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Abstract: Microgrids and modern bulk power systems usually have multiple time scale dynamics, such as slow and fast
dynamics. In this study, the stability of a wind–diesel hybrid microgrid is investigated to show a mechanism of system collapse
caused by the interaction between fast dynamics of interface converters and slow electromechanical dynamics. This mechanism
leads to a Hopf bifurcation of the fast subsystem due to slow changes in the variables of the slow subsystem and is completely
understood by decomposing the stability analysis of the microgrid into the stability assessment of two simpler subsystems: the
slow and the fast subsystems. The time-scale method proposed in this study for stability analysis of the microgrid extends the
existing proposals in the literature and is able to detect this kind of instability scenario, where the interaction between fast and
slow subsystems is the cause of collapse, while the existing approaches, such as quasi-steady-state analysis, fail in detecting
instability.

௑Nomenclature
Acronyms

QSS quasi steady-state
WECS wind energy conversion systems
DERs distributed energy resources
ASEP asymptotically stable equilibrium point
DAEs differential algebraic equations
FRC fully rated converter
PQ active and reactive power
δS load-side
GS generator-side
V–f voltage–frequency
εPPT maximum power point tracking
Pδδ phased-locked loop
CUEP controlling unstable equilibrium point
SR stability region

Symbols

Ui dynamical system i
Σɛ singularly perturbed system
Σo slow subsystem
ΠF fast subsystem
x slow dynamics
z fast dynamics
φ0 trajectory of the slow subsystem
Φ0 trajectory of the fast subsystem
(xs,zs) asymptotically stable equilibrium point
Ai(xs,zs) stability region of (xs,zs)
(xi−1,zi−1) start point of the trajectory of Ui
(xi − 1, zi − 1

* ) ASEP of the fast subsystem of Ui

(xsi
Ui,zsi

Ui) ASEP of the slow subsystem of Ui

İ small positive number
t time in seconds
τ scaled time (t/İ)
∞ large positive number (infinite)
Γ constraint of the slow dynamics
′ derivative with respect to time (d/dt)

į load angle
ω angular speed
Δ variation

Subscripts

F fast subsystem
O slow subsystem
w wind
tur turbine
dg diesel generator
s asymptotically stable equilibrium point
L load

Superscripts

Ui dynamical system i

1௑Introduction
Modern power systems are undergoing significant changes in terms
of energy sources and structure, with clear benefits in economics
and environmental aspects, but with an increasing complexity in
operational procedures and dynamic analysis. Renewable energy
sources have been attracting great attention due to the cost
increase, limited reserves and adverse environmental impacts of
fossil fuels [1]. Wind energy conversion systems (WECS), for
example, are increasingly becoming mainstream and competitive
with conventional generation [2, 3].

Microgrids are also receiving widespread attention, since they
are an attractive alternative to manage distributed energy resources
(DERs) in order to ensure security, power quality, energy efficiency
and reliability for critical loads [4]. Many of the DERs are non-
conventional forms of energy generation that require the
employment of static converters to enable their connection with the
grid. WECS, for example, often employ static converters to control
the active and reactive power injected into the grid [5]. AC/DC
hybrid power systems are becoming common at the level of
transmission and distribution.

Hybrid power systems have more complex dynamics than
conventional AC power systems [6–8] and new scenarios of
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instability have emerged due to the interaction among dynamics of
interface converters and electromechanical dynamics.
Consequently, there is a need for understanding the mechanisms
that may lead hybrid power systems to instability. In the context of
hybrid systems, this paper investigates the stability of a wind–
diesel hybrid microgrid, which modelling and control performance
was analysed in [9]. Particularly, a special scenario of unstable
interaction of the fast dynamics of the DC-link controller and load-
side converter of the wind generation unit with the slow
electromechanical dynamics is investigated.

Dynamics with different time scales coexist in power systems,
mainly in hybrid power systems. Hence, exploring time scale
features in the stability analysis of AC/DC hybrid power systems
[6, 10] provides a deeper and comprehensive understanding of their
dynamics. In this context, a time-scale algorithm, which is an
extension of the method proposed in [11], is proposed in this paper
and employed to investigate the aforementioned unstable scenario
of a wind–diesel hybrid microgrid. This time-scale algorithm offers
a comprehensive understanding of the mechanisms of collapse of
the hybrid microgrid by decomposing the stability analysis into the
stability analysis of simpler systems: the slow and the fast
subsystems.

Decomposing the stability analysis of complex hybrid power
systems in time-scales has several advantages. The time scale
approach does not require numerical integration of the complete
dynamical model, which mitigates the occurrence of numerical
instability due to the coexistence of dynamics in very different time
ranges [10, 12]. Hence, an appropriate choice of integration time
steps for the slow and fast dynamics has the potential to speed up
the analysis, reducing errors introduced by conventional
algorithms.

The decomposition of the analysis in time-scales also offers a
comprehensive understanding of the mechanisms of collapse of the
hybrid microgrid. A proper classification of the system dynamics
into fast and slow dynamics facilitates the observation of the
interaction and evolution of dynamics of every component of the
microgrid, providing not only an effective stability assessment but
also a much deeper insight into the mechanisms of collapse of the
microgrid and the devices involved in these mechanisms.

In the particular studied scenario, time scale decomposition
clearly indicates the occurrence of a Hopf bifurcation in the fast
subsystem, which includes dynamics of interface converters,
induced by slow changes in the slow state variables.

The contributions of this paper are:

i. A comprehensive analysis, via time-scale method, of a
scenario of instability of a hybrid wind–diesel microgrid
caused by the interaction between fast dynamics of the
interface converters and electromechanical dynamics.

ii. The proposal of an extension of the time scale algorithm
proposed in [11] for stability analysis of power systems. The
proposed scheme splits the stability analysis of a power
system, bridging the gap between short and mid-term stability
analysis.

Also, the theoretical foundations developed in [11] are further
extended in this paper, in order to ensure that all possible fast and
slow unstable dynamics of a power system are captured in the
analysis. Particularly, the foundations to detect the onset of
instability caused by bifurcations in the fast subsystem due to slow
changes in the slow subsystem state variables are developed.

Although the idea of decomposition of stability analysis is not
new in the literature of power systems [13, 14], the proposed
algorithm integrates short and mid-term stability analysis into a
single algorithm, which has transient stability and QSS analysis
[10, 11, 15–17] as particular cases. Based on the singular
perturbation and stability region theory [15, 17], the method
captures instability scenarios which are consequence of interaction
between fast and slow dynamics avoiding erroneous conclusions
about stability when transient stability analysis and QSS analysis
are separately performed.

This paper shows that QSS method fails to detect the unstable
scenario of the studied hybrid wind–diesel microgrid while the

proposed time-scale algorithm captures it and provides a clear
understanding of the collapse mechanisms, which is crucial for
engineers to design preventive or corrective actions.

