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Abstract. We consider the dynamics of a population spatially structured in colonies that are vul-
nerable to catastrophic events occurring at random times, which randomly reduce their population
size and compel survivors to disperse to neighboring areas. The dispersion behavior of survivors
is critically significant for the survival of the entire species. In this paper, we consider an uniform
dispersion scheme, where all possible survivor groupings are equally probable. The aim of the sur-
vivors is to establish new colonies, with individuals who settle in empty sites potentially initiating
a new colony by themselves. However, all other individuals succumb to the catastrophe. We con-
sider the number of dispersal options for surviving individuals in the aftermath of a catastrophe
to be a fixed value d within the neighborhood. In this context, we conceptualize the evolution of
population dynamics occurring over a homogeneous tree. We investigate the conditions necessary
for these populations to survive, presenting pertinent bounds for survival probability, the number of
colonized vertices, the extent of dispersion within the population, and the mean time to extinction
for the entire population.

1. Introduction

Some biological populations frequently face catastrophic events, such as epidemics and natural
disasters, which can lead to the extinction of the species. Dispersal of individuals during catastrophes
serves as a strategy to enhance a species’ chances of survival. This strategy increases genetic diversity
within separated populations, reduces intraspecific competition for resources, and helps individuals
avoid predation or infections. Dispersal also allows for the colonization of new habitats less affected
by the catastrophe, ultimately increasing the chance of long-term survival for at least a portion of
the population. For further information on dispersal in the biological context, please refer to Ronce
(2007).
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In Duque et al. (2023); Junior et al. (2016, 2021, 2023); Machado et al. (2018, 2017); Schinazi
(2015), models have been introduced to examine various dispersal strategies in populations experi-
encing different types of catastrophes. These models aim to assess the influence of these strategies
on population viability, contrasting them with scenarios where no dispersal occurs. Their analysis
seeks to determine the best strategy (dispersion or no dispersion) by evaluating survival probability
and population extinction times when a specific strategy is employed. In particular, in Duque et al.
(2023); Junior et al. (2016, 2021, 2023); Machado et al. (2018, 2017), the authors consider that when
a colony of individuals suffers a catastrophe, the size of this population is reduced according to some
probability law (binomial or geometric), and the surviving individuals disperse to neighboring sites
to establish new colonies. New colonies can only form on empty sites. Among the individuals that
go to the same empty site, only one survives and the others die. Three dispersion schemes were
considered, when each colony has d neighboring sites:

• Optimal Dispersion: When r individuals survive a catastrophe, there are exactly min{r, d}
successful attempts to establish new colonies.

• Independent Dispersion: Each survivor picks a neighboring site at random and tries to create
a new colony there.

• Uniform Dispersion: For every r survivors, consider all sets of numbers r1, . . . , rd ∈ N
(occupancy set of numbers) that are a solution to r1 + r2 + · · · + rd = r. For each of these
sets exactly one of the ri individuals (if ri > 0, and 0 otherwise) will succeed in colonizing
the neighboring vertex i, i = 1, . . . , d. Observe that ri may be 0. Here we consider that
all possible survivor groupings are equally probable. So, the probability of having exactly
y ≤ min{r, d} successful attempts when the number of survivors is r, is(

r−1
y−1

)(
d+r−1

r

)(d
y

)
.

Specifically, the model introduced in Junior et al. (2016) focuses on establishing conditions for
the survival and extinction of populations, where colonies grow according to a Poisson process,
face binomial or geometric catastrophes, and adopt an independent dispersal scheme in environ-
ments where exactly d empty neighboring sites are available for dispersal during catastrophe events.
Within this framework, Junior et al. (2016) demonstrates that while independent dispersion is al-
ways the best strategy to maximize the population’s survival probability in binomial catastrophes,
it is not always the best strategy under geometric catastrophes. The analysis is extended in Junior
et al. (2021) by considering geometric catastrophes and examining all dispersal schemes: optimal,
independent, and uniform. Exact calculations of survival probabilities are performed and compared
for the cases d = 2, 3. Additionally, Duque et al. (2023) and Junior et al. (2023) determine the mean
extinction times of the population under binomial and geometric catastrophes, respectively, within
these dynamics. Finally, the models in Machado et al. (2017) and Machado et al. (2018) focus
exclusively on independent dispersal on the lattice Zd and homogeneous trees. In these models,
spatial restrictions on dispersal are stricter, as the creation of new colonies may not occur because
the sites where attempts are made are already occupied.

In the present paper, we aim to analyze the uniform dispersion scheme and contrast it with the in-
dependent dispersion scheme. Taking everything into account, the population growth of each colony
follows a birth and death process denoted as N . Each colony is associated with an independent
exponential random time, with a mean of 1, indicating the occurrence time of a catastrophe. When
a catastrophe occurs, it results in a reduction in the colony’s size, following a specific probability
distribution, L. Although the paper is presented in a general context, several results detail specific
cases. In particular, we examine the scenario where

• N follows a Poisson process with rate λ, denoted by P(λ), and
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• L follows a binomial distribution whose parameters are the colony’s size and p, denoted by
Bin(p).

Next, consider the number of dispersal options for surviving individuals in the aftermath of a
catastrophe to be a fixed value d within the neighborhood. In this context, we conceptualize the
evolution of population dynamics occurring over Td, a homogeneous tree where every vertex has
d + 1 nearest neighbors, and over Td

+, a tree whose only difference from Td is that its origin has
degree of d.

