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X ABSTRACT

This paper introduces an analytical approximation, of a boundary layer type, for the dynamic bending moment at the
touchdown point of a catenary riser. The approximation is based on a quasi-linear frequency domain solution of a cable (EJ

= 0), the only source of nonlinearity being the viscous drag on the riser, and it takes care of the motion of the touchdown
point, a specially important phenomenon in the fatigue analysis. In spite of the fact that this motion is predicted from a
quasi-linear frequency domain model, the final expression for the moment is strongly nonlinear and compares very well, for
the low sea states used in the fatigue analysis, with results obtained from nonlinear time domain simulation; as a matter of
fact, even for the extreme sea condition in Campos Basin the comparison between the analytical approximation and numeri-
cal results is reasonable. The expression for the moment depends nonlinearly, although in an explicit way, on two quasi-lin-
ear dynamic variables of the cable: the displacement x(t) of the touchdown point and the dynamic tension #(¢). In this way,
the obtained expression can also become useful in the study of the complex nonlinear statistical behavior of the riser’s bend-

ing moment in the vicinity of the touchdown point.

INTRODUCTION

The oil industry has lately become interested in the study of the
technical feasibility of a steel catenary riser anchored in a deep-
water floating production system (Phifer et al., 1994). Besides
some aspects related to their installation, the troublesome spots of
the steel catenary riser are located at the suspended end, where a
flexible joint has to be used, and at the touchdown point, where
the bending moment, both static and dynamic, must be evaluated.

The problem is essentially nonlinear, the main sources of non-
linearity being the fluid drag along the suspended length and the
unilateral contact force between the soil and riser in the touch-
down region. Thus, several commercial computer programs,
developed to analyze this problem, use time domain simulation, a
procedure that is complicated by the existence of discrepant time
and length scales in the problem. In fact, besides the “large” time
and length scales of the catenary, one must deal with a “short”
time scale, related with the axial elastic stretching, and with a
“short” length scale, due to the bending stiffness effect near the
touchdown point and the flexible joint.

If discrepancies in scales cause, in general, numerical difficul-
ties in time domain simulation, they make it easier to derive
asymptotic approximations. In this paper, a quasi-linear frequency
domain solution of a cable (bending stiffness EJ = 0) is used to
develop an approximation, of a boundary layer type, for the
dynamic moment at the touchdown point of a steel catenary riser.
The only source of nonlinearity in the cable’s (EJ = 0) dynamic
solution is the fluid drag, which is dealt with in a standard way,
namely, by using an equivalent linear damping based on the
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equality of the dissipated power and an iterative technique to
obtain the final response.

The analytical expression for the bending moment takes care of
the horizontal motion of the touchdown point, an essential aspect
in the fatigue analysis of the riser. As will be seen along the
paper, the bending moment in the touchdown region depends, in a
strong nonlinear way, on only two quasi-linear dynamic variables
of the cable (EJ = 0): the displacement xy(r) of the touchdown
point and the dynamic tension ().

The comparison between the analytical results here derived
with the numerical results obtained from nonlinear time domain
models shows a very good agreement for the low sea states used
in the fatigue analysis; as a matter of fact, the comparison is rea-
sonable even for the extreme sea state in Campos Basin if the riser
is assumed to be anchored in a semisubmersible platform.

This work reviews the basic geometric definitions, discusses
some features of the static catenary solution and introduces a local
bending stiffness correction in the vicinity of the touchdown
point. In addition, the dynamic problem is analyzed and the ana-
lytical approximation for the dynamic moment at the touchdown
is derived. Finally, some numerical results, displaying the agree-
ment between the analytical approximation and nonlinear time
domain models are presented.

BASIC DEFINITIONS AND STATIC SOLUTION

One considers here the geometric configuration of a cable (EJ =
0) with a weight g per unit of length, suspended at sea level by a
tension Ty and subjected also to an ocean current V(z). The cable
touches the ground at point O, supposed to be the origin of the
Cartesian system (x,z), with the z axis being vertical and pointing
upwards. The water depth is &, the suspended length of the cable
is /, and the cable is assumed anchored at point A on the ground,
distant /;; from O; the total length of the cable is [ + ;. If s is the
curvilinear coordinate along the suspended length, with s =0 at O,
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Fig. 1 Static configuration and some geometric definitions

and 6(s) is the angle between the cable’s tangent and the horizon-
tal, the geometry of the cable is defined by the pair of functions
(x(s); z(s)) while its static equilibrium is characterized by the ten-
sion 7(s), with T(l) = Tg and T(0) = T;,. Throughout this work the
problem is assumed to be two-dimensional, in the plane (x,z), and
the friction coefficient between the riser and the soil is denoted by
H.
As will be seen a bit later, the flexural stiffness of the riser
affects weakly the geometry of the cable (catenary); if EJ is this
stiffness, one has, in first approximation:

de
M(s) = E7& 1
(s) T (s) (la)
while at the touchdown:
M, = M(0) = E1L (1b)

the above expression being always exact for a catenary, the effect
of the ocean current influencing it indirectly through 7,

