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Abstract
Let �g,p be an orientable surface of genus g and of finite type without boundary (i.e.
an orientable closed surface with a finite number p of points removed). In this paper
we study the R∞-property for the surface pure braid groups Pn(�g,p) as well as for the
full surface braid groups Bn(�g,p). We show that, with few exceptions, these groups
have the R∞-property.
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1 Introduction

Consider a group G and a fixed endomorphism ϕ of G. Two elements x and y of
G are said to be twisted conjugate (via ϕ) if and only if there exists a z ∈ G such
that x = zyϕ(z)−1. The relation of being twisted conjugate is easily seen to be an
equivalence relation and the number of equivalence classes (also referred to as twisted
conjugacy classes or Reidemeister classes) is called the Reidemeister number R(ϕ)

of ϕ. This Reidemeister number is either a positive integer or ∞.
These Reidemeister numbers appear naturally in algebraic topology and to be more

precise in Nielsen–Reidemeister fixed point theory. Here one is interested in the num-
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ber of fixed point classes of a selfmap f of a space X . This number is called the
Reidemeister number R( f ) of the map f , and one can show that R( f ) = R( f∗),
where f∗ : π1(X) −→ π1(X) is the induced endomorphism on the fundamental group
π1(X) of X .

A groupG is said to have theR∞-property in case R(ϕ) = ∞ for all automorphisms
ϕ ∈ Aut (G). The study of groups with that property was initiated by Fel’shtyn and
Hill [20] and since the beginning of this century there has been a growing interest in
the study of groups having this R∞-property.

A non-exhaustive list of examples of groups of which we know that they have the
R∞-property, are the non-elementary Gromov hyperbolic groups [16, 30], most of
the Baumslag–Solitar groups [17] and groups quasi–isometric to Baumslag–Solitar
groups [37], generalized Baumslag–Solitar groups [31], many linear groups [21, 34],
several families of lamplighter groups [27, 38], some spherical and affine Artin-Tits
groups [8], pure virtual twin groups [33], and virtual braid (twin) groups [11].

Emil Artin introduced the braid groups of the 2-disc in 1925 and continued the
study of them in 1947 [2, 3]. These groups have since then been referred to as Artin
Braid groups. Zariski [40] was the first to study braids on surfaces and this was later
further extended by Fox and Neuwirth to braid groups of arbitrary topological spaces
by using configuration spaces as follows [22]. Let M be a topological space, and let
n ∈ N. The nth ordered configuration space of M , denoted by Fn(M), is defined by:

Fn(M) = {
(x1, . . . , xn) ∈ Mn | xi �= x j if i �= j, i, j = 1, . . . , n

}
.

The n-string pure braid group Pn(M) of M is defined by Pn(M) = π1(Fn(M)).
The symmetric group Sn on n letters acts freely on Fn(M) by permuting coordinates,
giving rise to the nth unordered configuration space Fn(M)/Sn . The n-string braid
group Bn(M) of M is then defined as Bn(M) = π1(Fn(M)/Sn). This gives rise to the
following short exact sequence:

1 −→ Pn(M) −→ Bn(M)
σ−→ Sn −→ 1. (1)

The map σ : Bn(M) −→ Sn is the standard homomorphism that associates to any
braid in Bn(M) a permutation in Sn and Ker(σ ) = Pn(M).

When M = D2 (the disc) then Bn(D2) (resp. Pn(D2)) is the classical Artin braid
group denoted by Bn (resp. the classical pure Artin braid group denoted by Pn).

The R∞-property was studied for Artin braid groups in [18] for the whole group
Bn and in [10] for the pure subgroup Pn . Let Sg,p be a surface of finite type, i.e. Sg,p
is a closed surface of genus g (possibly non-orientable) with a finite number (p ≥ 0)
of points removed. After having obtained the results for the Artin braid groups, it is
now a natural question to study the R∞-property for the surface braid groups (resp.
surface pure braid groups) Bn(Sg,p) (resp. Pn(Sg,p)). For the case where n = 1 we
have that P1(Sg,p) = B1(Sg,p) = π1(Sg,p) and here the result is well known, and the
information (in the orientable case) is given in the tables below. So, from now on, we
will assume that n ≥ 2 unless it is explicitly stated otherwise.

In this paper we will study the R∞ property only for the case of orientable surfaces.
To do this, we divide the orientable surfaces of finite type into three families.
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The R∞-property for braid groups over orientable surfaces 3

F1: The punctured sphere S
2 with p points removed for p = 0, 1, 2.

F2: a) Orientable closed surfaces different from S
2, T 2.

b) Orientable punctured surfaces�g,p where g is the genus and p is the number
of punctures in the closed surface �g , for:
i) g = 0 and p ≥ 3,
ii) g = 1 and p ≥ 2,
iii) g ≥ 2 and p ≥ 1.

F3: The torus �1,0 = T 2 and �1,1 the torus minus one point.

In Table 1we record the information that we know until now about the R∞-property
for the surface braid groups, Pn(�g,p), Bn(�g,p).

Remark 1 The exceptional cases which appear in the table above come from the fact
that for n ≥ 2, the groups Pn(�0,1), Pn(�0,2), Bn(�0,1), Bn(�0,2) and Bn(�0,3)

have the R∞-property (see [8, Theorem 1]), since there are isomorphisms among
some surface braid groups and Artin-Tits groups: Pn(�0,1) ∼= P(An−1), Pn(�0,2) ∼=
P(Bn), Bn(�0,1) ∼= A(An−1), Bn(�0,2) ∼= A(Bn) and Bn(�0,3) ∼= A(C̃n). In the
case of �0,1 the result was first demonstrated in [18] for the Artin braid group and in
[10] for the pure Artin braid group.

