energies

Article

Phasor Measurement Unit-Driven Estimation of Transmission
Line Parameters Using Variable Noise Model

Felipe Proenca de Albuquerque *©, Rafael Nascimento, Carlos A. Prete, Jr.

check for
updates

Citation: de Albuquerque, FP;
Nascimento, R.; Prete, C.A., Jr.;
Coelho Marques da Costa, E. Phasor
Measurement Unit-Driven Estimation
of Transmission Line Parameters
Using Variable Noise Model. Energies
2024, 17,3587. https://doi.org/
10.3390/en17143587

Academic Editor: Zheng Xu

Received: 1 June 2024
Revised: 16 July 2024
Accepted: 19 July 2024
Published: 21 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Eduardo Coelho Marques da Costa

Escola Politécnica, Universidade de Sdo Paulo, Sdo Paulo 05508-220, Brazil; rafael2.nascimento@usp.br (R.N.);
carlos.prete@usp.br (C.A.P].); educosta@usp.br (E.C.M.d.C.)
* Correspondence: felipe.proenca.albuquerque@usp.br

Abstract: Accurate parameters are crucial in modern energy systems to ensure the reliable operation
of all components. Given the substantial volume of data in monitored systems, high-performance
methods are necessary. This paper proposes a new Bayesian multi-output regressor for estimating the
parameters of a three-phase transmission line. The presented approach achieves acceptable accuracy
in parameter estimation using only one end of the line. The Bayesian regressor is developed using
information derived from the data themselves, eliminating the need to explicitly model the system.
This capability allows the method to estimate parameters while accommodating different noise
models, even in the presence of systematic errors and non-Gaussian random noise. The methodology
was validated on various systems, including a two-bus system, IEEE 14-bus, IEEE 39-bus, and IEEE
118-bus, under diverse conditions such as varying sample sizes, loads, and noise levels. These tests
demonstrate the robustness of the proposed approach.

Keywords: three-phase transmission lines; Bayesian regressor; phasor measurement units; non-Gaussian
noise; parameter estimation

1. Introduction

Accurate estimation of power system parameters is a significant concern in modern
systems, especially within the context of smart grids. Transmission line parameters, consid-
ering both positive and zero sequences, find application in various scenarios, including
modeling of protection relays for distance protection [1], power system state estimation [2],
and investigation of voltage stability [3]. Thus, evaluating these parameters with a high
accuracy is imperative for ensuring the security and reliability of power system operations.

Studies in the literature have shown that the difference between the stored values of
the transmission line parameters and the actual values can reach up to 30% [4,5]. These
deviations directly affect the performance of the state estimators and the power flow
solutions [6]. Therefore, a robust methodology to estimate the parameters of a given power
system using the available noisy measurements is necessary.

Over the years, several papers have attempted to address transmission line parameter
estimation [2,6-13]. Each of them focuses on a specific model of the transmission line
or a different methodology to describe the observed data. In [6], a method to estimate
the parameters of a three-phase transmission line employing robust linear regression in
the presence of outliers was proposed. However, the methodology did not address the
challenge of modeling random noise in measurements obtained from PMUs.

The authors of [7] presented a methodology to calculate the parameters of a short
transmission line by developing a rigorous model for random noise based on an accurate
noise covariance matrix, considering the realistic specifications of noise introduced by
instrument transformers and PMUs. In this work, the solution is obtained using weighted
least squares using the covariance matrix of the measurements. Nevertheless, systematic
errors are neglected, and the projections are assumed to be Gaussian for all noise levels,
which is not valid in general [11].
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The work developed by [14] proposed a solution based on the Kalman filter, consider-
ing the presence of noise in voltage and current measurements. Additionally, the authors
presented an analytical derivation for the covariance matrix for the lumped model of a
transmission line. However, the authors ignored the presence of systematic errors and the
possibility of non-Gaussian noise distributions. Moreover, the application of the method
requires the presence of PMUs at both ends of the transmission lines.

In [12,13], the authors presented a multi-branch method to estimate the parameters of
the transmission lines and the systematic errors present in the chain of measurements used
to obtain a phasor measurement. The random errors are modeled as Gaussian distributions
for both magnitude and phase, while the systematic error is assumed to follow a uniform
distribution, i.e., it has the same contribution for each sample. The solution is calculated by
applying a Tikhonov regularization framework.

The need for a method that requires measurements only from one side of a transmis-
sion line was introduced in [15]. This paper focused on identifying erroneous parameters
and subsequently estimating them by applying the extended error function for state esti-
mation in power systems. However, the authors did not address the problem of modeling
noise in phasor measurements, although they heavily relied on it in the estimation process.

Additionally, it is important to highlight the work proposed by [8], where the authors
developed a method to handle non-Gaussian random noise in voltage and current phasor
measurements. This methodology was supported by recent studies that examined the Gaus-
sian assumption of random errors [16,17], indicating that the process of obtaining phasors
is multimodal and that the Gaussian assumption may not be the most suitable choice.

In this context, this work presents a novel, model-free methodology to estimate trans-
mission line parameters. This approach does not rely on transmission line equations
to evaluate parameters; instead, it is a data-centric solution. Moreover, the proposed
method is capable of estimating parameters using only one-sided measurements with an
acceptable performance. Additionally, the developed multi-output regressor can accom-
modate different noise models, including Gaussian random error, systematic errors, and
non-Gaussian random noise, outperforming existing methods under the same studied
conditions. Therefore, the main innovations introduced by this paper are as follows:

* A model-free methodology is developed to assess the parameters of a three-phase
transmission line that does not necessitate measurements from both ends of the
transmission line;

*  The Bayesian regressor enables the construction of credible intervals for the estimation,
thereby enhancing confidence in the results;

¢ The method is capable of handling various noise models, resulting in estimations with
high performances across all cases;

¢ The method was tested on systems with varying dimensions, numbers of samples in
the database, load conditions, and noise levels.

