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1.Introduction

In reliability theory a coherent system can be decomposed in a series-
parallel (parallel-series) structure (Barlow and Proschan (1981)).

If the components lifetimes are denoted by T;, @ = 1,...,n the system
lifetime is given by

T = ®(T) = min maxT;,
1<j<ki€K,

where T = (T4, ..., T,) and where K;,1 < j < k are minimal cut sets, that is,
a minimal set of components whose joint failure causes the system to fail.

In the case in which there is only one cut set (k = 1), we have a parallel

system and T' = max T, and if all unitary set is a cut set (k = n), the
<i<n
system is series and T' = 1r<nAi£1 T;. Even in despite of its simples structures,
Stsn

the series and parallel system are essential in reliability theory since that any
coherent structure can be decomposed in a series-parallel ( parallel-series )
structure; the performance of any coherent system is always greater than the
performance of a series system and lower than the performance of a parallel
system; a parallel (active) redundancy at components level is always better
than a parallel redundancy at system level are some applications of series and
parallel operations.

In the case of statistically dependent components the system reliability
at time ¢, defined by the survival function F'(t) = P(T > t) is not easy to
calculate, involving intricate operations with multivariate distributions. To
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work this dependence we consider that there exists a bijective correspondence
between the space of the distributions functions and the space of the compen-
sator processes (Jacod (1975)), that is

P(S; > t|S) = exp[-AS(t)] ] (1 - AAi(t))
0<s<t
where
St :=0(lyr>61,1 <i<i<n, s< )

is the filtration representing our observations, (A;(t));>0 is the 3;-compensator
process of the counting process (1(7,<¢})t>0, A§(t) is its continuous part and
AA(t) = Ai(t) — Ai(—t).

In this context Arjas (1981) characterizes the system lifetime through its
J¢-compensator process (Ag(t));>0 and the former through the components
J¢-compensator processes after its corresponding critical level Y;. The critical
level Y; is a positive and extended random variable which describes the time
when component ¢ becomes critical, i.e., the time from which on a failure of
component ¢ would lead to system failure (For a rigorous definition of critical
level see Arjas (1981)). It is easy to see that the critical level of a component
in a series system is the initial time 0 and that the components critical level
in a parallel system of n components is the (n — 1)-th order statistic Tia—13>
The result from Arjas (1981) is

n
As(t) = D [Ai(tAT) - Ai(Y)]*, P—a.s.
i=1
where at = max{0, a}.
Remark: In a general set up we set Y; = oo if either, the component i
fails before it is critical or if the system fails before the component i became
critical.

It follows that the system reliability is calculated by

F(t)=1-P(T <t)=1-E{D) _[A(tAT) - A(Y)]*}.
i=1
Therefore, for a series system F(t) = 1 — E{Z Ai(t AT)} and for
i=1

a parallel system F(t) = 1 — E{Z[Ai(t AT) — Ai(T(n-1))]"}. However
i=1
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the random quantity T},_,) is difficult to follow up and the calculation of
E{[A;(t AT) — A;(Y;)]} still involved in difficulties.

In this paper we intend to represent a parallel system as a series system
through its components compensator transform. It have to be done in a
different probability space but we can eliminate the A;(7,_1)) calculation.

2. Parallel operation through compensator transform

In order to simplify the notation, we assume that relations such as C
, =, <, <, # between random variables and measurable sets, always hold with
probability one.

Consider a parallel system of n components with lifetime T;, 1 < i < n,
being finite and positive random variables defined on a complete probability
space (2,S, P) with P(T; = Tj) =0, 1<4,j <n, that is, the components
can be dependent but simultaneous failures are null-sets. The parallel system
lifetime is 7' = ®(T) = max Ti; where T = (T Ty )-

The system is monitored at component’s level through a family of sub
o-algebras of S, denoted (S¢)¢>0, where

Sy =0(lyr>s3,1<i<n, s<t)
satisfies the Dellacherie conditions of right continuity and completeness.