The reason for dividing the surfaces into these three families is because we need
different techniques to deal with the surfaces of family F1 and those of family F2.
The paper does not contain new results on the two braid groups of the two surfaces of
family F3 as this is still work in progress.

The main results of this paper are formulated below.

Theorem 2 Let �g,p be a finite type surface which belongs to F1 ∪ F2. The surface
pure braid group Pn(�g,p) has the R∞-property if and only if one of the statements
below holds:

1. �g,p belongs to F2 and n ≥ 1,
2. �g,p = �0,0 = S

2 and n ≥ 4,
3. �g,p = �0,1 = S

2\{x1} and n ≥ 3,
4. �g,p = �0,2 = S

2\{x1, x2} and n ≥ 2.

Table 1 The R∞-property for Pn(�g,p) and Bn(�g,p) before this paper

Family π1 has R∞ Pn(�g,p) has R∞ Bn(�g,p) has R∞

F1 No Unknown Unknown

except, yes for S = �0,2 except, yes for S = �0,2

and n ≥ 2, and yes for and n ≥ 2, and yes for

S = �0,1 iff n ≥ 3 S = �0,1 iff n ≥ 3

F2 Yes Unknown Unknown

except, yes for S = �0,3

F3 No for T 2 Unknown Unknown

Yes for �1,1

123
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Table 2 The R∞-property for Pn(�g,p) and Bn(�g,p) after this paper

Family π1 has R∞ Pn(�g,p) has R∞ Bn(�g,p) has R∞

F1 No Yes for most; Yes for most;

No for few cases No for few cases

F2 Yes Yes Yes

F3 No for T 2 Unknown Unknown

Yes for �1,1

In order to prove the result for thewhole group Bn(�g,p), stated in the next theorem,
we shall use Theorem 2 and the following useful result: for all surfaces Sg,p (orientable
or not), Pn(Sg,p) is characteristic in Bn(Sg,p) with one exception, which is when
Sg,p = �0,2 and n = 2, see [1, Theorem 1.5].

Theorem 3 Let�g,p be a surfacewhich belongs toF1∪F2. The braid group Bn(�g,p)

has the R∞-property, if and only if Pn(�g,p) has the R∞-property.

Table 2 summarises the information obtained in this work as well the status of the
question studied here for a finite type orientable surface �g,p.

Remark 4 In the Table 2, for the familyF1 the cases where Pn(�g,p) (n ≥ 2) does not
have the R∞-property are precisely the cases S

2 for n = 2, 3 and S = D2 for n = 2.
The same holds for Bn(�g,p).

This paper is organised as follows. In Sect. 2 we show that for any finite type surface
Sg,p (orientable or not) of genus g ≥ 0 with p ≥ 0 points removed, there is a short
exact sequence

1 −→ N −→ Pn(Sg,p) −→ �n
i=1(π1(Sg,p)) −→ 1 (2)

where N is the normal closure of the Artin pure braid group in Pn(Sg,p). Then,
in Sect. 3 we prove that the sequence (2) is characteristic for the surfaces of the
family F2, being different from the sphere minus three points. In Sect. 4 we prove
Theorem 2 and Theorem 3, these are the main results of the paper about the R∞-
property for orientable surface braid groups.

2 Goldberg’s short exact sequence for pure braid groups over
punctured surfaces (orientable or not)

Let Sg,p be a closed surface (orientable or not) of genus g ≥ 0 with p ≥ 0 punctures.
Let D ⊂ Sg,p be a subset which is homeomorphic to the open disc of radius 1 of the

plane. Denote by D
i

↪→ Sg,p the inclusion, and let (z1, · · · , zn) be a base point of
Fn(D) and of Fn(Sg,p). This inclusion induces amorphism i# : Pn(D) −→ Pn(�g,p).
Making use of such an embedding, in this section we prove that the pure braid groups
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The R∞-property for braid groups over orientable surfaces 5

Fig. 1 The punctured sphere

over punctured surfaces fit into a short exact sequence of Goldberg’s type [23], see
Theorem 8. The proof is algebraic and in order to do that we shall use the presentations
of Pn(Sg,p) given in [29, Theorem 1] for the case of the punctured sphere, in [4,
Theorem 5.1] for the punctured connected sum of tori and in [12, Theorem 4.7] for the
case of the punctured connected sum of projective planes. In the first three subsections
we discuss in more details these presentations, where we also indicate how to identify
i#(Pn(D)) in each of the surface braid groups, and in the last subsection we deal with
the short exact sequence of Goldberg’s type.

2.1 The punctured sphere

The once-punctured sphere is homeomorphic to the (open) disc, see Figure 1 (a), and
in this case we get the classical Artin pure braid groups [2].

Let p ≥ 2. Using the notation of [29] and considering the p-punctured sphere as
being the (p − 1)-punctured disc (see Fig. 1 (b)), one can easily see that Pn(�0,p) =
Pp−1,n (som = p− 1). Then [29, Theorem 1] provides a presentation of Pn(�0,p) =
Pp−1,n , with a set of generators

{
Ai, j | 1 ≤ i ≤ p + n − 2, p ≤ j ≤ p + n − 1 and i < j

}

subject to the following relations:

(P1) A−1
i, j Ar ,s Ai, j = Ar ,s if (i < j < r < s) or (r < i < j < s).