2. Description of the Employed Transmission Line Model

In this work, the model for long-transmission lines presented in [18] was studied. The
multi-phase model, which includes consideration of ground effects, is depicted in Figure 1.
In this figure, the parameters z4,, zpp, and z.. represent the self-impedance per unit length
(Q2/km),while z,, z4¢, and zp, represent the mutual inductances. As for capacitances, c,y,
Cac, and cp, denote the capacitances between phases per unit length (F/km), and c; denotes
the ground capacitance.

The three-phase transmission lines are represented by the impedance matrix Z' and
the capacitance matrix C'. The parameters are shown in (1).
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where w = 27tf, and f is the frequency of the power system.
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Figure 1. Three-phase transmission line model with mutual coupling between phases used to obtain
the sequence parameters.

Since we are assuming that the method deals with long transmission lines, it is
reasonable to presume that the line is transposed. Thus, the model for the per-length
parameters is represented by the matrices in (2):

Zp Zm  Zm Cp Cm Cm
Z/ = | Zm Zp Zm C/ = | Cm Cp Cm |- (2)

Therefore, by applying symmetrical components, the sequence parameters are ob-
tained while still considering the per-length units:

Z(l) = Zp — Zm, C(l) = Cp — Cm Z(O) = Zp + ZZm, C(O) = Cp + 2Cm.

Using the parameters per length, it is possible to obtain the parameters using hyper-
bolic corrections [19] using the following equations:

Yis) = Jweis) Zefs) = \2) Vs Vo) = VEY(s)

Z(q) = R(S) +]OJL(S) = ch(s) sinh (’)’(q) . Zsec)

Yio) =

2 Lsec
Ze,, fanh (’Y(S) 7)

Ry =Re{Zg)}, Ly =—, O a—

where the index (s) might be 1 for a positive sequence or 0 for a zero sequence.

The provided expressions delineate the circuit per sequence, as illustrated in Figure 2.
Within this representation, V(s),k and V(S),k denote the phasors of voltage and current at
the bus k for sequence s, while V(s),l and V(s),l represent the respective phasors at bus
I. It is worth noting that each sequence needs its own circuit depiction. Notably, the
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negative sequence mirrors the positive sequence in terms of parameters, thereby rendering
it unnecessary for the analysis.
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Figure 2. IT-model of each sequence circuit of the transmission line used to generate the measurements
at the sender and receiver ends.

To simplify the notation, the sequence notation will be omitted from this point for-
ward, as the equations can be handled identically for positive and zero sequences. Any
distinctions between sequences will be highlighted as needed.

3. Problem Formulation

In this section, we describe the methodology used to generate the database utilized
for estimating the parameters, as well as the formulation of the problem concerning the
supervised learning approach and the algorithm built to evaluate the parameters.

3.1. Building the Database

In a supervised learning framework, the methodology employed to construct the
database holds significant importance in achieving a viable solution. Given the scarcity of
literature addressing transmission line parameter estimation through a machine learning
paradigm [20-22], this paper introduces a novel approach to generating the training data.
This methodology takes into account the characteristics obtained from historical data
documented in the technical literature.

According to studies in the literature, parameter errors typically fall within the range of
approximately 10% to 30% of the true parameter value [4,15]. Consequently, it is anticipated
that the database should encompass parameter values within this range. Thus, if p*
represents the exact value of a specific parameter, then p, the parameter with inaccuracy,
should fall within the following bounds:

p € [0.7p",1.3p"].

Given that extreme parameter values are less frequently observed compared to those
with smaller errors, the Gaussian distribution is suitable for data generation. By employing
the empirical rule of 3¢ [23], it is possible to establish a relationship between the maximum
observed error and the standard deviation of the Gaussian distribution. This relationship
can be succinctly expressed through the following rule:

P(p—3c <X <pu+30) <0997,

where P( .) is the probability density function, X is a Gaussian random variable with mean
u and standard deviation ¢. Using this rule with the formulation of the problem, we have
the following:

p*+30 <13p* = o =0.1p"

Hence, to generate data for parameters with a mean value of p* and maximum
observed values of 1.3p* and minimum values of 0.7p*, we use a truncated Gaussian
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distribution with a mean of y* = p* and a standard deviation of ¢* = 0.1p*, truncated in
the interval [p* — 30, u* + 30™*].

For distribution lines, the approach of varying the parameters within a specific range
of values was tested in [24]. However, in that work, the authors used a maximum variation
of 5%, which simplifies the problem in terms of supervised learning because the target
space is smaller. Additionally, for transmission lines, it is well-established that parameter
values can vary by up to 30%.

Although this method for building the database is based on practical scenarios of
transmission lines, it presents some concerns. If the parameter to be estimated falls outside
the range of possible parameters, the algorithm needs to be retrained, considering the
new range of possible values. Furthermore, the random generation of cases can lead
to unfeasible values for the speed of signal propagation. To address this problem, an
additional step was necessary to verify the generated speed of propagation. Regarding the
speed of light in a vacuum (c), the values for the positive (v(;)) and zero (v(g)) sequences
should be as follows:

w

= Im (1))
w

'O = Tm(y )

<c,

<gc,

The entire dataset consists of N samples or instances for valid cases, after the verifica-
tion of both conditions. Before applying any machine learning algorithm, this dataset is
split into 80% for training the algorithm and 20% for testing. It is important to note that
this process ensures that the training process is completely blind to the test dataset.

3.2. Supervised Learning Setup

In modern power systems, advances in monitoring technology are increasing the use of
Phasor Measurement Units in several buses of the system [25-27]. Additionally, the greater
frequency reporting rate compared with common supervisory systems (SCADA) and the
possibility to employ synchronized data in energy system problems make this device more
suitable to deal with linear and nonlinear problems. Generally, the transmission line parameter
estimation problem is nonlinear [11], requiring more sophisticated noise models [8].

