also demonstrates the excellent agreement 

between the exact behavior and the proposed approximation 

for double-gate devices. 

E. Ballistic Current-Voltage Characteristics 

The superior electrostatic channel control provided by the 

atomic thickness of two-dimensional materials potentially 

allows the physical length of the transistor to be reduced below 

the carrier mean free path, ℓ, which is the average distance an 

electron can travel freely, without scattering events. In other 

words, if 𝐿 ≪ ℓ, carriers move between source and drain 

without significant scattering, characterizing a ballistic 

transport. In this regard, several numerical studies have 

addressed ballistic features in 2D materials [21], [22], [23], [24]. 

More recently, experimental demonstrations of 2D 

nanotransistors approaching [25] or reaching [13], [14] the 

ballistic regime have been reported, indicating the increasing 

maturity of fabrication processes. 

For analytical modeling in ballistic or quasi-ballistic regimes, 

the Landauer formalism is commonly employed [26], [27], [28], 

[29]: 

𝐼𝑑𝑠 =
2𝑞

ℎ
∫ 𝒯(𝐸)ℳ(𝐸)[𝑓𝑠(𝐸) − 𝑓𝑑(𝐸)]𝑑𝐸

∞

−∞

, (20) 

where ℎ is the Planck constant, 𝒯(𝐸) is the transmission 

coefficient, ℳ(𝐸) is the mode transmission distribution for the 

channel, and 𝑓𝑠(𝐸) − 𝑓𝑑(𝐸) is the difference between the Fermi 

distributions at the source and drain contacts. 

In the framework of the Landauer formalism, the source and 

drain contacts are seen as electron reservoirs separated by the 

potential barrier in the channel, which is reduced when a voltage 

is applied to the gate contact. Then, when a voltage difference 

𝑉𝑑𝑠 is present along the channel, we have 𝐸𝑓𝑑 = 𝐸𝑓𝑠 − 𝑞𝑉𝑑𝑠, 

and this imbalance allows a current flow. 

The transmission coefficient 𝒯 describes the probability of an 

electron at the source contact to enter the channel and reach the 

drain contact without scattering. Consequently, for the ballistic 

case, 𝒯 = 1. In the quasi-ballistic case, 𝒯 assumes a value close 

to unity, indicating that there is still some residual but relevant 

scattering in the channel. For simplicity, here we assume 

𝒯(𝐸) = 𝒯0, being 𝒯0 an effective and constant value 

representing this residual amount of channel scattering. 

In the Landauer formalism, the mode transmission 

distribution ℳ(𝐸) describes how an electron with energy 𝐸 

travels along the channel. A detailed explanation can be found 

in [29]. In essence, ℳ(𝐸) is proportional to the product of the 

density of states and the average carrier velocity at a given 

energy 𝐸, thus combining the availability of states and their 

contribution to current flow: 

ℳ(𝐸) =
2W𝑔2𝐷

π
√

2(𝐸 − 𝐸𝑐)

𝑚𝑡
∗ , (21) 

where 𝑚𝑡
∗ is the carrier effective mass at the transport direction. 

With these considerations in mind, one can solve (20) to 

obtain an expression for 𝐼𝑑𝑠: 

𝐼𝑑𝑠 = 𝐼0[ℱ1/2(𝜉𝑓𝑠) − ℱ1/2(𝜉𝑓𝑑)],

𝐼0 =
2𝑞𝒯0W𝑘𝐵𝑇𝑔2𝐷

ℎπ
√

2π𝑘𝐵𝑇

𝑚𝑡
∗ ,

𝜉𝑓𝑠 =
𝐸𝑓𝑠 − 𝐸𝑐(𝑥 = 0)

𝑘𝐵𝑇
,

𝜉𝑓𝑑 =
𝐸𝑓𝑠 − 𝑞𝑉𝑑𝑠 − 𝐸𝑐(𝑥 = 0)