To work with martingales technics some concepts are necessary. A pos-
itive and extended random variable 7 is an $-stopping time if, and only if,
{r <t} € Q,Vt > 0; 7 is a predictable J¢-stopping time if an increasing
sequence (T,)n>1, of S¢-stopping time , 7, < 7, exists such that 7, — 7 as
n — oo; T is totally inaccessible 3-stopping time if P(7 = 0) < 00) = 0 for
all predictable 3y-stopping times o.

The counting process (N;(t))e>0, Ni(t) = 1{z,<¢}, is an Sy-submartingale
and follows from Doob-Meyer decomposition, that there exists a unique right
continuos, 3;-predictable, nondecreasing and integrable process (A;(t)):>o,
with 4;(0) = 0 such that (N;(t) — Ai(t))e>0 is an zero mean J-martingale.
Ai(t) is called the ,-compensator of N;j(t). In what follows we assume that
the lifetimes T} are totally inaccessible 3y-stopping time which implies that
the compensators A;(t) are continuous and differentiable.
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In what follows we use Girsanov Theorem from Bremaud (1981).

Theorem 2.1 (Girsanov) Let T;,1 < i < n be totally inaccessible -
stopping time representing the components lifetimes. Let (o, (t))i>0,1 <4 <
n, be nonnegative, ;-predictable processes such that for all ¢ > 0 and all
i,1<i<n,

A;(t):/o cls)dh(s) <00, P — as.

and denote a(t) = (a;1(t),...,an(t)) and a(c0) = «, then

Lo ( H[a V8 exp[A;(t) — AX(t)]

is a nonnegative 3¢-local martingale and a nonnegative 3y-super-martingale.
Furthermore, if E[Ly(00)] = 1, Af(t) is the unique S-compensator of N;(t)
under the probability measure @, defined by the Radon Nikodyn derivative

dQq
i «(00).

If T;,1 < i < n are independent lifetimes the Sy-compensator processes

of N,(t ) 1{T <t} are its hazard functions given by A;(t) = —InP(T; >
t|S¢) = —In(F;(t A T;)) where F(t) = P(T; > t) is the survival function of
I

Under the independence hypothesis we can calculate

n

k
P(max{T;}>1) =3 (- 3 [[F,0) =

k=1 1<i1<...<ix<n j=1

k
>, Iexpl-4;0)] =

1< < Kipg<n j=1

2
2 PO EWHOE
8] (-1

1<ii <. < <n F=1

n

k
Yoo expl= DAy + > A1) =

j=1 k=1 1<ir<...<ix<n j= j=1

—
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n

n n—k
exp[= Y A;(8)] Y (1) > exp(y _ A, (8)].
i=1

k=1 1€i1<...<ip_x<n i=1

Therefore, in the set {t < T} the $;- compensator of T is As(t) =
—In[P(T > t|S)] =

n n n—k
> A —In{> (-1)k? > exp[) Ay ()]}
j=1 k=1 g=1

1<i1<...<ig_x<n

We intend to define a compensator transform to characterize the parallel
system in the dependent case through compensator transform, preserving the
above intuition. As this operation is symmetric on T}, the idea is to combine
compensator transformations on A;(t).

For 1 <! < n we define the compensator transform A} (t) = fot aq(s)dA(s)

where
n n—k
S (=1t > exp| Y  Ai;(5)]

1 lsi1<...<in_ksn;i1‘#l j=1

al(s) = D(S)

where

n n—k
DH=Y (1" Y ey Ay (0]
k=1 =1

1<i;<...<ipn_<n

Lemma 2.2 Under the above hypothesis and notation we have

iﬂ.{ - Zn:A; — I D(2).
=1 =1

Proof
n n—k
DTS el Ay (o)
. k=1 1<1) <o i Snjig £l i=1
Af () =f0 = <D(,;)n j J dAy(s) =
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n n—k—1

t > (-1k! > exp[ > Aij(s)] exp[A(s)]
/ {1_k=1 k#l 1§i1<...<1'.,._k_D,(<sn) Jj=1 }dAl(S) =
0
n —k—
Z N Z exp| Z )] exp[Ai(s)]

1<i1 <. <lip 1 <02

b k=1l
Al(t)_/
0

However

D(s)

dD(t) =

SIS

k=1 1<i1 <. <in_g<n.

n

O
1;k#1

lSi1<...<i,L_k_1Sn;iJ #l

n —k—
24 exp| z
=1 k j=1

and therefore

S a-3 - [
=1 1=1 0

n—k
expl Y A, (0]

(iA[ (s)

n—k

D dAi(t) =

J=1

t)]} exp[A(t)]dA(t)

iAl —InD(¢t

Our main result follows from an adaptation of Girsanov Theorem.