The curvature of the catenary is discontinuous at the touch-
down point: It is equal to g/T;, at the right of this point and to zero
at the left. The effect of the flexural stiffness EJ is to smooth the
transition between these two values of the curvature while dis-
placing to the left the actual position of the touchdown point. If z
= Zg(x) defines the geometric equilibrium configuration in the
vicinity of O, influenced by the bending stiffness, the equilibrium
is locally determined by the equation:

a’4Z,_(, -7 dZZ/,u A (2a)
dx* O dx? .

EJ

since As)<< l and sox =s.
The “flexural length” A, defined by the expression:

A e e (2b)

gauges the geometric scale where the flexural stiffness is relevant;
typically A = 10 m and it is much smaller than the suspended

length . The moment is given by the relation M;(x) = EJ
d2Zﬁ0/dx2 and the general solution of Eq. 2a can be written as:

M, o(x) = MO+C1e7(H’M+C2e+(xvx’w1L
dZ —(x—x +{x—x
EJ—% = M,x—ACe ( /)M+2,C26 { /)M+C3
x

where C;, C;, C; are constants of integration and xis the position
of the touchdown point when the flexural stiffness is incorpo-
rated. When x/4 >> 1 one must have M(x) — M, and EJdZo/dx
— Mgy, since the solution of Eq. 2a must approach the catenary
solution in this limit; it follows then that C, = C3 = 0. At the
touchdown point x = xr the conditions Mﬁo(xf) =i dZﬁO/dx(xf) =0
must be fulfilled, and so C; = -Mj; x;= —A. The touchdown point
is displaced A to the left and the actual moment is given by (s =
X):

M, o(s) = %(l+sign(s+ A= M, (2¢)

These results will be used below.

DYNAMIC RESPONSE IN VICINITY OF
TOUCHDOWN POINT

The riser is dynamically excited by the imposed motion at point
B, anchored on the floating system, and by the direct action of the
wave along its suspended length. In the major part of this section
one considers the dynamic response of a cable (EJ = 0), ignoring
the influence of the bending stiffness; in the last item this effect
will be locally incorporated, as was done in the static analysis pre-
sented above.

Boundary Condition at Dynamic Touchdown Point

As discussed above, the static touchdown point of the cable (EJ
= 0) is assumed to be at origin O of the coordinate system (x,z); if
7 = Zy(x) defines the cable’s static configuration in the vicinity of
O, the following boundary conditions are satisfied at this point:

Zy(0y=0 (3a)
) = 0 (3b)
dx

As will be seen below, a similar boundary condition must be
enforced at the instantaneous position of the touchdown point,
when the horizontal velocity of this point is smaller than the
“cable” wave velocity in the region, defined by the expression:

co=\/ L 0

(m+m,)

with m being the riser’s mass per unit of length and m, the added
mass.

The derivation of this result, due to Triantafyllou et al. (1985)
and based on a work by Burridge et al. (1982), is summarized
next. In fact, if z = Z(x,1) defines the dynamic configuration in the
vicinity of O and x = xy(¢) is the instantaneous position of the
touchdown point, then;
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Fig. 2 Dynamic equilibrium of a piece of riser of length Ax(r)
and circular cylinder, rolling without slipping together with riser

Z(xo(1).1) = 0. (52)

The total derivative of Eq. 5a with respect to time must be zero
and so:

22 0412 3 1) = 0 (5

with X, = dxy/dr. One may consider now the dynamic equilibrium
of a piece of riser, placed on the right of xy(r) and with a suspend-
ed length Ax(z) (Fig. 2).