𝑘𝐵𝑇
= 𝜉𝑓𝑠 −

𝑉𝑑𝑠

ϕT

,

 (22) 

where 𝐸𝑐(𝑥 = 0) corresponds to the value of the conduction 

band (first discrete level) at the source side. 𝐸𝑓𝑠 = −𝑞𝑉𝑠 = 0 in 

this formulation and, in the context of the gradual channel 

approximation (GCA), 𝐸𝑐(𝑥 = 0) = −𝑞φ𝑠. Then 

𝜉𝑓𝑠 =
−𝐸𝑐(𝑥 = 0)

𝑘𝐵𝑇
=

φ𝑠

ϕT

,

𝜉𝑓𝑑 =
−𝑞𝑉𝑑𝑠 − 𝐸𝑐(𝑥 = 0)

𝑘𝐵𝑇
=

φ𝑠 − 𝑉𝑑𝑠

ϕ𝑇

.

 (23) 

Therefore, in a first approximation under the Landauer 

formalism, the I–V characteristics are dictated primarily by the 

electrostatic potential at the source side of the channel. This 

potential, φ𝑠 was derived previously in Eq. (16). 

Inspecting eq. (22), we have the special Fermi-Dirac integral 

function of index 1/2, ℱ1/2(𝜉). Assuming the Boltzmann 

approximation, ℱ1/2(𝜉) reduces to exp(𝜉). Equation (22) can 

 
Fig. 4. Comparison between the exact and the approximate solutions for the 

electrostatic potential of: a) Single-gate, monolayer MoS2 channel with 

𝑁𝐷 = 1012 cm-2, Al3O2 gate oxide (𝑡𝑜𝑥 = 2.8 nm), SiO2 insulator (𝑡𝑖 = 270 

nm), Ti gate, and n++ Si substrate. b) Double-gate, trilayer InSe channel with 

𝑁𝐷 = 1011 cm-2, HfO2 gate oxide (𝑡𝑜𝑥 = 2.6 nm), and Au gate. The 

respective mapping functions are also shown. 
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then be rewritten in terms of the charge density at the source 

side, 𝑄𝑠(𝑉𝑔𝑠, 𝑉𝑑𝑠) = −𝑞𝑛𝑠(𝑉𝑔𝑠 , 𝑉𝑑𝑠): 

𝐼𝑑𝑠 = 𝒯0𝑊|𝑄𝑠(𝑉𝑔𝑠, 𝑉𝑑𝑠)|√
2𝑘𝐵𝑇

π𝑚∗
[
1 − exp(−𝑉𝑑𝑠/ϕ𝑇)

1 + exp(−𝑉𝑑𝑠/ϕ𝑇)
] ,

𝑄𝑠(𝑉𝑔𝑠, 𝑉𝑑𝑠) = −
𝑞𝑁𝐷𝑜𝑆

2
exp (

φ𝑠

ϕT

) [1 + exp (−
𝑉𝑑𝑠

ϕT

)] .

 (24) 

In summary, we have obtained a general expression for the 

I–V characteristics considering ballistic transport in 2D-

FETs. By working out the above expression, it can be 

rewritten as: 

𝐼𝑑𝑠 = 𝐼0exp [
φ(𝑉𝑔𝑠)

ϕ𝑇 
] [1 − exp (−

𝑉𝑑𝑠

βϕ𝑇

)]. (25) 

Since carriers move through the channel without significant 

scattering, the I–V characteristics of these devices become 

highly dependent on the process of carrier injection and 

collection at the source and drain contacts, respectively. 

Therefore, the empirical non-ideality factor β was included in 

the above expression to phenomenologically capture the 

combined impact of contact resistance and other deviations 

from ideal ballistic transport in experimental results. 