Individuals remaining after the catastrophe are distributed among the nearest neighbor vertices,
according to uniform dispersion. Individuals that go to a vertex already occupied by a colony die.
Among the individuals that go to the same (empty) vertex to create a new colony there, only one
succeeds, the others die. Therefore, when a catastrophe occurs in a colony, that colony is replaced
by 0, 1, . . . or d colonies, each colony is started by a single individual. We assume that initially all
vertices of G are empty, except one called the origin, which has a colony with a single individual.
We denote this model by C(G;N ,L) where G is either Td or Td

+.
This paper is divided into four sections. In Section 2, we introduce results on phase transition,

survival probability, the number of colonies created in the model C(Td;N ,L). Besides that, we
study the reach on the graph and the mean extinction time of the model C(Td

+;N ,L). In Section 3,
we prove the results presented in Sections 2. Finally, in Section 4, we contrast uniform dispersion
with independent dispersion, by comparing our model with the model introduced by Machado et al.
(2018).

2. Main Results

In order to establish the main results on C(Td;N ,L) and C(Td
+;N ,L), we begin by introducing

some definitions and notations.
Let Nt be the number of individuals in a colony at time t (after its creation) and T be the time

in which the catastrophe occurs in that colony. We denote by N the number of individuals that
survive the catastrophe before dispersing. In particular, for C(G;P(λ),Bin(p)), the distribution of
N is given by

P(N = n) =


1− p

λp+ 1
, n = 0,

( λp

λp+ 1

)n λ+ 1

λ(λp+ 1)
, n ≥ 1,

(2.1)

and the probability generating function is

E(sN ) =
1− p(1− s)

1 + λp(1− s)
. (2.2)

For more details, see Junior et al. (2016, Proof of Lemma 4.3).
Observe that model C(Td;N ,L) is a continuous-time stochastic process with state space N0

V(Td),
where V(Td) is the set of vertices of Td. The evolution of this process in time is denoted by ηt.
For a vertex x ∈ V(Td), ηt(x) is the number of individuals at time t at vertex x. We consider
|ηt| :=

∑
x∈V(Td) ηt(x), the total number of individuals present in Td at time t. Analogously for

C(Td
+;N ,L).

2.1. Phase Transition.

Definition 2.1. We say that the process (C(Td;N ,L) or C(Td
+;N ,L)) survives if at every instant

of time there is at least one alive colony. For Vd, the survival event,

Vd = {|ηt| > 0, for all t ≥ 0}.
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In the following result, we establish sufficient conditions for the probability of survival to be
greater than or equal to zero.

Theorem 2.2. Consider C(Td;N ,L) and let Vd be the survival event. Then P(Vd) = 0 if

E
( N

N + d

)
≤ 1

d+ 1

and P(Vd) > 0 if

E
( N

N + d

)
>

1

d
.

Corollary 2.3. Consider C(Td;P(λ),Bin(p)) and let Vd be the survival event. Then P(Vd) = 0 if

Φ
( λp

λp+ 1
, 1, d+ 1

)
≥ (λp+ 1)[p(λd+ d+ 1)− 1]

pd(d+ 1)(λ+ 1)

and P(Vd) > 0 if

Φ
( λp

λp+ 1
, 1, d+ 1

)
<

(λp+ 1)[p(λd+ d− λ)− 1]

pd2(λ+ 1)
,

where Φ(z, s, a) is the Lerch Transcendent Function given by

Φ(z, s, a) =
∞∑
j=0

zj

(a+ j)s
, | z |< 1.

In particular, the Lerch Transcendent Function satisfies

Φ(z, 1, a) =
1

za

[
ln
( 1

1− z

)
−

a−1∑
j=1

zj

j

]
.

for every natural number a.

Example 2.4. Consider C(Td;P(λ),Bin(p)) and let pc(d, λ) defined by

pc(d, λ) = inf{p ≥ 0;P(Vd) > 0}.
Then, for λ = 10 and d = 30, by using Corollary 2.3, we have that

0.0962 ≤ pc(30, 10) ≤ 0.0996.

With independent dispersion scheme, using Machado et al. (2018, Theorem 3.2) for the analogous
parameter, we have

0.0936 ≤ pc(30, 10) ≤ 0.0969.

Due to the intersection of the ranges obtained from the rigorous results currently available, it
is not possible to make a definitive comparison between the models with uniform dispersion and
independent dispersion.

2.2. Probability of Survival.

Theorem 2.5. Consider C(Td;N ,L) and let Vd be the survival event. Then
d+1∑
r=1

[
(1− ρr)

(
d+ 1

r

) ∞∑
n=r

(
n−1
r−1

)(
n+d
d

)P(N = n)
]
≤ P(Vd) ≤ 1− ψ

where ψ and ρ are, respectively, the smallest non-negative solutions of
d+1∑
y=1

[
sy
(
d+ 1

y

) ∞∑
n=y

(
n−1
y−1

)(
n+d
d

)P(N = n)
]
= s− P(N = 0) and



Uniform dispersion in growth models 611

d∑
y=0

[
sy
(
d

y

) ∞∑
n=y

(
n
y

)(
n+d
d

)P(N = n)
]
= s.

Example 2.6. Consider C(T10;P(5),Bin(35)). Then,

P(N = n) =

{
1
10 , n = 0;
3
10

(
3
4

)n
, n ≥ 1.

Applying Theorem 2.5 we have ψ = 0.141484 and ρ = 0.162176. So,

3

10

11∑
r=1

[
(1− 0.162176r)

(
11

r

) ∞∑
n=r

(
n−1
r−1

)(
n+10
10

)(3
4

)n]
≤ P(V10) ≤ 1− 0.141484,

0.85153 ≤ P(V10) ≤ 0.858516.

Theorem 2.7. Consider C(Td;N ,L) and let Vd be the survival event. We have that

lim
d→∞

P(Vd) = 1− ν

where ν is the smallest non-negative solution of E(sN ) = s.

Corollary 2.8. Consider C(Td;P(λ),Bin(p)) and let Vd be the survival event. Then

lim
d→∞

P(Vd) = max
{
0,
p(λ+ 1)− 1

λp

}
.