Considering the presented context, this work presents a methodology to estimate the
parameters based on a supervised learning approach. For such a task, initially, we have
considered as features the voltage and current phasors for the sender (bus k) and receiver
(bus /) ends in a three-phase transmission line. The goal is to estimate the parameters for
positive and zero sequences. Mathematically, this is expressed as follows:

Estimate {R(O), C(O)/ L(O)/ R(l)/ C(l), L(l)}
Using { Vi, Ir, Vi, [} a8,

where the indices A, B, and C represent the system phases, and k and / are the indices of buses
connected by a transmission line. Thus, the phasor measurements can be written as follows:

Vi = |Vile®, I = |T|el %,
Vi=|Vile®, I =[],

where both magnitude and angles are treated as features in the estimation process.

This way, each vector of features, denoted as x;;, contains the information of the
three-phase phasors in the sender and receiver ends. Each row in the matrix of features
X represents an instance or sample for a specific observation of the set of features x;.
Additionally, each parameter is a different target t. A method to deal with multi-output
regression is to perform one model per target [28]. Thus, the theory can be developed for a
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single target and applied for each desired parameter, ignoring the remaining parameters in
the estimation.

3.3. Statistical Model

In this section, we describe the Bayesian ridge regression model[29] used to estimate
the transmission line parameters. Even though this is a hierarchical Bayesian model, it
assumes convenient prior distributions and approximates the posterior distributions of
some parameters based on their maximum a posteriori estimates to produce low-complexity
approximations of the transmission line parameters. As a Bayesian model, the output is a
posterior distribution, with the mean serving as a point estimate and the standard deviation
indicating the level of uncertainty.

To train the model, we use N pairs {x, t, },n =1,..., N, where x, = [le, Xjos -0 Xjd
is the vector of features and f,, is the label; that is, the value of the target for the n-th sample.
We assume the measurement model is given by the following:

]T

by = XnTw + €n,

where w = [wq,wy, ..., wd]T and ¢, is an independent and identically distributed zero-
mean Gaussian process with variance ¢2. Thus, p(ty|x,c?) = N (ty|xn’ w,c?), being
N (u,0?) is a Gaussian distribution with mean u and variance .

Defining = % and assuming that each sample is independent and identically
distributed [30], the likelihood of the observed data can be written as follows:

p(tlew. B) = (%) : exp{—gllt - XwIIQ},

where t = [t1,t,...,t5]T,X € RN*4 sych that X = [X1,X2,...,xn]T. The prior distribution
for B is chosen as a Gamma distribution; a common choice for scale parameters:

p(B) = Gamma(B|c,d),
with
Gamma(a|a, b) = T'(a) b le 0,

I'(a) :/ 1 le t dt.
0

Following [29], we assume a hierarchical prior distribution for the parameter w
by defining a vector of hyperparameters & = [a1, a2, ..., a ] representing the standard
deviation of w:

d

p(wle) = [ TN (wilo, o771,

i=1

d
p(x) = [ | Gamma(a;|a, b).
i=1

Instead of jointly estimating («, ) and w, these hyperparameters are inferred using a
maximum a posteriori (MAP) Bayesian inference approach; that is, we select

(&mp, Bmp) = arg max p(a, Blt)

and calculate UI%AP = ﬂﬁ The approach to numerically optimize the parameters « and S is
presented in [29].

Because p(w|«) and p(t|w, «) are multivariate Gaussian distributions, the posterior
distribution of w is also Gaussian:
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p(wt, amp, ogp) = N (wlp, I),

with the mean and covariance matrix given by:
-1
n=opIx't,  T=ofp(X'X+4)
where A = diag(anmp,1, amp2, - - -, &MP4)-

3.4. Inference

After the matrices g and  were computed, the model can predict a target t, given a
new test point x... The posterior distribution of the predicted target is as follows:

plt.ltmam,o2) = [ p(t: [, ave, o) pleolt, v, o) dw

Since both terms in the integral are Gaussian functions, p(t.|t, ayp, 07%) is a Gaus-
sian distribution:

p(t|t, amp, oip) = N (telys, 0?) 3)
with the following parameters:
Y = (UQ%ZXTt)Tx*, 0?2 = O’I%,[P + xIZx,. (4)

Therefore, the hierarchical Bayesian model learns ayp, ovp during the training step
and use these estimates to calculate # and X. Unlike traditional machine learning models,
this Bayesian framework produces as outputs both a central estimate y. (that is, the
predicted mean value) and the variance of the prediction ¢2, given by (4).

The methodology used to generate the dataset and learn the parameters w, a, 02 from
the model, as well as the procedure used for inference, are summarized in Algorithm 1.

Algorithm 1: Methodology used to generate the dataset, train the model, and
infer the parameters.

Dataset generation
1 Read the values of ry, ¢y, xg, 11, ¢1, X1
2 Generate 10,000 samples p(1>, ce, p<10'000) from truncated normal distribution with
mean §* = p; ,, standard deviation 0 = 0.1p; ; truncated in the interval
(" —30", y* +30*].
3 foreachs € {1,---,10, 000} do

3V? A /
4 Calculate Z. = /&, P; = f and Q; = D; - i from p
5 Solve the followmg system of non-linear equatlons using the Gauss—Newton

method, obtaining Vi, -+, V;, 01, -+ ,0N:

V; ZVk Gk cos(0; — 0x) + Bj g sin(6; — b)) = P;

VZVk Gijsin(0; — 6) — Bjxcos(6; — 0k)) = Q;

6 Calculate I} = Pk;iip;, 1<k<n

7 Discard p(s) ifvy >corvy >cor Vi < %pu

8 B Add noise to Vj and Iy according to (5) or (6),1 <k <mn
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Algorithm 1: Cont.
Training
9 Find
(enp, Pree) = argmax p(tla, f)p(a)p(p)
; 2 1 .
and define oyp = Bur
10
1 Calculate the posterior mean and covariance matrix of w:
2 (T ! ~
2 = (TMP (X X -+ A) P A = dlag(tpr,l, e /“MP,d)
25y T
=0y pXt
Inference
12 Given a vector of features x., calculate the posterior mean y. and variance o2 of the
predicted parameter ¢, as
Yx = FTX*
0% = Ul%/LP +xI'Ex,

4. Results

In the initial analysis, we studied a system with a non-ideal three-phase source con-
nected to the transmission line, and at the end, an unbalanced three-phase load. The
corresponding system is shown in Figure 3. The load was given as a percentage of the
surge impedance loading (SIL) of the transmission line [18]. Using the lossless case, the SIL
is given by:

V. l?
S1Ly, = Vanl

where SILy, is the equivalent one-phase SIL, or the three-phase SIL divided by three, and
V4 is the phase—ground voltage of phase A.