F. Capacitance-Voltage Characteristics 

The explicit expression for the electrostatic potential also 

allows for the calculation of the gate capacitance of these 

devices, written as a series combination of the oxide capacitance 

and the quantum capacitance, that is 

𝐶𝑔𝑔 =
𝐶𝑜𝑥𝐶𝑄

𝐶𝑜𝑥 + 𝐶𝑄

. (26) 

The quantum capacitance is defined as the derivative of the 

charge in the two-dimensional channel with respect to the 

electrostatic potential. Also known as electrochemical 

capacitance [30], this term refers to the two-dimensional density 

of states and the variation on the filling of the discrete energy 

levels in the conduction band with the changes in the channel 

potential. Considering the Fermi-Dirac distribution to describe 

the carrier concentration, we have 

𝐶𝑄 = 𝑞
𝜕𝑛𝑠

𝜕φ
=

𝑞2𝑁𝐷𝑜𝑆

𝑘𝐵𝑇
[

exp (
φ − 𝑉
ϕT

)

1 + exp (
φ − 𝑉
ϕT

)
]. (27) 

III. RESULTS 

For digital-logic applications of nanodevices, the most 

attractive two-dimensional semiconductors so far are transition 

metal dichalcogenides, such as molybdenum disulfide, and 

indium selenide. The first nanotransistors based on MoS2 

presented an excellent ON-OFF ratio, with experimentally 

reported values of 108, and carrier mobilities up to 200 cm2V-1s-

1 [31]. Later, a three-layer indium selenide device provided the 

best experimental performance of a 2D-FET recorded to date 

[13]. More recently, similar results were also obtained for three-

layer molybdenum disulfide [14]. For these reasons, devices 

based on these two materials were chosen to validate our model. 

A. Molybdenum Disulfide 

Transition metal dichalcogenides (TMDs) are layered 

materials composed of MX2 structure, where M is a transition 

metal atom, and X is a chalcogen atom (sulfur, selenium, or 

tellurium). The monolayers of most semiconductor TMDs have 

a direct bandgap at the K point of the first Brillouin zone. 

However, they exhibit a second valley in the conduction band 

with an energy difference ∆ℇ𝑐 to the main valley that is very 

small, comparable to 𝑘𝐵𝑇. This second valley is located at the 

Q point, an intermediate position to the K and Г points, and 

computational calculations suggest that it contributes 

significantly to the total current of TMD-based nanotransistors 

[32].  

The contribution of these valleys is taken into account when 

calculating the output drain current. Specifically, in our 

particular case of the current amplitude where the channel 

material is a TMD, eq. (22) for 𝐼0 becomes: 

𝐼0 = 𝒯0  
𝑞𝑘𝐵𝑇𝑊

2πℏ2
[𝑔𝐾𝑚𝐾

∗ √
2𝑘𝐵𝑇

π𝑚𝐾
∗ + 𝑔𝑄𝑚𝑄

∗ √
2𝑘𝐵𝑇

π𝑚𝑄
∗ exp (−

∆𝐸𝑐

𝑘𝐵𝑇
)], (28) 

where 𝑔𝑠 = 2 is the degeneracy factor due to spin, 𝑔𝑖 and 𝑚𝑖
∗ 

are, respectively, the degeneracy factor and effective mass 

corresponding to the ith valley considered. Given the crystalline 

structure of TMDs, 𝑔𝐾 = 2 and 𝑔𝑄 = 6, which also increases 

the contribution of the secondary valley to the overall current.  

In other words, the use of the Landauer formalism under 

the Boltzmann approximation for MoS2 nanotransistors leads 

to a tailored current expression comprising two additive 

contributions: one from the K valley and another from the Q 

valley, thermally activated via the Boltzmann factor 

exp (−
∆𝐸𝑐

𝑘𝐵𝑇
). This term is not present in eq. (22), which is a 

general expression considering a single valley. 

