
Physics Letters A 386 (2021) 126989

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Gouy phase of type-I SPDC-generated biphotons

F.C.V. de Brito a,b, I.G. da Paz b,∗, Brigitte Hiller c, Jonas B. Araujo d, Marcos Sampaio a

a Departamento de Física, Universidade Federal do ABC, São Paulo, SP, Brazil
b Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CEP 64049-550, Teresina, PI, Brazil
c CFisUC - Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
d Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, C.P. 66.318, São Paulo - SP, 05315-970, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 August 2020
Received in revised form 5 October 2020
Accepted 26 October 2020
Available online 9 November 2020
Communicated by S. Khonina

Keywords:
Biphoton wavefunction
Quantum correlations
Gouy phase

We consider a double Gaussian approximation to describe the wavefunction of twin photons (also called 
a biphoton) created in a nonlinear crystal via a type-I spontaneous parametric downconversion (SPDC) 
process. We find that the wavefunction develops a Gouy phase while it propagates, being dependent of 
the two-photon correlation through the Rayleigh length. We evaluate the covariance matrix and show 
that the logarithmic negativity, useful in quantifying entanglement in Gaussian states, although Rayleigh-
dependent, does not depend on the propagation distance. In addition, we show that the two-photon 
entanglement can be connected to the biphoton Gouy phase as these quantities are Rayleigh-length-
related. Then, we focus the double Gaussian biphoton wavefunction using a thin lens and calculate a 
Gouy phase that is in reasonable agreement with the experimental data of D. Kawase et al. published in 
Ref. [1].

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Since its first detection in 1890 by L.G. Gouy [2,3], the Gouy 
phase and its properties have been extensively studied [4–11]. This 
phase appears whenever a wave is constrained transversally to 
its propagation, which includes diffraction through slits and focus 
by lenses. The acquired phase depends on the type of transversal 
confinement and on the geometry of the waves. For example: line-
focusing a cylindrical wave propagating from −∞ to +∞ yields a 
Gouy phase of π/2, while point-focusing a spherical wave in the 
same interval yields a Gouy phase of π [6]; Gaussian matter wave 
packets diffracting through small apertures pick up a Gouy phase 
of π/4 [12].

The Gouy phase has been detected in various scenarios, includ-
ing acoustic and water waves [14–16], surface plasmon-polaritons 
with non Gaussian spatial properties [13], focused cylindrical 
phonon-polariton wave packets in LiTaO3 crystals, and more re-
cently for electron waves [14–16]. Its presence in many systems 
justifies potential applications. To name a few, the Gouy phase 
is fundamental in evaluating the resonant frequencies in laser 
cavities [17], in phase-matching in strong-field and high-order har-
monic generation [18], and in describing the spatial profile of laser 
pulses with high repetition rate [19]. In addition, an extra Gouy 
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phase appears in optical and matter waves depending on the or-
bital angular momentum’s magnitude [15,20]. In a recent work, 
it was found that the Gouy phase may cause nonlocal effects 
that modify the symmetries of self-organization in atomic systems 
[21]. This phase may also be useful in communication and optical 
tweezers using structured light [22].

The Gouy phase is also relevant in coherent matter waves, as 
shown for the first time in [12,23–25]. Following that, experiments 
were performed in a number of systems, including Bose-Einstein 
condensates [14], electron vortex beams [15] and astigmatic elec-
tron waves [16]. Gouy phases in matter waves also display poten-
tial applications, namely: they can be used in mode converters in 
quantum information systems [23], in the generation of singular 
electron optics [16] and in the study of non-classical (exotic or 
looped) paths in interference experiments [26]. In this work, we 
are interested in the Gouy phase of entangled photon pairs gener-
ated in a type-I SPDC process.