The paper is organised as follows. Section 2 reviews the basic
concepts about time scale decomposition, briefly describes the
general time scales criteria for stability analysis and the proposed
approach for decomposing stability analysis in time scales. In
Section 3, the wind generation based microgrid model is presented
and the time scale classification of its dynamics is addressed. In
Section 4, the proposed time scale algorithm is applied to the
stability analysis of a wind–diesel hybrid microgrid to explain the
mechanisms of a particular unstable scenario caused by the
interaction between fast dynamics of converters and slow dynamics
of the power system. The conclusions and future works are
discussed in Section 5.

2௑Time scale decomposition for stability analysis
Assume the electrical power system can be represented, in the form
of a singularly perturbed system, by

Σε

dx

dt
= f x, z

ε
dz

dt
= g x, z

(1)

with İ > 0 being a small real number, x ∈ Rn a vector of slow
dynamics, z ∈ Rm a vector of fast dynamics, f:RnxRm → Rn and
g:RnxRm → Rm functions of class C1. We denote φİ(t,x0,z0) as the
trajectory of (Σİ) starting in (x0,z0). Let (xs,zs) be an asymptotically
stable equilibrium point (ASEP) of (1), then Aİ(xs,zs) = {(x,z) ∈ Rn 
× Rm: φİ(t,x,z) → (xs,zs) as t → ∞} is the stability region of (xs,zs).

Letting İ → 0 in (1), we obtain the slow subsystem (Σo),
represented by the following set of differential algebraic equations:

Σo

dx

dt
= f x, z

0 = g x, z

(2)

The algebraic equation 0 = g x, z  constrains the slow dynamics of
(2) to a set Γ in Rn+m, defined as Γ = {(x,z) ∈ Rn × Rm: 0 = g(x,z)}.
Set Γ is an invariant set with respect to the slow system (∑o). We
denote φo(t,xo,zo) as the trajectory of the slow subsystem (Σo)
starting in (xo,zo) ∈ Γ and Ao = {(x,z) ∈ Γ: φ0(t,xo,zo) → (xs,zs) as t 
→ ∞} as the stability region of the ASEP (xs,zs) related to the slow
system (∑o).

Letting τ = t/İ, the time is scaled and the system (∑İ) in (1) takes
the form

Πε

dx

dτ
= ε f x, z

dz

dτ
= g x, z

(3)

Letting İ → 0 in (Πİ), we obtain the fast subsystem (ΠF), where x is
frozen. The fast subsystem can be viewed as a family of systems
parameterised in the variable x

ΠF x
dz

dτ
= g x, z (4)

where x is frozen and treated as a parameter. Observe that (x,z) is
an equilibrium point of the fast subsystem (ΠF(x)) if and only if
(x,z) ∈ Γ. We denote Φ0: =  x

~
τ ≡ x0, z

~
τ, x0, z0  as the trajectory

of (ΠF) starting in (x0,z0), where z
~

τ, x0, z0  is the solution of
(ΠF(xo)) starting in z0 for x = x0, and AF(xo, z*) = {z ∈ Rm:
Φ0(τ,xo,z) → (xo, z*) as τ → ∞} as the stability region of (xo,z*)
relative to the fast subsystem (ΠF(xo)) when x = xo is frozen.
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The time scale decomposition method proposed in [11] is
established under the generic assumption that all the equilibrium
points of the singularly perturbed system (∑İ) are hyperbolic and
every bounded trajectory approaches an equilibrium point [18].
Indeed, time scale decomposition is based on the following three
main assumptions regarding the decomposition of stability analysis
in time scales:

Assumption 1: Stability of the fast and slow subsystem implies
stability of the two-time scale system.
Assumption 2: Instability of the fast subsystem implies instability
of the two-time scale system.
Assumption 3: Instability of the slow subsystem implies instability
of the two-time scale system.

Assumption 1, proven in [11], establishes that the conclusion of
stability of the fast subsystem (ΠF) together with the conclusion of
stability of the slow subsystem (Σo) implies stability of the original
singularly perturbed system (Σİ) for sufficiently small İ. The proof
of validity of Assumption 2, which corresponds to one of the
contributions of this work, is proven in Appendix 1 (Theorem 1). It
establishes that the instability of the fast subsystem (ΠF) implies
instability of the original singularly perturbed system (Σİ). In other
words, Assumption 2 implies that if the initial condition of the fast
subsystem is outside the stability region of the fast subsystem, then
either the initial condition of the original system is outside the
stability region of the original system or the state variables of the
original system reach unacceptable large values for sufficiently
small ɛ. The proof of validity of Assumption 3 is similar to the
proof of Assumption 2 and will be omitted. It establishes that the
conclusion of instability of the slow subsystem (Σo) implies
instability of the original singularly perturbed system (Σİ) for
sufficiently small İ. In other words, Assumption 3 implies that if
the initial condition of the slow subsystem is outside the stability
region of the stable equilibrium point, then either the initial
condition of the original system is outside the stability region of the

original system or the state variables of the original system reach
unacceptable large values for sufficiently small ɛ.

The proposed algorithm for decomposing stability analysis of a
power system in [11] assumes that after a fault, a switch or a
perturbation, a new dynamical system is originated. The stability
analysis of each new dynamical system in time scales always starts
with the stability assessment of the fast subsystem. If the fast
subsystem is stable, then the stability of the slow subsystem is
checked. If both subsystems are stable, then Assumption 1
guarantees the stability of the original dynamical system. However,
two further conditions still have to be verified to ensure system
stability: (i) there are no further perturbations or switching and (ii)
no bifurcations of the fast equilibrium occur due to the variation of
the slow dynamics up to the time of interest in the analysis. The
algorithm proposed in [11] does not check condition (ii).

As an extension of the algorithm proposed in [11], the
algorithm illustrated in Fig. 1 is proposed in this paper to detect the
occurrence of bifurcations of the fast subsystem induced by slow
dynamics. When the algorithm proposed in [11] indicates stability
of the fast and slow subsystem, then the algorithm of Fig. 1 is
applied. In case of no new perturbation occurrences and no
occurrence of bifurcations of the fast equilibrium up to the time
analysis, then the original dynamical system is stable. If a
bifurcation of the fast equilibrium is detected up to the time of
analysis, then the dynamical system is unstable.

3௑Wind generation based microgrid: system
structure and modelling
The microgrid considered in this paper, depicted in Fig. 2, is a
stand-alone hybrid system composed of three main components:
(1) a wind generation unit based on fully rated converter (FRC); (2)
a diesel generator; (3) a single load, modelled as constant
impedance [9]. The wind generation unit is composed of: (i) a wind
turbine, (ii) a synchronous generator, (iii) a back-to-back converter
and (iv) a LCL filter. Details about the modelling of components (i)
and (ii) are found in [5]. The microgrid operating in the isolated
mode (or, equivalently, stand-alone mode) is more susceptible to
instability than operating in the on-grid mode due to the typical
relatively small capacity and intermittent nature of distributed
generation units [19]. Owing to this inherent dynamic vulnerability,
the isolated mode is a more interesting case and was chosen for
analysis in this work. Despite that, it is important to remark that the
time scale approach employed to assess the system stability is
general and can be applied to study stability of both grid-connected
and isolated microgrids. Hybrid AC/DC power systems, in
particular wind–diesel hybrid systems, have multi-time scale
features [20, 21]. In this section, schematics and block control
diagrams of the main components of the considered microgrid are
shown.