(P2) A−1
i, j A j,s Ai, j = Ai,s A j,s A

−1
i,s if (i < j < s).

(P3) A−1
i, j Ai,s Ai, j = Ai,s A j,s Ai,s A

−1
j,s A

−1
i,s if (i < j < s).

(P4) A−1
i, j Ar ,s Ai, j = Ai,s A j,s A

−1
i,s A

−1
j,s Ar ,s A j,s Ai,s A

−1
j,s A

−1
i,s if (i < r < j < s).

Remark 5 In Fig. 2 we illustrate geometrically the generators Ai, j of the group
Pn(�0,p), for 1 ≤ i ≤ p + n − 2, p ≤ j ≤ p + n − 1 and i < j . We note that the
set

{
Ai, j | p ≤ i < j ≤ p + n − 1

}
corresponds to the set of Artin generators inside

Pn(�0,p).
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Fig. 2 Generator Ai, j for 1 ≤ i ≤ p + n − 2, p ≤ j ≤ p + n − 1 and i < j

2.2 The punctured connected sum of tori

Let p ≥ 1 and g ≥ 1. We shall use the presentation of Pn(�g,p), the pure braid group
of the p-punctured connected sum of g tori�g,p, as given in [4, Theorem 5.1].We note
that this presentation had a few misprints which were corrected in [6, Theorem 12]
and after private communication with P. Bellingeri ([5]) we fixed one more typo here.
A set of generators of Pn(�g,p) given in [4, Theorem 5.1] is

{
Ai, j | 1 ≤ i ≤ 2g + p + n − 2, 2g + p ≤ j ≤ 2g + p + n − 1, i < j

}

subject to the relations

(PR1) A−1
i, j Ar ,s Ai, j = Ar ,s if (i < j < r < s) or (r + 1 < i < j < s), or

(i = r + 1 < j < s for even r < 2g or r ≥ 2g).
(PR2) A−1

i, j A j,s Ai, j = Ai,s A j,s A
−1
i,s if (i < j < s).

(PR3) A−1
i, j Ai,s Ai, j = Ai,s A j,s Ai,s A

−1
j,s A

−1
i,s if (i < j < s).

(PR4) A−1
i, j Ar ,s Ai, j = Ai,s A j,s A

−1
i,s A

−1
j,s Ar ,s A j,s Ai,s A

−1
j,s A

−1
i,s if (i + 1 < r < j <

s) or
(i + 1 = r < j < s for odd r < 2g or r > 2g).

(ER1) A−1
r+1, j Ar ,s Ar+1, j = Ar ,s Ar+1,s A

−1
j,s A

−1
r+1,s if r odd, r < 2g and r + 1 <

j < s.
(ER2) A−1

r−1, j Ar ,s Ar−1, j = Ar−1,s A j,s A
−1
r−1,s Ar ,s A j,s Ar−1,s A

−1
j,s A

−1
r−1,s if r even,

r ≤ 2g and r − 1 < j < s.

Remark 6 In Fig. 3 we illustrate geometrically the generators Ai, j of the group
Pn(�g,p), for 1 ≤ i ≤ 2g + p + n − 2, 2g + p ≤ j ≤ 2g + p + n − 1 and
i < j . We note that the set

{
Ai, j | 2g + p ≤ i < j ≤ 2g + p + n − 1

}
corresponds

to the set of Artin generators inside Pn(�g,p).
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The R∞-property for braid groups over orientable surfaces 7

Fig. 3 Generator Ai, j for 1 ≤ i ≤ 2g + p + n − 2, 2g + p ≤ j ≤ 2g + p + n − 1 and i < j

2.3 The punctured non orientable surfaces

For this case we use the presentation given in [12, Theorem 4.7]. Let g, p ≥ 1. A set of
generators of Pn(Ng,p) is given by Ai, j and ρr ,k for 1 ≤ i < j , p+1 ≤ j, r ≤ p+n
and 1 ≤ k ≤ g subject to the relations

(a) The “Artin-type relations”

Ar ,s Ai, j A
−1
r ,s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ai, j if (i < r < s < j) or
(r < s < i < j)

A−1
s, j Ai, j As, j if i = r < s < j

A−1
i, j A

−1
r , j Ai, j Ar , j Ai, j if r < i = s < j

A−1
s, j A

−1
r , j As, j Ar , j Ai, j A

−1
r , j A

−1
s, j Ar , j As, j if r < i < s < j .

(b) For every p + 1 ≤ i < j ≤ p + n and 1 ≤ k, l ≤ g

ρi,kρ j,lρ
−1
i,k =

⎧
⎪⎪⎨

⎪⎪⎩

ρ j,l if k < l

ρ−1
j,k A

−1
i, jρ

2
j,k if k = l

ρ−1
j,k A

−1
i, jρ j,k A

−1
i, jρ j,l Ai, jρ

−1
j,k Ai, jρ j,k if k > l.

(c) The surface relation, for every p + 1 ≤ j ≤ p + n

g∏

l=1

ρ2
j,l =

⎛

⎝
j−1∏

i=1

Ai, j

⎞

⎠

⎛

⎝
p+n∏

s=1+ j

A j,s

⎞

⎠ .

Note that when j = p + n then in the right-hand side of the equality the second
factor disappears.

