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Abstract

Let X , be an orientable surface of genus g and of finite type without boundary (i.e.
an orientable closed surface with a finite number p of points removed). In this paper
we study the R-property for the surface pure braid groups P, (3, ) as well as for the
full surface braid groups B, (X, ). We show that, with few exceptions, these groups
have the Ryo-property.
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1 Introduction

Consider a group G and a fixed endomorphism ¢ of G. Two elements x and y of
G are said to be twisted conjugate (via ¢) if and only if there exists a z € G such
that x = zy(z)~!. The relation of being twisted conjugate is easily seen to be an
equivalence relation and the number of equivalence classes (also referred to as twisted
conjugacy classes or Reidemeister classes) is called the Reidemeister number R(¢)
of ¢. This Reidemeister number is either a positive integer or co.

These Reidemeister numbers appear naturally in algebraic topology and to be more
precise in Nielsen—Reidemeister fixed point theory. Here one is interested in the num-
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ber of fixed point classes of a selfmap f of a space X. This number is called the
Reidemeister number R(f) of the map f, and one can show that R(f) = R(fs),
where f,: m1(X) — m1(X) is the induced endomorphism on the fundamental group
m1(X) of X.

A group G is said to have the Roo-property in case R(¢) = oo for all automorphisms
¢ € Aut(G). The study of groups with that property was initiated by Fel’shtyn and
Hill [20] and since the beginning of this century there has been a growing interest in
the study of groups having this Ry -property.

A non-exhaustive list of examples of groups of which we know that they have the
Roo-property, are the non-elementary Gromov hyperbolic groups [16, 30], most of
the Baumslag—Solitar groups [17] and groups quasi—isometric to Baumslag—Solitar
groups [37], generalized Baumslag—Solitar groups [31], many linear groups [21, 34],
several families of lamplighter groups [27, 38], some spherical and affine Artin-Tits
groups [8], pure virtual twin groups [33], and virtual braid (twin) groups [11].

Emil Artin introduced the braid groups of the 2-disc in 1925 and continued the
study of them in 1947 [2, 3]. These groups have since then been referred to as Artin
Braid groups. Zariski [40] was the first to study braids on surfaces and this was later
further extended by Fox and Neuwirth to braid groups of arbitrary topological spaces
by using configuration spaces as follows [22]. Let M be a topological space, and let
n € N. The nth ordered configuration space of M, denoted by F, (M), is defined by:

Fyu(M) ={(x1,....x)) e M" |x; #x;ifi # j, i, j=1,....n}.

The n-string pure braid group P,(M) of M is defined by P,(M) = m(F,(M)).
The symmetric group S, on n letters acts freely on F,, (M) by permuting coordinates,
giving rise to the nth unordered configuration space F,,(M)/S,. The n-string braid
group B, (M) of M is then defined as B, (M) = w1 (F,,(M)/S;). This gives rise to the
following short exact sequence:

1 — P,(M) — B,(M) = S, —> 1. 1)

The map o : B,(M) — S, is the standard homomorphism that associates to any
braid in B, (M) a permutation in S, and Ker(o) = P,(M).

When M = D? (the disc) then B, (D?) (resp. P,(D?)) is the classical Artin braid
group denoted by B,, (resp. the classical pure Artin braid group denoted by P,).

The Roo-property was studied for Artin braid groups in [18] for the whole group
By, and in [10] for the pure subgroup P,. Let Sy, be a surface of finite type, i.e. Sg
is a closed surface of genus g (possibly non-orientable) with a finite number (p > 0)
of points removed. After having obtained the results for the Artin braid groups, it is
now a natural question to study the Ry,-property for the surface braid groups (resp.
surface pure braid groups) B, (S, p) (resp. P, (Sg,p)). For the case where n = 1 we
have that P1(Sg, ») = B1(Sg,p) = m1(Sg, ») and here the result is well known, and the
information (in the orientable case) is given in the tables below. So, from now on, we
will assume that n > 2 unless it is explicitly stated otherwise.

In this paper we will study the R, property only for the case of orientable surfaces.
To do this, we divide the orientable surfaces of finite type into three families.
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The Roo-property for braid groups over orientable surfaces 3

F1: The punctured sphere S? with p points removed for p = 0, 1, 2.
F>: a) Orientable closed surfaces different from S2, T°2.
b) Orientable punctured surfaces X , where g is the genus and p is the number
of punctures in the closed surface X, for:
i) g=0and p > 3,
ii) g=1and p > 2,
iii) g>2and p > 1.
F3: The torus Xy o = T?and T© 1,1 the torus minus one point.

In Table 1 we record the information that we know until now about the R -property
for the surface braid groups, P, (Xg.p), By (Zg, p).