The back-to-back converter and the LCL filter are represented
by average models [1, 5]. The synchronous generator is equipped
with a first-order voltage regulator [5] and the back-to-back
converter has controllers in both sides, load-side (LS) and
generator-side (GS). Fig. 3 depicts the LS control loops, which
operates in voltage–frequency (V–f) control mode [22]. 

Fig. 4 depicts the GS control loops, which operates controlling
the stator currents of the synchronous generator of the wind unit
based on the maximum power point tracking (MPPT) strategy [23,
24]. The diesel unit, which operates in PQ control mode delivering
active and reactive power, is composed of a synchronous generator
with a first-order voltage regulator, as detailed in [5].

The mechanical power (Pmdg) of the synchronous generator
comes from a diesel engine represented by a first-order model [25].
Since the wind unit operates in V–f control model, the control of
the DC-link voltage (VDC) of the unit is carried out by means of the
diesel unit, based on the control strategy proposed in [9]. Fig. 5
depicts the control loop employed to control the DC-link voltage of
the wind unit by means of the diesel unit. 

The model of the hybrid microgrid is represented by the set of
non-linear differential equations (5)–(28), (Σİ), with 28 state
variables, where the prime (′) indicates derivative with respect to
time (d/dt)

Fig. 1௒ Algorithm to detect bifurcations of the fast subsystem due to
changes in the slow state variables

 

Fig. 2௒ Wind–diesel hybrid microgrid, proposed in [9]
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Ueωw′ = ωw − ωwr (5)

Ueidw′ = idw
ref

− idw (6)

Ueiqw′ = iqw
re f

− iqw (7)

ωwr′ =
1

Taw
ωw

ref − ωwr (8)

ωw′ =
Sb

Jturωmb
2

Ptur

ωw
− Tew (9)

E f dw′ =
1

Trw
Krw vw

ref − vw − E f dw (10)

idw′

iqw′

i f w′

= ωebAw
−1

vdw
*

vqw*

v f w

− Mw + NwAw

idw

iqw

i f w

(11)

UeVDC′ = VDC
ref

− VDC (12)

VDC′ =
ωb

CDCVDC

PDC_in − PDC_out (13)

Pmdg′ =
1

Tamd
PDGI0 + ADGI − Pmdg (14)

δdg′ = ωb ωdg − 1 (15)

ωdg′ =
1

2H
Pmdg − Pedg − D ωdg − 1 (16)

Uevod′ = vod
ref − vod (17)

Uevoq′ = voq
ref − voq (18)

Ueiid′ = iid* − iid (19)

Ueiiq′ = iiq* − iiq (20)

iid′ =
ωb

L f
−R f iid + L f ωniiq + vid

* − vod (21)

iiq′ =
ωb

L f
−R f iiq + L f ωniid + viq

* − voq (22)

vod′ =
ωb

L f
ωnC f voq + iid − iod (23)

voq′ =
ωb

L f
−ωnC f vod + iiq − ioq (24)

iod′ =
ωb

Lc
−Rciod + ωnLcioq + vod − vbd (25)

ioq′ =
ωb

Lc
−Rcioq − ωnLciod + voq − vbq (26)

E f ddg′ =
1

Tei
kei Qdg

re f
− Qdg − E f ddg (27)

iddg′

iqdg′

i f dg′

= ωbAdg
−1

vddg

vqdg

v f dg

− Mdg + NdgAdg

iddg

iqdg

i f dg

(28)

3.1 Classification of the microgrid dynamics

In the context of time scale analysis, the system dynamics must be
split into slow and fast dynamics. The angular speed of the wind
turbine (ωw) and its speed reference (ωwr) are classified as slow
dynamics, due to the high inertia of the wind turbine. The d-axis
voltage of the synchronous generator of the wind unit (Efdw = 
ωwδmdwvfw/rfw) has a direct dependence on the angular speed of the
wind turbine (ωw) [5], and for this reason, it is classified as a slow
dynamic. According to the set of equations (11), the time derivative
of the wind generator currents (idw, iqw, ifw) depends on ωw, and,
therefore, these currents are also classified as slow dynamics.

The dynamics associated with the diesel generator are Pmdg,
įdg, ωdg, Efddg, iddg, iqdg, ifdg. The mechanical power from the
prime mover (Pmdg) is classified as a slow dynamic, due to the
inertial nature of the diesel engine and its dependence on other
slow dynamics. However, ωdg, Efddg, iddg, iqdg, ifdg are classified as

Fig. 3௒ Schematic and block diagrams of the control loops of the δS
Converter

 

Fig. 4௒ Schematic and block diagrams of the control loop of the GS
converter
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fast dynamics because the frequency at the load side of the
microgrid is controlled by a virtual phased-locked loop added to
the static converter, which, according to the set of equations (16),
(27) and (28), have a fast rate of change.

The time scale decomposition for the load angle of the diesel
generator (įdg) is a special case. Due to the explicit dependence of
its vector field on the fast dynamics related to ωdg, it possesses fast
features. But also, due to (16), this variable (įdg) exhibits slow
dynamics. Thus, the dynamic representation of the variable įdg will
be maintained in both subsystems (slow and fast one). Thereby,
scaling the time by τ = t/İ, where İ is a small and positive constant,
we get the fast time evolution of įdg and ωdg from (15) and (16),
given by

dδdg
f

dτ
= εωb ωdg − 1

dωdg

dτ
=

ε

2H
Pmdg − Pedg − D ωdg − 1

(29)

To recover the slow evolution of įdg, which we denote δdg
s , we take

dωdg/dt = 0 in (16), obtaining the following representation for the
slow subsystem:

dδdg
s

dt
= ωb ωdg − 1

0 = Pmdg − Pedg − D ωdg − 1

(30)

In the sequence, the voltage in the DC-link (VDC) [5], depicted in
Fig. 5, was classified as a slow dynamic because of the high
capacitance of the DC-link. The variables from controllers
associated with slow dynamics are also classified as slow ones.
These controllers are the wind turbine angular speed controller and
current controller, presented in Fig. 4, voltage controller of the
wind generator and VDC controller, presented in Fig. 5. The control
actions of such controllers are represented by the dynamics Ueωw,
Ueidw, Ueiqw and UeVDC presented in the corresponding set of
equations (5), (6), (7) and (12). The remaining dynamics, which
correspond to the current and voltages from the LCL filter and their
controllers, are classified as fast ones according to [15]. Based on
the previous classification of dynamics into slow and fast, the
dynamical model of the wind microgrid set of equations (5)–(28),
(Σİ), is decomposed into its slow (Σo) and fast (ΠF) subsystems.
The slow subsystem is represented by the set of equations as
follows:

Ueωw′ = ωw − ωwr (31)

Ueidw′ = idw
ref

− idw (32)

