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ABSTRACT

The interplay between drift-wave coherence and particle transport in plasmas is investigated through a truncated Hasegawa–Mima model
coupled with a drift-wave Hamiltonian model. By reducing the system to a three-wave interaction, we identify regimes of periodic and chaotic
wave amplitudes and link them to the emergence or suppression of zonal flows. Numerical simulations reveal two distinct transport regimes:
hyperballistic motion under periodic waves, where coherent zonal flows channel particles poloidally, and superdiffusive spreading under cha-
otic waves, where non-periodic fields disrupt directional coherence. Particle tracking indicates that periodic waves enhance radial confine-
ment while enabling rapid poloidal transport, whereas chaotic fluctuations suppress large-scale migration through chaotic scattering. These
results highlight the critical role of wave-field coherence in determining transport efficiency and offer a conceptual framework for turbulence
control, highlighting that manipulating the coherence of the turbulent field, in addition to its amplitude, is a key strategy for controlling
plasma transport. The findings connect reduced-order models with fully turbulent systems, offering insights into harnessing self-organized
structures, such as zonal flows, for improved plasma confinement.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0276163

I. INTRODUCTION

Nuclear fusion, as a sustainable energy source, relies on the
effective confinement of high-temperature plasmas within devices
like tokamaks. A critical challenge in achieving this goal lies in
understanding and controlling plasma turbulence, which drives
anomalous transport of particles and energy across magnetic field
lines, degrading confinement.1 Among the various instabilities in
tokamaks, electrostatic drift-wave turbulence in the plasma edge
exercises an influence in regulating cross field transport, particularly
in the low-confinement (L-mode) regime.2 These low-frequency
fluctuations, driven by density and temperature gradients, generate
stochastic electric fields that induce E� B drifts, often resulting in
chaotic particle motion.3 The Hasegawa–Mima equation has long
served as a fundamental model for studying such drift-wave dynam-
ics,4 capturing the nonlinear interplay between wave propagation
and plasma inhomogeneity.

While some studies primarily focused on fully developed turbu-
lence, recent advances have highlighted the critical role of coherent
structures—such as zonal flows and streamers—that emerge from tur-
bulence and strongly modulate transport.2,5 These self-organized struc-
tures can either suppress or enhance particle diffusion, depending on
their spatial and temporal coherence,6 emphasizing the role of nonlin-
ear wave interactions in plasma confinement.7

In this work, we investigate how the periodicity of drift-wave
amplitudes influences particle transport in a model of magnetized
confined plasma, by truncating the Hasegawa–Mima equation to a
three-wave system with dissipative coupling8 and using it as the
amplitude input in the Horton drift-wave model with in the original
paper disregards the mode coupling, with we try to fill this gap in the
present work.9 We select the dynamical regimes of periodic and cha-
otic wave amplitudes and link them to the emergence or suppression
of zonal flows. Our analysis reveals two distinct transport regimes:
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hyperballistic motion under periodic wave amplitudes, where coherent
zonal flows channel particles poloidally, and superdiffusive transport
under chaotic waves, where non periodic waves disrupt directional
coherence. Using parameters from the TCABR Tokamak,10 we
numerically solve the coupled wave equations and track passive par-
ticles, such as charged impurities, advected by the resulting E� B
flows. These findings emphasize the critical role of wave-field coher-
ence in determining transport efficiency.

The paper is structured as follows: Section II outlines the theoreti-
cal model and numerical framework, Section III details the parameter
choices and wave coupling mechanisms, Section IV presents the trans-
port analysis across periodic and chaotic regimes, and Section V sum-
marizes the conclusions.

II. THEORETICAL MODEL

We are primarily interested in the peripheral region of a toroidal
plasma column. To facilitate analysis, we consider a slab using rectan-
gular coordinates ðx; y; zÞ, where x represents the radial distance
from the cylinder axis, y ¼ ah is the rectified poloidal coordinate, and
z ¼ Ru is the rectified toroidal coordinate. The respective intervals for
these coordinates are 0 � x � a, 0 � y < 2pa, and 0 � z < 2pR.