Remark 1 The exceptional cases which appear in the table above come from the fact
that for n > 2, the groups P,(20,1), Pn(Z0,2), Bn(Z0,1), Bn(X0,2) and B,(Zo,3)
have the Roo-property (see [8, Theorem 1]), since there are isomorphisms among
some surface braid groups and Artin-Tits groups: P,(Zo.1) = P(An—1), &(20,2) =
P(By), Bn(20,1) = A(Ap—1), Bn(X0,2) = A(By) and B,(Zo,3) = A(Cp). In the
case of X 1 the result was first demonstrated in [18] for the Artin braid group and in
[10] for the pure Artin braid group.

The reason for dividing the surfaces into these three families is because we need
different techniques to deal with the surfaces of family F; and those of family F>.
The paper does not contain new results on the two braid groups of the two surfaces of
family F3 as this is still work in progress.

The main results of this paper are formulated below.

Theorem 2 Let X, , be a finite type surface which belongs to F1 U F». The surface
pure braid group P, (X, p) has the Roo-property if and only if one of the statements
below holds:

1. ¥g p belongsto Fr andn > 1,
2. Bgp=2X00=S*andn > 4,
3 %, , =201 =S\{x1}andn >3,

4. Xy p =202 = S\ {x1, x2} and n > 2.

Table 1 The Roo-property for P, (Xg, ) and B, (g, p) before this paper

Family 1 has Reo Pp(Zg,p) has Reo By (Xg,p) has Reo

Fi No Unknown Unknown
except, yes for § = X > except, yes for § = g o
and n > 2, and yes for and n > 2, and yes for
§S=2Xp,iffn=>3 S=2Xp,iffn>3

F> Yes Unknown Unknown

except, yes for § = X 3
F3 No for T2 Unknown Unknown
Yes for X7
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4 K. Dekimpe et al.

Table 2 The Roo-property for P, (g, ) and B, (g, p) after this paper

Family 71 has Reo Pp(Zg,p) has Roo By (2, p) has Reo
Fi No Yes for most; Yes for most;
No for few cases No for few cases
F> Yes Yes Yes
F3 No for T2 Unknown Unknown
Yes for 37 3

In order to prove the result for the whole group B, (X, ), stated in the next theorem,
we shall use Theorem 2 and the following useful result: for all surfaces S, ,, (orientable
or not), P,(S,, p) is characteristic in B, (S, ,) with one exception, which is when
Se.p = Xo,2 and n = 2, see [1, Theorem 1.5].

Theorem 3 Let X , be a surface which belongs to F1 UF,. The braid group B, (X4 )
has the Roo-property, if and only if P,(Xg, ) has the Roo-property.

Table 2 summarises the information obtained in this work as well the status of the
question studied here for a finite type orientable surface X .

Remark 4 In the Table 2, for the family 7 the cases where P, (X, ,) (n > 2) does not
have the Rno-property are precisely the cases S? forn = 2,3 and § = D? for n = 2.
The same holds for B, (X%, p).

This paper is organised as follows. In Sect. 2 we show that for any finite type surface
S, p (orientable or not) of genus g > 0 with p > 0 points removed, there is a short
exact sequence

1 — N — Py(Sg,p) — M} (m1(S,,p)) —> 1 2)

where N is the normal closure of the Artin pure braid group in P, (S, ,). Then,
in Sect. 3 we prove that the sequence (2) is characteristic for the surfaces of the
family F>, being different from the sphere minus three points. In Sect. 4 we prove
Theorem 2 and Theorem 3, these are the main results of the paper about the Ryo-
property for orientable surface braid groups.

2 Goldberg’s short exact sequence for pure braid groups over
punctured surfaces (orientable or not)

Let S, be a closed surface (orientable or not) of genus g > 0 with p > 0 punctures.
Let D C S, be a subset which is homeomorphic to the open disc of radius 1 of the

plane. Denote by D < Sg,p the inclusion, and let (z1, - - - , z,) be a base point of
F,(D) and of F},(Sg, ). This inclusion induces a morphism iy : P, (D) —> Py (X p).
Making use of such an embedding, in this section we prove that the pure braid groups
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The Roo-property for braid groups over orientable surfaces 5

(a) Once-punctured. (b) With p > 2 punctures.

Fig. 1 The punctured sphere

over punctured surfaces fit into a short exact sequence of Goldberg’s type [23], see
Theorem 8. The proof is algebraic and in order to do that we shall use the presentations
of P,(Sg,p) given in [29, Theorem 1] for the case of the punctured sphere, in [4,
Theorem 5.1] for the punctured connected sum of tori and in [12, Theorem 4.7] for the
case of the punctured connected sum of projective planes. In the first three subsections
we discuss in more details these presentations, where we also indicate how to identify
i#(P, (D)) in each of the surface braid groups, and in the last subsection we deal with
the short exact sequence of Goldberg’s type.