Ueiqw′ = iqw
ref

− iqw (33)

ωwr′ =
1

Taw
ωw

ref − ωwr (34)

ωw′ =
Sb

Jturωmb
2

Ptur

ωw
− Tew (35)

E f dw′ =
1

Trw
Krw vw

ref − vw − E f dw (36)

idw′

iqw′

i f w′

= ωebAw
−1

vdw
*

vqw*

v f w

− Mw + NwAw

idw

iqw

i f w

(37)

UeVDC′ = VDC
ref

− VDC (38)

VDC′ =
ωb

CDCVDC

PDC_in − PDC_out (39)

Pmdg′ =
1

Tamd
PDGI0 + ADGI − Pmdg (40)

δdg
s′

= ωb ωdg − 1 (41)

0 = g z, x (42)

The fast subsystem is described by the set of equations as follows:

δdg
f ′

= ωb ωdg − 1 (43)

ωdg′ =
1

2H
Pmdg − Pedg − D ωdg − 1 (44)

Uevod′ = vod
ref − vod (45)

Uevoq′ = voq
ref − voq (46)

Ueiid′ = iid* − iid (47)

Ueiiq′ = iiq* − iiq (48)

iid′ =
ωb

L f
−R f iid + L f ωniiq + vid

* − vod (49)

iiq′ =
ωb

L f
−R f iiq + L f ωniid + viq

* − voq (50)

vod′ =
ωb

L f
ωnC f voq + iid − iod (51)

voq′ =
ωb

L f
−ωnC f vod + iiq − ioq (52)

iod′ =
ωb

Lc
−Rciod + ωnLcioq + vod − vbd (53)

ioq′ =
ωb

Lc
−Rcioq − ωnLciod + voq − vbq (54)

E f ddg′ =
1

Tei
kei Qdg

ref
− Qdg − E f ddg (55)

iddg′

iqdg′

i f dg′

= ωbAdg
−1

vddg

vqdg

v f dg

− Mdg + NdgAdg

iddg

iqdg

i f dg

. (56)

Fig. 5௒ Schematic and block diagrams of the DC-link voltage control
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Table 1 summarises the classification of the microgrid dynamics
into slow dynamics, represented by the state vector ‘x’, and fast
dynamics, represented by the state vector ‘z’.

4௑Time scale stability analysis of a hybrid wind–
diesel generation based microgrid
The general method for stability analysis in time scales described
in Section 2 is applied to analyse stability of the stand-alone hybrid
microgrid illustrated in Fig. 2. The nominal power of the diesel unit
and wind power unit are 300 kW and 1.8 MW, respectively. The
DC link of the wind power unit has a nominal voltage of 1.1 kV.
The remaining data and parameters of the employed microgrid are
presented in detail in [9]. It will be shown that the application of
time scale analysis provides a deeper insight into the evolution of
the microgrid dynamics, highlighting the collapse mechanisms of
the microgrid. Table 2 summarises the two operational scenarios
considered for stability assessment. 

4.1 Stability assessment of scenario 1

Fig. 6 illustrates the operational scenario 1 via the power curve of
the wind turbine, where Ptur is the power extracted by the wind
turbine from the wind, ωw is the wind turbine speed and Vwind is
the wind speed. 

4.1.1 Stability assessment by the time scale
method: Employing the time scale method described in Section 2,
two main perturbations are identified and, as a result, two
dynamical systems are generated: U1, after the increase of the
system load (ΔPδ = + 58.15 kW), and U2, after the decrease of the
wind speed (ΔVwind = −0.2 m/s).

The microgrid operates in steady state at an ASEP (x0,1,z0,1)
when, at t = 0 s, it is subjected to a load increase (ΔPL) equal to
58.15 kW, originating a new dynamical system (U1). Employing
the time scale method described in [11] and Section 2, the analysis
proceeds with the stability assessment of the fast subsystem U1.
The ASEP of the fast subsystem, calculated by a Newton-Raphson
algorithm taking (x0,1,z0,1) as an initial guess, is (x0, 1, z0, 1

* ). The
values of all ASEPs are presented in Appendix 2.

Fig. 7 illustrates the stability behaviour of the fast subsystem by
means of the phase portrait į–ω. These dynamics correspond to the
fast dynamics of the diesel unit. In the dynamical system U1, after
the load increases, a voltage drop occurs at the load bus, which
forces a sudden drop in v0 and an increase in ii. The variables v0
and ii, respectively, correspond to the voltage and current of the
LCL filter. This voltage variation results in the action of the
controllers of the LS converter and reactive power controller of the
diesel generator in order to restore the system voltage. These
voltage and current variations are fast dynamics related to
ΠF, 1

U1 x , which bring the microgrid from the point (x0,1,z0,1) to
(x0, 1, z0, 1

* ). The fast subsystem was classified as stable and, as a
consequence, the algorithm proceeds with the stability analysis of
the slow subsystem U1.

The search for an ASEP of the slow system returns (xs1, 1

U1 , zs1, 1

U1 ).
The slow subsystem is classified as stable then the analysis
proceeds to the proposed algorithm in Fig. 1. The slow subsystem
evolution is related with the power unbalance at the DC-link,
causing a slow variation in the DC-link voltage (VDC). The
restoration of the DC-link voltage is a slow process, since this
control process involves the action of the diesel engine,
synchronous generator of the diesel unit and other components of
the wind unit. The synchronous generator of the wind unit does not
respond with a power increase, since the wind turbine operates at
the maximum power point and cannot provide additional active
power to the system. Thus, only the diesel unit supplies the deficit
of energy to restore the voltage at the DC-link bus, which
according to the time scale analysis is enough to recover the
stability of the microgrid. Based on this analysis, the slow
subsystem U1 is classified as stable and the slow subsystem of U1,
whose trajectory (φ0, 1

U1) is restricted to Γ1, 1

U1: g1,1(x,z) = 0, is
numerically integrated up to t = 20 s (occurrence of the second
perturbation), taking into account the ASEP (x0, 1, z0, 1

* ) of the fast
subsystem as an initial condition for the slow trajectory. Then, the
application of the algorithm of Fig. 1 does not indicate the
occurrence of bifurcations of the equilibrium of the fast subsystem
along the slow trajectory up to 20 s. The final state of U1 at t = 20 s
is (x1,1,z1,1), which corresponds to the initial state of the dynamical
system U2. After determining this initial state, then the analysis
proceeds to the next perturbation.