Additionally, to estimate the zero-sequence parameters, an unbalance factor in the
load was introduced, designated as f;.. This way, we propose the following manner to
generated different active powers for each phase:

Py = (1+ fa)SIL1iy, Pp= (1~ fa)SIL1y, Pc = (1 —2fuc)SIL1y.

Furthermore, to determine the influence of the reactive power, we fixed a power factor
(fp)- The numerical values of the parameters for the studied system are presented in
Appendix A.

The presented system was simulated using MATLAB/Simulink using a notebook
equipped with an Intel Core i7-1165G7 2.8 GHz CPU and 8GB of memory. In the initial
analysis, the dataset size was considered to be 10,000 samples, which were split into training
and test sets in an 80/20 proportion.

In terms of practical applications, this approach aims to develop software for post-
processing data obtained from transmission lines monitored by PMUs, even when monitor-
ing is limited to one side. The assumption of monitoring a transmission line with at least
one PMU is common in the literature [7-9]. However, many papers assume that PMUs are
installed at both ends [15], which can increase system costs. In this work, our approach
achieved satisfactory performance using measurements from only one side. The proposed
methodology for estimating transmission line parameters leverages readily available data
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in transmission systems to enhance parameter monitoring, requiring only a computational
environment for storing and processing the data used in the model.

Some studies in the literature have utilized practical systems to validate developed
methods. Access to data from actual systems is often limited or restricted due to privacy
concerns. For example, in [6], the method was tested using an experimental setup based on
a simplified system. In contrast, [8] validated their solution for consistency using raw PMU
data obtained from a U.S. power utility in the Eastern interconnection.

Using the approach of [6], it is possible to access the method performance directly, since
the parameters of a simplified laboratory system can be calculated via offline techniques.
Meanwhile, in [8], the consistency of the method can be tested by applying it to similar
ambient temperature and loading conditions using different samples, but with the same
length. This way, if the method produces the same results, it is possible to conclude that it
is consistent.

v, T | N L
1 Zy, 11 P P 1y P,+j0, ]
L —) L —— 0000 —AM b —
[ i 1® L N :
1 11 C N
o HOr T po Pt |
1 |
i ) — 0000 —ANN : —
1 7 I |. J_ — =| :
1 11 T, 1
7 L C . 1
N N N R R
'L ®) LY 0000 A ¥ — |
I 11 1
1
: Three-Phase Source : : Transmission Line Model : : Load 1

Figure 3. Simplified 2-bus system used to obtain the measurements in the computational environment
for different conditions.

Numerical Analysis

The model is built using a training database and evaluated on a test database that is
completely excluded from the training process. To present the performance, it is necessary
to use some metrics. For this purpose, consider the actual values of the target (f =
{f1,B, ...,k }) and the estimated values ( = {1, f,,...,;}), where k is the size of the test
database. In this work, we have adopted the root mean squared error (RMSE) and mean
absolute percentage error (MAPE), defined as follows:

5 — 4l

100 &
MAPE = — )~ -1
k=5

j_

It is important to note that the RMSE is given in the unit of the parameter, e.g.,
for resistance, the RMSE is in (), whereas the MAPE is given in % using the presented
configurations. Additionally, it is relevant to note that the metric is taken considering
different k values for the target in the test database. The result for the noiseless case is
shown in Table 1. Regarding the computational time required to obtain the solution, we
conducted an average time analysis based on running 100 realizations to train and test the
algorithm, resulting in an average time of 0.0397 s. As a benchmark, we implemented a
simple linear regression solution to that commonly employed in the literature [7,10,31],
and we found an average computational time of 0.0213 s. Thus, our method exhibits a
computational burden that is very similar to the standard methods used in the literature.

The use of a Bayesian method to estimate the parameters presents another advantage
compared to other machine learning-based solutions or even common maximum likelihood
estimators. In (3), the developed method for prediction provides the estimator with the
distribution of the target t* in the test database. Consequently, the mean value and the
standard deviation of each sample in the test set are calculated. The mean value corresponds
to the prediction used for a given set of features. Additionally, the standard deviations can
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be used to illustrate the possible variations in the estimation process. To demonstrate this
behavior, we have performed the estimation for the parameters Ry and Ry, along with their
error bars, considering a variation of £3¢. The obtained results are shown in Figure 4.

Table 1. Performance metrics for the proposed approach considering a 2-bus system and the noise-

less case.
Parameter MAPE (%) RMSE
Ry 0.0361 0.00586 ()
Lq 0.0302 0.000127 H
B; 0.00148 409x10 U F
Ry 0.0636 0.271 Q)
Lo 0.0575 0.000947 L
By 0.398 6.56 x 10~° F
Estimation of R; Estimation of Rg
" 320 +
.11.0 -
[+ 4 “ [+ 4
5105 ‘6 300
3 3
$10.0 %580
2 95 2
(0] ©
'F’E 0.0 - gzso
w el w
8.5( 240

8.5 9.0 9.5 10.0 10.5 11.0
True value of R1

240 250 260 270 280 290 300 310 320
True value of Ra

(a) Estimate versus true value for Ry (b) Estimate versus true value for R

Figure 4. Comparison between the estimated and true parameters for the noiseless case for R; (a) and
Rq (b).