If F(r) is the impact force between the riser and soil, Newton’s
equation in the vertical direction can be written in the form:

%[(m+ma)Ax(t)%—fJ = F(t)+T03—f(x0+Ax,t)—qAx(t)

if the dynamic tension 7(r) is disregarded when compared with Ty
Observing that dAx(1)/dt = - X, (1), taking the limit of the above
expression when Ax(t) — 0 and using Eq. 5b, one gets, with the
help of Eq. 4:

[)'cg(t)—cg](m+ma)§—f(xo(t),t) = F() (5¢)

The geometric constraint given by the soil imposes Z(x,f) > 0
and since Z(xy(#),t) = 0, one must have dZ/dx = Qatx = xo(0); at
the same time, the contact between the riser and the rigid founda-
tion is of the unilateral type and so F(r) > 0. It follows, from Eq.
5c, that both the contact force F(r) and the angle dZ/ox must be
zero at the touchdown point when %, <¢g; if %, >cg then one can
have an impact (F(r) > 0), in which case the angle between the
soil and riser is positive at the touchdown. The physical explana-
tion of this result is simple to understand if one recalls that ¢, is
the wave velocity in the vicinity of O: When ¥, <c, the horizon-
tal velocity of the touchdown point is smaller than the wave
velocity, and the cable has enough time to adjust its geometric
configuration and it runs smoothly on the ground; when x, >Cp,
the velocity of the touchdown point is greater than the wave
velocity, and the cable has no time to adjust its configuration to
the new touchdown position. In this case the riser strikes the soil,
a phenomenon indeed very similar to the shock phenomenon in
gas dynamics, and the asymptotic result to be developed in the
paper is not valid.
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The shock condition %, >c is rare and should not be expected
in the present problem; as a matter of fact, one usually has ¥,
<<cy in the situations to be analyzed, as discussed in the next item
and confirmed by the numerical results shown. It follows, in this
case, that the cable satisfies, at the touchdown point, the boundary
condition:

i) = 0 0

in accordance with Eq. 3b; see also Eqgs. 3a and 5a.
If Eq. 5d is placed in Eq. 5b, one obtains:

—(x,(1)1) = 0 (6a)

meaning that the vertical velocity at the touchdown point is
always zero if there is no impact phenomenon. The vertical accel-
eration, however, is different from zero: If one derives Egs. 5d
and 6a with respect to time, in the manner indicated in Eq. 5b, one
obtains:

2z Ld*Z
?(Xo(f)”) = X ﬁ(xo(f)”) (6b)

Egs. 6a and b will be used in the analysis of the dynamic curva-
ture at the touchdown point, but it is worthwhile, before one
leaves this section, to make a digression that can place these
results in a more enlightened perspective.

In fact, if one recalls that FZ/k? = I/R (1), where R(t) is the
instantaneous radius of curvature, one can imagine a circular cylin-
der with radius R (r) rolling, without slipping, on the rigid flat bot-
tom with a horizontal velocity X, (Fig. 2). In this case, as is
known, the vertical velocity at the cylinder’s touchdown point is
zero, as in Eq. 6a, while the acceleration is equal to %;/R.(t), as in
Eq. 6b. Thus the cable can be locally attached to this cylinder, with
a radius equal to the instantaneous cable’s radius of curvature, and
will roll smoothly on the ground with it when X /c<1; this obser-
vation may make it easier to visualize the dynamic motion of the
cable in the vicinity of its touchdown point.

Linear Dynamic Problem and Estimation of x,(f)

The typical length scale in the touchdown region is the catenary
radius of curvature R. = Ty/g and a simple analysis can indicate
the order of magnitude of this value. In fact, since the static
moment is of order EJ/R,. (Eq. 1b), the static deformation is given
by D/2R,., where D is the riser’s outer diameter. Observing that
the steel’s yield strain is of order 1/500 and assuming a static
stress below 25% of the yield stress, one must have R, > 1000 D;
for a small-diameter steel riser one has D = 8" and so R,. > 200 m.
The imposed motion at the suspended end B has an amplitude of
order Ag = 3 m for the extreme wave condition and one should
expect a displacement x((f) of the touchdown point not very much
larger than this value; it turns out then that, in general, one must
have xy(f) << R,, a condition that indicates that the dynamic prob-
lem can be linearized, as discussed below.