At t = 20 s, the microgrid is subjected to a decrease of 0.2 m/s in
the wind speed (ΔVwind = −0.2 m/s), which originates the second
dynamical system (U2). This perturbation implies a decrease of the
mechanical power extracted by the wind turbine (Ptur) and
stimulates fast and slow devices, such as the controllers at LS
converter, voltage regulator of the diesel generator and the MPPT
control of the wind unit. The time scale analysis of U2 begins
classifying its fast subsystem at t = 20 s as stable. The dynamics

Table 1 Time scale classification of the dynamics of the
hybrid system
slow dynamics
(x)

Ueωw, Ueidw, Ueiqw, ωwr, ωw, Efdw, idw, iqw,
ifw, UeVDC, VDC, Pmdg, δdg

s

fast dynamics (z) δdg
f , ωdg, Uevod, Uevoq, Ueiid, Ueiiq, iid, iiq, vod,

voq, iod, ioq, Efddg, iddg, iqdg, ifdg
 

Table 2 Operational scenarios for the hybrid system
Time of occurrence Operational event
unstable scenario 1
t = 0 s load increment in the system
t = 20 s wind speed decreases
unstable scenario 2
t = 0 s load increment in the system
 

Fig. 6௒ Operational sequence for the wind turbine in scenario 1
 

Fig. 7௒ Phase portrait į–ω of the diesel generator corresponding to the fast
subsystem of the dynamical system U1
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involved in the fast subsystem are the voltage and current
controllers located at the LS converter, which in conjunction with
the voltage regulator of the diesel unit attempt to mitigate the
voltage drop at the DC-link (VDC). The angle (įdg) and angular
speed (ωdg) variations of the synchronous generator at the diesel
unit represent the transfer of active power promoted by the
controller to restore the stability of the microgrid, which trajectory
tends to the ASEP (x1, 1, z1, 1

* ). In the sequence, the slow subsystem
is also classified as stable with an ASEP (xs2, 1

U2 , zs2, 1

U2 ). A reduction in
the wind speed implies the reduction of the mechanical power
extracted by the wind turbine. Then, the angular speed controller at
Fig. 4 and the voltage controllers of the DC-link at Fig. 5 are
triggered, attempting to restore the voltage at the DC-link. Since
both dynamical systems (fast and slow) are classified as stable, the
algorithm proposed in Fig. 1 is applied to monitor the stability of
the fast subsystem equilibrium along the trajectory of the slow
subsystem (φ0, 1

U2).
The eigenvalues of the Jacobian matrix corresponding to the

fast subsystem of U2 are used as a tool to monitor the stability of
the fast subsystem throughout the trajectory of the slow subsystem.
At t = 24.5 s, this analysis shows, as presented in Table 3, that a
pair of eigenvalues of the fast subsystem cross the imaginary axis
of the complex plane to the right-hand semi-plane, indicating that
the fast subsystem equilibrium becomes unstable. Thus, the

instability of the fast subsystem implies instability of the
microgrid. It is worth remarking that in this case the QSS analysis
(simulation of the slow subsystem) has failed in detecting the
instability of the microgrid, while the proposed procedure has
successfully identified the instability condition. 

A comparison between dynamics obtained from numerical
simulation of the complete dynamical system (Σİ) and obtained
from the QSS system (Σ0) is illustrated in Fig. 8. This comparison
clearly shows how the QSS simulation leads to the wrong
conclusion that the system is stable by assuming that the fast
subsystem is stable during the entire period of analysis. By
contrast, the time scale method identifies a Hopf bifurcation as a
product of the interaction between slow and fast dynamics.

Fig. 9 shows the sequence of operational events of the
microgrid in the context of time scales, pointing out the action of
the controllers and devices related to the slow and fast subsystems
of the corresponding dynamical systems U1 and U2. The
bifurcation detected at t = 24.5 s is known in the literature as a
Hopf bifurcation point [26, 27]. Although this kind of instability is
difficult to be detected by numerical methods [17, 28], since the
analysis involves the behaviour of the eigenvalues of the complete
dynamical system, the proposed time scale method has correctly
detected it, showing that the unstable condition of the microgrid is
related to the interaction of the fast dynamics of the DC-link
controller and load-side converter of the wind generation unit with
the slow electromechanical dynamics. This fact can be also verified
by means of the phase portrait of the load angle (įdg) and angular
speed (ωdg) of the diesel generator illustrated in Fig. 10, which was
obtained from time simulation of the complete dynamical model of
the microgrid, represented by set of equations (5)–(28). As
illustrated in the phase portrait presented at Fig. 10, after the
sudden decrease of the wind speed (point P), the angular speed of
the diesel generator temporarily increases and returns to the
neighbourhood of its nominal value (ωdg ≃ 1, point Q). In fact, the
fast action of the DC-link controller and controllers of the LS
converter, which attempt to restore the power balance, manifests
itself in the increase of the angular speed of the synchronous
generator driven by diesel engine, leading the microgrid to
instability. This occurs because the response of the synchronous
generator of the diesel unit is not fast enough to keep the power
balance required by the controllers as was clearly shown by the
time scale analysis.

4.1.2 Stability assessment by the complete dynamical
system: At the beginning, t = 0 s, the system is subjected to a load
increase ΔPL = + 59.7 kW. Since the wind turbine operates at its
maximum power level, at point A of Fig. 6, only the diesel
generator is able to pick up the load increase. The load increase
results in a voltage drop at the DC-link (VDC), due to the power
unbalance in the DC-link presented in Fig. 5. Large variations of
the DC link voltage may trigger the protection system leading the
system to a collapse. The VDC controller, illustrated in Fig. 5, acts
due to the DC voltage variation (ΔVDC), and the diesel generator
compensates the load increase to restore the voltage of the DC-link
to its nominal value.

At t = 20 s, the system is subjected to a wind speed decrease,
where the wind speed reduces from 12.5 to 12.3 m/s (ΔVwind = 
−0.2 m/s). Consequently, the active power supplied by the wind
unit is reduced, moving the operating point of the wind turbine
from point A to point B, as shown in Fig. 6. The speed of wind
turbine is reduced by the MPPT controller so that the new
maximum power point can be reached at point C. At the same time,
the VDC controller acts to mitigate the voltage variation in the DC-
link. Due to the action of the VDC controller, the diesel generator
attempts to compensate the deficit of active power in the system
and, as a consequence, the rotor of the diesel generator accelerates
and the microgrid collapses.

Fig. 11 illustrates the time evolution of some dynamics of the
microgrid. This time-domain simulation of the full dynamical
model of the microgrid, given by set of equation (5)–(28), was
performed by means of a trapezoidal numerical integration

Table 3 Fast subsystem eigenvalues of the dynamical
system U2 of scenario 1
Time
24.45 s 24.50 s 24.55 s
−4947.84 + 34,555.79i −4947.85 + 34,555.76i −4947.86 + 34,555.72i
−4947.84 − 34,555.79i −4947.85 − 34,555.76i −4947.86 − 34,555.72i
−4899.12 + 34,130.40i −4899.12 + 34,130.35i −4899.12 + 34,130.30i
−4899.12 − 34,130.40i −4899.12 − 34,130.35i −4899.12 − 34,130.30i
−5985.46 + 1232.47i −5985.45 + 1232.44i −5985.45 + 1232.41i
−5985.46 − 1232.47i −5985.45 − 1232.44i −5985.45 − 1232.41i
−80.4224 + 369.722i −80.4253 + 369.719i −80.4279 + 369.718i
−80.4224 − 369.722i −80.4253 − 369.719i −80.4279 − 369.718i
−17.5535 + 49.7547i −17.5561 + 49.7471i −17.5589 + 49.7396i
−17.5535 − 49.7547i −17.5561 − 49.7471i −17.5589 − 49.7396i
−0.0014 + 30.3597i 0.0011 + 30.3697i 0.0036 + 30.3794i
−0.0014 − 30.3597i 0.0011 − 30.3697i 0.0036 − 30.3794i
−2.7257 + 0.0274i −2.7257 + 0.0274i −2.7257 + 0.0274i
−2.7257 − 0.0274i −2.7257 − 0.0274i −2.7257 − 0.0274i
−20.0171 + 0.0007i −20.0171 + 0.0007i −20.0171 + 0.0007i
−20.0171 − 0.0007i −20.0171 − 0.0007i −20.0171 − 0.0007i