The first experimental dataset selected to validate our model 

corresponds to a three-layer MoS2 nanotransistor (𝑡𝑠 ≈ 2 nm) 

with 𝐿 = 10 nm [14]. Their fabrication method employs a novel 

yttrium-doping technique to achieve ohmic contacts with 

resistance as low as 69 Ω-µm. At room temperature, the mean 

free path value extracted from experimental data for this 

nanotransistor was ℓ ≈ 4 nm, which is smaller than the physical 

channel length. However, as pointed out by the authors in [14], 

the effective channel length is reduced to approximately 1-2 nm 

under high-field conditions. For this reason, they observed high 

ON-current levels due to ballistic transport. 

As shown in Fig. 5, the model accurately describes the I–V 

characteristics of this device using a fitting parameter β = 8. 

This parameter empirically accounts for a deviation from the 

fully ballistic transport in the linear region of the output curve, 

as discussed above, causing a low-field channel resistance 

which is much higher than would be expected. In the validation 

process, we have tuned β to fit the experimental 𝐼𝑑𝑠–𝑉𝑑𝑠 curves 

in the linear region without changing the other physical 

parameters, thus ensuring consistency with the analytical 

formulation. It is important to stress that, for a given device, the 

value of β is always the same, for all simulation points (i.e., 

every bias condition) in the I–V and C–V curves. 
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Next, the value of the threshold voltage 𝑉𝑡 = 0.64 V is 

extracted by fitting the measured (𝐼𝑑𝑠–𝑉𝑔𝑠) characteristics. 

Although our framework provides a physics-based expression 

for 𝑉𝑡 (see Eqs. 9 and 12), this adjustment is necessary on 

account of the device-to-device variability and other process-

dependent effects inherent in maturing 2D technologies.  

The validity of our final pair of parameters is unequivocally 

demonstrated by the model ability to simultaneously achieve an 

excellent fit for both the output (𝐼𝑑𝑠–𝑉𝑑𝑠) and the transfer (𝐼𝑑𝑠–

𝑉𝑔𝑠) characteristics, using a single, consistent pair of fixed β and 

𝑉𝑡 for each device. An arbitrary compensation between 

parameters do not hold across these two distinct curves for 

multiple devices. 

 
Fig. 6 shows the behavior of these MoS2 nanodevices with 

respect to temperature variations. In log scale, the subthreshold 

slope varies with 𝑘𝐵𝑇, as expected. In addition, the slope 

remains almost constant with 𝑉𝑔𝑠 in 250 and 300 K, suggesting 

that nearly ideal ohmic contacts were achieved [14]. 

 

Fig. 7 illustrates the validation of the C–V model, eq. (26), 

when compared to simulation data [33] for a double-gate 2D-

FET with a monolayer MoS2 channel (𝑡𝑠 = 0.65 nm) and oxide 

with an equivalent oxide thickness (EOT) of 0.5 nm. The 

threshold voltage was set to 𝑉𝑡DG
= 0.22 V. The result shows 

that the model accurately describes the capacitance-voltage 

characteristics of this device. 

 
Fig. 8 illustrates another validation of the C–V model, this 

time with experimental data [34], for a single-gate 2D-FET with 

a monolayer MoS2 channel (𝑡𝑠 = 0.65 nm), gate oxide 

composed of 10 nm Al2O3 and 1 nm Y2O3, and a Si substrate 

below a 90 nm SiO2 layer. The threshold voltage was set to 𝑉𝑡 =
−2 V, and the gate capacitance was set to 𝐶𝑜𝑥 = 0.41 µF/cm2, 

according to the measured values. This transistor has a gate 

length of ~20 µm, so it cannot be classified as ballistic. 

Nevertheless, the result demonstrates that our model can still 

accurately describe the capacitance behavior of this device, as 

the C–V characteristics do not depend on the transport nature. 

The small discrepancy just below the threshold is attributed to 

interface trapping effects, as comprehensively discussed by the 

authors in [34]. 