An SPDC process generates a pair of entangled photons respect-
ing energy-momentum conservation. These processes happen with 
extremely low probability – around 10−7 [27]. Because the first ex-
periments involved non degenerate emerging photon beams, one 
with frequency in the IR and the other in the visible range, they 
were named idler and signal, respectively [28]. The emerging pho-
tons in these processes are highly correlated in energy, momen-
tum, polarization and angular momentum [29]. They emerge after 
a pump beam, with frequency ωp , goes through a nonlinear crys-
tal, generating (in those very rare cases) two lower energy photons, 
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the idler and signal, with frequencies ωi and ωs . The type of SPDC 
depends on the polarization of the emerging photons with respect 
to the incoming pump beam. For example, in a type-I SPDC, the 
signal and idler photons display parallel polarizations, both orthog-
onal to the pump beam’s, and form a cone aligned to the pump 
beam’s direction. In a type-II SPDC the signal and idler photons 
have orthogonal polarizations and emerge in 2 different cones. The 
spatial distribution of the emerging beams is a consequence of 
energy-momentum conservation: ωp = ωi + ωs and �kp = �ki + �ks . 
This also causes the high degree of energy-momentum correlations 
between the emerging beams. For a more details, please consult 
Ref. [30] and the references therein. In fact, it is possible to con-
trol the correlations between different degrees of freedom in the 
generated pairs [31]. In this work, we will consider twin photons 
with wavelength 702.2 nm, typically used in interferometry exper-
iments, such as in Refs. [32,33].

Regarding the entanglement, the Schmidt number plays an 
important role. The propagation dynamics of spatially entangled 
biphotons was explored via the Schmidt number in Ref. [34]. Like 
the logarithmic negativity, the Schmidt number is propagation-
distance-independent and the entanglement migrates between am-
plitude and transverse phase. In this work we will explore the two-
photon entanglement by means of the longitudinal Gouy phase of 
the double Gaussian approximation for the biphoton wavefunction. 
We calculate the Gouy phase for this approximated biphoton wave-
function and show that it is related with the photon correlation 
generated in the nonlinear crystal in a type-I SPDC process. Even 
though the photon entanglement is time-independent, whereas the 
Gouy phase is time dependent, these quantities become related 
by the Rayleigh length. More interestingly we show that the ap-
proximated biphoton Gouy phase fits well the experimental data 
published in Ref. [1].

The article is organized as follows: in section 2 we propagate 
the double Gaussian biphoton wavefunction and obtain the cor-
responding Gouy phase. In section 3 we evaluate the covariance 
matrix and the logarithmic negativity and show that the two-
photon entanglement is longitudinal-distance-independent. We ob-
serve that the entanglement measured by the logarithmic nega-
tivity and the Gouy phase are related by the Rayleigh length. In 
section 4 we focus the double Gaussian biphoton wavefunction and 
use the corresponding Gouy phase to analyze the existing experi-
mental data. In section 5 we draw our concluding remarks.

2. Propagation of biphoton wavefunction and Gouy phase

In this section we propagate a double Gaussian biphoton wave-
function using free-particle propagators. Then, we obtain a Gaus-
sian solution expressed in terms of real terms and phases. One 
of the phases is the Gouy phase, which is transverse-position-
independent and is a function of the longitudinal distance of prop-
agation, the beam pump parameters, and the twin photon correla-
tion. We consider as the initial biphoton wavefunction the follow-
ing entangled state [35–37]

�(x1, x2) = 1√
πσ�

e
−(x1−x2)2

4σ2 e
−(x1+x2)2

4�2 , (1)

which is the generalized EPR state for the momentum-entangled 
particles. Here, � and σ quantify the position and momentum un-
certainties of the packet, i.e., �x1 = �x2 = √

�2 + σ 2 and �px1 =
�px2 = (h̄/4)

√
(1/�2) + (1/σ 2). This approximated biphoton state 

is correlated only if � �= σ and � = σ corresponds to a non en-
tangled state which factors as a product of two Gaussians [37].

We will work with relative coordinates r = (x1 + x2)/2 and 
q = (x1 − x2)/2 since these are convenient for calculations. Thus, 
2

the initial wavefunction that represents the entangled state can be 
rewritten as

�(r,q) = 1√
πσ�

e
− q2

σ2 e
− r2

�2 . (2)

The state describing the biphoton free propagation can be written 
as

�(r,q, t) =
∫

r′,q′
Kr(r, t; r′,0)Kq(q, t;q′,0)ψ(r′,q′), (3)

where the propagation kernels of a longitudinal distance z = ct for 
the two photons are given by

Kr(r, r′, z) =
√

1

iλz
exp

[
− 2π(r − r′)2

iλz

]
,

Kq(q,q′, z) =
√

1

iλz
exp

[
− 2π(q − q′)2

iλz

]
.