 

Fig. 8௒ Numerical simulation, left column: original singularly perturbed
system (Σİ); right column: slow subsystem (Σ0) (or QSS system)
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technique [15]. Time-domain simulation indicates that the
microgrid is unstable, but it is not clear how the dynamics and
microgrids components interact to lead the microgrid into an
unstable condition, even more, it is not possible to determine the
sequence of events that triggered the instability. The time scale
method allows to establish a clear relationship between the
dynamics and to detect the mechanisms of collapse of the
microgrid. Although the numerical integration of the complete
model, given by the set of equation (5)–(28), provides right
conclusions regarding the behaviour and stability of the microgrid,
there are some drawbacks associated with this approach: (i) need to
choose a more sophisticated solver (with higher computational
burden) based on variable step-size algorithms to properly perform
the numerical integration; (ii) need to use long time intervals of
simulations to assess unstable scenarios.

Moreover, variable step-size algorithms are subject to failures
due to numerical instability induced by fast dynamics [29]. Also,

the coexistence of dynamics in very different time ranges often
leads to numerical issues and erroneously stability assessment
which are dependent on the employed solver. For example, the use
of ode23s from MATLAB©, erroneously indicated stable behaviour
when, in reality, the scenario 1 of Table 2 is unstable, as illustrated
in Fig. 12, where the time evolution of some dynamics obtained
with the ode23s solver clearly shows a wrong numerical response
of the dynamics. Time scale analysis, by contrast, mitigates the
numerical issues by splitting the model into slow and fast models,
improving the numerical stability of the dynamical system
simulation [10].

4.2 Stability assessment of scenario 2

In this scenario, the stability analysis is focused on a Hopf
bifurcation caused by a system load variation. The microgrid
operates at the maximum power point of the wind turbine, point C
illustrated in Fig. 6, with Vwind,2 = 12.2 m/s. In this scenario, the
initial operating point of the systems corresponds to the ASEP
(x0,2,z0,2), whose values are presented in Appendix 2. At t = 0 s, a
sudden load increase (ΔPδ) equal to 28.52 kW occurs, originating a
new dynamical system U1. In the dynamical system U1, after the
load increase, a voltage drop occurs at the load bus, which forces a
sudden drop in v0 and increase in ii. The variables v0 and ii,
respectively, correspond to the voltage and current of the LCL
filter. This voltage variation results in the action of the controllers
of the LS converter and reactive power controller of the diesel

Fig. 9௒ Flowchart of the sequence of operational events of scenario 1
related to the slow and fast subsystems in the context of time scales

 

Fig. 10௒ Phase portrait of į–ω of the diesel generator from the complete
dynamical model of the microgrid

 

Fig. 11௒ Evolution of some dynamics of the wind generation based
microgrid

 

Fig. 12௒ Numerical simulation of the complete model (Σİ). δeft column: via
trapezoidal numerical algorithm; right column: via ode23s from εATδAB©
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generator in order to restore the system voltage. These voltage and
current variations are fast dynamics related to ΠF, 2

U1 x , which
bring the microgrid from the point (x0,2,z0,2) to the ASEP of the
fast subsystem (x0, 2, z0, 2

* ) at t = 0.1 s. The time-scale algorithm
proposed in [11] classifies the fast subsystem U1 as stable, and then
the algorithm proceeds with the stability analysis of the slow
subsystem U1.

The search for an ASEP of the slow subsystem returns (xs1, 2

U1 ,
zs1, 2

U1 ), and the time-scale algorithm classifies the slow subsystem as
stable. The slow subsystem evolution is related to the active power
unbalance at the DC-link, causing a slow variation at the DC-link
voltage (VDC). The restoration of the DC-link voltage is a slow
process, since this control process involves the action of the diesel
engine, synchronous generator of the diesel unit and other
components of the wind unit. The synchronous generator of the
wind unit does not respond to this perturbation, since the wind
turbine operates at the maximum power point and cannot provide
additional active power to the system. Thus, only the diesel unit
supplies the deficit of energy to restore the voltage at the DC-link
bus and recover the stability of the microgrid. Since both
dynamical subsystems (fast and slow) were classified as stable by
the algorithm in [11], the analysis proceeds to the algorithm
presented in Fig. 1. Since there are no more new perturbations,
then the stability of the equilibrium of the fast subsystem is
monitored along the trajectory of the slow subsystem (φ0, 2

U1).
The eigenvalues of the Jacobian matrix corresponding to the

fast subsystem U1 are used as a tool to monitor the stability of the
fast subsystem throughout the trajectory of the slow subsystem of
U1. At t = 0.3 s, this analysis shows, as presented in Table 4, that a
pair of conjugate eigenvalues of the fast subsystem cross the
imaginary axis of the complex plane to the right-half complex
plane, indicating that the equilibrium point of the fast subsystem
becomes unstable. As a consequence, the instability of the fast
subsystem implies instability of the microgrid.

Fig. 13 illustrates how the QSS analysis (slow simulation) fails
in detecting the instability of the wind microgrid after the load
variation at t = 0 s. In addition, Fig. 14 illustrates the sequence of
the operational events of the microgrid in the context of time
scales, pointing out the action of the controllers and devices related
to the slow and fast subsystems of the corresponding dynamical
system U1. 

5௑Conclusion
Time scale approach is a promising tool for stability analysis of
power systems capable of filling the gap of conventional stability

analysis, improving the numerical stability and speeding up the
computational analysis of power systems without neglecting the
physical interaction between their dynamics. In such context, this
paper presents, as one of the main contributions, the application of
the time scale method to the analysis of a microgrid based on wind
generation. The assessment has been performed by a proposed time
scale algorithm for stability analysis of power systems. The
proposed time scale algorithm, which is also an innovative
contribution of this work, splits the stability analysis of a power
system, bridging the gap between short- and mid-term stability
analysis.