In fact, from Taylor’s series expansion around the origin O, one
gets:
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Z(xo() i) = Z(O f)+xo(f)

(0())

(0 1+0(x;(1)) = 0

Z(0apnt )‘j, 2 H00(x3(0) =0

If the second identity is multiplied by xy(r) and subtracted from
the first, one obtains that Z(0,r) is of order xg(t)/RC. Neglecting
dynamic quadratic terms, the following condition can be derived
at the static touchdown point O for the dynamic solution:

Z0,n=0 (7a)

It follows that the static touchdown point is vertically hinged in
the linear dynamic problem, although a horizontal spring (with
stiffness R = EA/Lg, Lg = Ty/uq) must be placed there to accom-
modate the elastic deformation of the cable on the soil. With these
linear boundary conditions the dynamic problem can be solved in
the frequency domain. One should observe, however, that the
angle dZ/dx is not zero at O, a fact that allows one to determine
the displacement xy(#) of the touchdown point. Indeed, from the
second Taylor expansion shown above one gets:

T(QZ
q&x

x(t) = =2==(0,t) = e a(O,z) (7b)

if second order dynamic terms are neglected again and (0,f) =
JdZ/dx designates the dynamic angle at O.

The angle (0,f) can be determined from the linear frequency
domain solution and the displacement xy(f) of the touchdown
point can be estimated by Eq. 7b. To visualize the typical order of
magnitude of the parameters xy/R,. and X, /cy one must obtain
first a rough estimation of the angle og(r) = o10,7) and of the wave
velocity cg, as is done in the following.

Suppose that Ag is the amplitude of the motion imposed in B
and 6z is the angle between the tangent to the catenary in B and
the horizontal; 8,, = /2 is the “average” angle that the “cable”
makes with the segment OB. Ignoring any possible dynamic
effect, the displacement of B, in the direction of OB by an amount
Ap, diminishes the angle 6,, by a value o = (3/6,) Ap/l, if the
“cable” is assumed inextensible and the angle is “small”; taking
also 6,, = qll2T, and denoting by X, the amplitude of the touch-
down displacement, the following relation can be obtained:

2>

|
q

>
2|

(8a)

Obviously, the above result gives only a rough estimate of the
touchdown displacement, since it does not consider any dynamic
effect and assumes also a “small” angle §,; it shows, however,
that Xy/Ap increases as g decreases, a conclusion that seems rea-
sonable. Also, from Eq. 7b, one obtains that Xy/R. = o = (3/6,,)
Ap/l << 1 in deep water; this is the reason, it is believed, why the
linear frequency domain solution predicts with reasonable accura-
¢y the cable’s dynamic response, even in an extreme wave condi-
tion; see, for instance, the results presented below.

To estimate the parameter x,/c, one must first determine a
convenient expression for the wave velocity ¢,. Assuming, for
this purpose, that the ocean current V(z) is zero, one has, from an
equilibrium consideration, that T, = T cos g and gl = Ty sin 6,
with g being the angle in B. Since g = (m - m,)g, using the defi-

nition of the wave velocity, one gets:

%

2
= [ ™ \iang, @ A, A% (&)
m—m, g 1A

Co

A steel catenary riser is to be anchored in a deep-water floating
production system, like a semisubmersible, for example, that
responds weakly to the wave action. In this case one has that
a)ZAB/g is smaller than KA << 1, with KA being the wave steep-
ness, and certainly Ag/l << | in deep water. It happens then that
one should have x,/cy << 1, as anticipated above.

Dynamic Tension %(¢)

The dynamic tension 1(s,?) is the most important dynamic
parameter of the cable. In the usual range of wave frequencies @
the elastic axial modes are not excited and the dynamic tension is
essentially constant along the suspended length, as discussed in
Triantafyllou et al. (1985), for example. One may take then 7(s,1)
= 7(t) in a “large” vicinity of O, with:

t) = 1, cos ax ®

The tension amplitude 7| can be determined directly from a lin-
ear frequency domain model, as discussed in the last item,
although in this case one may consider the global dynamic equi-
librium of the suspended cable to obtain a simple algebraic
approximation, as shown in Aranha et al. (1993); this latter
approach will be not discussed here although the results obtained
from it will be used for the sake of comparison.

It is important to point out also that the computed tension val-
ues, both from this algebraic expression and the linear frequency
domain solution, agree well with experimental results even in a
extreme condition (Andrade, 1995). This result confirms the lin-
ear model assumption adopted in the present work.