In our simplified model, the toroidal field Bu � B is assumed to
be uniform and directed along the z-coordinate, while the poloidal
field, is given by Bh � eBu, which e is the inverse aspect ratio. The
cyclotron frequency xci ¼ eB=mi. We assume that the ion tempera-
ture Ti is much lower than the electron temperature Te, making it suf-
ficient to consider only electron motion in our analysis. For a plasma
with electron temperature Te, we define a characteristic length scale
qs ¼

ffiffiffiffiffi
Te

p
=xci, which represents the characteristic cross field shielding

distance for charge clumps in the presence of drift-wave fluctuations.
In the present work, we consider electrostatic low-frequency drift

instabilities, where the electric field is derived from a scalar potential as
E ¼ �r/. We normalize the physical quantities in the following way

x0 ¼ xqs; y0 ¼ yqs; t0 ¼ xcit; /0 ¼ e/
Te

: (1)

The respective definition intervals for these coordinates are 0 � x0 � Lx
� a=qs and 0 � y0 � Ly � 2pa=qs.

The description of drift instabilities is two-dimensional, in a plane
perpendicular to the magnetic field, such that r ¼ ðx0; y0Þ. The gra-
dients are thus given by r ¼ ð@=@x; @=@yÞ, where we dropped the
primes in the coordinates for simplicity.

Electrostatic fluctuations in the plasma edge are driven by a
plasma density gradient.2 The electrostatic potential /ðr; tÞ is a solu-
tion to the Hasegawa–Mima equation4 given by

@

@t
r2/� /
� �

� ½ðr/� ẑÞ � r� r2/� ln
n0
xci

� �� �
; (2)

where we have dropped the primes for notational simplicity. Under
the quasi-neutrality condition, the electron and positive ion densities
are equal and given by a Boltzmann distribution.

It is important to situate the Hasegawa–Mima equation within
the landscape of modern plasma theory. The equation is a reduced
electrostatic fluid model based on several key assumptions, most nota-
bly the adiabatic response of electrons. As has been extensively shown
in recent gyrokinetic studies, this assumption breaks down in the edge

of high-performance Tokamaks, where non-adiabatic and electromag-
netic effects become dominant drivers of transport.11

The description of electrostatic turbulence from the Hasegawa–
Mima equation assumes the presence of an electrostatic drift wave at a
low frequency x 	 xci. Such a wave exists if its phase velocity along
the magnetic field satisfies vTi < vT < vEi, where vTi;e are the thermal
velocities for ions and electrons, respectively.3 The dispersion relation
of a drift wave is given by

x ¼ 1
1þ k2

k � ẑð Þ � r ln
n0
xci

� �� �
; (3)

where x is the drift-wave frequency and k is the wave vector in the
plane perpendicular to the magnetic field.

We look for solutions of the Hasegawa–Mima equation, in the
case of N drift waves, in the following form (2)

/ðr; tÞ ¼ 1
2

XN
j¼1

/kj ðtÞeikj �r þ /

kjðtÞe�ikj�r

n o
; (4)

where kj ¼ ðkjx; kjyÞ is the propagation vector of the jth wave along
the directions transversal to the magnetic field, and /kj are the corre-
sponding time-dependent Fourier modes.1

Substituting the expansion (4) into the Hasegawa–Mima equa-
tion (2) leads to an infinite system of coupled differential equations for
the Fourier modes

d/k

dt
þ ixk/k ¼

X
ka ;kb;kc

Kka
kb ;kc

/

kb
/

kc ; (5)

where the summation is over wavevectors that satisfy the triplet
relation

ka þ kb þ kc ¼ 0; (6)

for any choice of k, with the coupling coefficients given by

Kka
kb;kc

¼ ðk2c � k2bÞ
2ð1þ k2aÞ

ðkb � kcÞ � ẑ: (7)

From a dynamical perspective, an autonomous flow can exhibit
chaotic solutions when its dimension is equal to or greater than
three.12 Based on this, and since only a few Fourier modes are required
to adequately describe the development of weak turbulence,1,8,13 we
truncate the infinite set of equations to consider only three-wave inter-
actions, with wavevectors k1, k2, and k3.