(4)

The state after a general distance z can be evaluated as

�(r,q, z) = 1√
4π w+(z)w−(z)

exp

{
−
[

r2

w2+(z)
+ q2

w2−(z)

]}

× exp

{
− i

[
− k0

r+
r2 − k0

r−
q2 + ζ(z)

]}
, (5)

where,

w2±(z) = �2
[

1 +
(

z

z0±

)2]
, r±(z) = z

[
1 +

(
z0±

z

)2]
, (6)

z0+ = k0�
2, z0− = k0σ

2 and k0 = 2π/λ. (7)

Now, considering the analogy with the classical Gaussian laser 
beam we can identify the biphoton wavefunction terms as: w±(z)
is the beam width, r±(z) the radius of curvature of the wave fronts 
and z0± the corresponding Rayleigh lengths. The function ζ(z) is 
the biphoton Gouy phase that, after some algebraic manipulations, 
is written as

ζ(z) = ζ+(z)

2
+ ζ−(z)

2

= 1

2
arctan

[
z

(
z0+ + z0−

z0+z0− − z2

)]
, (8)

where ζ+(z) = arctan(z/z0+) and ζ−(z) = arctan(z/z0−). We can 
see that this phase is propagation-distance-dependent. It carries 
the properties of the laser pump beam and the nonlinear crystal 

through the parameter σ =
√

Lpλp
6π , where λp is the laser pump 

wavelength and Lp the crystal length. The two-photon correlation 
dependence can be measured through the parameter �.

In Fig. 1 we show the plot of the biphoton Gouy phase as a 
function of z. As in Ref. [39] we consider the following set of 
parameters: biphoton wavelength λ = 702 nm, laser pump wave-
length λp = 351.1 nm and the crystal length Lp = 7.0 mm. This 

enables us to obtain σ =
√

Lpλp
6π = 11.4 μm and z0− = k0σ

2 =
1.2 mm. For the curve in blue we consider � = 5σ and for the 
red curve we consider � = 10σ . As we can observe, the maximum 
variation of the Gouy phase is π/2, characterizing one-dimensional 
free propagation from z = −∞ to z = +∞ with the beam waist 
located at the origin z = 0 at the position of the crystal. Also, the 
smaller correlation produces a larger Gouy phase variation as we 
can see by comparing the curves in blue and red.
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Fig. 1. Biphoton Gouy phase as a function of z. The curve in blue corresponds to 
� = 5σ , and the curve in red corresponds to � = 10σ . (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

3. Entanglement and Gouy phase

Here we show how the two-photon entanglement is related 
with the parameters σ and � and therefore with the Rayleigh 
length z0± . In fact, the Rayleigh-length-dependence establishes a 
connection between the Gouy phase and two-photon entangle-
ment. A good measure of entanglement for Gaussian states is the 
logarithmic negativity which is calculated through the covariance 
matrix. In the symplectic form the covariance matrix can be writ-
ten as [35,38]

M =

⎡
⎢⎢⎣

g 0 c 0
0 g 0 c′
c 0 h 0
0 c′ 0 h

⎤
⎥⎥⎦ (9)

which is related to

G =
⎡
⎣ 〈x2

1〉
L2

〈x1 p1+p1x1〉
2h̄

〈x1 p1+p1x1〉
2h̄

L2〈p2
1〉

h̄2

⎤
⎦ ,

H =
⎡
⎣ 〈x2

2〉
L2

〈x2 p2+p2x2〉
2h̄

〈x2 p2+p2x2〉
2h̄

L2〈p2
2〉

h̄2

⎤
⎦ ,

C =
[ 〈x1x2〉

L2
〈x1 p2〉

h̄
〈x2 p1〉

h̄
L2〈p1 p2〉

h̄2

]
,

through the simple relations det G = g2, det H = h2 and det C =
cc′ . The constants h̄ and L, which appear in the above matrices, 
are inserted to make the matrix M dimensionless. For the next 
calculations L can be disregarded (see [35] for further discussion 
on these constants). We obtain the quantities of M in Eq. (9) as 
follows