2.1 The punctured sphere

The once-punctured sphere is homeomorphic to the (open) disc, see Figure 1 (a), and
in this case we get the classical Artin pure braid groups [2].

Let p > 2. Using the notation of [29] and considering the p-punctured sphere as
being the (p — 1)-punctured disc (see Fig. 1 (b)), one can easily see that P, (X, ,) =
Pp_1,n (som = p —1). Then [29, Theorem 1] provides a presentation of P, (%o, ,) =
Pp_1.,, with a set of generators

{Aij I 1si<sp+n-2p<j<p+n—landi<j}

subject to the following relations:

(P1) A;}A,,SA,"/ =Aif(i<j<r<s)or(r<i<j<s).
(P2) A7 1A A j = AisAjALLif G < j < s).
(P3) A;}A,,SAZ-,,- = Ai,SAj,SA,-,sA;;A;j if(i <j<s).

(P4) A;]].A,‘sAi,j = Ai,SA,»,SA;s‘A;ISA,,SAJ,SA[,SA;LA;; if(i <r<j<s).

Remark 5 In Fig. 2 we illustrate geometrically the generators A; ; of the group
Py(Xo,p),forl <i <p+n—-2,p<j=<p+n—1landi < j. We note that the
set {Ai, jlp<i<j<p+n-— 1} corresponds to the set of Artin generators inside
P (Xo,p).
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6 K. Dekimpe et al.

Fig.2 Generator A; jforl <i<p+n—-2,p<j<p+n—1landi <j

2.2 The punctured connected sum of tori

Let p > 1 and g > 1. We shall use the presentation of P, (X ,), the pure braid group
of the p-punctured connected sum of g tori X ,, as givenin [4, Theorem 5.1]. We note
that this presentation had a few misprints which were corrected in [6, Theorem 12]
and after private communication with P. Bellingeri ([5]) we fixed one more typo here.
A set of generators of P, (X, ,) given in [4, Theorem 5.1] is

{Aij 1 1<i<2g+p+n—2,2¢8+p=<j<2e+p+n—1i<j}

subject to the relations

(PR1) A;}Ar,sAi,j =A;if(( <j<r<sor(r+1<i < j<s)or
(i=r+1<j<sforevenr <2gorr >2g).

(PR2) A; JA; A;j = AisAj AL it < j <s).

(PR3) A7 1AijAij = AisAjsAisATVATTIEG < j < 9).

(PR4) A;}A,,SAI-J = A,-’SA]-’SA;S]A;iAr’SAj’SAi’SA;iA;SI ifi+l<r<j<
s) or
(i+1=r<j<sforoddr <2gorr > 2g).

J g 8

(ER1) A;jl’jAr,sA,H,j = ArsArpi AT AL i rodd r < 2gand r 41 <
J <s.

(ER2) A;_ll’jA,’sA,_l,,- = Ar_l’sAj’sAr’_llysA,,SAj’SAr_lysAjfviA;_llys if r even,
r<2gandr—1<j<s.

Remark 6 In Fig. 3 we illustrate geometrically the generators A; ; of the group
Py(Xgp),forl <i <2¢+p+n—-22¢+p<j=<2¢+p+n—1and
i < j. We note that the set {A,‘,J- |26 +p<i<j<2¢+p+n-— 1} corresponds
to the set of Artin generators inside P, (Xg p).
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The Roo-property for braid groups over orientable surfaces 7

1 g 1 p—1

A2y+1‘2y+p

Fig.3 Generator A; jforl <i <2g+p+n—2,2¢+p<j<2¢+p+n—1landi<j

2.3 The punctured non orientable surfaces

For this case we use the presentation given in [12, Theorem 4.7]. Let g, p > 1. A setof
generators of P, (Ng ) is givenby A; jand p, xrforl <i < j,p+1=<j,r<p+n
and 1 < k < g subject to the relations

(a) The “Artin-type relations”

Aij if(i<r<s<j)or

(r<s<i<yj)
_1 P . . . .
Ay sA; jA;; = AS_,{AI_»JIAS»J ?fl —lj <s <J.
A; j A, jALArjAiLj ifr<i=s<j

AS_,}'A;}As,jAr,in,jAr_,}A;}Ar’jAs’j ifr<i<s<j.
(b) Forevery p+1<i<j<p+nandl <k, [ <g
Pj.l ifk <1
pi,kpj,lp[,(l = Pj_,;l(A,‘_,Jl-pjz-,k ifk=1

—1 1 —1 -1 .
Pj kA jPjkA; jPjIAL P AL Pk k> L.