2.3. The reach of the process. We defineMd as the reach of the process (C(Td;N ,L) or C(Td
+;N ,L)),

which, in simpler therms, represents the distance from the origin to the farthest vertex where a
colony is formed. Observe Md is infinite if and only if the process survives. To study properties of
Md we need the definitions of a few technical quantities.

Definition 2.9. Consider C(Td
+;N ,L) We define the quantities

α := dE
(

N
N+d

)
β := (d+ 1)E

(
N

N+d

)
= α+ E

(
N

N+d

)
D := max

{
2; β

β−P(N ̸=0)

}
B := d(d− 1)E

(
N(N−1)

(N+d−1)(N+d−2)

)
Lemma 2.10. For C(Td

+;P(λ),Bin(p)), the quantities of the Definition 2.9 are given by

α = dp(λ+1)
(λp+1)2

[
λp+ 1− dΦ

(
λp

λp+1 , 1, d+ 1
)]

β = (d+1)p(λ+1)
(λp+1)2

[
λp+ 1− dΦ

(
λp

λp+1 , 1, d+ 1
)]

D = max
{
2; β(λp+1)

β+p(βλ−λ−1)

}
B = dλp2(d−1)(λ+1)

(λp+1)3

[
d2+d(λp−2)+2

d − (d−1)(d+2λp)
(λp+1) Φ

(
λp

λp+1 , 1, d+ 1
)]
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Theorem 2.11. Consider Md, the reach of C(Td
+;N ,L). Assume that

E
( N

N + d

)
<

1

d+ 1
.

We have that

[1 +D(1− β)][1− βn+1]

1 +D(1− β)− βn+1
≤ P(Md ≤ n) ≤

[1 + α(1−α)
B ](1− αn+1)

1 + α(1−α)
B − αn+1

where α, β,B and D are given in Definition 2.9.

Theorem 2.12. Let Md be the reach of C(Td
+;N ,L). When d→ ∞ we have that

Md
D→M,

where P(M ≤ m) = gm+1(0), g(s) = E(sN ) and gm+1(s) =
m+1 times

g(g(· · · g(s)) · · · ).

Example 2.13. Let Md be the reach of C(Td
+;P(λ),Bin(p)). We have that Md

D→M where

P(M ≤ n) =
1− [(λ+ 1)p]n+1

1− λp
1−p [(λ+ 1)p]n+1

and E(M) =
(1− p− λp)

λp

∞∑
n=0

[(λ+ 1)p]n+1

1−p
λp − [(λ+ 1)p]n+1

.

2.4. Number of colonies.

Theorem 2.14. Consider C(Td;N ,L) and let Id be the number of colonies created during the
process. If

E
( N

N + d

)
<

1

d+ 1
then

1 + E
(

N
N+d

)
1− dE

(
N

N+d

) ≤ E(Id) ≤
1

1− (d+ 1)E
(

N
N+d

) .
In addition, if E(N) < 1 (the subcritical case),

lim
d→∞

E(Id) =
1

1− E(N)
.

Corollary 2.15. Consider C(Td;P(λ),Bin(p)) and let Id be the number of colonies created during
the process. If

Φ
( λp

λp+ 1
, 1, d+ 1

)
>

(λp+ 1)[p(λd+ d+ 1)− 1]

pd(d+ 1)(λ+ 1)
,

then
d+ α

d(1− α)
≤ E(Id) ≤

d

d− (d+ 1)α
,

where α is given in Lemma 2.10. Besides, if (λ+ 1)p < 1 then

lim
d→∞

E(Id) =
1

1− (λ+ 1)p
.

Example 2.16. Let Id be the total number of colonies created in C(Td
+;P(λ),Bin(p)) with λ = 9

and p = 99
1000 . If d = 800 we have that

74.5761 ≤ E(I800) ≤ 82.0181.
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Besides, lim
d→∞

E(Id) = 100. In the model with scheme independent dispersion, Machado et al. (2018,

Theorem 3.23), we have
81.1729 ≤ E(I800) ≤ 90.0900.

As in Example 2.4, due to the intersection of the ranges obtained from the rigorous results currently
available, it is not possible to make a definitive comparison.

2.5. Extinction time.

Definition 2.17. Let be ηt the process C(G;N ,L). We define the extinction time of the process
C(G;N ,L) by

τ := inf{t > 0 : |ηt| = 0}.

Theorem 2.18. Consider C(Td
+;N ,L) and let τu(d) be the extinction time of the process. Assume

that

E
( N

N + d

)
<

1

d+ 1
.

Then ∫ 1

0

1− s

GL(s)− s
ds ≤ E(τu(d)) ≤

∫ 1

0

1− s

GU (s)− s
ds

where

GL(s) =
d∑

y=0

sy

[ ∞∑
n=y

[
P(N = n)

(
d

y

)(
n

y

)
(
n+ d

d

) ]]

and

GU (s) = P(N = 0) +

d+1∑
y=1

[(
d+ 1

y

)
sy

∞∑
n=y

[
P(N = n)

(
n− 1

y − 1

)
(
n+ d

d

)]].

3. Proofs

To prove our results we define auxiliary processes on the graphs Td and Td
+, whose understanding

will provide bounds for the processes defined in Section 2.
In the first two auxiliary processes, denoted by U(Td;N ,L) and U(Td

+;N ,L), every time a
catastrophe occurs in a colony, according to uniform dispersion, the survival individuals disperse
over neighboring vertices that are further from the origin than the vertex where that colony was
placed. In other words, individuals do not disperse to sites that have already been colonized. We
refer to this process as Self Avoiding.

In the last two auxiliary processes, represented by L(Td;N ,L) and L(Td
+;N ,L), surviving in-

dividuals disperse to any of the d + 1 neighboring vertices according to the uniform dispersion.
However, those who move backward towards the origin die, as this direction is deemed inhospitable
or infertile. We refer to this process as Move Forward or Die. In both processes, every new colony
starts with only one individual.