Theorem 2.3 The following process

n

ln—[ (oq(Ty)) <o) exp[ZA

=1 j=1

H o(Th)) M D(t) =

3

(ou(T) s

o

TS N

1<i1<..<ip—x<n

—~

1

Eod

is a nonnegative 3y-martingale with E[L(c0)] = 1.
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Proof The process

n—k
S (-k! L exp[z Ay, (5)]

k=1 1<i1 <. <in—k <njij#l
D(s)

(,Yl(S) =

is an 3y-predictable process because so are the components compensator pro-
cesses. As 0 < oy(s) <1 we have

/Ot ay(s)dAi(s) < Ait) < oo, P —a.s.

and we can apply Girsanov Theorem. As the lifetimes 7; are finite, N;i(t) —
A:(t) are 3p-martingales.

Therefore, we are looking for a probability measure @, such that, un-

der Q, C*(t) = >, Af(t) becomes the J;-compensator of 1{12132( T; <t}
1SN
with respect to this modified probability measure. By Girsanov Theorem the

desired measure @ is given by the Radon Nikodyn derivative —Q L(00).
Remarks

i) From Theorem 2.3 we have

n

n n—k
=M@ Yot 3 ey 4u(T
j=1

=1 k=1 1<i1<...<in—k<n

ii) Based in Bueno (2005) we can define the reliability importance of a
component , [, with lifetime T}, for the system reliability, (1), with lifetime
T under a parallel improvement as

n n—k—1

(—1)k-? > exp[ZA )] exp[Ai(s)]

Ty ! -
k=1;k#l 1<i) <...<ipn-k-15Nn
cov(T, (1 - 1A, (s
(T, cu 1)/0 D0s) dA(s)).




iii) If the components are dependent but identically distributed, we have
n—k

D)= (-1 N exp[) A, ()] =

k=1 1<ii<...<in_k<n Jj=1

Y (- >, exp(n — k)A(t)] =

k=1 IS <hn K ST

S art(, ) esvlin - @] =

k=1

n—1
S (-1 (”) expliA(t)] = (1 - explA®)" — explnAD)].

i=0 i
and

n n—k
S (1) > exp| Y Ay, ()] =
k=1 lSi1<...<i"_kSn;iJ‘-‘,ﬁl Jj=1

n—1 n—1

Z(-mn-f-l( | ) exp[iA(H)] = (1 — explAD])" .

=0 J

Therefore

(1 — exp[A(t))" " _
(1 — exp[A(t)])" — exp[nA(t)]

Ql(t) =

iv) If the components are dependent but identically distributed with n =
2, the component compensator transform is

. t ] — Al :

and the compensator of Liryvry<ty 18

Y ,—A(s)
2—2e
/0 5w A



under the measure (Q such that

dd%’ =2 — 2exp[—A(T)].

which is used in Bueno and Carmo (2007) to define active redundancy
operation when the component and the spare are dependent but identically
distributed.

We note that, in iv), L(co) = % =2 — 2exp[—A(T)] < 2.
As oy(Ty) > 0 on {T}, 00 for all [, L(o0) > 0, P,.s. and P is absolutely
d(.;, = 2—20xp1—AiT5 > 2.

continuous with respect to @ and 7
It follows that

1

T senAm) L > 22l

E[T] = Eq|

and we get a lower bound for the mean system lifetime.
In the general case we may conclude that if L(o0) < (>)1 we get a lower
(upper) bound for the mean system lifetime under P.
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