〈x2
1〉 = 〈x2

2〉 = (σ 2 + �2)

[(
z

z0+

)(
z

z0−

)
+ 1

]
, (10)

〈x1x2〉 = 〈x2
2〉 = (σ 2 − �2)

[(
z

z0+

)(
z

z0−

)
− 1

]
, (11)

〈p2
1〉 = 〈p2

2〉 = 1

4

[
1

�2
+ 1

σ 2

]
, 〈p1 p2〉 = 1

4

[
1

�2
− 1

σ 2

]
, (12)

〈x1 p2〉 = 〈x2 p1〉 = π h̄

2

(
z

z0+
− z

z0−

)
, (13)

and

σxp = 〈x1 p1 + p1x1〉
2

= 〈x2 p2 + p2x2〉
2

= π h̄
(

z + z
)

= π h̄ [tan(ζ+) + tan(ζ−)], (14)

2 z0+ z0− 2

3

where ζ+ and ζ− are parts of the biphoton Gouy phase from 
Eq. (8). A relation between these two quantities was obtained 
previously in the context of a single particle [23]. Here, we are 
showing that the biphoton Gouy phase is part of the logarithmic 
negativity (entanglement) through the position momentum covari-
ance.

A strong necessary condition for an entanglement quantifier is 
that it has to be zero if the state is separable. The Peres-Horodecki 
criterion says that if a state is separable, the transpose partial ma-
trix of the state has a non-negative spectrum. In that context, the 
Gaussian state is separable if and only if the minimum value of 
the symplectic spectrum of MT2 is greater than 1/2 (the lowest 
value allowed by the uncertainty principle). Thus, a good measure 
of entanglement for all Gaussian states is the logarithmic negativ-
ity [35,38]

E N = max{0,− log(2νmin)}, (15)

where, νmin is the lowest symplectic eigenvalue of MT2 . The equa-
tion determining the symplectic eigenvalues is ν4 + (g2 + c2 −
2cc′)ν2 + det(M) = 0, with solutions ±iνα , α = 1, 2 where να

is the symplectic spectrum. Therefore, ν1 = (�/2σ) and ν2 =
(σ /2�). Due the uncertainty principle, νmin < 1/2, so that the log-
arithmic negativity is given by

E N =

⎧⎪⎪⎨
⎪⎪⎩

log

(√
z0−
z0+

)
, if z0+ ≤ z0−;

log

(√
z0+
z0−

)
, otherwise,

(16)

which is propagation-distance-independent. We observe in Eq. (16)
that the entanglement measured by the logarithmic negativity can 
be modified by changing the Rayleigh length z0+ since z0− is 
fixed by the laser pump properties. On the other hand, the double 
Gaussian biphoton wavefunction approximation shows no entan-
glement for z0+ = z0− . In the analysis of Ref. [34], which uses the 
Schmidt number, the entanglement is Rayleigh-length-dependent 
and the case z0+ = z0− implies no entanglement within the spa-
tial phase of entangled photon pairs. In [34] the authors compute 
the Schmidt number through their Eq. (6) for the double Gaus-
sian wave function, which, using our wave function Eq. (5), can be 
written as

KdG =
(

w+
w−

+ w−
w+

)2

+ k2
0 w2+w2−

(
1

r−
− 1

r+

)2

=
(√

z0−
z0+

+
√

z0+
z0−

)2

,

(17)

where w± and r± are given by Eq. (6). From Eqs. (16) and (17)
we obtain E N = log(

√
KdG) for z0+/z0− � 1 and z0+/z0− � 1. In 

Fig. 2 we compare the logarithmic negativity with the logarithm 
of the root square of the Schmidt number. In Fig. 2a we plot the 
logarithmic negativity and the logarithm of the root square of the 
Schmidt number as a function of z0+/z0− ≤ 1 and in Fig. 2b we 
plot these quantities for z0+/z0− ≥ 1. We observe an agreement of 
these quantities in the limits z0+/z0− � 1 and z0+/z0− � 1.