(c) The surface relation, forevery p+1<j <p+n

g j—1 p+n

2 _ . .
[Teio={TTau || IT 4is
=1 i=1 s=1+j

Note that when j = p + n then in the right-hand side of the equality the second
factor disappears.
(d) Foreveryl <i< j,p+1<j,k<p+nk#*jandl <l<g

A ifk <iorj<k

-1 —14-1 i —
PkIAij P = Pj,llAi,Jl'PJJ 1 1 ith=i
p;l Ak_,jp./'lek_,jAl"./Ak,jpj_,l Arjpjifi <k < j.
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8 K. Dekimpe et al.

ay

Fig.4 Generators A; jand py g forl <i <j,p+1<j,r<p+nandl <k<g

Remark 7 In Fig. 4 we illustrate geometrically the generators A; ; and p, x of the
group P,(Ng p),forl <i < j,p+1=<j,r<p-+nandl <k < g. Wenote that
the set {Ai,j | p+1<i<j<p+ n} corresponds to the set of Artin generators
inside P, (Ng, ).

2.4 Goldberg’s short exact sequence for surface pure braid groups

The short exact sequence of the following theorem is known for closed surfaces, see
[23] for Sg,, # S2, RP? and [26] for § = RP2. We extend it here to the case of
punctured surfaces.

Theorem 8 Let S, , be a closed surface (orientable or not) of genus g > Owith p > 0
points removed. Let N denote the normal subgroup of P, (S, p) generated by the image
of the Artin pure braids via the inclusion of the disc D into Sg p, i: D — S, . Then

1 — N — Py(Sg,p) — M} (11(S,,p)) — 1 3)

is a short exact sequence.

Proof For Xp o = S? this is obvious since P, (S?) is generated by the images of the
pure Artin braids. For Sy 0 # S%, RP? this was proved by Goldberg [23] (and this
was in the orientable case a conjecture of Birman [7]). For the case N1 o = RP? see
Gongalves and Guaschi [26].

For the remaining cases (of punctured surfaces) the proof'is algebraic by considering
the presentations for the given groups given in the subsections above. Let p > 1.
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The Roo-property for braid groups over orientable surfaces 9

Case 1.

First we prove the result for the punctured sphere. We consider in this case
p > 2 since the pure braid group of the 1-punctured sphere P,(Zo 1) is
exactly the pure braid group of the disc P, (D) and then the result is trivial.
Let p > 2. We shall use the presentation of P, (X, ,) given in Subsection
2.1. We note that, in this presentation of P,(Zo,,), the generators coming
from the Artin generators of P, (D), via the inclusioni: D <> X ,, are the
elements A; j for p <i < j < p+n — 1. Now, we will describe a presen-
tation of the quotient of P, (X, ,) by the normal closure subgroup generated
by the Artin pure braids A; ;, with p <i < j < p +n — 1, that we called
N.

Let us add the relations A; ; = 1for p <i < j < p+n —1to the presen-
tation of P, (X, ,) given in Subsection 2.1. This implies that for the quotient
group P, (2o,,)/N wecantake {A; j | 1<i<p—1, p<j<p+n—1}as
the set of generators. The relations (P2) become trivial in the quotient and
the relations (P1), (P3) and (P4) lead to the following relations respectively

(QRI) AZJI-Ar,SA,',.,' =A, if(r<i<j<s).
(QR2) A 1A A j = A if (i < j <),
(QR3) A;]‘.A,,SA,»J = A if(i <r<j<s).

We can actually collect the relations (QR1), (QR2) and (QR3) together to
obtain the relations

(QR) [Aij Arsl=1if(I<ri<p—Dand(p<j<s<p+n—1.

Case 2.

This shows that for every £ € {p, ..., p +n — 1} the group T, generated by
the set {Ak’g | 1<k<p-— 1} is a free group of rank p — 1 and

PiSo ) /NETIOD® - ®T, = (m1(Zo,)" .

This concludes the proof for the punctured sphere.

Now we prove this result for the case of the p-punctured connected sum of
g tori X, ,. We shall use the presentation of the pure braid group P, (%, )
given in Subsection 2.2. We note that the generators coming from the Artin
generators of P, (D), via the inclusioni: D < X, ,, are the elements A; ;
for2g+p <i < j <2g+p+n—1.Now we add the relations A; ; = 1 for
2g+p <i < j <2g+p+n—1tothe presentation given in Subsection 2.2 to
deduce a presentation of the quotient group P, (3, ,)/N. We claim that the set
{Aij 1 1<i<2g+p—1,2¢+p=<j=<2g+p+n—1]}constitutesa
set of generators for the group P, (X, ,)/N which are subject to the relations
[Aij, Ars]=lforl <i, r <2g+p—land2g+p < j, s <2g+p+n—1
with j # s. The claim is an immediate consequence of the following:

(QRD) [A;j, Ayl =1if(r+1<i < j<s)or(i=r+1<j<sforany

l<r<2¢+p-2).

