

20 a 23 de outubro de 2025

Majestic Hotel - Águas de Lindóia - SP - Brasil

Sensitive voltammetric detection of mesotrione in environmental samples using a carbon black and quantum dots based sensor

Anderson M. Santos^{1*}, Maria H.A. Feitosa², Ademar Wong³, Maria D.P.T. Sotomayor³, Fernando C. Moraes² and Marcos R.V. Lanza¹

¹São Carlos Institute of Chemistry, University of São Paulo (USP); ²Department of Chemistry, Federal University of São Carlos (UFSCar); ³Institute of Chemistry, São Paulo State University (UNESP),.

*e-mail: andersonmartinsts@usp.br

Mesotrione (MST) is a selective herbicide widely used in corn cultivation, effective in controlling broadleaf weeds [1]. Despite its agronomic benefits, the intensive use of MST can lead to environmental contamination, affecting soil, water resources, and food [2]. This underscores the need for sensitive, rapid, and low-cost analytical methods for detecting MST residues in environmental samples. This study reports the development and application of a simple, fast, and cost-effective voltammetric method for detecting MST at nanomolar concentrations. The technique employs a glassy carbon electrode modified with a mixture of carbon black (Printex L6) and quantum dots dispersed in a Nafion film. The electrochemical behavior of the sensor was evaluated using cyclic voltammetry, and MST quantification was performed by square wave voltammetry. The sensor exhibited a linear response in the concentration range of 0.020 to 3.5 μ mol L⁻¹, with a detection limit of 5.4 nmol L⁻¹. The proposed sensor was successfully applied to the detection of MST in soil and river water samples, yielding recoveries close to 100%. These findings demonstrate that the proposed technique is a simple, rapid, and highly efficient alternative for the detection of MST in environmental samples.

Acknowledgments:

This study was financed, in part, by the São Paulo Research Foundation (FAPESP), Brazil. Process Number: #2019/06650-3, #2022/12895-1, #2023/14335-6.

References:

- [1] Mitchell et al., Pest Management Science, 57(2), 120–128 (2001).
- [2] Doucet et al., Science of the Total Environment, 651, 111–123 (2019).