The main idea behind the proofs is the identification of an underlying branching process related
to the models. After doing that we can apply results of the theory of Branching Processes, including
the less known and new results presented in Machado et al. (2018).
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3.1. The Self Avoiding Model.

Proposition 3.1. Consider U(Td;N ,L) and let Vd be the survival event. We have that P(Vd) > 0
if and only if

E
( N

N + d− 1

)
>

1

d
.

Proof of Proposition 3.1: Observe that the process U(Td
+;N ,L) behaves as a homogeneous branch-

ing process. Every vertex x ∈ Td which is colonized produces Y new colonies (whose distribution
depends only on N and L) on the d neighbor vertices which are located further from the origin than
x is. By numbering those d vertices, we can represent the random variable Y as

Y =

d∑
i=1

Ii

where Ii is the indicator variable of event the vertex i receives at least one individual. Thus,

E(Y ) =
d∑

i=1

P(Ii = 1) = d
∑
n≥1

P(I1 = 1|N = n)P(N = n).

Now, note that

P(I1 = 1|N = n) =
n

n+ d− 1
,

and so

E(Y ) = d
∑
n≥1

[ n

n+ d− 1
P(N = n)

]
= dE

( N

N + d− 1

)
. (3.1)

From the theory of homogeneous branching processes we see that U(Td
+;N,L) (and also U(Td;N,L))

survives if and only if E(Y ) > 1. □

Proposition 3.2. Consider the process U(Td;N ,L). Let Vd be the survival event and Id the number
of colonies created during the process. Then

P(Vd) =
d+1∑
r=1

[
(1− ψr)

(
d+ 1

r

) ∞∑
n=r

(
n−1
r−1

)(
n+d
d

)P(N = n)

]
,

where ψ, the extiuncion probability for the process U(Td
+;N ,L), is the smallest non-negative solution

of
d∑

y=1

[
sy
(
d

y

) ∞∑
n=y

(
n−1
y−1

)(
n+d−1
d−1

)P(N = n)

]
= s− P(N = 0)

On the subcritical regime, which means

E
( N

N + d− 1

)
<

1

d
,

it holds that

E(Id) = 1 +
(d+ 1)E

(
N

N+d

)
1− dE

(
N

N+d−1

) .
Proof of Proposition 3.2: When a colony placed at the origin collapses, YR new colonies are formed
by the survivors at its neighboring vertices. If a colony located outside the origin collapses, Y new
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colonies are created on neighboring vertices. Observe that the process U(Td;N ,L) behaves as a
non-homogeneous branching process {Zn}n≥0 with

Z0 = 1, Zn+l =

Zn∑
i=1

Xn,i, n ≥ 0,

where X1,1 and Xn,i, n > 1 are distributed as YR and Y , respectively. So, we have that

P(Vd) =
d+1∑
r=0

P(Vd|YR = r)P(YR = r).

Given that YR = r one have r independent U(Td
+;N ,L) processes living on r independent rooted

trees. So, we have that P(V C
d |YR = r) = ψr, r = 0, 1, 2, · · · , d + 1, where ψ is the smallest non-

negative solution of E(sY ) = s.
By using the Total Probability Theorem,

P(YR = y) =
∞∑
n=r

[
P(N = n)

(
d+ 1

y

)(
n− 1

y − 1

)
(
n+ d

d

) ]
for y = 0, 1, 2, · · · , d+ 1.

P(Y = y) =
∞∑
n=y

[
P(N = n)

(
d

y

)(
n− 1

y − 1

)
(
n+ d− 1

d− 1

) ] for y = 0, 1, 2, · · · , d. (3.2)

The probability generating function of Y is

GU (s) = E(sY ) = P(N = 0) +
d∑

y=1

[(
d

y

)
sy

∞∑
n=y

[
P(N = n)

(
n− 1

y − 1

)
(
n+ d− 1

d− 1

)]] (3.3)

Thus,

P(Vd) =
d+1∑
r=1

[
(1− ψr)

(
d+ 1

r

) ∞∑
n=r

(
n−1
r−1

)(
n+d
d

)P(N = n)

]
.

As for the second part of the proposition, note that

E(Id) =
d+1∑
r=0

E(Id|YR = r)P(YR = r)

Besides, from (3.1) we have

E(Id|YR = r) = rµ+ 1 where µ =

[
1− dE

( N

N + d− 1

)]−1

,

see Stirzaker (2003, Exercise 2b, p. 280). □

Proposition 3.3. Consider the process U(Td;N ,L). Let Vd be the survival event and Id the number
of colonies created during the process. Then

lim
d→∞

P(Vd) = 1− ν (3.4)
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where ν is the smallest non-negative solution of E(sN ) = s. Besides that, if E(N) < 1 (the subcritical
case) then

lim
d→∞

E(Id) =
1

1− E(N)
. (3.5)

Proof of Proposition 3.3: In order to prove (3.4) one has to apply Machado et al. (2018, Proposition
4.2), observing that Y D→ N and YR

D→ N , when d→ ∞. Moreover to prove (3.5) observe that

lim
d→∞

E(Id) = lim
d→∞

d+1∑
r=0

E(Id|YR = r)P(YR = r).

As Y D→ N and YR
D→ N when d→ ∞ then

lim
d→∞

E(Id|YR = r) = lim
d→∞

r
1

1− E(Y )
+ 1 =

r

1− E(N)
+ 1

and the result follows from the Dominated Convergence Theorem (Thorisson, 2000, Theorem 9.1 p.
26). □

Proposition 3.4. Let Md be the reach of the process U(Td
+;N ,L), that is, the distance from the

origin to the farthest vertex where a colony is formed. Assuming

E
( N

N + d− 1

)
<

1

d

then

[1 +D(1− µu)](1−Bn+1
u )

1 +D(1− µu)− µn+1
u

≤ P(Md ≤ n) ≤

[
1 + µu(1−µu)

Bu

]
(1− µn+1

u )

1 + µu(1−µu)
Bu

− µn+1
u

where

µu = dE
( N

N + d− 1

)
D = max

{
2;

µu
µu − P(N ̸= 0)

}
Bu = d(d− 1)E

(
N(N − 1)

(N + d− 1)(N + d− 2)

)
.