(d) For every 1 ≤ i < j , p + 1 ≤ j, k ≤ p + n, k �= j and 1 ≤ l ≤ g

ρk,l Ai, jρ
−1
k,l =

⎧
⎪⎨

⎪⎩

Ai, j if k < i or j < k
ρ−1
j,l A

−1
i, jρ j,l if k = i

ρ−1
j,l A

−1
k, jρ j,l A

−1
k, j Ai, j Ak, jρ

−1
j,l Ak, jρ j,l if i < k < j .
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8 K. Dekimpe et al.

Fig. 4 Generators Ai, j and ρr ,k for 1 ≤ i < j , p + 1 ≤ j, r ≤ p + n and 1 ≤ k ≤ g

Remark 7 In Fig. 4 we illustrate geometrically the generators Ai, j and ρr ,k of the
group Pn(Ng,p), for 1 ≤ i < j , p + 1 ≤ j, r ≤ p + n and 1 ≤ k ≤ g. We note that
the set

{
Ai, j | p + 1 ≤ i < j ≤ p + n

}
corresponds to the set of Artin generators

inside Pn(Ng,p).

2.4 Goldberg’s short exact sequence for surface pure braid groups

The short exact sequence of the following theorem is known for closed surfaces, see
[23] for Sg,p �= S

2, RP2 and [26] for S = RP2. We extend it here to the case of
punctured surfaces.

Theorem 8 Let Sg,p be a closed surface (orientable or not) of genus g ≥ 0with p ≥ 0
points removed. Let N denote the normal subgroup of Pn(Sg,p) generated by the image
of the Artin pure braids via the inclusion of the disc D into Sg,p, i : D ↪→ Sg,p. Then

1 −→ N −→ Pn(Sg,p) −→ �n
i=1(π1(Sg,p)) −→ 1 (3)

is a short exact sequence.

Proof For �0,0 = S
2 this is obvious since Pn(S2) is generated by the images of the

pure Artin braids. For Sg,0 �= S
2, RP2 this was proved by Goldberg [23] (and this

was in the orientable case a conjecture of Birman [7]). For the case N1,0 = RP2 see
Gonçalves and Guaschi [26].

For the remaining cases (of punctured surfaces) the proof is algebraic by considering
the presentations for the given groups given in the subsections above. Let p ≥ 1.
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The R∞-property for braid groups over orientable surfaces 9

Case 1. First we prove the result for the punctured sphere. We consider in this case
p ≥ 2 since the pure braid group of the 1-punctured sphere Pn(�0,1) is
exactly the pure braid group of the disc Pn(D) and then the result is trivial.
Let p ≥ 2. We shall use the presentation of Pn(�0,p) given in Subsection
2.1. We note that, in this presentation of Pn(�0,p), the generators coming
from the Artin generators of Pn(D), via the inclusion i : D ↪→ �0,p, are the
elements Ai, j for p ≤ i < j ≤ p + n − 1. Now, we will describe a presen-
tation of the quotient of Pn(�0,p) by the normal closure subgroup generated
by the Artin pure braids Ai, j , with p ≤ i < j ≤ p + n − 1, that we called
N .
Let us add the relations Ai, j = 1 for p ≤ i < j ≤ p+ n− 1 to the presen-

tation of Pn(�0,p) given in Subsection 2.1. This implies that for the quotient
group Pn(�0,p)/N we can take

{
Ai, j | 1≤ i ≤ p − 1, p≤ j ≤ p+n − 1

}
as

the set of generators. The relations (P2) become trivial in the quotient and
the relations (P1), (P3) and (P4) lead to the following relations respectively

(QR1) A−1
i, j Ar ,s Ai, j = Ar ,s if (r < i < j < s).

(QR2) A−1
i, j Ai,s Ai, j = Ai,s if (i < j < s).

(QR3) A−1
i, j Ar ,s Ai, j = Ar ,s if (i < r < j < s).

We can actually collect the relations (QR1), (QR2) and (QR3) together to
obtain the relations

(QR) [Ai, j , Ar ,s] = 1 if (1 ≤ r , i ≤ p − 1) and (p ≤ j < s ≤ p + n − 1).

This shows that for every 	 ∈ {p, . . . , p + n − 1} the group T	 generated by
the set

{
Ak,	 | 1 ≤ k ≤ p − 1

}
is a free group of rank p − 1 and

Pn(�0,p)/N ∼= T1 ⊕ T2 ⊕ · · · ⊕ Tn ∼= (
π1(�0,p)

)n
.

This concludes the proof for the punctured sphere.
Case 2. Now we prove this result for the case of the p-punctured connected sum of

g tori �g,p. We shall use the presentation of the pure braid group Pn(�g,p)

given in Subsection 2.2. We note that the generators coming from the Artin
generators of Pn(D), via the inclusion i : D ↪→ �g,p, are the elements Ai, j

for 2g+ p ≤ i < j ≤ 2g+ p+n−1. Nowwe add the relations Ai, j = 1 for
2g+ p ≤ i < j ≤ 2g+ p+n−1 to the presentation given in Subsection 2.2 to
deduce a presentation of the quotient group Pn(�g,p)/N .Weclaim that the set{
Ai, j | 1 ≤ i ≤ 2g + p − 1, 2g + p ≤ j ≤ 2g + p + n − 1

}
constitutes a

set of generators for the group Pn(�g,p)/N which are subject to the relations
[Ai, j , Ar ,s] = 1 for 1 ≤ i, r ≤ 2g+p−1 and 2g+p ≤ j, s ≤ 2g+p+n−1
with j �= s. The claim is an immediate consequence of the following:

(QR1) [Ai, j , Ar ,s] = 1 if (r + 1 < i < j < s) or (i = r + 1 < j < s for any
1 ≤ r ≤ 2g + p − 2).
This follows directly from (PR1) when r + 1 < i < j < s and from

(PR1) in case i = r + 1 < j < s for even r < 2g or r ≥ 2g and from
(ER1) when i = r + 1 < j < s for odd r < 2g.

