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1.lntroduction 

In reliability theory a coherent system can be decomposed in a series­

parallel (parallel-series) structure (Barlow and Proschan (1981)). 

If the components li fet imes are denoted by Ti, i = 1, ... , n the system 

li fet ime is given by 
T = <I>(T ) = min max Ti, 

l ~ j ~ kiE K; 

where T = (T1 , . .. , Tn) and where Kj, 1 :S j :S k are minimal cut sets, that is, 

a minimal se t of components whose joint fai lure causes the system to fail. 

In the case in which there is only one cut set (k = 1) , we have a parallel 

system and T = max Ti and if all unitary set is a cut set (k = n), the 
l ~ i ~ n 

system is series and T = min Ti. Even in despite of its simples structures, 
l ~ i ~ n 

the series and parallel system are essential in reliability theory since that any 

coherent structure can be decomposed in a series-parallel ( parallel-series ) 

structure; the performance of any coherent system is always greater than the 

performance of a series system and lower than the performance of a parallel 

system; a parallel (active) redundancy at components level is always better 

than a parallel redundancy at system level are some applicat ions of series and 

parallel operations. 
In the case of statistically dependent components t he system reliabi li ty 

at t ime t , defined by the survival function F(t) = P(T > t) is not easy to 

calcu late, involving intricate operations wi th multivariate distributions. To 
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work this dependence we consider that there exists a bijective correspondence 
between the space of the distributions functions and the space of the compen­
sator processes (Jacod (1975)) , that is 

P(Si > tJSJt) = exp[-Af(t)] IT (1 - 6 A ;(t)) 
O~s~ t 

where 
SJt := u(l{T. >s}, 1 :S i :S i :S n, s :S t) 

is the fi ltration representing our observations, ( A; ( t) )t~o is the ~\-compensator 
process of the counting process (l{r.~ t})t~O, Ar(t) is its continuous part and 
6A;(t) = A;(t) -A;(-t). 

In this context Arjas (1981) characterizes the system lifetime through its 
S't-compensator process (A<I>(t))t ~o and the former through the components 
<}t-compensator processes after its corresponding critical level Y.;. The critical 
level y; is a positive and extended random variable which describes the time 
when component i becomes critical, i.e., the time from which on a failure of 
component i would lead to system failure (For a rigorous definition of critical 
level see Arjas (1981)). It is easy to see that the critical level of a component 
in a series system is the initial time O and that the components critical level 
in a parallel system of n components is the (n - 1)-th order statist ic T(n - l )· 
The result from Arjas (1981) is 

n 

i == l 

where a+ = max{O, a}. 
Remark: In a general set up we set }'i = oo if either, the component i 
fails before it is critical or if the system fai ls before the component i became 
critical. 

It follows that the system reliability is calculated by 
n 

F(t) = 1 - P(T :S t) = 1 - E{ I )A;(t /\ T) - A;(Y.;)]+ }. 
i== l 

n 

Therefore, for a series system F(t) = 1 - E{L Ai(t I\ T)} and for 

a parallel system F(t) 

i== l 
n 

1 - E{L [A;(t I\ T) - A;(T(n- 1))]+}. However 
i== I 
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the random quantity T(n- l) is difficult to follow up and the calculation of 
E{[Ai (t AT) - Ai(1'i )] +} still involved in difficult ies. 

In this paper we intend to represent a parallel system as a series system 
t hrough its components compensator transform . It have to be done in a 
d ifferent probability space but we can eliminate the Ai(T(n-i) ) calculation. 

2. Parallel operation through compensator transform 

In order to simplify the notation , we assume that relations such as C 

, = , ~,< ,=I- between random variables and measurable sets, always hold wit h 
probability one. 

Consider a parallel system of n components with life time Ti, 1 ~ i ~ n, 
b eing finite and positive random variables defined on a complete probability 
space (0 , ~, P) with P(Ti = Tj ) = 0, 1 ::; i , j ::; n , that is, the components 
can be dependent but simultaneous failures are null-sets. The parallel system 
li fet ime is T = <I> (T) = max Ti, where T := (Ti , .. , Tn)-

l ~ i ~ n 

T he system is monitored at component 's level through a family of sub 
a -algebras of ~, denoted (~t )t:::>:o, where 

satisfies the Dellacherie conditions of right continuity and completeness. 

