

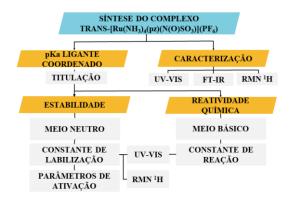
REATIVIDADE DE UM NOVO NITROSULFITO COMPLEXO DE Ru(II): LIBERAÇÃO FOTOQUÍMICA DOS RADICAIS NO E SO₃.

Yasmin Moraes Penhatcheque

Renato Cardoso Leal Netto

Prof. Dr. Antonio Carlos Roveda Júnior

Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP)


yasmin.moraes@usp.br

Objetivos

Este projeto tem como objetivo investigar a reatividade do íon N(O)SO₃- coordenado a complexos de rutênio do [Ru(NH₃)₄(L)(N(O)SO₃)]⁺, com ênfase estabilidade e reatividade em meio aquoso e nas suas propriedades químicas e fotoquímicas. Apesar de pouco estudados, complexos com o ligante N(O)SO₃ liberam, por fotólise, dois importantes radicais, óxido nítrico (NOº) e o ânion sulfito radical (SO₃-), os quais apresentam potencial para aplicação biológica. especialmente em terapia fotodinâmica. Portanto, esse trabalho busca ampliar o entendimento das propriedades químicas do N(O)SO₃- coordenado em metais de transição. Para isso, foi sintetizado um novo complexo do tipo trans-[Ru(NH₃)₄(L)(N(O)SO₃)]⁺, com a pirazina (pz) como ligante L trans-posicinado ao ligante N(O)SO₃-. Outros complexos com ligantes L = isonicotinamida (isn) e 4metilpiridina (4-picolina, 4-pic) previamente estudados. Os estudos com permite diferentes ligantes avancar compreensão da influência que o ligante L trans- $N(O)SO_3$ posicionado ao apresenta reatividade e na estabilidade dos complexos, contribuindo para a modelagem de novos complexos nitrosilsulfito com potencial para liberação controlada dos radicais NO e SO₃.

Métodos e Procedimentos

O novo nitrosulfito complexo foi sintetizado pela reação entre o *trans*-[Ru(NH₃)₄(pz)(NO)](BF₄) com sulfito de sódio (Na₂SO₃) em meio aquoso.¹ O complexo foi caracterizado por técnicas como UV-vis, FT-IR e RMN de ¹H. Foram realizados ensaios de estabilidade, a reação desse complexo com íons OH¹, e a determinação do p K_a do ligante N(O)SO₃ coordenado.

Resultados

Os espectros de FT-IR revelaram que a banda de estiramento do ligante NO para o complexo precursor *trans*-[Ru(NH₃)₄(pz)(NO)]³⁺ é de 1942 cm⁻¹ e desloca-se para 1378 cm⁻¹ após a reação

com o íon sulfito, indicando um enfraquecimento da ligação N-O.1 O RMN de 1H do complexo RuNOSO₃pz em solução de 50% D₂O e 50% tampão fosfato pH 7,4, apresentou dois dubletos com deslocamentos químicos (δ) de 9,02 e 8,73 ppm, atribuídos aos hidrogênios nas posições orto e meta, respectivamente, do ligante pirazina estabilidade coordenado. Α térmica complexo foi avaliada por Uv-vis, com o decaimento da banda em 367 nm. em diferentes temperaturas. O produto dessa reação foi identificado por RMN de ¹H com o surgimento de um sinal com δ de 8,66 ppm, correspondente aos hidrogênios do ligante pirazina livre. A constante de labilização da pirazina a T = 25 °C foi de k ~ $3,40 \times 10^{-4} \text{ s}^{-1}$ ($t_{1/2} \sim 27 \text{ minutos}$) por Uv-vis e k = $4,29 \times 10^{-4}$ s⁻¹ ($t_{1/2} \sim 33$ minutos) pela técnica de RMN de ¹H. A reação do complexo com íons hidróxido gera os respectivos nitrocomplexos, trans- $[Ru(NH_3)_4(pz)(NO_2)]^+$, demonstrando o caráter eletrofílico do átomo de nitrogênio do ligante N(O)SO3. A constante de velocidade (em condições de pseudo-primera ordem) a T = 25 °C foi de k = $5,22 \pm 0,31$ M⁻¹s⁻¹. O pKa do ligante N(O)SO3 foi determinado como 4,6, abaixo do valor observado para os demais complexos da família trans-[Ru(NH₃)₄(L)(N(O)SO₃)](PF₆),¹ demonstrando a influência da pirazina na acidez do ligante NOSO₃. A Tabela 1 reúne os principais resultados observados para complexos do tipo trans-[Ru(NH₃)₄(L)(N(O)SO₃)](PF₆).