Moreover,
Md

D→M,

where P(M ≤ m) = gm+1(0), being g(s) = E(sN ) and gm+1(s) =
m+1 times

g(g(· · · g(s)) · · · ).

Proof of Proposition 3.4: Every vertex x ∈ Td which is colonized produces Y new colonies (whose
distribution depends only on N and L) on the d neighbor vertices which located are further from
the origin than x is. By numbering those d vertices, we can represent the random variable Y as

Y =

d∑
i=1

Ii

where Ii is the indicator variable of event the vertex i receives at least one individual. From (3.1)
we obtained E(Y ). Now,

Y 2 =
( d∑

i=1

Ii
)2

=
d∑

i=1

I2
i + 2

∑
1≤i<j≤d

IiIj

E(Y 2) = dE(I2
1 ) + d(d− 1)E(I1I2)
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On the other hand

E(I2
1 ) = P(I1 = 1) =

∑
n

P(I1 = 1|N = n)P(N = n) =
∑
n

( n

n+ d− 1

)
P(N = n)

= E
( N

N + d− 1

)
and

E(I1I2) = P(I1 = 1; I2 = 1) =
∑
n

P(I1 = 1; I2 = 1|N = n)P(N = n)

where

P(I1 = 1; I2 = 1|N = n) =
n(n− 1)

(n+ d− 1)(n+ d− 2)
.

Then
E(Y 2) = dE

( N

N + d− 1

)
+ d(d− 1)E

( N(N − 1)

(N + d− 1)(N + d− 2)

)
E(Y (Y − 1)) = d(d− 1)E

( N(N − 1)

(N + d− 1)(N + d− 2)

)
.

The result follows from Agresti (1974, Theorem 1 p. 331) with µu = E(Y ) and Bu = E(Y (Y − 1)).

The convergence Md
D→ M follows from the fact that Y D→ N when d → ∞ and from Machado

et al. (2018, Proposition 4.1). □

Proposition 3.5. Let τu(d) be the extinction time of the process U(Td
+;N ,L). If

E
( N

N + d− 1

)
<

1

d

then

E[τu(d)] =
∫ 1

0

1− y

GU (y)− y
dy,

where GU (s) is given by (3.3).

Proof of Proposition 3.5: Let Zt be the number of colonies at time t in the model U(Td
+;N ,L).

Observe that Zt is a continuous-time branching process with Z0 = 1. Each particle (colony) in Zt

survives an exponential time of rate 1 and right before death produces Y ≤ d particles (colonies
are created right after a catastrophe) with distribution given by (3.2) and probability generating
function given by (3.3). If G′

U (1) ≤ 1, then P[τu(d) <∞] = 1 and the result following from Narayan
(1982). □

3.2. Move Forward or Die Model.

Proposition 3.6. Consider L(Td;N ,L) and let Vd be the survival event. We have that P(Vd) > 0
if and only if

E
( N

N + d

)
>

1

d
.

Proof of Proposition 3.6: Observe that the process L(Td
+;N ,L) behaves as a homogeneous branch-

ing process. Every vertex x ∈ Td which is colonized produces Y new colonies (whose distribution
depends only on N and L) on the d neighbor vertices which are located further from the origin than
x is. By numbering those d vertices, we can represent the random variable Y as

Y =
d∑

i=1

Ii
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where Ii is the indicator variable of event the vertex i receives at least one individual. Thus,

E(Y ) =
d∑

i=1

P(Ii = 1) = d
∑
n≥1

P(I1 = 1|N = n)P(N = n).

Now, note that

P(I1 = 1|N = n) =
n

n+ d
,

and so

E(Y ) = d
∑
n≥1

[ n

n+ d
P(N = n)

]
= dE

( N

N + d

)
. (3.6)

From the theory of homogeneous branching processes we see that L(Td
+;N ,L) (and also L(Td;N ,L))

survives if and only if E(Y ) > 1. □

Proposition 3.7. Consider the process L(Td;N ,L). Let Vd be the survival event and Id the number
of colonies created during the process. Then

P(Vd) =
d+1∑
r=1

[
(1− ρr)

(
d+ 1

r

) ∞∑
n=r

(
n−1
r−1

)(
n+d
d

)P(N = n)

]
,

where ρ, the extinction probability for the process L(Td
+;N ,L), is the smallest non-negative solution

of
d∑

y=0

[
sy
(
d

y

) ∞∑
n=y

(
n
y

)(
n+d
d

)P(N = n)

]
= s.

On the subcritical regime, which means

E
( N

N + d

)
<

1

d
,

it holds that

E(Id) =
1 + E

(
N

N+d

)
1− dE

(
N

N+d

) .
Proof of Proposition 3.7: When a colony placed at the origin collapses, YR new colonies are formed
by the survivors at its neighboring vertices. If a colony located outside the origin collapses, Y new
colonies are created on neighboring vertices. Observe that the process L(Td;N ,L) behaves as a
non-homogeneous branching process {Zn}n≥0 with

Z0 = 1, Zn+l =

Zn∑
i=1

Xn,i, n ≥ 0,

where X1,1 and Xn,i, n > 1 are distributed as YR and Y, respectively. So, we have that

P(Vd) =
d+1∑
r=0

P(Vd|YR = r)P(YR = r).

Given that YR = r one have r independent L(Td
+;N ,L) processes living on r independent rooted

trees. So, we have that P(V C
d |YR = r) = ρr, r = 0, 1, 2, · · · , d + 1, where ρ is the smallest non-

negative solution of E(sY ) = s.
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By using the Total Probability Theorem,

P(YR = y) =

∞∑
n=y

[
P(N = n)

(
d+ 1

y

)(
n− 1

y − 1

)
(
n+ d

d

) ]
for y = 0, 1, 2, · · · , d+ 1.