As the Gouy phase is a function of the Rayleigh length z0+ and 
z0− , one can measure this longitudinal phase as a function of the 
entanglement by changing the Rayleigh length z0+ and fixing the 
parameters z and z0− – see Eq. (8). To observe the behavior of 
logarithmic negativity and the Gouy phase as a function of z0+ , 
we plot these quantities in Fig. 3. We consider z0− = 1.2 mm and 
the longitudinal position z = 20 mm. In Fig. 3a we plot the loga-
rithmic negativity and in Fig. 3b the Gouy phase as a function of 
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Fig. 2. (a) Logarithmic negativity and the logarithm of the root square of the Schmidt number as a function of z0+/z0− ≤ 1 and (b) the same quantities for z0+/z0− ≥ 1. 
These quantities agree in the limits z0+/z0− � 1 and z0+/z0− � 1.

Fig. 3. (a) Logarithmic negativity and (b) Biphoton Gouy phase for the Rayleigh range z0+/z0− ≤ 1, (c) Logarithmic negativity and (d) Biphoton Gouy phase for the Rayleigh 
range z0+/z0− ≥ 1, with z0− = 1.2 mm and z = 20 mm. The logarithmic negativity varies appreciably in both intervals whereas the Gouy phase variation is appreciable only 
for the interval z0+/z0− ≥ 1 in which z0+ tends to z.
z0+/z0− ≤ 1. In Fig. 3c we plot the logarithmic negativity and in 
Fig. 3d the Gouy phase as a function of z0+/z0− ≥ 1.

We observe that the logarithmic negativity suffers a large vari-
ation for z0+/z0− ≤ 1 whereas the Gouy phase does not vary sig-
nificantly. However, for z0+/z0− ≥ 1 the Gouy phase changes ap-
preciably. It is known that the Gouy phase varies the most within 
the Rayleigh length. Therefore, the Gouy phase variation as a func-
tion of z0+ in the position z = 20 mm will be small if z � z0+
(which occurs for z0+ ≤ 1.2 mm, i.e., for z0+/z0− ≤ 1) and appre-
ciable if z0+ is of the order of z (which occurs for z0+ ≥ 1.2 mm, 
i.e., for z0+/z0− ≥ 1). In the next section we will consider the two-
dimensional propagation through a thin lens which enables us to 
adjust existing experimental data for the biphoton Gouy phase as 
a function of the shifted Rayleigh length.

4. Agreement with existing experimental data

In Ref. [1] the authors showed for the first time the relation be-
tween the Gouy phase and the quantum correlations of the twin 
photons generated by parametric down conversion. Then, they 
4

measured the coincidence count rates to experimentally obtain the 
Gouy phase as a function of the position of the beam waist. In this 
section we compare the biphoton Gouy phase with the experimen-
tal data obtained in Ref. [1]. In that experiment they considered as 
the pump a continuous wave (CW) argon-ion laser of wavelength 
λp = 351 mm and power P = 60 mW, which was focused by a lens 
of focal distance f = 900 mm to the beam radius w p = 178 μm
in a BBO crystal of type I, which produces signal and idler pho-
ton beams with the same wavelength λ = 702 nm. Also, they used 
lenses of focal distance f = 200 mm in the paths of the signal 
and idler beams. Therefore, by changing the position of the lens 
in the signal path (which corresponds to changing the position of 
its beam waist) while scanning with a two-dimensional hologram 
the idler path they were able to measure the coincidence count-
ing rates in different positions of the signal beam waist. Then, by 
observing that the position of the maximum and minimum coinci-
dences becomes rotated by a phase that includes the Gouy phase 
difference of the modes LG00 and LG0−1, they could relate the 
quantum correlation with the Gouy phase.
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In order to analyze the experimental data of Ref. [1] we need to 
focus the biphoton wavefunction. Then, by considering a thin lens 
approximation, and focal length f , the focused biphoton wavefunc-
tion is given by

�(r,q, z, z′)

=
∫

r′,q′
Kr(r, r′; z + z′, z)Kq(q,q′; z + z′, z) f (r′,q′)ψ(r′,q′, z),

(18)

where the propagators Kr and Kq are given by Eq. (4), the state 
ψ(r′, q′, z) is written as Eq. (5) and the transmittance of a thin 
lens is given by [40,41]

f (r′,q′) = exp

[
− ik

2 f
(r′2 + q′2)