123



10 K. Dekimpe et al.

(QR2) [Ai, j , Ai,s] = 1 if i < j < s. In fact, since A j,s = 1 for 2g + p ≤ j <

s ≤ 2g + p + n − 1 then from (PR3):

A−1
i, j Ai,s Ai, j = Ai,s A j,s Ai,s A

−1
j,s A

−1
i,s

we obtain the relation (QR2).
(QR3) [Ai, j , Ar ,s] = 1 if (i + 1 < r < j < s) or (i + 1 = r < j < s for any

2 ≤ r ≤ 2g + p − 2).
Using once more time the fact that A j,s = 1 for 2g + p ≤ j < s ≤

2g + p + n − 1 and from (PR4):

A−1
i, j Ar ,s Ai, j = Ai,s A j,s A

−1
i,s A

−1
j,s Ar ,s A j,s Ai,s A

−1
j,s A

−1
i,s

we get the relation (QR3) when (i +1 < r < j < s) or (i +1 = r < j < s
for odd r < 2g or r > 2g). When r ≤ 2g is even the verification is similar
using (ER2).

Note that all of the relations (PR2) became trivial in the quotient group
Pn(�g,p)/N .
Hence the quotient group Pn(�g,p)/N is isomorphic to�n

i=1(π1(�g,p)), the
direct product of free groups of rank 2g + p − 1.

Case 3. Finally we consider the case of the punctured connected sum of projective
planes. For this case we use the presentation given in Subsection 2.3. The
generators coming from the Artin generators of Pn(D), via the inclusion
i : D ↪→ Ng,p, are the elements Ai, j for p + 1 ≤ i < j ≤ p + n. We add
the relations Ai, j = 1 for p + 1 ≤ i < j ≤ p + n to the presentation given
in Subsection 2.3 to deduce the following presentation of the quotient group
Pn(Ng,p)/N .
The set of generators is given by Ai, j for 1 ≤ i ≤ p and p+1 ≤ j ≤ p+n

and ρr ,k for p + 1 ≤ r ≤ p + n and 1 ≤ k ≤ g subject to the relations

(QR1) [Ai, j , Ar ,s] = 1 for (i < r < s < j) or (i = r < s < j) or (r < i < s <

j).
This follows from item (a).

(QR2) [ρr ,k, ρ j,l ] = 1 for p + 1 ≤ r < j ≤ p + n and 1 ≤ k, l ≤ g.
This follows from item (b).

(QR3) [ρk,l , Ai, j ] = 1 for j �= k.
This relation follows from (d).

(QSR) From item (c) we have that for every p + 1 ≤ j ≤ p + n

g∏

l=1

ρ2
j,l =

p∏

i=1

Ai, j .
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The R∞-property for braid groups over orientable surfaces 11

Recall that a presentation for the fundamental group of the punctured con-
nected sum of projective planes, π1(Ng,p), is given by

〈

Ai , ρl for 1 ≤ i ≤ p and 1 ≤ l ≤ g |
g∏

l=1

ρ2
l =

p∏

i=1

Ai

〉

.

Therefore, the quotient group Pn(Ng,p)/N is isomorphic to the direct product
of n copies of π1(Ng,p) (one for each j ∈ {p + 1, . . . , p + n}).


�

3 Automorphisms of Pn(S) for S a surface of finite type

Let �g,p be an arbitrary finite surface of genus g with p ≥ 0 points removed. Let
M∗

n (�g,p) denote the extendedmapping class group, defined to be the group of isotopy
classes of (possibly orientation-reversing) homeomorphisms of (�g,p, z), where z =
{z1, . . . , zn} is a set of n distinct points in �g,p and (z1, . . . , zn) is a base point in the
configuration space Fn(�g,p). Let h : �g,p −→ �g,p be a homeomorphism which
leaves z invariant, i.e. h(z) = z, so the isotopy class of h, denoted by [h] is an element
of M∗

n (�g,p). The homeomorphism h defines a permutation σh ∈ Sn given by the
following equation:

h(zi ) = zσh(i).

We will consider the morphisms 
 : M∗
n (�g,p) −→ Aut

(
Bn(�g,p)

)
, 
0 : M∗

n (�g,p)

−→ Aut
(
Pn(�g,p)

)
defined as follows. For the case of
, given h ∈ [h] ∈ M∗

n (�g,p)

and {α1, · · · , αn} a set of paths between elements of z which is a representative of
an element of Bn(�g,p) define hn#[{α1, · · · , αn}] as the class determined by the
set of paths {h ◦ α1, · · · , h ◦ αn}. It is straightforward to see that this map is well
defined, it is a homomorphism, and 
 is also a homomorphism. For the case of

0 we have a similar definition, where we only stress the point that needs to be
adapted in the description above. Given h and a representative (α1, · · · , αn) of an
element of Pn(�g,p, (z1, · · · , zn)) define hn#[(α1, · · · , αn)] as the class determined
by the ordered sequence of loops (h ◦ α

σ−1
h (1), · · · , h ◦ α

σ−1
h (n)

) having base point

(z1, · · · , zn). The rest is similar.
Let�g,p be an orientable surface of genus g with p ≥ 0 points removed. The group

Aut
(
Pn(�g,p)

)
has been studied by many authors and it was proved that there exists

an isomorphism

M∗
n (�g,p) � Aut

(
Pn(�g,p)

)
(4)

for (not necessarily closed) orientable surfaces with Euler characteristic χ(�g,p) <

−1 by [1, Theorem 1.3]. The isomorphism (4) is the map 
0 as described above, for
more details see [1].