The successful application of the time scale method to a
microgrid based on wind generation provides a deeper insight into

Table 4 Fast subsystem eigenvalues of the dynamical
system U1 of scenario 2
Time
0.1 s 0.3 s 0.4 s
−4949.51 + 34,556.47i −4950.34 + 34,553.90i −4950.77 + 34,552.57i
−4949.51 − 34,556.47i −4950.34 − 34,553.90i −4950.77 − 34,552.57i
−4901.28 + 34,131.26i −4901.12 + 34,127.78i −4901.04 + 34,125.94i
−4901.28 − 34,131.26i −4901.12 − 34,127.78i −4901.04 − 34,125.94i
−6103.21 + 1232.89i −6102.74 + 1230.82i −6102.51 + 1229.76i
−6103.21 − 1232.89i −6102.74 − 1230.82i −6102.51 − 1229.76i
−80.3409 + 369.784i −80.534 + 369.641i −80.629 + 369.561i
−80.3409 − 369.784i −80.534 − 369.641i −80.629 − 369.561i
−17.4758 + 49.9969i 0.0971 + 30.744i 0.2047 + 31.1047i
−17.4758 − 49.9969i 0.0971 − 30.744i 0.2047 − 31.1047i
−0.0741 + 30.0705i −17.655 + 49.481i −17.769 + 49.207i
−0.0741 − 30.0705i −17.655 − 49.481i −17.769 − 49.207i
−2.72848 + 0.0264i −2.72865 + 0.0253i −2.7287 + 0.0247i
−2.72848 − 0.0264i −2.72865 − 0.0253i −2.7287 − 0.0247i
−20.0171 + 0.00066i −20.0170 + 0.00064i −20.0170 + 0.00063i
−20.0171 − 0.00066i −20.0170 − 0.00064i −20.0170 − 0.00063i

 

Fig. 13௒ Numerical simulation of the QSS system for scenario 2
 

Fig. 14௒ Flowchart of the sequence of operational events of scenario 2
related to the slow and fast subsystems in the context of time scales
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the multiple dynamics inherent to the system and represents a new
step in the effort to introduce the time scale method in the stability
analysis of modern power systems. In the simultaneous analysis of
the fast and slow subsystems, a procedure to detect induced
instability of the fast subsystem along the trajectory of the slow
dynamical system was proposed. A correct assessment of stability
of the microgrid was carried out with clear indication of the
dynamic mechanisms of system collapse. This mechanism involves
the occurrence of a Hopf bifurcation in the fast subsystem that is
triggered by slow changes in the slow dynamics. This is a
consequence of interaction between the fast dynamics of interface
converters of the wind power generator with electromechanical
dynamics.

The main future directions of this research are: (i) introduce
time scale stability analysis in microgrids with more detailed
models of static converters, where the inclusion of non-linearities
and parasitic parameters can lead to numerical instability; (ii)
propose a stability assessment approach based on direct methods,
such as the controlling unstable equilibrium point method, in
conjunction with time scale approach to deal with microgrids and
even larger complex power systems.
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8௑Appendix
௑
8.1 Appendix 1: instability theorem demonstration

The following general hypothesis are made for the singularly
perturbed system (∑İ): (H1) All the equilibrium points are
hyperbolic. (H2) Every bounded trajectory approaches an
equilibrium point. Hypothesis (H1) is a generic property of vector
fields and the existence of an energy function [18] is a sufficient
condition that guarantees (H2).
 

Theorem 1: Consider the singularly perturbed system (Σİ) and
their corresponding subsystems (ΠF) and (Σ0) satisfying
hypotheses (H1)-(H2) for sufficiently small İ > 0. Let (xs,zs) be a
hyperbolic ASEP of (Σİ) and Aİ(xs,zs) be its stability region (SR).
Suppose (x0,z0) ӈ AF(Γs), then:

(i) If Φ0(τ,x0,z0) is bounded, then there exists (x0,z*) Ӈ Γs1 ≠ Γs
such that Φ0(τ,x0,z0) → (x0,z*) as τ → ∞, and: (i.1) If φ0(τ,x0,z*) is
bounded, then (x0,z0) ӈ Aİ(xs,zs) for sufficiently small İ > 0. (i.2) If
φ0(τ,x0,z*) is unbounded, then for every ε > 0, there exists T > 0
and İ* > 0 such that ||φ0(T,x0,z0)|| > ε∀İ Ӈ (0,İ*), that is, ||
φİ(t,x0,z0)|| assumes large values for sufficiently small İ.
(ii) If Φ0(τ,x0,z0) is unbounded, then for every ε > 0, there exists
T > 0 and İ*>0 such that ||Φİ(T,x0,z0)|| > ε ∀İ Ӈ (0,İ*), that is ||
Φİ(τ,x0,z0)|| assumes large values for sufficiently small İ.

 
Proof: Let (x0,z0) ӈ AF(Γs), then two possibilities can occur for

the solution Φ0(τ,x0,z0) of (ΠF(x0)). Either (i) Φ0(τ,x0,z0) is
bounded for (0,ω+), with ω+ being the maximal time of existence
(to the right) of the solution Φ0(τ,x0,z0) or (ii) ||Φ0(τ,x0,z0)|| → ∞
as τ → ω+. In case (i), hypothesis (H2) for (ΠF) guarantees ω+ = ∞
and Φ0(τ,x0,z0) → (x0,z*) Ӈ Γs1 ≠ Γs as τ → ∞. Now we have two
subcases: (i.1) If φ0(x0,z*) is bounded and (x0,z*) Ӈ AF(Γs1),
hypothesis (H2) for (Σ0) guarantees φ0(t,x0,z*) → (xeq,zeq) as t → 
∞, where (xeq,zeq) is an ASEP on Γs1. Thus, (x0,z*) Ӈ A0(xeq,zeq)
for sufficiently small İ > 0, thus, Theorem 2 in [16] implies (x0,z0) 
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Ӈ Aİ(xeq,zeq) for sufficiently small İ > 0, that is, (x0,z0) ӈ Aİ(xs,zs)
for sufficiently small İ > 0. (i.2) If φ0(x0,z*) is unbounded, then for
every ε > 0, there exists T > 0 such that ||φ0(T,x0,z*)|| > ε + μ
with μ > 0. Tikhonov's theorem for a finite interval of time [0, T]
guarantees the existence of sufficiently small İ* > 0 such that ||
φİ(T,x0,z0)|| > ε ∀İ Ӈ (0, İ*) [8]. In case (ii), for every ε > 0,
there exists T > 0 such that ||Φ0(T,x0,z0)|| > ε + μ with μ > 0. From
the continuity of solutions with respect to initial states and
parameters theorem [17], for (ΠF(x0)) guarantees the existence of
sufficiently small İ** > 0 such that Φİ(T,x0,z0)>ε∀İ Ӈ (0,İ**).
This completes the proof. □

Theorem 1 establishes that the instability of (ΠF) implies
instability of (Σİ). Fig. 15 is a geometrical interpretation of
Theorem 1. Scenario (i.1) illustrates the case in which the initial
condition (x0,z0) is outside the SR of the stable equilibrium point of
interest and converges to another equilibrium point in a different
constraint manifold. Scenario (i.2) illustrates the case in which the
system trajectories are unbounded in the direction of the slow
dynamics. Scenario (ii) illustrates the case when the trajectories are
unbounded due to fast dynamics.