We introduce a dissipative term that describes the energy
exchange between modes,14 in the form lj/kj for j ¼ 1; 2; 3, where lj
are the growth and decay coefficients. This represents a deliberate
departure from the ideal, inviscid Hasegawa–Mima equation, which is
a conservative system that conserves two quadratic invariants: energy
and potential enstrophy.

The coefficients lj are phenomenological terms designed to
model a more realistic open, driven-dissipative system. The positive
growth rate models the energy input from a primary instability (the
“pump” wave), while the negative decay rates model an energy sink,
representing either physical dissipation or the transfer of energy to
modes outside of our three-wave truncation. Consequently, the intro-
duction of the non-zero lj terms explicitly breaks the conservation
laws for the subsystem of the three interacting modes.
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With this consideration, Eq. (5) can be simplified to the following
set of N ¼ 3 coupled differential equations

d/1

dt
þ ix1/1 ¼ K1

2;3/


2/



3 þ l1/1; (8)

d/2

dt
þ ix2/2 ¼ K2

3;1/


3/



1 þ l2/2; (9)

d/3

dt
þ ix3/3 ¼ K3

1;2/


1/



2 þ l3/3: (10)

We represent the Fourier modes of Eq. (4) as

/kjðtÞ ¼ AjðtÞe�iðxj t�bjÞ; (11)

where xj are the associated frequencies of each drift wave, Aj

¼ j/kjðtÞj the respective amplitudes, and bj are phase constants.15

Substituting (11) into (4), we obtain

/ðr; tÞ ¼
X3
j¼1

AjðtÞ cosðkj � r� xjt þ bjÞ; (12)

which describes the electrostatic potential that acts inside the plasma
in the presence of the drift wave instabilities.

Since we are dealing with propagation in the radial and poloidal
directions (represented by the x and y directions, respectively), with a
constant magnetic field along the z-direction, the gyrating plasma par-
ticles undergo a E� B drift motion, with velocity

vE ¼ E� B
B2

¼ � E
B
ĥ (13)

along the poloidal direction.
Considering a time-dependent electric potential /ðx; y; tÞ related

to the propagating drift waves, the equations of the E� B drift motion
can be rewritten as

vx ¼ dx
dt

¼ � 1
B0

@

@y
/ðx; y; tÞ; (14)

vy ¼ dy
dt

¼ 1
B0

@

@x
/ðx; y; tÞ; (15)

which are canonical equations for the Hamiltonian H ¼ /=B0,
such that ðx; yÞ are canonically conjugated momentum-coordinate
variables. In the following, we consider that the particle guiding cen-
ters undergo E� B-drift motion without influencing the fields
themselves, i.e., we are treating here a passive advection under
E� B-drift flow.

In order to set up the proper boundary conditions, we impose
some constraints related to the propagating drift waves in the x and y
directions. For the y direction, we require an integer multiple of the
wavelength to match the propagation interval Ly ¼ mky , where
m 2 Z
. The corresponding wavenumber will be

ky ¼ 2p
ky

¼ 2mp
Ly

: (16)

On the other hand, for the radial direction, the drift waves are sta-
tionary, so the waves vanish at the boundaries, x ¼ 0 and x ¼ Lx . This
implies half-integer wavenumbers in the propagation interval:
Lx ¼ nkx=2, where n 2 Z
, such that

kx ¼ 2p
kx

¼ np
Lx

: (17)

Applying these boundary conditions and the respective wave-
numbers, we get9

/ðx; y; tÞ ¼
X3
j¼1

AjðtÞ sinðkjxx þ bjÞ cosðkjyy � xjtÞ: (18)

Substituting these relations in the wavevector restriction imposed
by the Hasegawa–Mima equation (6), we obtain a pair of constraints
on the integer mode numbers, namely,

n1 þ n2 þ n3 ¼ 0; m1 þm2 þm3 ¼ 0: (19)

Taking these boundary conditions into account, our theoretical
model for drift motion under drift waves with nonlinear mode cou-
pling, given by (18) consists of the following equations:

dx
dt

¼
X3
j¼1

kjyAjðtÞ sinðkjxx þ bjÞ sinðkjyy � xjtÞ; (20)

dy
dt

¼
X3
j¼1

kjxAjðtÞ cosðkjxx þ bjÞ cosðkjyy � xjtÞ; (21)

which can be solved in parallel with the nonlinear mode coupling
equations, Eqs. (8)–(10).