The results depicted in Figure 4 reveal some important aspects of the solution. Firstly, the
estimation performance is remarkably high, as the true values closely align with the estimated
ones. Another noteworthy observation is the reliability of the estimations, evidenced by the
small standard deviations. Consequently, the proposed method generates stable predictions
with a high performance for estimating three-phase transmission line parameters.

An important influencing factor in a machine learning solution is the size of the
dataset, i.e., the number of samples used to build the statistical model and obtain results.
Some papers in the literature have employed various dataset sizes. In the context of data-
based solutions in power systems, [32] used 5000 samples to train the model, whereas [33]
employed 32,000 samples to develop the model used to address the problem. Generally,
non-machine learning solutions utilize a day of PMU measurements considering a certain
reporting rate for the device. For instance, in [7], a reporting rate of 50 samples per second
was utilized, resulting in approximately 4.3 x 10° samples.

The presented work initially employed 10,000 samples to obtain the results shown in
Table 1. However, as shown in Figure 5, the required number of samples to achieve the best
performance is considerably lower. By analyzing this figure, it is possible to conclude that,
for the noiseless case, 200 samples are sufficient to produce results with a high performance.

Another relevant aspect of the solution is the necessity of measurements at both ends. In
real-world applications, obtaining PMUs to monitor each transmission line of the system is
challenging due to the high cost of implementation [16]. Thus, it is expected that some non-
critical lines may only be monitored using a single PMU. Consequently, we tested the proposed
algorithm considering measurements from only one side. This process involves removing either
the receiver or sender end measurement from the feature matrix X and applying the method as
described in Section 3.2. The results of this analysis are shown in Table 2.
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Performance for Different Dataset Sizes

1
104
100
S
w
Z 10!
s
1072
103
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Samples (N)

Figure 5. Influence of the number of samples in the estimation method considering the noiseless case.

Table 2. Performance metrics of the proposed approach considering only one-sided measurement in
the noiseless case.

Parameter MAPE (%) RMSE
R; 0.324 0.04707 O
L 0.0416 0.000169 H
By 0.00415 1.08 x 10710 F
Ry 1.55 0.271 O
Lo 0.200 0.00320 L
By 2.67 381 x10 8 F

The results presented in Table 2 confirm that, as expected, the method’s performance
decreases when using measurements from only one side. However, the obtained values
still demonstrate an acceptable performance [6], as it is desirable to achieve parameter
values that are within 10% of the maximum values. It is worth highlighting that the
worst-performing parameter is the zero-sequence susceptance. Generally, estimating zero-
sequence parameters is more challenging due to their smaller magnitude compared to the
positive sequence, which poses an additional barrier to achieving numerical stability in the
estimation process.

Another relevant parameter in the estimation process is the active power carried
through the line. In the initial analysis, we assumed that the active power was 1 SIL,
equivalent to 100% of its value. To consider the influence of this parameter, the active
power was varied in a range of £=30% of the 1 SIL. This range is a commonly observed value
for the variation in the active power in a period of 24 h [34]. The results of this analysis are
shown in Figure 6.

Performance for Different Load Conditions

1071 -—- 10

MAPE (%)

1073

70 80 90 100 110 120 130
Load (% SIL)

Figure 6. Analysis of the MAPE of the solution under different load conditions and in the noiseless case.
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The results presented in Figure 6 show that the proposed methodology is robust
concerning the active power carried through the line. This way, the variation in the load
did not have a significant influence on the performance of the method, since there was only
a slight difference among the results for the studied loads. This is an interesting behavior
of the proposed approach due to the fact that common methods in the literature [11], based
on nonlinear optimization, present extreme variation in performance when the load is
modified, especially for extreme values of load.

Another relevant scenario to test the performance of the algorithm is to estimate the
parameters in a complete power system with the presence of other components, such
as transformers, generators, loads, and transmission lines. To study the performance of
the proposed method under this situation, we implemented the methodology to estimate
the transmission line parameters in the IEEE 39-bus system. The IEEE 39-bus standard
system is a widely used power network in the New England area of the United States [35],
providing an extensive scope to evaluate power system solutions. The system consists of
10 generators, 39 bus bars, and 12 transformers, as illustrated in Figure 7. The methodology
employed to generate the data is consistent with that presented in Section 3.1. It is important
to note that the simulation was carried out for positive sequence analysis, which is the
standard case for these test systems [36]. Thus, the results for several transmission lines of
the system are presented in Table 3.

()
k14
Y 25 26 = C)
® - # 5
30 % 38
LJ—Z 18
L
., Al
& 12
8 Y

Figure 7. The IEEE 39-bus system [37].

As observed for the simplified 2-bus system, Table 3 demonstrates that the method
exhibits a high performance in estimating the positive sequence parameters of a three-phase
transmission line. Particularly noteworthy is the fact that the worst parameter yielded a
mean absolute percentage error (MAPE) smaller than 1%. Furthermore, it is relevant to
emphasize that the parameters with the worst performances shared the characteristic of
having one of their buses (sender or receiver) controlled, meaning that the voltage was
constant in practical applications. This characteristic poses a challenge for conventional
methods, which rely on algebraic solutions and often neglect such restrictions in their
solutions. In contrast, the proposed methodology, based on statistical learning, is capable
of handling this characteristic simply by ignoring this feature in the regression.
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Table 3. Performance metrics of the proposed solution considering the IEEE 39-bus system.
rii MAPE (%) X MAPE (%) bi MAPE (%)
.2 0.250 X1,2 0.0471 bl,Z 0.00120
71,39 0.998 X1,39 0.0161 b1,39 0.000344
2,3 0.0719 X2,3 0.0235 bz/g 0.000827
12,25 0.0308 X225 0.0201 b2,25 0.00457
34 0.392 X34 0.0497 b3,4 0.00185
318 0.221 X318 0.0548 b3,18 0.000529
745 0.0977 X45 0.0502 bas 0.00200
7414 0.118 X414 0.0583 ba1a 0.00243
158 0.167 Xs8 0.0810 bsg 0.00401
767 0.0942 X67 0.0746 be7 0.00503
76,11 0.0362 X6,11 0.0337 b()/u 0.00268
178 0.0698 X78 0.0451 byg 0.00236
789 0.417 X8,9 0.0525 bgo 0.00170
710,11 0.0253 X10,11 0.0167 blO,ll 0.00244
71013 0.0186 X1013 0.0203 bio,13 0.00214
713,14 0.0367 X13,14 0.0451 b13,14 0.00334
714,15 0.519 X14,15 0.0974 b14/15 0.000309