8.2 Appendix 2: asymptotically stable equilibrium points

The values of the ASEPs of the scenario 1 are presented below:

(x0,1,z0,1) = (Ueωw = 2.5657, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 1.0768,
ωw = 1.0819, Efdw = 0.9903, idw = 0.0, iqw = 0.7877, ifw = 0.8059,
UeVDC = −0.0338, VDC = 2.8949, Pmdg = 0.0485, įdg = 0.2385, ωdg 
= 1.0, Uevod = 0.0188, Uevoq = −0.0036, Ueiid = 0.0009, Ueiiq = 0.0,
iid = 0.7606, iiq = −0.1002, vod = 1.01, voq = 0.0, iod = 0.7606, ioq = 
−0.146, Efddg = 1.3569, iddg = 0.0313, iqdg = 0.0406, ifdg = 0.132).
(x0, 1, z0, 1

* ) = (Ueωw = 2.5657, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 1.0768,
ωw = 1.0819, Efdw = 0.9903, idw = 0.0, iqw = 0.7877, ifw = 0.8059,
UeVDC = −0.0338, VDC = 2.8949, Pmdg = 0.0485, įdg = 0.2388, ωdg 

= 1.0, Uevod = 0.0196, Uevoq = −0.0040, Ueiid = 0.0009, Ueiiq = 0.0,
iid = 0.791, iiq = −0.1139, vod = 1.01, voq = 0.0, iod = 0.791, ioq = 
−0.159, Efddg = 1.356, iddg = 0.0314, iqdg = 0.041, ifdg = 0.1319).
(xs1, 1

U1 , zs1, 1

U1 ) = (Ueωw = 2.6183, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 1.0776
ωw = 1.0777, Efdw = 0.9823, idw = 0.0, iqw = 0.7857, ifw = 0.81,
UeVDC = 0.026, VDC = 2.8947, Pmdg = 0.0828, įdg = 0.3928, ωdg = 
1.0, Uevod = 0.0188, Uevoq = −0.0039, Ueiid = 0.0009, Ueiiq = 0.0, iid 
= 0.7595, iiq = −0.1118, vod = 1.01, voq = 0.0, iod = 0.7595, ioq = 
−0.158, Efddg = 1.515, iddg = 0.0479, iqdg = 0.0654, ifdg = 0.1474).
(x1,1,z1,1) = (Ueωw = 2.612, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 1.0776,
ωw = 1.0783, Efdw = 0.9851, idw = 0.0, iqw = 0.7861, ifw = 0.8093,
UeVDC = 0.0255, VDC = 2.8947, Pmdg = 0.0825, įdg = 0.3915, ωdg = 
1.0, Uevod = 0.0188, Uevoq = −0.0039, Ueiid = 0.0009, Ueiiq = 0.0, iid 
= 0.7598, iiq = −0.1118, vod = 1.01, voq = 0.0, iod = 0.7598, ioq = 
−0.158, Efddg = 1.513, iddg = 0.0478, iqdg = 0.0652, ifdg = 0.1472).
(x1, 1, z1, 1

* ) = (Ueωw = 2.612, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 1.0776,
ωw = 1.0783, Efdw = 0.9851, idw = 0.0, iqw = 0.7861, ifw = 0.8093,
UeVDC = 0.0255, VDC = 2.8947, Pmdg = 0.0825, įdg = 0.3915, ωdg = 
1.0, Uevod = 0.0188, Uevoq = −0.0039, Ueiid = 0.0009, Ueiiq = 0.0, iid 
= 0.7598, iiq = −0.1118, vod = 1.01, voq = 0.0, iod = 0.7598, ioq = 
−0.158, Efddg = 1.513, iddg = 0.0478, iqdg = 0.0652, ifdg = 0.1472).
(xs2, 1

U2 , zs2, 1

U2 ) = (Ueωw = 2.4787, Ueidw = 0.0000, Ueiqw = 0.0000, ωwr 
= 1.00604, ωw = 1.0592, Efdw = 0.9886, idw = 0.0, iqw = 0.7394, ifw 
= 0.8337, UeVDC = 0.0971, VDC = 2.8948, Pmdg = 0.1235, įdg = 
0.5466, ωdg = 1.0, Uevod = 0.0179, Uevoq = −0.0039, Ueiid = 0.0009,
Ueiiq = 0.0, iid = 0.7234, iiq = −0.1103, vod = 1.01, voq = 0.0, iod = 
0.7234, ioq = −0.156, Efddg = 1.762, iddg = 0.0742, iqdg = 0.0897, ifdg 
= 0.1714).

The values of the ASEPs of the scenario 2 are presented below:

(x0,2, z0,2) = (Ueωw = 2.4203, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 1.0519,
ωw = 1.0495, Efdw = 0.9901, idw = 0.0, iqw = 0.7175, ifw = 0.8458,
UeVDC = 0.0717, VDC = 2.8948, Pmdg = 0.1089, įdg = 0.4944, ωdg = 
1.0, Uevod = 0.0175, Uevoq = −0.0035, Ueiid = 0.0009, Ueiiq = 0.0, iid 
= 0.7057, iiq = −0.0973, vod = 1.01, voq = 0.0, iod = 0.7057, ioq = 
−0.143, Efddg = 1.668, iddg = 0.0641, iqdg = 0.0816, ifdg = 0.1622).
(x0, 2, z0, 2

* ) = (Ueωw = 2.42, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 1.0519,
ωw = 1.0495, Efdw = 0.9901, idw = 0.0, iqw = 0.7175, ifw = 0.8458,
UeVDC = 0.0726, VDC = 2.8748, Pmdg = 0.1107, įdg = 0.5009, ωdg = 
1.0, Uevod = 0.0178, Uevoq = −0.0037, Ueiid = 0.0009, Ueiiq = 0.0, iid 
= 0.7192, iiq = −0.1037, vod = 1.01, voq = 0.0, iod = 0.7192, ioq = 
−0.149, Efddg = 1.679, iddg = 0.065, iqdg = 0.0826, ifdg = 0.1633).
(xs1, 2

U2 , zs1, 2

U2 ) = (Ueωw = 2.4010, Ueidw = 0.0, Ueiqw = 0.0, ωwr = 
1.0518, ωw = 1.0512, Efdw = 0.9958, idw = 0.0, iqw = 0.7184, ifw = 
0.8440, UeVDC = 0.1003, VDC = 2.8948, Pmdg = 0.1254, įdg = 
0.5526, ωdg = 1.0, Uevod = 0.0175, Uevoq = −0.0037, Ueiid = 0.0009,
Ueiiq = 0.0, iid = 0.7063, iiq = −0.1033, vod = 1.01, voq = 0.0, iod = 
0.7063, ioq = −0.149, Efddg = 1.775, iddg = 0.0754, iqdg = 0.0907, ifdg 
= 0.1726).

Fig. 15௒ Geometrical interpretation of the proof of Theorem 1. Three cases
were considered to explain the instability of (Σİ) due to the instability of
(ΠF)

 

IET Renew. Power Gener., 2020, Vol. 14 Iss. 9, pp. 1491-1501
© The Institution of Engineering and Technology 2020

1501