P(Y = y) =
∞∑
n=y

[
P(N = n)

(
d

y

)(
n

y

)
(
n+ d

d

) ] for y = 0, 1, 2, · · · , d.

The probability generating function of Y is

GL(s) = E(sY ) =
d∑

y=0

sy

[ ∞∑
n=y

[
P(N = n)

(
d

y

)(
n

y

)
(
n+ d

d

) ]]. (3.7)

Thus,

P(Vd) =
d+1∑
r=1

[
(1− ρr)

(
d+ 1

r

) ∞∑
n=r

(
n−1
r−1

)(
n+d
d

)P(N = n)

]
As for the second part of the proposition, note that

E(Id) =
d+1∑
r=0

E(Id|YR = r)P(YR = r)

Besides, from (3.6) we have

E(I|YR = r) = rµ+ 1 onde µ =
[
1− dE

( N

N + d

)]−1
,

see Stirzaker (2003, Exercise 2b, p. 280). □

Proposition 3.8. Consider the process L(Td;N ,L). Let Vd be the survival event and Id the number
of colonies created during the process. Then

lim
d→∞

P(Vd) = 1− ν (3.8)

where ν is the smallest non-negative solution of E(sN ) = s. Besides that, if E(N) < 1 (the subcritical
case) then

lim
d→∞

E(Id) =
1

1− E(N)
. (3.9)

Proof of Proposition 3.8: In order to prove (3.8) one has to apply Machado et al. (2018, Proposition
4.2), observing that Y D→ N and YR

D→ N , when d→ ∞. Moreover to prove (3.9) observe that

lim
d→∞

E(Id) = lim
d→∞

d+1∑
r=0

E(Id|YR = r)P(YR = r).

As Y D→ N and YR
D→ N when d→ ∞ then

lim
d→∞

E(Id|YR = r) = lim
d→∞

r
1

1− E(Y )
+ 1 =

r

1− E(N)
+ 1

and the result follows from the Dominated Convergence Theorem (Thorisson, 2000, Theorem 9.1 p.
26). □
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Proposition 3.9. Let Md be the reach of the process L(Td
+;N ,L), that is, the distance from the

origin to the farthest vertex where a colony is formed. Assuming

E
( N

N + d

)
<

1

d

then

[1 +D(1− µl)](1−Bn+1
l )

1 +D(1− µl)− µn+1
l

≤ P(Md ≤ n) ≤

[
1 + µl(1−µl)

Bl

]
(1− µn+1

l )

1 + µL(1−µl)
Bl

− µn+1
l

where

µl = dE
( N

N + d

)
D = max

{
2;

µl
µl − P(N ̸= 0)

}
Bl = d(d− 1)E

(
N(N − 1)

(N + d− 1)(N + d)

)
.

Moreover,
Md

D→M,

where P(M ≤ m) = gm+1(0), being g(s) = E(sN ) and gm+1(s) =
m+1 times

g(g(· · · g(s)) · · · ).

Proof of Proposition 3.9: Every vertex x ∈ Td which is colonized produces Y new colonies (whose
distribution depends only on N and L) on the d neighbor vertices which located are further from
the origin than x is. By numbering those d vertices, we can represent the random variable Y as

Y =

d∑
i=1

Ii

where Ii is the indicator variable of event the vertex i receives at least one individual. From (3.6)
we obtained E(Y ). Now,

Y 2 =
( d∑

i=1

Ii
)2

=

d∑
i=1

I2
i + 2

∑
1≤i<j≤d

IiIj

E(Y 2) = dE(I2
1 ) + d(d− 1)E(I1I2)

On the other hand

E(I2
1 ) = P(I1 = 1) =

∑
n

P(I1 = 1|N = n)P(N = n) =
∑
n

( n

n+ d

)
P(N = n)

= E
( N

N + d

)
and

E(I1I2) = P(I1 = 1; I2 = 1) =
∑
n

P(I1 = 1; I2 = 1|N = n)P(N = n)

where

P(I1 = 1; I2 = 1|N = n) =
n(n− 1)

(n+ d− 1)(n+ d)
.

Then
E(Y 2) = dE

( N

N + d

)
+ d(d− 1)E

( N(N − 1)

(N + d− 1)(N + d)

)
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E(Y (Y − 1)) = d(d− 1)E
( N(N − 1)

(N + d− 1)(N + d)

)
.

The result follows from Agresti (1974, Theorem 1 p. 331) with µl = E(Y ) and Bl = E(Y (Y − 1)).
The convergence Md

D→ M follows from the fact that Y D→ N when d → ∞ and from Machado
et al. (2018, Proposition 4.1). □

Proposition 3.10. Let τu(d) be the extinction time of the process L(Td
+;N ,L). If

E
( N

N + d

)
<

1

d

then

E[τu(d)] =
∫ 1

0

1− y

GL(y)− y
dy,

where GL(s) is given by (3.7).

Proof of Proposition 3.10: Analogous to the proof of Proposition 3.5. □

3.3. Proofs of the Main Results.
First we define a coupling between the processes C(Td;N ,L) and L(Td

+;N ,L) in such a way that
the latter is stochastically dominated by the former. Every colony in L(Td

+;N ,L) is associated to
a colony in C(Td;N ,L). As a consequence, if the process C(Td;N ,L) dies out, the same happens
to L(Td

+;N ,L). At every catastrophe time at a vertex x in the model C(Td;N ,L), a non-empty
group of individuals that tries to colonize the neighbor vertex to x which is closer to the origin than
x will create there a new colony provided that that vertex is empty. In the model L(Td

+;N ,L) the
same non-empty group of individuals that tries to colonize the same vertex, immediately dies.