Cable’s Curvature in Vicinity of Touchdown Point

One turns now to the main topic of this work, the dynamic cur-
vature in the touchdown region. Observing that the normal to the
cable is essentially vertical in this region, while the ocean current
is horizontal, the effect of this environmental load can be locally
disregarded in the vicinity of O. Using again the approximation x
= s and denoting by F (x.f) the vertical force, the dynamic equi-
librium in this direction, including the fluid drag effect, is
expressed by the equation:

28 ) = qmem,)2 £ (o)1 pC, 07 )

oz

% )

Using Eqgs. 6a and b in the above equality, one obtains:

dF,

3—;(x°(t)’r) = g+(m+m,)x; (’)L:Tf(xo(t)’t)

and if cubic dynamic terms are neglected (0 2Z/ox’= q/Ty) the fol-
lowing result can be derived:

. 2
9, . q{l+(x—°] } x=x,(t) (10a)
ds &
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Let 6s,1) = &(s) + afs,t) be the total angle, T(s,) the total ten-
sion and F(s,7) the horizontal force; by definition one has:

1(s,1) = F,(s,0)cos s, DHF (s,0)sin6Xs,1)
while the shear force is given by:
0(s,1) = F (s,)sin@Xs,0)—F (s,t)cos Os,1) = 0
Deriving the above identity with respect to s, noticing that

Os,1) = 0 in the vicinity of the touchdown point and using Eq.
10a, one obtains:

> 2
T(s,z)‘;—? = q{l+[?] } (10b)
0

Taking into account that:

1(s,t) = Ty+ut) (10¢)
0

(i = 1
of (s) = x(1) (10d)

where x(1) is the fotal dynamic curvature, the following expres-
sion can be derived in the vicinity of the touchdown point:

5

(7:>+T(t))'l(t) = q'[l"’(xo/co) ] (10e)

Ignoring the dynamic quadratic term (x, /cO)2 and observing
that the fotal moment (static plus dynamic) M(¢) is equal to
EJ. (1), the result below can be obtained with the help of Eq. 1b:

- MO "
1+7(e)/T,

M(r) 2x,(t) (10f)

This expression is exact for the cable when the local inertia
force, related to the parcel ( %, /co)z, is neglected.

Local Effect of Flexural Stiffness on Dynamic Moment

In the vicinity of the touchdown point the total curvature (1) is
given by 92Z/9x*, where z = Z(x,1) represents, as before, the
cable’s dynamic configuration in the region. Using this notation
in Eq. 10b and ignoring second order terms (Egs. 10c and d), one
obtains:

—(T, +1(t)) = —q; x2x,(1) (11a)
x

that is exactly the linearized static equation of a cable with weight
g subjected to the static tension (T + 7()); observing that M(z) =
EJO*ZIx* and recalling Eq. 1b, the above expression coincides,
as it should, with Eq. 10f. If the flexural stiffness is included in
the analysis, one obtains, in accordance, the equation:

'z 3z
axj —(T+1(0))==F = —¢; x2x,(1) (11b)

EJ
ox*
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with x(1) being the instantaneous touchdown point when the flex-
ural stiffness is incorporated.

This equation is similar to the one previously solved for the
static problem and the final result can be obtained by inspection.
In fact, the flexural length is now given by A = Z.(I+T(t)/T0)_”2
and the flexural stiffness displaces the instantaneous cable’s
touchdov&in point to the left by an amount =l , which leads to xf(t)
= x((f) — A ; introducing the variable:

:B(Svt) = %'{3_)‘0(’)'*\/—]:_;([%} (12a)

the dynamic moment in the touchdown region can be written as:

M,

1 " -B(st
M, (s1) = 5(1+Slgnﬂ(5”))[1‘e 8 )]1+r(t)/To

(12b)

The solution given by Eq. 12, based on a local correction of the
cable’s Eq. 11a, does have meaning only when (1)/T;, < 1 since,
otherwise, the cable becomes statically unstable and cannot be
used as a basis for the riser’s solution.

In the fatigue analysis one is interested in the cyclic variation of
the bending moment caused by a low sea state, where 7(2)/T;, <<1;
if this parcel is disregarded in the last term of Eq. 12b and:

xo(8) = Xgcos(wr+y) (13a)

with X, being the amplitude of the cable’s touchdown displace-
ment, then the point in the riser where the range AM of the oscil-
latory moment is maximum is defined by the expression:

[i] = 4 (13b)
A ) uax A

while AM is approximately given by:

(am),,,, = (1-e**"*M,) (13¢)

This result shows that the fatigue analysis depends essentially
on the static curvature g/T of the catenary and on the ratio
between the amplitude X, of the touchdown displacement and the
flexural length A. It follows, also, that mathematical models that
do not consider the running of the touchdown point should, in
general, underestimate AM. At the same time, a local increase in
EJ, in the vicinity of point O in Fig. 1, can have a beneficial
effect since it increases locally the flexural length A.