So the following cases, for orientable surfaces, are not covered by the results above:
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12 K. Dekimpe et al.

I) for g = 1 and p = 0, 1 (i.e. the surfaces of F3);
II) g = 0, p = 0, 1, 2, 3. (i.e. the surfaces of F1 and the surface �0,3).

Now we prove that the short exact sequence of Theorem 8 is characteristic with
respect to automorphisms. This will be used to study the R∞-property of the groups
Pn(�g,p) and Bn(�g,p) in the next section.

Lemma 9 Let�g,p be a surface of the familyF2, being different from the sphere minus
three points. Let N denote the normal subgroup generated by the image of the Artin
pure braids via the inclusion of the disc D into �g,p, i : D ↪→ �g,p, and n ≥ 2. If
ϕ : Pn(�g,p) −→ Pn(�g,p) is an automorphism then ϕ(N ) ⊂ N. Therefore the short
exact sequence given in equation (3) is characteristic.

Proof Let ϕ be an automorphism of Pn(�g,p). To show that ϕ(N ) ⊂ N it is enough
to prove that ϕ(i#(Pn(D))) ⊂ N , since N is the normal subgroup generated by the
images of the Artin pure braids via the inclusion i : D ↪→ �g,p of the disc D into
�g,p. From the hypothesis of this lemma the Euler characteristic χ(�g,p) < −1, and
so there is a homeomorphism h : �g,p −→ �g,p such that ϕ is induced by h, i.e.
ϕ = 
0([h]) ∈ Aut

(
Pn(�g,p)

)
(by (4) and the discussion above).

Let α ∈ Pn(D). We shall prove that ϕ(i#(α)) ∈ N . The inclusion i : D ↪→
�g,p induces an inclusion î : Fn(D) ↪→ Fn(�g,p). Geometrically, since Pn(D) =
π1(Fn(D), (z1, . . . , zn)), we have that α has a representative α̂ = (α1, α2, . . . , αn)

where α j : [0, 1] −→ D is a loop in D with base point z j ∈ D. By definition,

0([h])(i#(α)) is the homotopy class of the loop (h ◦ i ◦ α

σ−1
h (1), · · · , h ◦ i ◦ α

σ−1
h (n)

)

based at (z1, · · · , zn) in �g,p.
Now let ψ̂ : Fn(�g,p) −→ �n

i=1(�
n
g,p) be the inclusion. Since h ◦ i ◦ α

σ−1
h ( j) is a

loop based in z j inside h(D) ⊂ �g,p, for every 1 ≤ j ≤ n, and since h|D : D −→
h(D) is a homeomorphism, we get that ψ̂((h ◦ i ◦ α

σ−1
h (1), · · · , h ◦ i ◦ α

σ−1
h (n)

)) is

homotopic to the n-tuple of constant maps (cz1 , . . . , czn ).
Algebraically, the induced map ψ̂# on the level of the fundamental groups cor-

responds to the surjective map Pn(�g,p) −→ �n
i=1(π1(�g,p)) in the short exact

sequence given in equation (3). Therefore, ψ̂#(
0([h])(i#α)) = 1 ∈ �n
i=1(π1(�g,p)).

Hence, 
0([h])(i#α) = ϕ(i#α) ∈ N . 
�

4 The R∞-property for Pn(6g,p) and Bn(6g,p)

In this section we prove Theorem 2 and Theorem 3.

4.1 The Fadell-Neuwirth short exact sequence

Let S be a connected surface and let n ∈ N. Ifm ≥ 1, themap p : Fn+m(S) −→ Fn(S),
of the configuration space Fn+m(S) onto Fn(S), defined by p(x1, . . . , xn, . . . , xn+m)

= (x1, . . . , xn) induces a homomorphism p∗ : Pn+m(S) −→ Pn(S). The homo-
morphism p∗ geometrically “forgets” the last m strings. If S is without boundary,
Fadell and Neuwirth showed that p is a locally-trivial fibration [14, Theorem 1], with
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The R∞-property for braid groups over orientable surfaces 13

fibre Fm(S\{x1, . . . , xn}) over the point (x1, . . . , xn), which we consider to be a sub-
space of the total space via the map i : Fm(S\{x1, . . . , xn}) −→ Fn+m(S) defined
by i((y1, . . . , ym)) = (x1, . . . , xn, y1, . . . , ym). Applying the associated long exact
sequence in homotopy to this fibration, we obtain the Fadell-Neuwirth short exact
sequence of pure braid groups:

1 −→ Pm(S\{x1, . . . , xn}) i∗−→ Pn+m(S)
p∗−→ Pn(S) −→ 1 (5)

where n ≥ 3 if S is the sphere [13, 15], n ≥ 2 if S is the real projective plane [39],
and n ≥ 1 otherwise [14], and i∗ is the homomorphism induced by the map i . This
sequence has been widely studied. For instance, one question studied by many authors
during several years was the splitting problem for surface pure braid groups, and it was
completely solved, see [25] for more details, in particular its Theorem 2. Additional
information on this sequence may be seen in [28, Section 3.1].