To work with martingales technics some concepts are necessary. A pos­
it ive and ext ended random variable T is an ~ t-stopping time if, and only if, 
{ T ~ t} E ~ t , Vt 2: O; T is a predictable ~rstopping time if an increasing 
sequence ( Tn ) n > l, of ~ t-stopping time, Tn < T , exists such that Tn-+ T as 
n-+ oo; T is totally inaccessible ~ i-stopping time if P(T = u ) < oo) = 0 for 
a ll predictable ~i-stopping times a . 

The counting process (Ni(t ))i,:::>: o, Ni (t ) = l{r, ~t}, is an ~ ,.-submartingale 
and follows from Doob-Meyer decomposition, that there exists a unique right 
continues, ~ t-predict able, nondecreasing and integrable process (Ai(t)) t :::>: O, 
with Ai (O) = 0 such tha t (Ni (t) - Ai (t)) t:::>:O is an zero mean ~t-mart ingale. 
Ai (t ) is called the ~ t-compensator of Ni (t ). In what fo llows we assume that 
t he li fe times Ti are totally inaccessible ~ ,.-stopping time which implies t hat 
the compensators Ai (t ) are continuous and d ifferent iable. 
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In what follows we use Girsanov Theorem from Bremaud (1981). 

Theorem 2.1 (Girsanov) Let Ti, 1 ~ i ~ n be totally inaccessible ~'t­
stopping time representing the components lifetimes. Let (ai(t))t 2'.:0, 1 ~ i ~ 
n, be nonnegative, 8't-predictable processes such that for a ll t ~ 0 and all 
i, 1 ~ i ~ n, 

A;(t) = lat a;(s)dAi(s) < oo, P - a.s. 

and denote a(t) = (a1(t), ... ,an(t)) and a(oo) = a, then 

n 

La(t) (t) = IJ [ai(Ti)]Ni( t) exp[Ai(t) - A;(t)] 
i= l 

is a nonnegative <Jt- local martingale and a nonnegative <Jt-super-martingale. 
Furthermore, if E[L0 (00)] = 1, A;(t ) is the unique <Jt-compensator of N;(t) 
under the probabi lity measure Q0 defined by the Radon Nikodyn derivative 

dQa 
dP = La(oo). 

If T;, 1 ~ i ~ n are independent lifetimes the <Ji-compensator processes 
of Ni(t) = l{Ti~ t} are its hazard functions given by Ai(t) = - In P(Ti > 
tl<Ji) = - ln(F;(t I\ T;)) where F;(t) = P(T; > t) is the survival function of 

Under the independence hypothesis we can calculate 

n k 

IJ exp[-A;; (t)] = 

n k 

2)-1t-1 L exp[- L A;(t)] = 
k=l l ~ i, < ... <ik ~ n j=l 

n n k n 

exp[- L A1(t)] I:(-l)k- l exp[- LA;; (t) + L Aj(t)] = 
j = l k= l j = l j = l 
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n n 

exp[- LAi(t)] 1:(-1/-1 

j=l k=l 

n-k 

exp[L A;J(t)]. 
j=l 

Therefore, in the set {t < T} the ~t- compensator of T is A<1>(t) = 
- ln[P(T > ti~t)) = 

n n n-k 
L Ai(t) - ln{Z::(-l)k-l exp[L A;; (t))}. 
j=l j=l 

We intend to define a compensator transform to characterize the parallel 
system in the dependent case through compensator transform, preserving the 
above intuition. As this operation is symmetric on Ti, the idea is to combine 
compensator transformations on A;(t). 

For 1 ~ l ~ n we define the compensator transform Ai ( t) = J; a1 ( s )dA1 ( s) 
where 

n n-k 

1:(-1/-1 L exp[L Ai; (s)] 
k=l l:<,i1< ... <in-k:',n;i;~I j=l a1(s) = -------D-(-s) ______ _ 

where 
n-k 

L exp[L A;, (t)] . 
k=l 

Lemma 2.2 Under the above hypothesis and notation we have 

n n 

L Aj = L Ai - ln D ( t) . 
l= l l=l 

Proof 
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n n - k - 1 

L (-1l-1 L exp[ L A;j (s)] exp[A1(s)] 

A1 ( t )-1t _k=_l_;k_cf_l ___ 1_:<,;_i_, <_._ .. <_i_·n_- k_~-'-~s...,.) ___ 1=_1 ____ ___ dA1 ( s). 