To directly compare different methods, it is necessary to perform the comparison using
scenarios similar to those used to build and test the proposed methodology. In general,
papers in the literature develop methods to address specific problems, such as considering
the simplified model for the line in the dq domain [38] or in three-phase untransposed short
transmission lines [7], which makes it difficult to propose a fair comparison. Additionally,
the data models employed are generally different due to the use of other measurement
resources, such as power measurements, or even due to the methods adopted to model the
inaccuracies present in the data. However, it is possible to use references that present results
using noiseless cases and some IEEE test systems. In [31,36], a method was implemented
to estimate the parameters based on the extended vector of states in a power system. The
comparison of the proposed solution with such references is shown in Table 4. Note that the
works have calculated only the admittance branch parameters, which are simply obtained
by inverting the elements (r + jx) 1 = gs + jbsr.

By observing the results presented in Table 4, it is possible to conclude that the
developed methodology achieved better or at least comparable performance with the
analyzed previous works in the literature. Furthermore, it is important to highlight that the
methods developed in [31,36] may not work in some situations depending on the detection
method used to evaluate the parameters. For example, for the branch 9-10, it was not
possible to detect such a parameter as erroneous using the approach used in [39].

Table 4. Single line errors in the IEEE 14-bus system.

Line (bus#-bus#) Proposed Solution (%) Ref [36] (%) Ref [31] (%)

8sr bs: 8xr [ 8sr bsr
(1-2) 0.18 0.11 0.35 0.34 0.22 0.17
(2-3) 0.19 0.07 0.25 0.49 0.52 0.66
(2-4) 0.09 0.10 0.07 0.56 0.17 0.09
(2-5) 0.03 0.05 2.00 0.03 0.00 0.01
(6-11) 0.05 0.06 0.44 0.30 0.76 0.01
(6-12) 0.11 0.07 0.37 0.23 0.32 0.06
(6-13) 0.04 0.04 0.34 0.17 0.25 0.03
(9-10) 0.01 0.01 - - 0.00 0.01
(9-14) 0.05 0.05 0.14 0.18 0.01 0.01

(7-9) 0.00 0.01 0.00 1.66 0.00 0.42
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5. Estimation Considering Noise

The noise model for phasor measurements is a fundamental aspect of solutions uti-
lizing data obtained from PMUs. In general, the chain of instruments and components
introduces inaccuracies in the data. The instrument transformers (IT), namely voltage
and current transformers associated with the PMU device, introduce both random and
systematic errors in the temporal series generated by the sequence of obtained phasors.

Some papers in the literature have introduced the necessity of modeling the noise as
a separated term for the magnitude and phase; i.e, the noise should be included in the
polar coordinates and the distribution should be verified for the projections into the real
and imaginary axes [7,9,11]. This model makes the solution more sophisticated, since it
is not possible to obtain an analytical solution with a closed form. Instead, approximated
numerical solutions are used to evaluate the parameters in different conditions.

In [16], the authors challenge the Gaussian assumption of random errors by arguing
that the process of obtaining phasors is multimodal, time-variant, and characterized by non-
stationary error statistics. Consequently, the central limit theorem is deemed inapplicable
to this scenario, as the chosen sampling distribution may not accurately represent the
actual random process underlying the measurement data generation, potentially leading
to erroneous performance assessments. To address this challenge, the paper proposed
modeling the errors using a Gaussian mixed model (GMM). Using this approach, the
authors of [8] developed a solution by equating the statistical model and subsequently
applying Newton’s method for solving nonlinear problems.

In summary, each different noise model leads to a specific solution, requiring algebraic
work to formalize the cost function to optimize and the testing of different algorithms
to obtain the parameters. In this work, we propose a solution that is able to deal with
different noise models that do not require any algebraic work to equate the transmission
line model. By employing a data-centric approach, it is possible to evaluate the parameters
with acceptable performance considering several scenarios of the system.

5.1. Gaussian Random Noise with Uniform Systematic Error

Following recent papers in the literature that consider Gaussian models for the random
errors [12,13], the field measurements can be simulated by using the following model:

Vi = (g ggodom)[ vy e O i) 5

B = (L 4 gpemdom) || ot 05 ©
where h represents the index of a specific bus, V;, and I represent the phasors corrupted
by noise, the term “sys” denotes systematic error, while “random” pertains to the random
errors inherent in the measurements. The terms ¢, «, 77, and ¥ are uncorrelated and
separately modeled for each magnitude and phase in complex data. The key distinction
between systematic and random errors lies in their behavior: systematic errors contribute
consistently across all samples, whereas random errors fluctuate throughout the time series.
As the errors are uncorrelated, it is possible to write the following:

E[XY] =0,

forX,Y € {Q‘Zy ° C{f”d”m, Uzys, n;l“”d"m, oc,s;y 5 a{l‘md”m, gbfly % gb[l“”d"m }, where E[X] is the expected
value of the random variable X.

This model relies on papers that deal with actual data from PMUs, and its design is
based on the analyzed statistics of time series obtained from field applications. According
to previous studies [40—-42], a Gaussian distribution is often a meaningful choice, depending
on the specific device, measured quantity, and considered channel. It is also important to
highlight that the studies were conducted by fitting one model for the magnitude data and
another for the phase data, as adopted in (5).
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In terms of noise level, although the values vary significantly across the diverse data,
a value of 0.5% is a good approximation for magnitude [40], and 0.52 degrees is a good
approximation for the phase [13]. In this paper, we have used more conservative values for
the noise: 1% for the magnitude noise level and 1.03 degrees for the phase, demonstrating
that the developed methodology does not assume the availability of very high-quality data.
Concerning the values, the proposed approach considers that [13]:

* Instrument transformers, including both voltage and current transformers, are catego-
rized as class 1.0 [11]. Systematic errors are modeled to follow a uniform distribution
with a standard deviation equal to A/+/3, where A represents the maximum deviation.
For example, in class 1.0, a systematic error of A = 1.0% corresponds to the systematic
error model.