Tabela 1. Resultados dos complexos tipo *trans*-[Ru(NH₃)₄(L)(NOSO₃)]PF₆ a 25 °C: pKa do ligante N(O)SO₃ e do ligante (L), constante de labilização do ligante (k_{labilização}) [s⁻¹], tempo de meia-vida (t_{1/2}) [h], entalpia de ativação (ΔH[‡]) [kcal·mol⁻¹], entropia de ativação (ΔS[‡]) [cal·K⁻¹·mol⁻¹], energia livre de Gibbs de ativação (ΔG[‡]) [kcal·mol⁻¹], energia de ativação (Ea) [kcal·mol⁻¹] e constante de reação com OH⁻(KOH-) [M⁻¹·s⁻¹].^{1,2}

Parâmetros	trans-[Ru(NH ₃) ₄ (L)(N(O)SO ₃)] ⁺			
	(4-pic)	(isn)	(pz)	
pKaligante	6,11	3,61	0,65	
pKa(N(O)SO3)	5,30±0,10	5,08±0,06	4,60±0,03	
Klabilização	1.7×10^{-5}	3,1 × 10 ⁻⁵	$4,3 \times 10^{-4}$	
t _{1/2}	113	6	0,6	
Ea	$36,9 \pm 1,9$	27,1 ± 1,8	29,2 ± 2,7	

(ΔH [‡])	$36,4 \pm 1,9$	26,5 ± 1,8	21,3 ± 1,9
(ΔS [‡])	$36,3 \pm 6,0$	$9,1 \pm 0,9$	-2.8 ± 6.4
(ΔG [‡])	$25,5 \pm 3,7$	23,7 ± 1,5	22,1 ± 0,1
K _{OH} -	$8,4 \pm 0,3$	$6,2 \pm 0,2$	$5,2 \pm 0,3$

Conclusões

Neste estudo foram avaliados os efeitos provocados pela presença do ligante pirazina em posição trans ao ligante N(O)SO₃-. Os resultados indicaram que para a família trans- $[Ru(NH_3)_4(L)(N(O)SO_3)](PF_6)$, a presença de L = pirazina reduziu a estabilidade do complexo em solução aquosa em comparação aos demais complexos com outros ligantes (klabilização: pz > isn > 4-pic). Na reação com hidróxido, as constantes seguiram uma tendência, koh-: pz < isn < 4-pic. Diante desses resultados, concluímos que a estabilidade e reatividade do ligante NOSO₃ coordenado a complexos do tipo trans-[Ru(NH₃)₄(L)(N(O)SO₃)](PF₆) podem ser moduladas em função do ligante L transposicionado ao ligante NOSO3. Os trabalhos futuros incluem estudos da influência do ligante L na reatividade fotoquímica dessa família de complexos, bem como cálculos teóricos baseados na Teoria do Funcional da Densidade (DFT), que auxiliarão para a compreensão detalhada dos resultados experimentais.

Y.M. Penhatcheque e A.C. Roveda conceberam, conduziram e redigiram o estudo, com a colaboração de R.C. Leal Netto nas sínteses e caracterizações. Todos os autores aprovaram a versão final.

Agradecimentos

FAPESP - processo 24/23781-2, Capes e CNPq

Referências

- [1] Roveda, A. C. et al. Light-Activated generation of nitric oxide (NO) and sulfite anion radicals (SO3-) from a ruthenium(ii) nitrosylsulphito complex. Dalt. Trans. 48, 10812 10823 (2019).
- [2] Gonçalves, F. S. Síntese, caracterização e reatividade do nitrosilsulfito complexo trans-[Ru(NH3)4(4-pic)(N(O)SO3)] PF6. (2017).