However 

n n - k n - k 

dD(t) = I::(-1l-1 exp[L A;j (t)] L dAi,(t) = 
k=l j=l j=l 

n n n - k-1 

L{ L (-1l-1 L exp[ L Aij (t)]}exp [A1(t) ]dAi(t) 
l= l k= l;kcfl l :<,; i , < .. < in - k- 1:<,; n;ijc/ l j = l 

and therefore 

Our main result follows from an adaptation of Girsanov T heorem. 

Theorem 2.3 The following process 

n n n 

L(t) = fl (a 1(T1))1<r1 s <J exp[L A1(t) - L A;(t)] = 
l = l j = l j = l 

n 

fl (ai(71)) 1 <r1 siJ D(t) = 
l= l 

n n n - k 

fl (a1(T1))1<r1s t1 I::(- 1l -1 exp[L Aij (t)] 
l=l k= l j = l 

is a nonnegative ~t-martingale wit h E [L(oo)] = l. 
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Proof The process 

n n-k 

1)-il- l L exp[L A i; (s)] 
k = l l '.S i 1 < . . <in - k '.S n ;i;fl j=l 

a i ( 8 ) = -------D---:-( s...,...) _____ _ 

is an ~ i-predictable process because so are the components compensator pro­

cesses. As 0 < a,1 ( s) ~ 1 we have 

and we can apply Girsanov Theorem. As the li fetimes Ti are finite, Ni(t) -

Al ( t) are ~t- martingales. 

Therefore, we are looking for a probability measure Q, such t hat, un­

der Q, C*(t) = I::7=1 A:(t) becomes t he ~ ccompensator of l{ max Ti < t} 
15: i '.S n -

with respect to t his modified probability measure. By Girsanov T heorem the 

desired measure Q is given by the Radon Nikodyn derivative ~ = L(oo). 

Remarks 

i) From Theorem 2.3 we have 

n n n - k 

exp[ L A;(T)]. 
! = l k = l j= l 

ii) Based in Bueno (2005) we can define the reliabi li ty importance of a 

component , l, with li fetime T,. , for the system reliability, I (l) , with li fetime 

T under a parallel improvement as 

n n-k- 1 

L (- 1t- 1 L exp[ L A ;; (s)] exp[Ai(s)] 

cov(T, 0'1 (Ti) 1T1 _k =_ L; _k f_1 ____ 1_5:_i_1 <_._ .. <_•_· .. _-_kD_'-~-s) ___ J_=_1 ----- --dA1 ( s) ). 
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and 

ii i) If the components are dependent but identically distributed, we have 

n -k 

L exp[L Aii (t)] = 
k=l 

exp[(n - k)A(t)] = 

I)- 1t- 1 
( n ) exp[(n - k)A(t)] = 
n-k 

k=l 

n-1 

?;(-1t- j ( ; ) exp[jA(t)] = (1 - exp[A(t)]t - exp[nA(t) ]. 

n n-k 

I )-l)k-l L exp[ L Aii (s)] = 
k = l l ~ i,< ... <in- k ~n;ijfl j = l 

n-1 

I:(-1r-j- l ( n ~ 1) exp[jA(t)] = (1 - exp[A(t)])" - ]. 
j=O J 

Therefore 
(1 - exp[A(t)])n- l 

D!t ( t) = -( 1---e-'-x-p [-A-( t--=--) ].,__) n--'-_...:...:ec:.._x_p,:--[ n-A-:-( t.,.,.)] 

iv) If the components are d pendent but identically distributed with n = 
2, the component compensator transform is 

f 1- eA(s) . 

A*(t) = Jo 1 - 2e/\(s) dA(s) 

and the compensator of l{T vT, < t} is I 2 _ 

j •t 2 - 2e-A(s) 
---A....,..(-,--) dA(s). 

o 2 - e- s 

8 



under the measure Q such that 

dQa = 2 - 2 exp[- A(T)] . 
dP 

which is used in Bueno and Carmo (2007) to define active redundancy 

operation when the component and the spare are dependent but identically 

distributed . 

We note that , in iv), L(oo) = ,~Qp" = 2 - 2 exp[- A(T)] < 2. 

As a1(T1) > 0 on {Ti , oo for all l, L(oo ) > 0, Pa.s , and Pis absolutely 

continuous with respect to Q and d~ "' = 2_ 2 exp[ -A(T)] > 2. 

It follows that 

and we get a lower bound for the mean system lifetime. 

In the general case we may conclude that if L( oo) < (>) 1 we get a lower 

(upper) bound for the mean system lifetime under P. 
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