 

B. Indium Selenide 

Semimetal chalcogenides (SMCs) are layered materials 

similar to TMDs, but with a MX-type structure, where M is a 

semimetal atom (such as gallium or indium) instead of a 

transition metal, and X is a chalcogen atom (sulfur, selenium, or 

tellurium). The SMC that has attracted the most interest is 

indium selenide (InSe), as it displays a bandgap of around 1.5 

 
Fig. 5. Validation of the model for the I–V characteristics, when compared 

to experimental data [14]. a) Linear and logarithmic scale 𝐼𝑑𝑠 − 𝑉𝑔𝑠. b) 𝐼𝑑𝑠 −

𝑉𝑑𝑠 for different values of 𝑉𝑔𝑠. Parameters: MoS2 channel with 𝑡𝑠 = 1.95 nm 

and 𝑁𝐷 = 3.5 × 1011 cm-2, HfO2 gate oxide (𝑡𝑜𝑥 = 2.6 nm), identical oxide 

insulator, Ti gate, n++ Si substrate, 𝐿 = 10 nm. The threshold voltage was 

set to 𝑉𝑡 = 0.64 V. Fitting parameter: β = 8. 
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Fig. 6. Validation of the transfer characteristics (𝐼𝑑𝑠–𝑉𝑔𝑠) in linear and log 

scale considering temperatures of 250 and 300 K. Solid lines are results 

from our model whereas dotted lines are experimental data from [14]. 

Parameters: MoS2 channel with 𝑡𝑠 = 1.95 nm and 𝑁𝐷 = 3.5 × 1011 cm-2, 

HfO2 gate oxide (𝑡𝑜𝑥 = 2.6 nm), identical oxide insulator, Ti gate, n++ Si 

substrate, 𝐿 = 10 nm and 𝑉𝑑𝑠 = 0.5 V. The threshold voltage was set to 

𝑉𝑡 = 0.48 V. Fitting parameter: β = 8. 

0.0 0.5 1.0
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Vgs (V)

I d
s 

(m
A

/m
m

)

T = 250 K

T = 300 K

0.0

0.2

0.4

0.6

0.8

 
Fig. 7. Validation of the C–V characteristics when compared to simulation 

data [33] considering a double-gate nanotransistor. Parameters: MoS2 

channel with 𝑡𝑠 = 0.65 nm and 𝑁𝐷 = 3.5 × 1011 cm-2, and SiO2 gate oxide 

(𝑡𝑜𝑥 =  0.5 nm). The threshold voltage was set to 𝑉𝑡𝐷𝐺
= 0.22 V. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

Vgs [V]

Numerical

Model

C
g

g
 [
m

F
/c

m
2 ] 

 
Fig. 8. Model validation for the C–V characteristics when compared to 

experimental data [34] considering a single-gate transistor. Parameters: 

MoS2 channel with 𝑡𝑠 = 0.65 nm and 𝑁𝐷 = 3.5 × 1011 cm-2, gate oxide 

with 𝐶𝑜𝑥 =  0.41 µF/cm2, Si substrate, SiO2 insulator (90 nm). The 

threshold voltage is 𝑉𝑡 = −2 V. 
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eV and mobility of the order of 103 cm2V-1s-1 [35].  

Recently, InSe 2D-FETs have also been reported to exhibit 

ballistic transport [13]. In a remarkable achievement, the 

performance of these devices fabricated is comparable to or 

even surpasses those of commercial FinFETs (for 10 nm 

technology node). For instance, a record high transconductance 

of 6 mS/µm was measured, revealing the enormous potential 

of this material for the future of nanoelectronics.  

Thus, the results provided by our model are also contrasted 

with the experimental measurements for these nanotransistors 

fabricated with three layers of InSe (𝑡𝑠 ≈ 2.4 nm) and 𝐿 = 10 

nm [12]. At room temperature, the mean free path estimated for 

this material is ℓ = 27.76 nm (see Appendix). It is important 

to note that the mobility used in this estimation was derived 

from ab initio simulations. Experimentally, the effective 

mobility is often significantly lower than predicted, making 

the mean free path presented here an upper-limit value. 