This follows directly from (PR1) whenr +1 < i < j < s and from
(PRl)incasei =r+1 < j < sforevenr < 2g or r > 2g and from
(ER1)wheni =r+1< j <sforoddr < 2g.
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10 K. Dekimpe et al.

(QR2) [A;j,Ais]=11ifi < j < s.Infact,since Ajy =1for2g+p <j <
s <2g+ p+n — 1 then from (PR3):

-1 —1 4—1
AT LA AL = AisAjsAi AT LA

we obtain the relation (QR2).
(QR3) [A;j, Ayl =1if(+1<r<j<s)or(@+1=r < j<sforany
2<r=<2¢+p-2).
Using once more time the fact that A; ; = 1for2g +p < j < s <
2g + p +n — 1 and from (PR4):

-1 A A A=l S e
AT TAr Aij = AisAj AT AT AL A A AT LA

we get the relation (QR3)when(i+1 <r < j<s)or(i+1l=r<j<s
foroddr < 2gorr > 2g). When r < 2g is even the verification is similar
using (ER2).

Note that all of the relations (PR2) became trivial in the quotient group
Pu(Sg.p)/N.

Hence the quotient group P, (X, ,)/N isisomorphic to IT}_, (71 (g, ,)), the
direct product of free groups of rank 2g + p — 1.

Case 3. Finally we consider the case of the punctured connected sum of projective
planes. For this case we use the presentation given in Subsection 2.3. The
generators coming from the Artin generators of P,(D), via the inclusion
i: D> Ngp,aretheelements A; jforp+1<i < j < p+n. Weadd
the relations A; j = 1for p+1 <i < j < p + n to the presentation given
in Subsection 2.3 to deduce the following presentation of the quotient group
Py(Ng p)/N.

The set of generators is givenby A; jforl <i < pandp+1<j < p+n
and o,y for p+1 <r < p+nand1 <k < g subject to the relations

(QRD) [A;j, Aysl=1for( <r<s< jlor(i=r<s<jlor(r<i<s<
j-
This follows from item (a).
(QR2) [prp,pjul=1forp+1<r<j<p+nandl <k,l<g.
This follows from item (b).
(QR3) [pki, Ai j1=1for j #k.
This relation follows from (d).
(QSR) From item (c) we have that forevery p+ 1 <j <p+n

[Teis =114

=1 i=1
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The Roo-property for braid groups over orientable surfaces 11

Recall that a presentation for the fundamental group of the punctured con-
nected sum of projective planes, 71 (Ng, ), is given by

8 14
<Ai,pzf0r1§i§pand1§l§g I 1—[,012:1_[14[>-
=1 i=l1

Therefore, the quotient group P, (Ng, )/ N isisomorphic to the direct product
of n copies of w1 (N ) (one foreach j e {p+1,..., p+n}).

O

3 Automorphisms of P, (S) for S a surface of finite type

Let X, , be an arbitrary finite surface of genus g with p > 0 points removed. Let
My (2,, p) denote the extended mapping class group, defined to be the group of isotopy
classes of (possibly orientation-reversing) homeomorphisms of (X ,, z), where z =
{z1, ..., 2,) is a set of n distinct points in X, , and (z1, ..., z,) is a base point in the
configuration space Fy,(X3g p). Let h: Xg , —> X, , be a homeomorphism which
leaves z invariant, i.e. h(z) = z, so the isotopy class of &, denoted by [%] is an element
of M; (X, p). The homeomorphism £ defines a permutation o, € S, given by the
following equation:

h(zi) = Zoy(i)-

We will consider the morphisms ®: M (%, ,) —> Aut (B,,(Eg,p)), Og: M (Zg,p)
—> Aut (P, (2, p)) defined as follows. For the case of ®, given h € [h] € M (Z,, )
and {1, -+, o} a set of paths between elements of z which is a representative of
an element of B,(Xg ;) define hus[{c1, - -, a,}] as the class determined by the
set of paths {h o a1, -, h o «ay,}. It is straightforward to see that this map is well
defined, it is a homomorphism, and & is also a homomorphism. For the case of
®( we have a similar definition, where we only stress the point that needs to be
adapted in the description above. Given & and a representative («q, --- , ®,) of an
element of P, (X p, (21, ,2,)) define hyg[(aq, - - -, ay)] as the class determined
by the ordered sequence of loops (A o Upt(gys s ho -t () having base point
(z1, -+, zn). The rest is similar.

Let X, , be an orientable surface of genus g with p > 0 points removed. The group
Aut (Pn (X, p)) has been studied by many authors and it was proved that there exists
an isomorphism

M} (g p) = Aut (P (g, p)) 4)
for (not necessarily closed) orientable surfaces with Euler characteristic x (Zg, ,) <
—1 by [1, Theorem 1.3]. The isomorphism (4) is the map ®¢ as described above, for

more details see [1].
So the following cases, for orientable surfaces, are not covered by the results above:
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12 K. Dekimpe et al.