*  The random errors are assumed to be Gaussian based on the maximum total vector
error (TVE) of 1% for the PMUs [13], which is decomposed into a maximum amplitude
error of 1% and a maximum phase angle error of 0.57°.

It is worth highlighting that to evaluate the performance of the model under random
noise, 1000 Monte Carlo simulations were carried out. This approach helps mitigate the bias
introduced by a single numerically generated distribution and yields a more stable response
that can be compared in a fairer manner with the proposed solutions in the literature.

When applying the presented model using the literature values, the results for the
Gaussian random noise with uniform systematic errors are displayed in Table 5.

Table 5. Performance metrics of the estimation for the 2-bus system considering Gaussian noise and
systematic error in the measurements.

Parameter MAPE (%) RMSE
R; 1.50 0.182 O)
L 0.228 0.000879 H
By 0.0349 853 x 10710 F
Ry 1.26 439 Q)
Lo 0.838 0.0117 L
By 3.15 471 x10 8 F

Similar to the noiseless case, it is possible to generate results with their corresponding
error bars for £3¢. The obtained result is shown in Figure 8. Upon analyzing this figure, it is
evident that the performance deteriorates when considering noise compared to the noiseless
case, as expected since noise introduces complications in the parameter estimation problem.
It is worth highlighting that the presented approach not only provides the estimated
parameters but also presents the bounds for the expected error in a generic realization
of the method. This represents an innovation in solutions dealing with transmission line
parameter estimation.

Estimation of R, Estimation of Rqg
11.5
110 + _320 # ﬁ
. < :
% 105 » +’+ B30 1
3 e } } 3 t At
£10.0 + ‘M m %280 ﬁ
% 95 ’/}" : ,}/"ﬁ
E 90 'M £260 T
g Z 4
W g5l ¢ w40 #’

8.5 9.0 9.5 10.0 10.5 11.0 240 250 260 270 280 290 300 310 320
True value of Rs True value of Ra

(a) Estimate versus true value for Rq (b) Estimate versus true value for R

Figure 8. Comparison between the estimated and true parameters considering Gaussian noise and
systematic errors for Ry (a) and R (b).
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In order to demonstrate the robustness of the proposed solution under Gaussian noise
compared with other works in the literature, the model presented in [9] was implemented.
In this model, the authors developed a recursive least squares-based solution to estimate
the transmission line parameters. In their paper, they used the IEEE 118-bus test system
and applied Gaussian noise to phasor measurements using the errors in the instrument
transformers shown in Table 6. To establish a fair comparison, we implemented the same
system using the same noise model. It is important to emphasize that the authors of [9]
used zero-mean Gaussian noise, neglecting the presence of systematic errors. Therefore,
we adopted the same strategy to make a fair comparison of the methods. The results are
shown in Table 7.

Table 6. Standard deviations of measurement errors [9].

Voltage Current

Error " .
Magnitude Phase Magnitude Phase

Assumed 0.3% 0.4° 0.4% 0.7°

Table 7. Errors in the IEEE 118-bus system.

Line (bus#-bus#) Proposed Solution (%) Ref [9] (%)
r x b r x b
(8-9) 0.0245 0.717 0.0334 1.64 1.38 0.0403
(9-10) 0.0159 0.216 0.252 2.29 0.140 0.291
(23-25) 0.396 0.311 0.497 0.774 0.681 1.77
(25-27) 0.441 0.373 0.342 0.142 0.0837 0.0871
(26-30) 0.242 0.116 0.0776 0.124 0.146 0.198
(42-49) 0.486 0.435 0.232 1.50 0.563 0.268
(49-54) 0.814 0.574 0.0755 1.05 0.867 0.0738
(54-59) 0.586 0.566 0.0562 1.25 1.61 0.0750
(56-59) 0.241 0.600 0.0521 2.15 1.06 0.103
(59-61) 0.701 0.404 0.103 1.29 1.31 0.605
(38-65) 0.0448 0.246 0.0569 0.0445 0.284 0.174
(49-66) 0.272 0.473 0.0928 1.52 0.964 0.182
(62-66) 1.31 0.428 0.0639 1.37 1.64 0.315
(49-69) 0.769 0.284 0.0464 0.462 0.499 0.564
(69-70) 0.344 0.586 0.0932 0.280 0.665 0.155
(76-77) 0.338 0.319 0.0852 0.221 1.56 0.194
(89-90) 0.370 0.328 0.192 2.05 0.688 0.814
(89-92) 0.700 0.381 0.119 1.72 0.616 0.046
(92-100) 0.998 0.136 0.0279 1.54 1.31 0.444
(100-106) 0.222 0.462 0.249 0.164 0.729 1.20

The results presented in Table 7 demonstrate that the developed methodology is
superior to the one in the literature for most of the analyzed lines of the IEEE 118-bus
system. Some aspects are relevant in the comparison of the solutions. The largest observed
deviations are in the resistance parameter, and the smallest deviations are in the suscep-
tance parameter, which occurred in both solutions. Additionally, the highest encountered
deviation in [9] was greater than 2%, while in the presented solution, it was less than 1.5%.