III. PARAMETER VALUES

The system of coupled differential equations for the particle drift
coordinates and the drift wave amplitudes can be numerically solved,
given initial conditions for the guiding center position ðxð0Þ; yð0ÞÞ as
well as the mode amplitudes /ið0Þ, i ¼ 1; 2; 3. Parameter values were
taken from the TCABR Tokamak, operating at the Institute of Physics,
University of Sao Paulo, Brazil. For this device, the toroidal magnetic
field is B ¼ 0:4 T (at the magnetic axis), the central electron tempera-
ture is Te ¼ 10 eV, the electron density gradient is jrn0j=n0 ¼ 5m�1,
and the ion-cyclotron frequency is xci ¼ 1:05� 108 Hz. The corre-
sponding length scale is q � 10�3 m.10,16

Based on particle flux measurements, the radial density gradient
N at the plasma edge was estimated16 as

N :¼ qs r ln
n0
xci

� �				
				 ¼ qs

rn0
n0

				
				 � 10�3: (22)

Our interest lies in the dynamics within a small region inside the
plasma. By considering that the Hasegawa–Mima equation assumes
the wave primarily propagates in the x-y plane, we focus on the
dynamics on this plane, with a constant z. This assumption allows
us to disregard the z-components of the wave vectors, setting these
to zero.

Measurements of the potential edge fluctuations using electro-
static probes indicate a poloidal wave number kh in the range of
ð1� 5Þ � 103 m�1, with a broad spectral content and a pronounced
feature at x exp � 50 kHz.16,17 Based on the experimental value of the
dominant poloidal wave number of plasma edge fluctuations, we
choose kh ¼ k1y ¼ 3� 103 m�1. From this value, it follows that
the corresponding normalized value of k1y ¼ 3, which implies that
m1 ¼ 6 for Ly ¼ 4p. In order to get nondimensional wave frequencies,
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we used the ratio of the plasma frequency x exp to the ion-cyclotron
frequency, scaled by the order of the wavenumbers, and obtained
x1 ¼ x2 ¼ x3 ¼ 0:476.

From Eq. 3 we obtain the dispersion relation for drift waves,

xj ¼ �ðkjy � kjxÞ
1þ k2j

N ; (23)

which allows us to evaluate the coupling coefficient, from Eq. (7), as

K1 ¼ K1
2;3 ¼

ðk23 � k22Þ
2ð1þ k21Þ

ðk2 � k3Þ � ẑ

¼ x1

2N
k23 � k22
k1y � k1x

ðk2xk3y � k2yk3xÞ: (24)

For the remaining values of the wavevector components, we
choose a set of values that produce a stable solution within the con-
straints of the model. In Table I, we summarize the n andm values for
the chosen wave vectors, as well as the normalized wave frequencies
used and the coupling constants.

The energy exchange coefficients lj can be estimated by assum-
ing that the pump mode /3 induces the process of energy redistribu-
tion among the daughter modes /1 and /2. To achieve this, the pump
mode has a positive exchange coefficient l1, which increases its value
over time until it transfers energy to the other modes that have nega-
tive exchange rates (l2;3). Their numerical values are adjusted to
obtain stable solutions for the system and to provide wave-mode
amplitudes in the range observed in the experiments of plasma edge
fluctuations between620V. We set l3 ¼ 0:07 and l1 ¼ l2 < 0, with
l1 being the control parameter for the numerical simulations and the
only free parameter in the system, are just control parameters and do
not correspond to a real parameter that can be controlled.