I) forg = 1and p =0, 1 (i.e. the surfaces of F3);
I g=0,p=0,1,2,3. (i.e. the surfaces of 7] and the surface X 3).

Now we prove that the short exact sequence of Theorem 8 is characteristic with
respect to automorphisms. This will be used to study the Ro-property of the groups
P, (X, p) and B, (X, p) in the next section.

Lemma9 Let X , be a surface of the family F>, being different from the sphere minus
three points. Let N denote the normal subgroup generated by the image of the Artin
pure braids via the inclusion of the disc D into X4 p, i: D — X4 p, and n > 2. If
@: Py(Xg p) —> Pu(Xg, p) is an automorphism then ¢ (N) C N. Therefore the short
exact sequence given in equation (3) is characteristic.

Proof Let ¢ be an automorphism of P, (X, ,). To show that ¢(N) C N it is enough
to prove that ¢ (i4(P,(D))) C N, since N is the normal subgroup generated by the
images of the Artin pure braids via the inclusion i: D < X, , of the disc D into
X, p- From the hypothesis of this lemma the Euler characteristic x (¥, ,) < —1, and
so there is a homeomorphism A: X, , —> X, , such that ¢ is induced by £, i.e.
@ = ®([h]) € Aut (P,(Z,,,)) (by (4) and the discussion above).

Let « € P,(D). We shall prove that ¢(ig(e)) € N. The inclusion i: D <>
X, p induces an inclusion i Fy(D) — F,(Zg,p). Geometrically, since P,(D) =

71 (Fu(D), (z1, ..., 2n)), we have that « has a representative @ = (a1, @y, ..., a,)
where o : [0,1] — D is a loop in D with base point z; € D. By definition,
Do ([h])(ix(e)) is the homotopy class of the loop (hoi o 040171(1), ---,hoio Olah—l(n))

based at (21/,\- -, zZp)in Xg p.

Now let ¥ : F(3g p) —> H?_l (E’; p) be the inclusion. Since 4 oi o Uty isa

— ’ h

loop based in z; inside A(D) C Xg p, forevery 1 < j < n, and since h|p: D —>
h(D) is a homeomorphism, we get that ¥ ((h oi o Uty Jhoio (X(T;l(n))) is
homotopic to the n-tuple of constant maps (cz,, ..., ¢z,).

Algebraically, the induced map 4 on the level of the fundamental groups cor-
responds to the surjective map P,(Zg ;) — H;‘zl(m(Eg,p)) in the short exact
sequence given in equation (3). Therefore, Y (o ([h]) (igar)) = 1 € TI7_, (71(Zg,p)).

Hence, ®o([h])(ise) = ¢(iset) € N. O

4 The R.-property for P, (24 p) and B, (Zg,p)

In this section we prove Theorem 2 and Theorem 3.

4.1 The Fadell-Neuwirth short exact sequence

Let S be aconnected surfaceandletn € N.If m > 1,themap p: F,4,,(S) — F,(S),
of the configuration space F,,,(S) onto F,(S), defined by p(x1, ..., X, .-+, Xptm)
= (x1,...,x,) induces a homomorphism py: Py+,(S) —> P,(S). The homo-
morphism p, geometrically “forgets” the last m strings. If S is without boundary,
Fadell and Neuwirth showed that p is a locally-trivial fibration [14, Theorem 1], with
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The Rxo-property for braid groups over orientable surfaces 13

fibre F,,, (S\{x1, ..., x,}) over the point (x1, ..., x,), which we consider to be a sub-
space of the total space via the map i: F,,(S\{x1,...,xn}) —> Fu4m(S) defined
by i((y1,..., Ym)) = (X1, .-+, Xn, V1, ..., Ym)- Applying the associated long exact

sequence in homotopy to this fibration, we obtain the Fadell-Neuwirth short exact
sequence of pure braid groups:

1 —> Pu(S\{X1e -+ X ]) =5 Pugm(S) 25 Pu(S) —> 1 )

where n > 3 if § is the sphere [13, 15], n > 2 if S is the real projective plane [39],
and n > 1 otherwise [14], and i, is the homomorphism induced by the map i. This
sequence has been widely studied. For instance, one question studied by many authors
during several years was the splitting problem for surface pure braid groups, and it was
completely solved, see [25] for more details, in particular its Theorem 2. Additional
information on this sequence may be seen in [28, Section 3.1].