NUMERICAL RESULTS

In order to check the analytical approximation given by Eq. 12,
2 risers have been analyzed, one with an external diameter of 16"
to export oil, and the other with diameter of 8 5/8" to export gas.
The 2 risers are assumed to have a global length of 5000 m, the
soil is supposed to be rigid, the friction coefficient 4 to be equal
to 0.4 and the drag coefficient Cp = 1.1; the relevant mechanical
properties and static parameters of these risers appear in Table 1.

Nine distinct sea states in Campos Basin were considered in the
fatigue analysis and an extreme (centenary) condition was also
analyzed for the 16" riser; in all cases the ocean current was
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RISER 16" RISER 8 5/8"
h 575m 910 m
D 0.4064 m 0.2191m
q 1.19 kN/m 0.26 kN/m
EJ 78000 kN m?> 9241 kN m?
FA 4x10° kN 2x10° kN
xB 784 m 733 m
zB 590 m 900 m

Table 1 Mechanical and static riser’s parameters

SEA PERIOD Ap
1 7.08 s 0.07m
2 7.11s 0.12m
3 7.74 s 0.20m
4 841s 0.32m
5 9.23 s 0.47 m
6 10.16 s 0.70 m
7 10.33 s 0.84 m
8 10.64 s 1.02 m
9 1141s 1.31m

EXT 12.04 s 2.20m

Table 2 Period and amplitude of harmonic circular motion for
different sea states

assumed to be zero. For a more direct comparison between the
analytical approximation and the numerical results, for each sea
state an equivalent circular motion, with amplitude Ag and period
P, was assumed (Table 2).

A homemade program, RISDIN, was developed to analyze the
“cable” (EJ = 0) in the frequency domain, as explained before,
and two commercial softwares, SOFT-1 (“ORCAFLEX” in
Larsen, 1992) and SOFT-2, were also run in the study. These pro-
grams use a nonlinear time domain model with lumped masses
and only SOFT-1 was used in the extreme situation (16" riser).

The SOFT-2 is a software whose technical accuracy is not pub-
lished in the literature.

Table 3 compares, for the 16" riser, the rms value of the
dynamic tension determined by the software with the values
obtained from RISDIN and also by the algebraic expression
derived in Aranha et al. (1993), named ASYMPT here; notice that
7 = 4Jp rms (). The two last columns present the relevant
parameters of the touchdown motion. In Table 4 the same com-
parison is made with respect to the 8 5/8" riser. All cases here
refer to an imposed circular motion in the counter-clockwise
direction and this is an important, although unexpected, feature:
As will be seen below, the displacement of the touchdown point,
and thus the dynamic moment, are sometimes very sensitive to the
sense of rotation imposed at the suspended end (mainly for the
16" riser in the three first sea states). Since the quasi-linear fre-
quency domain cable’s model captures this feature very well (see
Figs. 3 and 4) and the only nonlinear aspect of this model is the
fluid drag, the observed sensibility with respect to the sense of
rotation is due to this parcel; indeed, when the damping factor is
truly linear no difference has been observed with respect to the
sense of rotation.

For the 16" riser the static tension is Ty = 714 kN at the static
touchdown point and the flexural length is then A = 10.4 m. A
first observation should be made about the results presented in
Tables 3 and 4: Both the algebraic approximation ASYMPT and
the linear frequency domain model RISDIN predict, with reason-

SEA [ASYMPT RISDIN|SOFT-1|SOFT-2|x,/cy |X/Ag
1 14.4 12.6 11.9 10.5 10.04 |29.9
2 24.5 22.0 18.9 18.6 [0.06 |24.1
3 33.8 31.9 30.2 293 10.09 |214
4 45.2 46.4 43.0 37.0 (010 [ 174
5 55.1 573 55.0 43.6 |0.09 | 128
6 69.2 73.2 73.0 59.8 |0.12 | 126
7 82.6 89.0 88.9 72.8 10.16 | 13.0
8 98.1 111.1 108.0 | 90.0 |0.19 | 13.2
9 116.8 133.2 | 1325 | 1179 |[022 [ 132

EXT| 2235 266.8 | 2533 * 038 [ 143

Table 3 Rms of dynamic tension (kN) for 16" riser, counterclock-
wise motion; values from algebraic expression, ASYMP, from lin-
ear frequency domain, RISDIN, and from nonlinear time domain
models, SOFT-1 and SOFT-2. Also shown, velocity and ampli-
tude of touchdown displacement.