For the numerical simulations presented in this work, the initial
conditions of the wave amplitudes are chosen as

Re/1ð0Þ ¼ Re/2ð0Þ ¼ Re/3ð0Þ ¼ 0:01;

Im/1ð0Þ ¼ Im/2ð0Þ ¼ Im/3ð0Þ ¼ 0:00;

such that the nonlinear mode equations, Eqs. (8)–(10), were numeri-
cally integrated using the Adams–Bashforth–Moulton method from
the Boost package.18

It is known that the system of coupled wave equations exhibits
both chaotic and periodic behavior for appropriate values of l1 ¼ l2,
using the set of values from Table I for the remaining parameters.8 The
dependence of the dynamics on the control parameter is shown in the
bifurcation diagram depicted in Fig. 1(a), constructed from the local
maxima of j/3j, which is similar to a stroboscopic map derived from
the time series and reveals changes in the wave period. Figure 1(b)

shows a typical periodic trajectory with period 1, where it is possible to
see the pump mode j/3j transferring its energy to the auxiliary
(daughter) modes j/1j and j/2j. Figures 1(c) and 1(d) represent two
other types of time series: one with period 2 and one exhibiting chaotic
behavior.

To explore how different values of l1 affect the transport in the
system, we selected several values across different regions of the bifur-
cation diagram shown in Fig. 1. We chose eight distinct values of l1
that produce periodic wave amplitudes, ranging from waves with a
period of 1–5. Additionally, we selected four values of l1 from the cha-
otic regions, which lie between the periodic regimes. By varying the
control parameter across both periodic and chaotic regions (see Table
II), we identified distinct transport behaviors linked to wave coherence
and zonal flow formation.

IV. CHAOTIC TRANSPORT

In order to analyze the transport dynamics induced by drift
waves, we choose an ensemble of passive particles initially distributed
within a confined spatial region. Their dynamics were then evolved
using Eqs. (20) and (21), with the wave amplitudes generated by Eqs.
(8)–(10). By tracking their trajectories over time, we extracted critical
transport properties of the system. The particles were initialized in the
domain x 2 ð�p; pÞ and y 2 ð�2p; 2pÞ, and evolved until a final
time of Tf ¼ 104 using a fourth-order Runge–Kutta integrator with a
time step of dt ¼ 10�3.

By using a Poincar�e map, we can observe the patterns of particle
motion by considering the periodicity of the stroboscopic mapping,
obtained by sampling the values of x and y for each particle at times
tn ¼ nT , where we used the period of the parent wave T ¼ 2p=x1.
Figure 2 illustrates this map for different values of l1. A clear distinc-
tion emerges between the two groups of cases. For chaotic amplitudes,
as shown in Figs. 2(a) and 2(c), the phase space exhibits significant dis-
order, with particles spreading diffusely throughout the region without
any apparent organization. On the other hand, for periodic
waves [Figs. 2(b) and 2(d)], coherent structures appear, chiefly along
x ¼ const: lines. These structures reveal a well-defined division
between transport regions, indicating the presence of transport barriers
that confine particle movement to specific x regions. The absence of
Kolmogorov–Arnold–Moser (KAM) islands in Fig. 2 is a direct conse-
quence of the system’s strongly non-autonomous nature. The
Hamiltonian that governs the particle motion is explicitly time-
dependent due to the evolving wave amplitudes and phases.

According to the Kolmogorov–Arnold–Moser (KAM) theorem,
the persistence of invariant tori (which appear as regular KAM curves
in a Poincar�e map) is only guaranteed for sufficiently small perturba-
tions of an integrable system, and sufficient irrationality of the tori
winding number. In our model, the wave amplitudes are chosen to be
physically significant, which places the system in a strong perturbation
regime where the conditions of the KAM theorem are no longer met.
This strong, time-dependent forcing is sufficient to destroy the major-
ity of the invariant tori, leading to the observed state of global chaos
instead of regular orbits, even in the cases where the driving waves are
perfectly periodic.

We use some diagnostic measures that capture various character-
istics of the dynamics to quantify how distinct drift waves influence
particle transport in plasmas. In particular, we consider the mean
square displacement (MSD), which provides a global characterization
of chaotic transport, and the total displacement, which is able to reveal

TABLE I. Set of numerical values used for all the simulations, where j is the wave
index.

j nj mj xj Kj

1 12 6 0.476 71.400
2 �7 �3 0.476 651.50
3 �5 �2 0.476 �1088.8
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the inhomogeneous character of transport, since there are plasma
regions for which the transport fluxes are more intense than others.