Next we define a coupling between the processes C(Td;N ,L) and U(Td+1
+ ;N ,L) in such a way

that the former is stochastically dominated by the latter. Every colony in C(Td;N ,L) can be
associated to a colony in U(Td+1

+ ;N ,L). Thus, if the process U(Td+1
+ ;N ,L) dies out, the same

happens to C(Td;N ,L). At every catastrophe time at a vertex x in the model C(Td;N ,L), we
associate the neighbor vertex to x which is closer to the origin than x to the extra vertex on the
model U(Td+1

+ ;N ,L). In the model C(Td;N ,L), a non-empty group of individuals that tries to
colonize the neighbor vertex to x which is closer to the origin than x will create there a new colony
provided that that vertex is empty. In the model U(Td+1

+ ;N ,L) the same non-empty group of
individuals that tries to colonize the extra vertex, founds a new colony there.

Proof of Theorem 2.2: The result follows from the fact that the process C(Td;N ,L) stochastically
dominates the process L(Td

+;N ,L) and by its turn, is stochastically dominated by the process
U(Td+1

+ ;N ,L), together with Propositions 3.1 and 3.6. □

Proof of Corollary 2.3: The result follows from Theorem 2.2 and Equation (2.1). □

Proof of Theorem 2.5: The result follows from the fact that the process C(Td;N ,L) stochastically
dominates the process L(Td

+;N ,L) and by its turn, is stochastically dominated by the process
U(Td+1

+ ;N ,L), together with Propositions 3.2 and 3.7. □

Proof of Theorem 2.7: The result follows from the fact that the process C(Td;N ,L) stochastically
dominates the process L(Td

+;N ,L) and by its turn, is stochastically dominated by the process
U(Td+1

+ ;N ,L), together with Propositions 3.3 and 3.8. □

Proof of Corollary 2.8: The result follows from Theorem 2.7 and Equation (2.2). □
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Proof of Theorem 2.11: The result follows from the fact that the process C(Td;N ,L) stochastically
dominates the process L(Td

+;N ,L) and by its turn, is stochastically dominated by the process
U(Td+1

+ ;N ,L), together with Propositions 3.4 and 3.9. □

Proof of Theorem 2.12: The result follows from the fact that the process C(Td;N ,L) stochastically
dominates the process L(Td

+;N ,L) and by its turn, is stochastically dominated by the process
U(Td+1

+ ;N ,L), together with Propositions 3.4 and 3.9. □

Proof of Theorem 2.14: The result follows from the fact that the process C(Td;N ,L) stochastically
dominates the process L(Td

+;N ,L) and by its turn, is stochastically dominated by the process
U(Td+1

+ ;N ,L), together with Propositions 3.2 and 3.7. □

Proof of Theorem 2.18: The result follows from the fact that the process C(Td;N ,L) stochastically
dominates the process L(Td

+;N ,L) and by its turn, is stochastically dominated by the process
U(Td+1

+ ;N ,L), together with Propositions 3.5 and 3.10. □

4. Comparison with model of independent dispersion

In this section, we compare the Self Avoiding Models with independent dispersion and uniform
dispersion. The model with uniform dispersion is U(Td;N ,L) considered in Section 3.1 and the
model with independent dispersion is considered in Machado et al. (2018, Section 4.1) and we
denote it here by I(Td;N ,L). The following results indicate that independent dispersion is a better
strategy than uniform dispersion in order to extend population survival.

Theorem 4.1. Consider the processes U(Td
+;N ,L) and I(Td

+;N ,L) with survival probability P (Vu)
and P (Vi), respectively. If P (Vi) = 0 then P (Vu) = 0.

Proof of Theorem 4.1: Observe that for a fixed Td
+, N and L, both processes, U(Td

+;N ,L) and
I(Td

+;N ,L), behave as a homogeneous branching processes. Every vertex x ∈ Td
+ which is colonized

produces a random number of new colonies (whose distribution depends only on N , L and of
dispersion scheme) on the d neighbor vertices which located are further from the origin than x is.
We denote by Yu those number in the process U(Td

+;N ,L) and Yi in the process I(Td
+;N ,L). By

numbering those d vertices, we can represent the random variables Yu and Yi as

Yu =
d∑

i=1

Ii, and Yi =

d∑
i=1

Ui,

where Ii and Ui are the indicator variables of event the vertex i receives at least one individual in
the processes U(Td

+;N ,L) and I(Td
+;N ,L), respectively.

Observe that

E(Yu|N = n) =
d∑

i=1

E(Ui|N = n) =
d∑

i=1

P(Ui = 1|N = n) = dP(U1 = 1|N = n)

=
dn

n+ d− 1
.

E(Yi|N = n) =

d∑
i=1

E(Ii|N = n) =

d∑
i=1

P(Ii = 1|N = n) = dP(I1 = 1|N = n)

= d
(
1−

(d− 1

d

)n)
.



Uniform dispersion in growth models 623

Note that for all n ≥ 0 and d ≥ 1 integers,

1−
(d− 1

d

)n
≥ n

n+ d− 1
.

Thus,
E(Yi) = E[E(Yi|N)] ≥ E[E(Yu|N)] = E(Yu). (4.1)

The result is obtained through the comparison of the mean numbers of offspring in the branching
processes. □

Theorem 4.2. Let Iu(d) and Ii(d) be the numbers of colonies created during the processes
U(Td;N ,L) and I(Td;N ,L), respectively.

(1) Suppose that

E
( N

N + d− 1

)
<

1

d
.

Then

E(Iu(d)) = 1 +
(d+ 1)E

(
N

N+d

)
1− dE

(
N

N+d−1

) .
(2) Let G(s) be the probability generating function of N . Suppose that

G
(d− 1

d

)
<
d− 1

d

then

E(Ii(d)) = 1 +
(d+ 1)

(
1−G

(
d

d+1

))
1− d

(
1−G

(
d−1
d

)) .