]
. (19)

After some manipulations, we can write

�(r,q, z, z′) =
√

2

π B+B−
exp

(
− r2

B2

)
exp

(
− q2

B2−

)

× exp

[
ik0

cR+
r2 + ik0

cR−
q2 − iζ(z, z′)

]
,

(20)

where

B2+(z, z′) =

(
1

w2+

)2

+ k2
0

(
1
z′ + 1

cr+ − 1
2 f

)2

(
2π
λz′
)2
(

1
w2+

) , (21)

B2−(z, z′) =

(
1

w2−

)2

+ k2
0

(
1
z′ + 1

cr− − 1
2 f

)2

(
2π
λz′
)2
(

1
w2−

) , (22)

R+(z, z′) =

(
1

w2+

)2

+ k2
0

(
1
z′ + 1

cr+ − 1
2 f

)2

c
z′ w2+

(
1 + 1

�2

(
z
z′ + z

cr+

))
− π

λ f

, (23)

R−(z, z′) =

(
1

w2−

)2

+ k2
0

(
1
z′ + 1

cr− − 1
2 f

)2

c
z′ w2−

(
1 + 1

σ 2

(
z
z′ + z

cr−

))
− π

λ f

, (24)

and

ζ(z, z′) = 1

2
arctan

{( z
1−z′/2 f + z′)( 1

z0+ + 1
z0−
)

1 − 1
z0+z0−

( z
1−z′/2 f + z′)2

}
. (25)

Now, the parameters of the wavefunction are dependent on the 
focal distance f . By the analogy with the focused classical Gaus-
sian beam, B±(z, z′) is the corresponding beam width, R±(z, z′)
is the corresponding radius of curvature of the wavefronts and 
ζ(z, z′) is the corresponding Gouy phase. In the limit f → ∞ we 
recover the parameters of the biphoton wavefunction in Eq. (5)
for the propagation z + z′ . In Fig. 4 we plot the Gouy phase for 
the focused biphoton wavefunction Eq. (25) as a function of the 
position after the lens z′ . We consider the following parameters 
z0+ = z0− = 1.2 mm, f = 3.0 mm and z = 7.0 mm. As we can 
observe the phase is null for z′ = 2 f = 6.0 mm. Again the max-
imum Gouy phase variation is π/2 as we have considered the 
one-dimensional focalization.
5

Fig. 4. Gouy phase for the focused biphoton wavefunction Eq. (25) as a function of 
the position after the lens z′ .

Fig. 5. Gouy phase as a function of z0+ . The squares represent the experimental 
data from [1] and the solid line represents the fitting result Eq. (26).

Now, in order to use the biphoton Gouy phase to fit the ex-
perimental data of Ref. [1] we need to rewrite Eq. (25) to include 
the two-dimensional propagation through a thin lens which trans-
forms it to

ζ(z0+) = ζ0 + arctan

{( z
1−z′/2 f + z′)( 1

(z′
0+−z f )

+ 1
z0−
)

1 − 1
(z′

0+−z f )z0−
( z

1−z′/2 f + z′)2

}
, (26)

where ζ0 is a reference angle and z f an adjust parameter. In Fig. 5
we show the Gouy phase as a function of the Rayleigh range z0+
shifted by an offset distance zof f set . The negative values appear-
ing for z0+ in the horizontal axis is a consequence of the shift by 
zof f set . The squares represent the experimental data from [1] and 
the solid line represents the fitting result by Eq. (26). As discussed 
before the two-photon entanglement is included in z0+ . In order to 
adjust the experimental data of Fig. 4 of Ref. [1] with Eq. (26) we 
used the Maple software which produces the following values of 
parameters: biphoton wavelength λ = 702 nm, laser pump wave-
length λp = 351.1 nm and the crystal length Lp = 7.0 mm. This 

enables us to obtain σ =
√

Lpλp
6π = 11.4 μm, z0− = k0σ

2 = 1.2 mm, 
f = 200 mm, z = 500 mm, z′ = 1465.3 mm, ζ0 = 1.68 rad and 
z f = 7.15 mm. Because of some effect of the experimental arrange-
ment, such as that produced by the hologram, we need to include 
a parameter z f in Eq. (26) in order to adjust the experimental data. 
The reasonable agreement between theory and experimental data 
on the Gouy phase indicates the double Gaussian wavefunction is a 
valid approximate description of two correlated photons generated 
by type-I SPDC.