We are interested in (quotients by) the center of some surface braid groups. Seem-
ingly the content of Proposition 10 related to the braid groups over the annulus is well
known for the experts in braid theory, however to the best of our knowledge there
is no proof in the literature of it. Hence, for the sake of completeness, we provide
a proof here. The following information will be useful: From [35, Proposition 4.1],
for all n ≥ 1, the center of the group Bn(�0,2) is isomorphic to Z generated by
αn ∈ Pn(�0,2). See [35, Figure 4.1] for a geometric description of this element.

Proposition 10 Let n ≥ 1. Then Z(Bn(�0,2)) = Z(Pn(�0,2)) and Pn+1(�0,2)/

Z(Pn+1(�0,2)) ∼= Pn(�0,3).

Proof Let n = 1, then P1(�0,2) = B1(�0,2) ∼= Z and so Z(P1(�0,2)) =
Z(B1(�0,2)). To study the situation with more than one string, we consider the short
exact sequence induced from the Fadell-Neuwirth fibration

1 −→ Pn(�0,3) −→ Pn+1(�0,2)
p∗−→ P1(�0,2) −→ 1

where p∗ geometrically forgets the last n strings.We note that P1(�0,2) = π1(�0,2) ∼=
Z is generated by α1 ∈ P1(�0,2). Consider the section of p∗ that sends α1 ∈ P1(�0,2)

onto αn+1 ∈ Pn+1(�0,2). Since αn+1 ∈ Z(Bn+1(�0,2)), αn+1 also commutes with all
elements from Pn+1(�0,2) and so we find that

Pn+1(�0,2) ∼= Pn(�0,3) ⊕ Z,

where Z is the subgroup of Pn+1(�0,2) generated by αn+1. As Z(Pn(�0,3)) = 1 [35,
Proposition 1.6], it now readily follows that Z(Pn+1(�0,2)) = Z(Bn+1(�0,2)) and
hence Pn+1(�0,2)/Z(Pn+1(�0,2)) ∼= Pn(�0,3). 
�

The information of some surface braid groups in the following remarks will be
useful in this section.

Remark 11 Suppose n ≥ 1.
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14 K. Dekimpe et al.

1. Braid groups with few strings over the sphere are finite:
B1(S

2), P1(S2) and P2(S2) are trivial groups, B2(S
2) ∼= Z2, B3(S

2) is isomorphic
to Z3 � Z4 with non-trivial action and P3(S2) ∼= Z2, see [15] and also [28,
Section 4].

2. If S = S
2 is the sphere, then Pn+3(S

2) ∼= Pn(�0,3) ⊕ Z2 (see [24, Theorem 4]).
We remark here that Z(Pn+3(S

2)) = Z2 because Z(Pn(�0,3)) = 1 [35, Proposi-
tion 1.6]. Hence Pn+3(S

2)/Z(Pn+3(S
2)) ∼= Pn(�0,3).

3. Suppose S = D is the disc. It is an immediate consequence of the classical Artin
presentation of P2(D) and B2(D) that they are isomorphic toZ, see [3]. Let n ≥ 3.
There is a decomposition Pn(D) ∼= Pn−2(�0,3)⊕Z that follows from the splitting
of the Fadell-Neuwirth short exact sequence (see [24, Theorem 4]). Using [35,
Proposition 1.6] again, we find that Pn−2(�0,3) ∼= Pn(D)/Z(Pn(D)).

4.2 The proof of Theorem 2 and Theorem 3

Recall that we split the orientable surfaces of finite type into three families, as follows:

F1: The punctured sphere S
2 with p points removed for p = 0, 1, 2.

F2: a) Orientable closed surfaces different from S
2, T 2.

b) Orientable punctured surfaces�g,p where g is the genus and p is the number
of punctures in the closed surface �g , for:
i) g = 0 and p ≥ 3,
ii) g = 1 and p ≥ 2,
iii) g ≥ 2 and p ≥ 1.

F3: The torus and the once punctured torus.

We will show the results for the familiesF1 andF2, using two different arguments.
The case F3 is work in progress.

We shall use the following technique in order to prove that the pure braid groups
of surfaces �g,p (closed or punctured) from F2 have the R∞-property whenever
π1(�g,p) has the R∞-property. If α is an automorphism of a group G and N is a
normal subgroup of N with α(N ) = N (e.g. when N is a characteristic subgroup of
G) then α induces an automorphism ᾱ of G/N . It is easy to see that R(α) ≥ R(ᾱ), so
if R(ᾱ) = ∞, then also R(α) = ∞. For all �g,p of family F2, it holds that π1(�g,p)

has the R∞-property.
This does not longer hold for the surfaces of family F1 and we will solve this case

using a different argument.
We will state the result for the family F2. To prove the result we will make use of

Lemma 9 for all surface �g,p in F2, except for the case in which g = 0 and p = 3,
since the validity of the equation (4) is not covered by An [1], because χ(�g,p) = −1.
So, for this special case of the family F2 we shall use another approach.