We are interested in (quotients by) the center of some surface braid groups. Seem-
ingly the content of Proposition 10 related to the braid groups over the annulus is well
known for the experts in braid theory, however to the best of our knowledge there
is no proof in the literature of it. Hence, for the sake of completeness, we provide
a proof here. The following information will be useful: From [35, Proposition 4.1],
for all n > 1, the center of the group B,(X¢2) is isomorphic to Z generated by
ay € Py(X,2). See [35, Figure 4.1] for a geometric description of this element.

Proposition10 Let n > 1. Then Z(B,(X02)) = Z(Py(X02)) and Pyy1(X0,2)/
Z(Pp41(20,2)) = Pu(Z0,3).

Proof Let n = 1, then P{(Xp2) = Bi(Zp2) = Z and so Z(Pi(Xop2)) =
Z(B1(XZ9,2)). To study the situation with more than one string, we consider the short
exact sequence induced from the Fadell-Neuwirth fibration

Px
1 — Py(20,3) —> Puy1(Z02) — P1(Xp2) — 1

where p,. geometrically forgets the last  strings. We note that Py (X 2) = m1(2p,2) =
Z is generated by o1 € P1(Xg2). Consider the section of p, that sends o1 € P1(X.2)
onto oy41 € Prt1(Xo2). Since o1 € Z(Bp+1(Z0.2)), ¢p+1 also commutes with all
elements from P,41(Zo,2) and so we find that

Pri1(X0,2) = Py(Z0,3) © Z,

where Z is the subgroup of P,+1(X0,2) generated by aty+1. As Z(Py(Z0.3)) = 1[35,
Proposition 1.6], it now readily follows that Z(P,4+1(20,2)) = Z(Bu+1(XZ0.2)) and
hence Py 41(20,2)/Z(Pr+1(Z0,2)) = Pr(Z0,3). mi

The information of some surface braid groups in the following remarks will be
useful in this section.

Remark 11 Suppose n > 1.
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14 K. Dekimpe et al.

1. Braid groups with few strings over the sphere are finite:

B1(S?), P1(S?) and P>(S?) are trivial groups, B»(S?) = Z,, B3(S?) is isomorphic
to Z3 x Z4 with non-trivial action and P3(S?) = Z,, see [15] and also [28,
Section 4].

2. If § = S? is the sphere, then P,13 ($?) = P, (20.3) @ Z3 (see [24, Theorem 4]).
We remark here that Z (P, 13 (S?)) = Z, because Z(P,(%0.3)) = 1[35, Proposi-
tion 1.6]. Hence P, 3(S%)/Z(Py43(S?) = Py(Z0.3).

3. Suppose S = D is the disc. It is an immediate consequence of the classical Artin
presentation of P, (D) and B, (D) that they are isomorphic to Z, see [3]. Letn > 3.
There is a decomposition P, (D) = P,_2(X0 3) @ Z that follows from the splitting
of the Fadell-Neuwirth short exact sequence (see [24, Theorem 4]). Using [35,
Proposition 1.6] again, we find that P,—2(X03) = P,(D)/Z(P,(D)).

4.2 The proof of Theorem 2 and Theorem 3

Recall that we split the orientable surfaces of finite type into three families, as follows:

Fi: The punctured sphere S? with p points removed for p =0, 1, 2.
F>: a) Orientable closed surfaces different from S?, 72,
b) Orientable punctured surfaces ¥, , where g is the genus and p is the number
of punctures in the closed surface X, for:
i) g=0and p > 3,
ii) g=1land p > 2,
iii) g >2and p > 1.
F3: The torus and the once punctured torus.

We will show the results for the families 7 and >, using two different arguments.
The case F3 is work in progress.

We shall use the following technique in order to prove that the pure braid groups
of surfaces Xz , (closed or punctured) from J, have the Ryo-property whenever
1 (X, p) has the Roo-property. If « is an automorphism of a group G and N is a
normal subgroup of N with «(N) = N (e.g. when N is a characteristic subgroup of
G) then « induces an automorphism @ of G/N. Itis easy to see that R(«) > R(&), so
if R(@) = oo, then also R(a) = oo. For all X, , of family J>, it holds that 771 (X, )
has the Roo-property.

This does not longer hold for the surfaces of family 7 and we will solve this case
using a different argument.

We will state the result for the family J». To prove the result we will make use of
Lemma 9 for all surface X, , in J, except for the case in which g = 0 and p = 3,
since the validity of the equation (4) is not covered by An [1], because x (g ) = —1.
So, for this special case of the family F> we shall use another approach.

Proposition 12 For any surface L4, € F, we have that P,(X, p) has the Rxo-
property forn > 1.

Proof For n = 1 the group P|(2g ,) = mi(Z,,p) is the fundamental group of
the surface. For every surface in the family 7> its fundamental group has the Ryo-

@ Springer



The Rxo-property for braid groups over orientable surfaces 15

property. Indeed, for all X, , € >, it holds that x (X, ,) < 0 and so 71 (Xg ) is
non-elementary hyperbolic, hence the result follows from [30], see also [16].