5.2. Non-Gaussian Random Noise

Recent papers in the literature have assessed the assumption that random errors in
phasor measurements obtained from PMUs follow a Gaussian distribution. The authors
of [16,17] used field data to demonstrate that phasor measurements, particularly for current
measurements, do not conform to a Gaussian distribution [16]. In place of the Gaussian
model, the authors in [16] propose a model based on GMMs for these measurements.
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Using this model, let x,, € R? be a sample of the phasor measurements. The probability
density function p( - ) of this sample is given by:

K
p(xn) = Y e N (xulpic, Zic),
pa

where K is the number of clusters or Gaussian distributions and 77y, is the mixing coefficients
of the normal distributions, such that:

K
Z T = 1.
k=1

Since N (xy|px, Zk) is the multivariate normal distribution, it is possible to write
the following:

1 1
N (xp|pg, Bx) = ———=ex (——x— T N — )
(%n |, Ze) SRRFTIEA 5 (e —pe) i (e —prxe)

An important parameter for modeling the Gaussian mixed model is the size of the
window used to fit the centroids (average values) and the format of the distribution
(covariance matrix). This parameter will be referred to as N. Thus, for N independent and
identically distributed samples, the random vector X = [x1,x2, ..., x,]| is obtained using

the following:
N K
p(X) =TT X 7 N (xnpric, Zic)- ®)
n=1k=1

To accurately describe the noise model for the data, it is necessary to provide the
number of clusters, the mean values for each measurement, their corresponding variances,
and the vector of weights. In the model, it is assumed that each random variable is
uncorrelated with the others; hence, the covariance matrix is diagonal.

In possession of real field data, these parameters could be estimated using a certain
method. Initially, determining the optimal number of clusters is accomplished by em-
ploying the Bayesian information criterion (BIC). This approach aids in estimating the
model that best fits the data while penalizing models with a high complexity. In the litera-
ture [8,16], the reported optimal number of clusters typically falls between 2 and 4. The
means and variances can then be evaluated based on the maximization of the likelihood
using the model outlined in Equation (6).

This way, to prove the robustness of the proposed methodology, we have investigated
the performance of the method under two different conditions of Non-Gaussian noise for
2 and 4 clusters.

Utilizing the methodology elucidated in [8], the efficacy of the approach was explored
for two clusters (Scenario 1) and four clusters (Scenario 2).

The subsequent parameters were employed for Scenarios 1 and 2:

(Scenario 1)

—0.002
| oo
He =1 0.005

0.008

, T =0.001 -1, 7, = {0.1;0.2;0.5;0.2},

(Scenario 2)
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where I, is the identity matrix of dimension 7.

The corresponding results for both situations are presented in Table 8. By observing
the results for the association between Gaussian and systematic noise and non-Gaussian
noise, it is possible to conclude that, under the standard conditions of noise levels in both
cases, the Gaussian noise associated with a uniform distribution is more difficult for the
model to deal with. Generally speaking, this occurred because the former model introduced
a greater bias value into the data, leading to a loss of accuracy in the method. However,
in both cases, the proposed methodology was able to estimate the six parameters with
acceptable performance, proving its robustness under different noise models.

According to [16], the noise level in GMM might vary in terms of the mean values and
the variance of each Gaussian distribution. This way, following the approach presented
in [8], it is possible to consider different values for the mean and variance by scaling using
a factor expressed as a percentage. The magnitude of 1% noise closely resembles the GMM
noise attributes employed in the previous study. For the remaining values, the GMM noise
parameters were derived by appropriately adjusting the mean and standard deviations
of the noise. For instance, to derive the GMM noise attributes for a 2% noise level, the
GMM noise characteristics associated with a 1% noise level were doubled. The result is
shown in Figure 9. This study proves that the method is robust under different noise levels.
Particularly, for all the studied noise levels, the observed MAPE was less than 1%.

Table 8. Performance metrics the proposed method considering non-Gaussian noise in a 2-bus system.

Parameter Scenario 1 Scenario 2
MAPE (%) MAPE (%)
Ry 0.223 0.221
Ly 0.115 0.107
G 0.00215 0.00228
Ry 0.153 0.138
Lo 0.162 0.149
Co 0.402 0.431

Performance for Different Noise Levels

Noise Level (%)

Figure 9. Analysis of the MAPE of the solution under different noise levels using Gaussian mixed models.

6. Conclusions

This paper introduces a new Bayesian regression approach to estimate transmission
line parameters. The proposed methodology is model-free, meaning that the estimation
method does not rely on the transmission line equations to estimate the parameters. Instead,
the developed method is data-centric, allowing for the evaluation of parameters even with
measurements from only one side. Consequently, the method does not necessitate PMUs at
both ends of the transmission lines, making it more realistic for real-world applications.

Furthermore, due to the nature of the proposed method, it was possible to obtain
credible intervals for the solutions, providing bounds for the estimation of each parameter.
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This aspect is often overlooked in solutions dealing with transmission line parameter esti-
mation. The performance of the solution was investigated under different noise models,
considering the state-of-the-art noise modeling in phasor measurement units. In partic-
ular, it was concluded that the standard case of Gaussian random noise associated with
systematic errors is more challenging to estimate compared to the model that employs
GMMs. However, for all the studied models, our method achieved acceptable performance,
outperforming solutions from the literature under the same studied conditions.

Finally, our methodology was tested across systems of varying scales, including several
IEEE test systems of different sizes. This testing encompassed various load conditions,
numbers of samples (size of the database), and noise levels. Therefore, the proposed
solution remained stable under different conditions of the power system and data models.
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Appendix A
Parameters of the System

Table A1l. Transmission system parameters used to simulate the measurements in a computational

environment.
Parameter Value
Van Ve Ve 132.8 kV
(1) 0.052986 () /km
) 9.2876 nF/km
l(o) 5.546 mH/km
) 5.4995 nF/km
Rated frequency (f) 60 Hz
Length (Csec) 200 km
Power factor fr
Unbalance factor fac
SIL1y 46.67 MW
P, (1+ fac) - SILyg
Pp (1_fuc) 'SIL1¢
Pc (1 —quc) .SIquﬁ

Qa Py-\/1—fp*/fp
Qs Pp- /1~ fp*/fp
Qc Pc-\/1— fp?/fp
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