Proposition 12 For any surface �g,p ∈ F2 we have that Pn(�g,p) has the R∞-
property for n ≥ 1.

Proof For n = 1 the group P1(�g,p) = π1(�g,p) is the fundamental group of
the surface. For every surface in the family F2 its fundamental group has the R∞-
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The R∞-property for braid groups over orientable surfaces 15

property. Indeed, for all �g,p ∈ F2, it holds that χ(�g,p) < 0 and so π1(�g,p) is
non-elementary hyperbolic, hence the result follows from [30], see also [16].

Let �0,3 be the pantalon. Recall that Pn(�0,3) ∼= Pn+2(D)/Z(Pn+2(D)) (see
Remarks 11 in Subsection 4.1). In [10] the group Pn+2(D)/Z(Pn+2(D))was denoted
by Pn+2. Moreover, in order to prove the main result of [10] it was shown that this
group has the R∞-property (see the last two lines of page 17 of [10]).

Let n ≥ 2 and let �g,p �= �0,3 be a surface from F2. From Lemma 9 the short
exact sequence given in equation (3) is characteristic, then we conclude the result in
these cases since �n

i=1(π1(S)) has the R∞-property by [36, Corollary 4.5]. 
�
Now we move to the surfaces of the family F1. We notice that, for n ≥ 2, the

result that Pn(�0,2) has the R∞-property was already proved in [8], using a different
technique from the ones used here.

Proposition 13 Let �g,p be a surface of the family F1. Then Pn(�g,p) has the R∞-
property if and only if one of the following cases holds:

1. �g,p = S
2 and n ≥ 4,

2. �g,p = S
2\{x1} and n ≥ 3,

3. �g,p = S
2\{x1, x2} and n ≥ 2.

Proof The proof is case by case, but first we deal with the exceptional cases. It is well
known (see Remarks 11 in Subsection 4.1) that P1(S2) = P2(S2) = {1}, P3(S2) = Z2,
P1(S2\{x1}) = {1}, P2(S2\{x1}) = Z, P1(S2\{x1, x2}) = Z and all these groups do
not have the R∞-property.

For�g,p = S
2 andn ≥ 4wehave that Pn(S2)/Z(Pn(S2)) ∼= Pn−3(S

2\{x1, x2, x3})
(see Remarks 11 in Subsection 4.1). From Proposition 12, Pn−3(S

2\{x1, x2, x3}) has
the R∞-property for n−3 ≥ 1, then the result follows since Z(Pn(S2)) is a character-
istic subgroup of Pn(S2). Let �g,p = S

2\{x1}, then Pn(�g,p) is the pure Artin braid
group and the result follows from the main result of [10].

For�g,p = S
2\{x1, x2} andn ≥ 2weknow Pn(S2\{x1, x2})/Z(Pn(S2\{x1, x2})) ∼=

Pn−1(S
2\{x1, x2, x3}), by Proposition 10. Again by using the fact that the centre is a

characteristic subgroup and using Proposition 12 for �0,3 the result follows. 
�
From the discussion above we may prove the main result about the R∞-property

for surface pure braid group Pn(�g,p).

Proof of Theorem 2 The result follows immediately from Propositions 12 and 13. 
�
Nowwe consider the groups Bn(�g,p) for n ≥ 2, and we will make use of the short

exact sequence

1 −→ Pn(�g,p) −→ Bn(�g,p) −→ Sn −→ 1.

We recall that by [1, Theorem 1.5] this short exact sequence is characteristic unless
we are the case that �g,p = �0,2 and n = 2. In the cases where the short exact
sequence is characteristic we will use the following result given by [32, Lemma 6]:
Let 1 −→ A −→ B −→ C −→ 1 be a characteristic short exact sequence with
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16 K. Dekimpe et al.

respect to automorphisms of B such that C is finite and A has the R∞-property. Then
B has the R∞-property. To analyse the case B2(�0,2)wewill use a different approach.

Now we prove the main result for the groups Bn(�g,p). We notice that, for n ≥ 2,
the result that Bn(�g,p) has the R∞-property was already proved, using different
techniques from the ones here, in [18] for �g,p = S

2 and �g,p = D2, and in [8] for
�g,p = �0,2 and �g,p = �0,3.

Proof of Theorem 3 Recall that for any surface Sg,p there exists a short exact sequence

1 −→ Pn(Sg,p) −→ Bn(Sg,p) −→ Sn −→ 1.

By [1, Theorem 1.5] this short exact sequence is characteristic as long as�g,p �= �0,2
or n > 2. For the if part let Pn(�g,p) have the R∞-property. From [32, Lemma 6] the
result follows for Bn(�g,p). The only remaining case is when�g,p = �0,2 and n = 2.
But from [9, Proposition 2.1 (2)], B2(�0,2) is isomorphic to F2(x, y)�θ Z. The semi-
direct product is determined by the action given by the automorphism θ(1)(x) = y,
θ(1)(y) = y−1xy. Now it follows from [19, Theorem 4.4] that B2(�0,2) has the
R∞-property (independent of the action).

For the only if part, observe that the only cases where Bn(�g,p) (n > 1) does not
have the R∞-property are:

a) If �g,p = S
2 for 2 ≤ n ≤ 3 because the groups are finite;

b) If �g,p = S
2\{x1} for n = 2 because the group is isomorphic to Z.

In both cases the groups Pn(�g,p) also does not have the R∞-property, see Theorem 2.
So the result follows. 
�
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