Let ¥ 3 be the pantalon. Recall that P,(2X03) = P,4+2(D)/Z(Py42(D)) (see
Remarks 11 in Subsection 4.1). In [10] the group P,42(D)/Z(Py+2(D)) was denoted
by F,,Jrz. Moreover, in order to prove the main result of [10] it was shown that this
group has the Roo-property (see the last two lines of page 17 of [10]).

Letn > 2 and let X, , # %o 3 be a surface from F;. From Lemma 9 the short
exact sequence given in equation (3) is characteristic, then we conclude the result in
these cases since IT7_, (71 (S)) has the Roo-property by [36, Corollary 4.5]. O

Now we move to the surfaces of the family J;. We notice that, for n > 2, the
result that P, (X0 2) has the Ro.-property was already proved in [8], using a different
technique from the ones used here.

Proposition 13 Let X , be a surface of the family Fy. Then P, (Zg ) has the Roo-
property if and only if one of the following cases holds:

1. %, = S? andn > 4,
2. By, =S*\{x1} andn >3,
3. X, , =S*\{x1,x2} andn > 2.

Proof The proof is case by case, but first we deal with the exceptional cases. It is well
known (see Remarks 11 in Subsection 4.1) that P; (S?) = P»(S?) = {1}, P3(S?) = Z»,
P1(S2\{x1}) = {1}, Py(S*\{x1}) = Z, Pi(S*\{x1, x2}) = Z and all these groups do
not have the Ry,-property.

ForX, , = S?andn > 4 wehave that P, (S?)/ Z(P,(S?)) = P,—3(S*\{x1, x2, x3})
(see Remarks 11 in Subsection 4.1). From Proposition 12, Pu_3(S*\{x1, x2, x3}) has
the Roo-property for n —3 > 1, then the result follows since Z (P, (S?)) is a character-
istic subgroup of P,(S?). Let Yep= S?\{x1}, then P, (= ¢,p) 1s the pure Artin braid
group and the result follows from the main result of [10].

ForX, , = S®\{x1, x2}andn > 2 weknow P, (S*\{x1, x2})/Z (P, (S*\{x1, x2})) =
P,_1(S*\{x1, x2, x3}), by Proposition 10. Again by using the fact that the centre is a
characteristic subgroup and using Proposition 12 for Xy 3 the result follows. O

From the discussion above we may prove the main result about the Ryo-property
for surface pure braid group P, (Zg ).

Proof of Theorem 2 The result follows immediately from Propositions 12 and 13. O

Now we consider the groups B, (X, ) forn > 2, and we will make use of the short
exact sequence

1 — Py(Zg p) —> Bu(Zg,p) — Sy — L.
We recall that by [1, Theorem 1.5] this short exact sequence is characteristic unless
we are the case that X, , = ¥o> and n = 2. In the cases where the short exact

sequence is characteristic we will use the following result given by [32, Lemma 6]:
Let] — A — B — C — 1 be a characteristic short exact sequence with
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16 K. Dekimpe et al.

respect to automorphisms of B such that C is finite and A has the Roo-property. Then
B has the R -property. To analyse the case By (2¢,2) we will use a different approach.

Now we prove the main result for the groups B, (X, ;). We notice that, forn > 2,
the result that B, (X, ,) has the Roo-property was already proved, using different
techniques from the ones here, in [18] for X, , = S? and Yo p = D?, and in [8] for
Yo p=2o2and X, , = Xp 3.

Proof of Theorem 3 Recall that for any surface S, , there exists a short exact sequence
I — Py(Sg,p) —> Bu(Sg.p) — S — L.

By [1, Theorem 1.5] this short exact sequence is characteristic as long as X, ,, # X2
or n > 2. For the if part let P, (X ,) have the R-property. From [32, Lemma 6] the
result follows for B, (X, ). The only remaining case is when Xy , = o2 andn = 2.
But from [9, Proposition 2.1 (2)], B2(Xo,2) is isomorphic to F>(x, y) X Z. The semi-
direct product is determined by the action given by the automorphism 6(1)(x) = y,
o)y = y’lxy. Now it follows from [19, Theorem 4.4] that B>(Xp ) has the
Roo-property (independent of the action).

For the only if part, observe that the only cases where B, (Xg, ,) (n > 1) does not
have the Ry,-property are:

a) If X, ) = S? for 2 < n < 3 because the groups are finite;
b) If ¥, , = S%\{x1} for n = 2 because the group is isomorphic to Z.

In both cases the groups P, (X, ) also does not have the R-property, see Theorem 2.
So the result follows. O
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