A. Mean square displacement

For a statistical characterization of transport, we computed the
mean square displacement (MSD)

hrðtÞ2i ¼ 1
N

XN
i¼1

jxiðtÞ � xið0Þj2; (25)

where N denotes the total particle number and x denotes the position
vector. The exponent of the temporal scaling hrðtÞ2i / ta classifies the

diffusion regime: subdiffusive ða < 1Þ, normal ða ¼ 1Þ, superdiffusive
ð1 < a < 2Þ, ballistic ða ¼ 2Þ, and hyperballistic ða > 2Þ.

Our analysis reveals two distinct regimes of anomalous transport,
characterized by different scaling exponents (a), which emerge as a
direct consequence of the wave amplitude’s behavior. Periodic and
chaotic waves induce fundamentally different dynamics in the system,
leading to a transition in the MSD scaling from hyperballistic values
(a � 2:1) to superdiffusive values (a � 1:4). Specifically, waves with
periodic behavior drive the hyperballistic regime, significantly enhanc-
ing the transport of passive particles. In contrast, particles exhibit
reduced transport when the wave amplitude is governed by chaotic
dynamics, as reflected in the lower scaling exponent. These results
highlight the critical role of wave amplitude modulation in governing
particle transport within the plasma.

Notably, the chaotic nature of the waves suppresses diffusion
compared to the periodic case, suggesting that periodic structures in
the wave field allow a more efficient particle transport. Figure 3 sum-
marizes the MSD scaling across the parameter space detailed in Table
II, revealing a clear distinction between two groups: one corresponding
to chaotic waves (lower a values) and the other to periodic waves
(higher a values).

The observed diffusion exponent provides a quantitative mea-
sure of the transport regimes and their underlying mechanisms. The

FIG. 1. (a) Bifurcation diagram for the Poincar�e section maxj/3ðtÞj for varying l1 ¼ l2 and l3 ¼ 0:07, showing the periodic and chaotic windows. Time series of the wave
amplitude j/j j (j ¼ 1: pink line, j ¼ 2: blue line, j ¼ 3: gold line) for l3 ¼ 0:07. (b) Time series for l1 ¼ l2 ¼ �1:5, showing a wave with period 1. (c) Time series for
l1 ¼ l2 ¼ �1:9, showing a wave with period 2. (d) Time series for l1 ¼ l2 ¼ �3:0, showing a chaotic wave.

TABLE II. Values of the parameter l1 and the period of the correspondent orbit.

l1 Period l1 Period

�1.50 1 �3.00 Chaos
�1.90 2 �3.30 5
�2.07 4 �3.60 5
�2.40 4 �4.00 Chaos
�2.50 Chaos �4.60 3
�2.67 3 �6.00 Chaos
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hyperballistic regime observed for periodic waves suggests a
highly correlated, non-diffusive process, where particles experience
sustained acceleration or directional coherence. This behavior is
reminiscent of coherent structures in plasma turbulence, such as
zonal flows or streamers, which efficiently channel particles. This
phenomenon arises from particles “surfing” the washboard potential
generated by periodic waves—a spatially ordered structure that
imposes coherent gradients, enabling particles to phase-lock and
gain velocity linearly over time.19,20 Such dynamics mirror the role
of coherent structures like zonal flows or streamers in plasma turbu-
lence, which channel particles efficiently by suppressing non-
periodic diffusion.21

Our results can be compared with prior studies of transport in
flows governed by the full Hasegawa–Mima equation. Other investiga-
tions have also found that superdiffusive transport can arise from

electrostatic turbulence, a phenomenon attributed to the presence of
“chaotic jets.”22

The complex, time-dependent flow in our chaotic regime is anal-
ogous to the turbulent flow with embedded chaotic jets. In contrast,
the highly organized zonal flows that appear in our periodic regime,
which lead to hyperballistic transport, can be seen as an extreme,
coherent form of such a jet. This comparison is particularly clear in
what has been described as the ‘anisotropic field case’, where the flow
becomes quasi-one-dimensional. This is directly comparable to our
periodic regime, where strong zonal flows create a highly anisotropic
transport environment, with particle motion overwhelmingly chan-
neled in the y direction, as shown in our Fig. 5.