(3) For every d ≥ 2, it holds that E(Iu(d)) ≤ E(Ii(d)). Besides, if E(N) < 1,

lim
d→∞

E(Ii(d)) = lim
d→∞

E(Iu(d)) =
1

1− E(N)
.

Proof of Theorem 4.2: Items (1) and (2) are Propositions 3.2 and Machado et al. (2018, Proposition
4.4), respectively. Item (3) follows from (4.1), Proposition 3.3 and Machado et al. (2018, Proposition
4.5). □

Corollary 4.3. Consider U(Td
+;P(λ),Bin(p)) and I(Td

+;P(λ),Bin(p)).
(1) Suppose that

Φ
( λp

λp+ 1
, 1, d+ 1

)
>

(λp+ 1)[p(λd+ d+ 1)− 1]

pd(d+ 1)(λ+ 1)
.

Then

E(Iu(d)) = 1 +
(d+ 1)(λ+ 1)

(
λp+ 1− dΦ

(
λp

λp+1 , 1, d
))

λ(λp+ 1)
(
1− d(λ+1)p

(λp+1)2

[
λp+ 1− (d− 1)Φ

(
λp

λp+1 , 1, d
)]) ,

(2) Suppose that

p <
d+ 1

d+ λ(d− 1)
.

Then

E(Ii(d)) = 1 +
(d+ 1)(λ+ 1)p(d+ λp)

(d+ λp+ 1)(d(1− p(λ+ 1)) + λp)
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(3) If (λ+ 1)p < 1,

lim
d→∞

E(Ii(d)) = lim
d→∞

E(Iu(d)) =
1

1− (λ+ 1)p
.

Proof of Corollary 4.3: Follows from Theorem 4.2 and equations (2.1) and (2.2). □

Example 4.4. Consider U(Td
+;P(λ),Bin(p)) and I(Td

+;P(λ),Bin(p)) with λ = 1 and p = 1
2 . By

using Corollary 4.3 we compute (Table 4.1) the mean numbers of colonies created during the process
for both models with 2 ≤ d ≤ 6.

Table 4.1. Mean numbers of colonies created during the processes
U(Td

+;P(1),Bin(12)) and I(Td
+;P(1),Bin(12)).

d 2 3 4 5 6
E(Iu(d)) 4.309 5.337 6.357 7.372 8.385
E(Ii(d)) 5.286 7.222 9.182 11.154 13.133

Theorem 4.5. Let τu(d) and τi(d) be the extinction times of the processes U(Td
+;P(λ),Bin(p)) and

I(Td
+;P(λ),Bin(p)).
(1) Suppose that

Φ
( λp

λp+ 1
, 1, d+ 1

)
>

(λp+ 1)[p(λd+ d+ 1)− 1]

pd(d+ 1)(λ+ 1)
.

Then

E(τu(d)) =
∫ 1

0

1− s

Gu(s)− s
ds,

where

Gu(s) =
1

(λp+ 1)

[
1− p+

(λ+ 1)

λ

d∑
y=1

[(
d

y

)
sy

∞∑
n=y

[( λp

λp+ 1

)n
(
n− 1

y − 1

)
(
n+ d− 1

d− 1

)]]].
(2) Suppose that

p <
d+ 1

d+ λ(d− 1)

Then

E(τi(d)) =
∫ 1

0

1− s

Gi(s)− s
ds,

where

Gi(s) =
1

λp+ 1

[
1− p+

λ+ 1

λ

d∑
y=1

[
sy
(
d

y

) ∞∑
n=y

T (n, y)
( λp

d(λp+ 1)

)n]]
,

with

T (n, k) =
k∑

i=0

[
(−1)i

(
k

i

)
(k − i)n

]
, n ≥ k.

Remark 4.6. The quantity T (n, k) gives the number of surjective functions f : A → B, where
|A| = n and |B| = k, see Tucker (1980, p. 319).
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Proof of Theorem 4.5: Item (1) is Proposition 3.5 with N = P(λ) and L = Bin(p). Proof of item
(2) follows in an analogous way. On this last case, the probability generating function of the number
of colonies created right after a catastrophe, Yd, is given by

Gi(s) =

d∑
y=0

[
sy
(
d

y

) ∞∑
n=y

T (n, y)P[N = n]

]
,

see Machado et al. (2018, proof of Proposition 4.4) for details. Finally, by using Equation (2.1)
follows the result. □

Example 4.7. Consider U(Td
+;P(λ),Bin(p)) and I(Td

+;P(λ),Bin(p)) with λ = 1 and p = 1
2 . By

using Theorem 4.5 we compute (Table 4.2) the mean extinction times for both models with 2 ≤ d ≤
6.

Table 4.2. Mean extinction times for U(Td
+;P(1),Bin(12)) and I(Td

+;P(1),Bin(12)).

d 2 3 4 5 6
E(τu(d)) 3.494 3.862 4.159 4.408 4.623
E(τi(d)) 3.831 4.372 4.779 5.108 5.384

The results obtained in this section suggest that independent dispersion is a more effective strat-
egy than uniform dispersion for extending population survival. Directly comparing the survival
probability of the model with uniform dispersion, U(Td;N ,L) (Proposition 3.2), and that of the
model with independent dispersion, I(Td;N ,L) (Machado et al., 2018, Proposition 4.4), is chal-
lenging. However, Theorem 4.1 establishes that if extinction occurs in the I(Td;N ,L) model, it
must also occur in the U(Td;N ,L) model. Furthermore, Theorem 4.2 and Example 4.4 show that
the average number of colonies founded in the I(Td;N ,L) model is greater than in the U(Td;N ,L)
model. Similarly, Example 4.7 suggests that the mean extinction time is longer in the I(Td;N ,L)
model than in the U(Td;N ,L) model.
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