SEA |ASYMPT |RISDIN|SOFT-1|SOFT-2| %, /cy |Xo/Ap
1 22 1.6 1.9 1.5 001 | 11.6
2 3.7 3.2 35 26 003 [ 121
3 5.2 5.0 5.1 40 005 | 138
4 7.3 7.4 7.4 54 006 | 119
5 9.3 99 9.9 7.2 008 | 112
6 12.6 143 139 1.1 011 [ 112
7 15.6 18.2 17.3 145 | 0.16 | 11.5
8 19.5 23.4 21.8 189 | 0.16 | 11.8
9 25.0 31.2 28.4 273 1019 | 12.0

Table 4 Rms of dynamic tension (kN) for 8 5/8" riser, counter-
clockwise motion; values from algebraic expression, ASYMP,
from linear frequency domain, RISDIN, and from nonlinear time
domain models, SOFT-1 and SOFT-2. Also shown, velocity and
amplitude of touchdown displacement.

ably good precision, the dynamic tension even in the extreme con-
dition, when 7; = T(/2 and a strong nonlinear effect is expected.
The same conclusion holds true for the 8 5/8" riser.

In both cases the amplitude X, of the touchdown displacement,
computed from Eq. 7b, is roughly 4 times the estimate given by Eq.
8a; this result, however, does not invalidate the order of magnitude
analysis presented then. The local inertia parameter ( X, /co)2 is of
the order 14% for the centenary sea state and very small for the
remaining ones.

The behavior of the moment can be better visualized in graphi-
cal form and, for this reason, only some results will be displayed
here. Attention will be focused then on the 16" riser subjected to
sea state 3, the most likely one in Campos Basin, and to the
extreme environmental condition. The results, however, are typi-
cal and illustrate the main features of the dynamic moment.

For sea state 3 the oscillatory moment has been characterized
by its average and rms values. Both parameters were plotted, in
Figs. 3 and 4, against s/A, with s = 0 at O, namely, at the static
touchdown point of the cable (EJ = 0). In Fig. 5 the relevant
parameter in the fatigue analysis, namely, the peak-to-peak value
of the moment in one point, was plotted as a function of s/A.

Figs. 3~5 show the comparison between the analytical approxi-
mation and numerical results obtained from SOFT-1 when the
suspended end rotates in the clockwise and counter-clockwise
directions. The agreement between the analytical and numerical
results is very good and both the quasi-linear frequency domain
and the full nonlinear time domain models show the enormous
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Fig. 3 Average value of moment in vicinity of touchdown point.
Sea state 3, 16" riser. fd: frequency domain; blayer: boundary-
layer solution; SOFT1: time-domain simulation program 1; cc:
counterclockwise; cw: clockwise.
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Fig. 4 RMS value of moment in vicinity of touchdown point.
Sea state 3, 16" riser. fd: frequency domain; blayer: boundary-
layer solution; SOFT1: time-domain simulation program 1; cc:
counterclockwise; cw: clockwise.: xo(t) = 0: TDP not allowed to
move.
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Fig. 5 Peak-to-peak value of moment in vicinity of touchdown
point. Sea state 3, 16" riser. fd: frequency domain; blayer: bound-
ary-layer solution; SOFT1: time-domain simulation program 1;
cc: counterclockwise; cw: clockwise.

difference (almost a factor two) in the rms of the moment,
depending on the sense of the imposed rotation at the suspended
end. This is obviously a nonlinear effect that, being captured by
the quasi-linear frequency domain model, can be caused only by
the viscous drag; in fact, when the damping is assumed to be truly
linear (as in the presence of a strong ocean current), no difference
has been observed with respect to the sense of rotation. Actually,
the sense of rotation affects weakly the average value of the bend-
ing moment (see Fig. 3) and the dynamic tension 7(#), but it influ-
ences strongly the displacement x((1) of the touchdown point:
When the suspended end rotates in a counterclockwise direction,
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the amplitude of the touchdown displacement is 1.8 times greater
than when the rotation is clockwise; if one uses the approximation
e X022 1_2X,/A in Eq. 13, it follows that the ratio between
(AM)pax 1n the two cases is roughly of the order of the ratio
between X, a conclusion confirmed by the results shown in Fig.
5.

In the time domain simulation a mesh with As = 1.25 m was
used in the vicinity of O, to follow the bending moment variation;
to ensure numerical stability with this mesh size, the time step had
to be taken Ar = 12x107% s. On the other hand, to settle down the
transient motion, the dynamics had to be simulated during a real
time as long as 60 s, since the riser’s natural period is around 20 s
in the case. These numbers give an idea of the amount of numeri-
cal work needed when the scales are too discrepant.