Nevertheless, as previously discussed for the MoS2 

nanotransistor, the ballistic regime is readily achievable 

under high-field conditions. 

Fig. 9 validates the transfer characteristics (𝐼𝑑𝑠– 𝑉𝑔𝑠) 

predicted by our model, showing excellent agreement with 

measured data. Using two distinct samples, Fig. 9(a) 

demonstrates accuracy in both logarithmic and linear scales, 

whereas Fig. 9(b) indicates that our model yields an idealized 

description of the subthreshold slope and highlights the need 

for additional work to fully incorporate short-channel effects, 

such as the drain-induced barrier lowering (DIBL) effect 

observed in the experimental data. 

 
Our roadmap to address this limitation involves improving 

the electrostatic model, by moving beyond the gradual 

channel approximation. The goal is to develop an analytical 

solution to the 2D Poisson equation to obtain an enhanced 

potential expression which intrinsically includes DIBL and 

other short-channel effects, such as subthreshold-slope 

degradation. Although the unification of this more complex 

electrostatic solution with the Landauer transport formalism 

is a non-trivial extension, it provides a clear path for future 

work. Integrating this improved potential into the ballistic 

transport framework described here will enhance our model 

capabilities in the case of aggressively scaled devices, where 

short channel effects are more pronounced. 

Fig. 10 validates the output characteristics (𝐼𝑑𝑠–𝑉𝑑𝑠) for 

two different samples. For the first sample (Fig. 10(a)), a 

fitting factor of β = 8 was applied to match the experimental 

data. In contrast, for the second sample (Fig. 10(b)), a factor 

of β = 5 was used to account for the reduced contact 

resistance, reported as 62 Ω-µm by the authors. 

 
As it was done in the case of the MoS2 channel device, Fig. 11 

illustrates the impact of temperature variations on the InSe 

nanotransistors DC output characteristics. Again, the 

subthreshold slope follows the expected log scale dependence 

with the temperature. 

 
Fig. 12 shows the validation of the C–V model against 

simulation data [33] for a double-gate 2D-FET with a single-

layer InSe channel (𝑡𝑠 = 0.8 nm) and an oxide with an EOT of 

0.5 nm. The threshold voltage was adjusted to 𝑉𝑡DG
= 0.2 V. 

The result demonstrates that our model precisely describes the 

 
Fig. 9. Validation of the model for the transfer characteristics (𝐼𝑑𝑠 − 𝑉𝑔𝑠), 

when compared to experimental data [13]. a) Linear and logarithmic scale 

curves for 𝑉𝑑𝑠 = 0.05 V [18]. The threshold voltage was set to 𝑉𝑡 = 0.5 V. 

b) Logarithmic scale curves for 𝑉𝑑𝑠 = 0.1 and 0.5 V. The threshold voltage 

was set to 𝑉𝑡 = 0.61 V and the saturation current was set to 0.3𝐼0. 

Parameters: InSe channel with 𝑡𝑠 = 2.4 nm and 𝑁𝐷 = 3.5 × 1011 cm-2, 

HfO2 gate oxide (𝑡𝑜𝑥 = 2.6 nm), identical oxide insulator, Ti gate, n++ Si 

substrate, 𝐿 = 10 nm. Fitting parameter: β = 5. 
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Fig. 10. Validation of the output I–V characteristics with experimental data 

[13]. a) Sample #1 with fitting factor β = 8. b) Sample #2 with fitting factor 

β = 5 [18]. Parameters: InSe channel with 𝑡𝑠 = 2.4 nm and 𝑁𝐷 = 3.5 ×
1011 cm-2, HfO2 gate oxide (𝑡𝑜𝑥 = 2.6 nm), identical oxide insulator, Ti 

gate, n++ Si substrate, 𝐿 = 10 nm. The threshold voltage was set to 𝑉𝑡 = 0.5 

V. 
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Fig. 11. Validation of the transfer characteristics (𝐼𝑑𝑠– 𝑉𝑔𝑠) in linear and log 

scale considering temperatures of 250 and 300 K. Solid lines are results 

from our model and dotted lines are experimental data from [13]. 