In contrast, the superdiffusive regime under chaotic waves indi-
cates a loss of coherence. Here, the washboard potential is replaced by
a non-periodic field, where particles experience intermittent kicks

FIG. 2. Phase portrait for the Poincar�e map for different values of the control parameter l1. Panels (a) and (c) correspond to chaotic wave amplitudes, while panels (b) and (d)
correspond to periodic wave amplitudes. The specific value of l1 and its period are: (a) �3:0 (Chaotic) (b) �3:3 (Period 5) (c) �4:0 (Chaos) and (d) �4:6 (Period 3).For peri-
odic waves, coherent transport barriers and zonal flow structures are evident along lines of constant x, whereas chaotic waves lead to diffuse, space-filling particle spreading.
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from transient structures rather than sustained forcing. The reduction
in a for chaotic waves highlights the role of stochasticity in suppressing
large-scale transport, as particles become trapped in transient struc-
tures or experience frequent scattering, disrupting ballistic motion.

A notable feature of our results is the complete absence of a nor-
mal diffusive regime ða ¼ 1Þ, which is a direct consequence of the par-
ticle transport model employed.

In the periodic regime, particles are channeled by coherent zonal
flow structures, leading to long, uninterrupted flights that produce
hyperballistic transport. In the chaotic regime, the driving field, while
aperiodic, is not random noise but actually a deterministic chaotic field
with significant spatiotemporal correlations. This leads to a correlated
random walk that manifests as superdiffusion.

A normal diffusive regime would likely emerge with the inclusion
of an additional stochastic process, such as collisions or background
noise in the particle equations of motion, which would serve to decor-
relate the particle trajectories over time. As our focus is on the trans-
port driven purely by the specified drift-wave field, such a term was
not included, and the resulting transport is consequently anomalous
across all parameter regimes studied.

B. Total particle displacement

The total displacement of particles (D) is defined as the Euclidean
distance between their initial and final positions, providing critical
insights into both the magnitude and directionality of transport.
Unlike the MSD that quantifies dispersion, total displacement high-
lights a net migration of the particles. By analyzing D alongside direc-
tional displacements (Dx;Dy), we can observe the same two groups
present in the MSD analysis: a high transport governed by the periodic
waves and a more diffuse transport when the periodicity of wave
amplitudes is chaotic.

The total displacement, D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
, provides a global

measure of particle movement, while its Cartesian components Dx
and Dy reveal anisotropic transport characteristics. By comparing dis-
placements across spatial regions after fixed integration times, we iden-
tified areas of enhanced transport and preferential particle motion
directions.

For chaotic wave amplitudes, the distribution of total displace-
ment exhibits a continuous decay with no preferred magnitude
[Fig. 4(a)], reflecting isotropic dispersion and suppressed net migra-
tion. Particles in these regimes experience frequent dispersion within
non-periodic fields, trapping them in transient structures. This sup-
pression of large-scale migration aligns with the subdiffusive MSD
scaling, where non-periodic fluctuations disrupt coherent motion. In
contrast, periodic waves generate a bimodal displacement distribution
[Fig. 4(b)], with peaks at both low and high D. The low D peak corre-
sponds to particles transiently trapped in localized regions, while the
high D peak reflects particles in the zonal flow regions.

Figure 5 illustrates the type of displacement observed for different
wave behaviors. The first and third rows correspond to cases with cha-
otic wave amplitudes, while the second and fourth rows show cases
with periodic wave amplitudes. The first column presents the total
traveled distance, while the second and third columns display the x
and y components of the displacement, respectively.

The displacement metric reinforces the separation of transport
regimes observed in Fig. 2. For chaotic wave amplitudes, Figs. 5(a) and
5(g) exhibit a non-homogeneous mixture of particle trajectories with
no coherent spatial organization. This isotropy reflects frequent scat-
tering, suppressing net migration by trapping particles in transient
structures. In contrast, periodic waves [Figs. 5(d) and 5(j)] generate
well-defined zonal flow patterns channeling particles into coherent
streams. These figures also correlate the wave amplitude with the trav-
eling distance, showing that the total distance increases from

FIG. 3. The scaling exponent a as a function of the l1 parameter. For periodic
wave amplitudes, the particles exhibit hyperballistic motion (a > 2), while for cha-
otic wave amplitudes, the particles exhibit superdiffusive motion (1 < a < 2).