For sea state 3 the amplitude X, of the touchdown displace-
ment, when the suspended end rotates in the counterclockwise
direction, is equal to 4.3 m (Tables 2 and 3), and so Xo/A =041,
For this case the simplified Eq. 13 predicts that the maximum
peak-to-peak value AM will happen at (s/A)yax = -0.59 and it
will be given by (AM)yax = 73 kKNm, in very close agreement
with both the numerical results and the full expression (Eq. 12,
Fig. 5). It follows that Eq. 13 can be used in a first estimate for
the fatigue life of a riser. One must observe, however, that the
point where AM is maximum changes with X, and so with the sea
state, and it may be too conservative to assume that the maximum
of AM holds at the same point for all sea states.

The observed pronounced maximum value of rms M(t) or AM
is directly related to the motion of the touchdown point. In fact,
when this moves, there are points in the riser that are cyclically
“laid down” and “lifted off,” causing a cyclic variation of the
moment between zero and (roughly) the static value, a variation in
general much greater than in other parts of the riser. Enlightening
this argument, Eq. 12, with x(r) = 0, is also plotted in Fig. 4; in
this situation no points in the riser can be lifted off or laid down
and the peak value of rms M(t) disappears. Mathematical models
that do not take into full account the touchdown motion can then
grossly underestimate the cyclic variation of the moment, which
is crucial in the fatigue analysis; notice that the small horizontal
motion allowed to accommodate the elastic deformation of the
part of the riser on the ground, is far from enough to cope with
the real touchdown motion.

For the extreme sea condition, one is interested in the maxi-
mum value of the moment and Fig. 6 displays this value as com-
puted from Eq. 12 and SOFT-1. In this case the nonlinearity is
strong, since £, /cy = 0.38 (Table 3), and the expected error of the
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Fig. 6 Maximum value of moment. Extreme sea state, 16" riser.
fd: frequency domain; blayer: boundary-layer solution: SOFT1:
time-domain simulation program 1; cc: counterclockwise; cw:
clockwise.
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asymptotic approximation, where terms of order (%, /C0)2 are
ignored, is of the order 15%, a value compatible with the one
observed in Fig. 6.

CONCLUSION

In this paper, an asymptotic approximation of the boundary layer
type was developed for the bending moment in the touchdown
region of a riser, based on the quasi-linear frequency domain
response of a cable (EJ = 0). If xy(?) is the displacement of the
touchdown point (Eq. 7b), and «(¥) is the dynamic tension, the
underlying assumptions in the present analysis are { 7(r)/T < 1; X,
/cp<1}, where T is the static tension at the touchdown point and ¢
is the local wave velocity in the cable (Eq. 4). If «(1)/T, > 1, the
cable buckles dynamically while a shock phenomenon is expected
when i, /cg>1. To be strict, neither one of these nonlinear phenom-
ena should be observed for the actual riser, where the bending stiff-
ness is non zero: On one hand, if EJ # 0 then certainly some com-
pression in the line (7(#)/Ty>1) is allowed; on the other hand, under
the same condition EJ # 0 the waves become dispersive and one
should expect, when x,/cy>1, a competing mechanism between
dispersion and nonlinearity (Whitham, 1974), leading eventually to
a solitary wave behavior and not to a shock wave. In any case the
conditions { ®#)/Ty>1; x,/cy>1} should be avoided, since other-
wise the loads would be so large as to impair the use of the steel
catenary solution; in reality, the underlying assumptions
{70/ Ty<l; x,/cy<1} are usually fulfilled in an actual problem, as
shown by the examples discussed in this paper.

For all sea states used in the fatigue analysis, the derived
expression, Eq. 12, compares very well with numerical results
obtained from nonlinear time domain models and the comparison
is good even for the extreme (centenary) sea state in Campos
Basin.

Besides being much more efficient than the time domain solu-
tion, the derived expression, being analytical, can also be used as a
theoretical tool to study some features of the bending moment in
the touchdown region. In this respect one should call attention to
the simplified Eq. 13, which can be important in the riser’s design,
and to the possibility of analyzing the statistical behavior of the
dynamic tension (bending moment) in a relatively easy way: In
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fact, Eq. 12 shows that the bending moment, although strongly
nonlinear, depends only on two dynamic variables of the cable,
namely, the dynamic tension #(¢) and the touchdown displacement
Xo(?). Since these variables are quasi-linear (as a matter of fact, they
become essentially linear when the ocean current is strong and the
fluid drag can be linearized), Eq. 12 can be used to study the com-
plex nonlinear statistics of the bending moment using time series
realizations of the quasi-linear variables { @(1); xy()}.
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