Parameters: InSe channel with 𝑡𝑠 = 2.4 nm and 𝑁𝐷 = 3.5 × 1011 cm-2, 

HfO2 gate oxide (𝑡𝑜𝑥 = 2.6 nm), identical oxide insulator, Ti gate, n++ Si 

substrate, 𝐿 = 10 nm and 𝑉𝑑𝑠 = 0.3 V. The threshold voltage was set to 

𝑉𝑡 = 0.5 V. Fitting parameter: β = 5. 
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capacitance-voltage relationship of this device. 

 

 

IV. CONCLUSION 

In the near future, 2D materials will not replace silicon in 

high-performance and high-density integration applications. 

Instead, 2D-FET applications are expected to focus on niches 

not well-served by current technology, such as flexible 

electronics. Another promising path is heterogeneous 

integration, where modules composed of silicon and 2D 

materials can perform complementary functions within the 

same chip. 

In any case, as 2D-FETs gradually enter the 

nanoelectronics market, design techniques need to be refined 

to meet the demands of cutting-edge applications. Thus, the 

availability of reliable device models for IC design will be 

crucial.  

To address this need, our paper presents an analytical 

model for the I–V and C–V characteristics of 2D-FETs 

considering the ballistic transport regime. Starting from the 

solution to the Poisson equation for the channel’s 

electrostatic potential, we derived fully analytical and 

explicit charge-based expressions. These expressions are 

based on the intrinsic physical principles of the devices and 

the specific properties of 2D materials, including their band 

structure. 

The developed models successfully reproduce the main 

characteristics of various devices, matching numerical and 

experimental results, for different channel materials, namely 

MoS2 and InSe (and a preliminary model validation on 

phosphorene is available in a previous publication [16]). 

Therefore, this work contributes to the development and 

analysis of devices emerging as promising candidates for 

both the More than Moore and More Moore perspectives. 

APPENDIX 

This appendix outlines the material parameters used in the 

simulation of the ballistic nanotransistors based on three-

layer MoS2 [14] and InSe [13] at room temperature. 

TABLE I 

THREE-LAYER MOLYBDENUM DISULFIDE PARAMETERS 

Parameter Symbol Value 

Bandgap [36] 𝐸𝑔 1.47 eV 

Effective mass (K-valley) [14] 𝑚𝐾
∗  0.48𝑚0 

Effective mass (Q-valley) [14] 𝑚𝑄
∗  0.57𝑚0 

Mobility (measured) [14] μ0 54 cm²V-1s-1 

Thermal velocity 𝑣𝑇 7.4 × 106 
cm/s 

Mean free path ℓ 3.75 nm 

Thickness [14] 𝑡𝑠 1.95 nm 

Relative permittivity [7] ε𝑠 4.8ε0 

TABLE II 

THREE-LAYER INDIUM SELENIDE PARAMETERS 

Parameter Symbol Value 

Bandgap [33] 𝐸𝑔 0.87 eV 

Effective mass [13] 𝑚∗ 0.17𝑚0 

Mobility (ab initio) [37] μ0 697 cm²V-1s-1 

Thermal velocity 𝑣𝑇 1.3 × 107 cm/s 

Mean free path ℓ 27.76 nm 

Thickness [13] 𝑡𝑠 2.4 nm 

Relative permittivity [13] ε𝑠 6.0ε0 

The thermal velocity is calculated as 

𝑣𝑇 = √
2𝑘𝐵𝑇

π𝑚∗
. (A1) 

The mean free path is estimated as 

ℓ =
2ϕTμ0

𝑣𝑇

. (A2) 
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