FIG. 4. Distribution of the total displacement D of the particles advected by two dif-
ferent groups of amplitude wave: (a) chaotic wave amplitudes and (b) periodic wave
amplitudes.
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FIG. 5. Displacement of particles advected by Eqs. (20) and (21) presenting the total displacement D and its components in the x and y directions for the columns on the right,
center, and left, respectively. The different rows correspond to different l1 values and periodicities: (a)–(c) l1 ¼ �3:0 (Chaos) (d)–(f) l1 ¼ �3:3 (Period 5) (g)–(i) l1 ¼ �4:0
(Chaos), and (j)–(l) l1 ¼ �4:6 (Period 3). In the chaotic regimes, a sparse distribution of displacements is observed with no regular structure formation. In contrast, the peri-
odic regimes show the formation of well-defined zonal flows, mainly driven by displacements in the poloidal direction.
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maxjDj � 25 when the maximum wave amplitude is maxj/3j �
0:022 to maxjDj � 45 when maxj/3j � 0:04.

The dominance of poloidal displacement (Dy) across all regimes,
as seen in Figs. 5(c), 5(f), 5(i), and 5(l), arises from the alignment of
particle motion with E� B flows. In magnetized plasmas, particles are
constrained to follow magnetic field lines primarily along the poloidal
(y) direction, while radial (x) transport requires cross field drifts or tur-
bulence. For periodic waves, coherent E fields organize into zonal
flows, driving particles along y with minimal radial leakage due to self-
generated shear layers [Figs. 5(e) and 5(k)]. Chaotic waves disrupt
this ordering, scattering particles isotropically [Figs. 5(b) and 5(h)],
though residual magnetic field alignment ensures that Dy remains
larger than Dx.

As the parameter l1 increases from the chaotic to the periodic
regions in the bifurcation diagram, coherence is enhanced rather than
chaos. Despite expectations of turbulent diffusion at higher l1, the sys-
tem self-organizes into zonal flows. These flows act as transport chan-
nels, as can be seen in the high Dy regions of Figs. 5(f) and 5(l).

Zonal flows manifest as alternating bands of high and low particle
density in the poloidal direction [Figs. 5(d) and 5(j)], resembling atmo-
spheric jet streams. These flows generate shear layers at radial interfa-
ces where velocity gradients tear apart turbulent eddies, suppressing
radial transport. This dual role, enhancing poloidal migration while
confining particles radially, explains the stark contrast between chaotic
and periodic regimes: one scatters while the other channels.

V. CONCLUSIONS

This work explores the critical role of drift-wave coherence in
governing particle transport dynamics in edge plasmas. By truncating
the Hasegawa–Mima equation to a three-wave system with dissipative
coupling, we identified two distinct transport regimes: hyperballistic
motion with a > 2 under periodic wave amplitudes, driven by coher-
ent zonal flows that channel particles poloidally, and superdiffusive dif-
fusion under chaotic wave amplitudes, where non-periodic fields
disrupt directional coherence. The diffusion coefficient analysis dem-
onstrated that transitions between these regimes are controlled by the
behavior of the wave amplitude, governed by the energy exchange
coefficient l1.

The observed hyperballistic transport, characterized by a � 2:1,
aligns with particles “surfing” coherent potential structures, akin to
zonal flows or streamers. In contrast, chaotic wave amplitudes sup-
press large-scale migration by scattering particles through transient
turbulent eddies, reducing a to � 1:4. Particle tracking simulations
further revealed that periodic waves enhance radial confinement while
enabling rapid poloidal transport, whereas chaotic fluctuations homog-
enize displacement distributions, reflecting isotropic scattering. These
results underscore the dual role of turbulence: while fully chaotic fields
degrade confinement, intermediate coherence enables self-organized
flows that enhance transport efficiency.

Our findings connect reduced order models and weak turbulent
systems, demonstrating that simplified three-wave interactions capture
essential features of zonal flow formation and transport bifurcations.
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