In Ref. [1] the Gouy phase was obtained by changing the po-
sition of the beam width z0s . Here, we adjust the Gouy phase by 
changing the Rayleigh length z0+ instead of z0s . Now, we will show 
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Fig. 6. Beam waist position z+
0s as function of the Rayleigh range z0+ .

that these two quantities are related. The beam waist position z+
0s

after a thin lens can be obtained from Eq. (21) and written as

z+
0s = 2ck2

0 w4+r+(cr+ − 2 f ) f

k2
0 w4+(cr+ − 2 f )2 + 4 f 2c2r2+

, (27)

where w+ and r+ are given by Eq. (6), k0 is the wavenumber 
Eq. (7), c is the speed of light and f is the focal length. This quan-
tity is z0+-dependent through the parameters w+ and r+ . In order 
to observe the behavior of the beam waist position z+

0s as a func-
tion of the Rayleigh length z0+ , we plot it in Fig. 6. This plot shows 
that the beam waist position varies with the Rayleigh length. We 
consider the same parameters of Fig. 5. Therefore, this relation is 
the reason why one can also plot the experimental data of Ref. [1]
as a function of the Rayleigh length. In addition, although the au-
thors used a superposition of LG modes to observe the Gouy phase 
instead of a Gaussian mode, they observed that the superposition 
is converted into a Gaussian mode when the hologram is shifted 
and scanned to change the phase between LG modes. As we can 
see the expression found in Eq. (8) of Ref. [1] is characteristic of 
Gouy phase for Gaussian beams.

5. Concluding remarks

We considered the time (or longitudinal distance) propagation 
of the approximated double Gaussian wavefunction describing cor-
related photons generated in a nonlinear crystal. We considered 
photons generated in a type I-SPDC process, in which the twin 
photons have the same wavelength. We found that the evolved 
wavefunction is characterized by parameters similar to that of a 
classical Gaussian beam, specially by a Gouy phase term. Next, we 
studied the twin photon entanglement by calculating the covari-
ance matrix and the logarithmic negativity for the double Gaussian 
wavefunction at the propagation distance. We observed that the 
Gouy is part of the elements of the covariance matrix through 
the position momentum covariance that develop with the prop-
agation distance. Then, we showed that the logarithmic negativ-
ity is a function of the Rayleigh length and the biphoton Gouy 
phase can be obtained by changing the entanglement through the 
Rayleigh length. We also compare the logarithmic negativity with 
the Schmidt number and found that both entanglement quantifiers 
are Rayleigh-length-dependent such that for specific limits the first 
entanglement quantifier is the logarithm of the root square of the 
second quantifier. Furthermore, we considered an experiment per-
formed with entangled photons generated in a type-I SPDC pro-
cess, in which the Gouy phase was measured as a function of the 
signal beam waist position. By knowing that the beam waist posi-
tion and the Rayleigh range are related when a beam is focused by 
a lens, we focused the double Gaussian biphoton wavefunction by 
a thin lens and adjusted the experimental data as a function of the 
6

Rayleigh range. We obtained a reasonable agreement between the 
biphoton Gouy phase and the experimental data. This agreement 
between theory and experiment indicates that the Gouy phase of 
the approximated double Gaussian biphoton wavefunction can be 
used as good approximation in exploring quantum correlations of 
twin photons.

Our results show that the biphoton Gouy phase and the en-
tanglement are Rayleigh length dependents enabling us to connect 
these two quantities. The Rayleigh length is focal spot dependent 
allowing to interpret both quantities in the same physical origin, 
i.e., the transverse spatial confinement. Also, it is known that these 
quantities have geometrical features which is the reason why they 
are spatial confinement dependent [42]. Therefore, based in the 
spatial confinement by slits, we are going to propose in a future 
paper a way to measure the biphoton Gouy phase to obtain the 
corresponding portion of entanglement correlations.
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