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Conditions for strong first-order phase transition and generation of observable gravitational wave (GW)
signals are very restrictive to the profile of the Higgs potential. Working in the minimal extension of
the SM with a new gauge singlet real scalar, we show that the production of signals relevant for future
GW experiments, such as LISA, can favor depleted resonant and non-resonant di-Higgs rates at colliders
for phenomenologically relevant regimes of scalar mixing angles and masses for the heavy scalar. We

perform a comprehensive study on the emergence of these di-Higgs blind spot configurations in GWs and
also show that di-boson channels, ZZ and W W, can restore the phenomenological complementarities
between GW and collider experiments in these parameter space regimes.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

The Higgs potential is a vital element of the Standard Model
(SM) of particle physics. Its measurement is crucial for under-
standing the exact mechanism of electroweak symmetry breaking
and the origin of mass in our universe [1-3]. Distinct shapes for
the Higgs potential can display contrasting patterns of electroweak
symmetry breaking in the early universe, from a smooth crossover
in the SM to a strong first-order phase transition with new physics
contributions [4-28] (see [29] for a recent review).

Higgs pair production pp — hh provides a direct probe of the
Higgs potential at colliders [7,30-37]. This process is of central im-
portance in measuring the triple Higgs coupling as well as new
heavy scalar interactions in the Higgs sector via non-resonant
and resonant di-Higgs searches, respectively. Current ATLAS and
CMS high-luminosity projections indicate that the triple Higgs cou-
pling will be constrained in the range 0.1 < A3/A3.sm < 2.3 at 95%
CL [38]. Resonant searches are also being performed resulting in
significant limits [39]. For the latter, the weak boson fusion pro-
cess provides relevant additional new physics sensitivity [40]. The
measurement of the Higgs potential, in particular the Higgs self-
interactions, will remain as one of the prime targets for the Large
Hadron Collider (LHC) and provides a strong motivation for future
colliders [41-50].
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Gravitational Wave (GW) experiments, such as the future Laser
Interferometer Space Antenna (LISA) [51], Big Bang Observer
(BBO) [52], DECi-hertz Interferometer Gravitational wave Obser-
vatory (DECIGO) [53], Taiji [54], and Tianqin [55], present a new
window to access the Higgs potential. First-order phase transi-
tions, that arise from a scalar field tunneling from a local to a
true minimum across an energy barrier, result in a relevant source
of gravitational radiation. In general, the significant characteristics
of the effective potential are the relative depth of the true mini-
mum, the height of the barrier that separates the true minimum
from the false one, and the distance between the two minima in
field space at the nucleation temperature [56]. While this is an
apparent simple picture, it has interesting phenomenological im-
plications when the Higgs boson mixes with other scalars. This is
because the required conditions for experimentally detectable GW
signals are in general very restrictive to the shape of the Higgs
potential [57,58].

Working in the minimal extension of the SM with a new gauge
singlet real scalar [59], commonly known in the literature as “xS-
M” [4,6,7,60-64], we show in this paper that the conditions for
obtaining large GW signals from a first-order phase transition can
favor suppressed branching ratios of the heavy scalar hy to di-
higgs hp — hihy in specific mp, regimes, even above the Higgs
boson threshold and with relatively large mixing angles. The same
parameter regime displays characteristic Higgs self-couplings with
suppressed non-resonant di-Higgs cross-sections. These observa-
tions have significant consequences for the complementarity of
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probes for the Higgs sector using GW and collider experiments.
They would imply that while LISA would be sensitive to certain
parameter space regions, the LHC would not be able to observe
the corresponding regions via di-Higgs resonant or non-resonant
production. We dub these phenomenologically important parame-
ter space regions as di-Higgs blind spots.

In previous papers, we have studied the general complemen-
tarity of probes between colliders and GW experiments, exploring
the resonant di-Higgs in the h, — hihy — bbyy [63], 4b [64],
and hy - VV (V. =W, Z) [61] channels.! In contrast, in this work,
we carefully study the phenomenological conditions on the Higgs
potential, as well as the parameters governing the observation of
GWs, that restrict the Higgs sector to the blind spots. This includes
a detailed exploration of the shape of the Higgs potential, in the
vicinity of these parameter space regimes, through scrutiny of the
Higgs couplings, potential barrier, potential depth, and the sepa-
ration of the minima during the phase transition. We find that
whereas the di-Higgs channel cannot lead to complementary LHC
signals, the collider reciprocity can nonetheless be restored with
other relevant decay channels: h, > WW, ZZ. We go on to per-
form detailed analyses of di-Higgs and di-boson searches at blind
spot benchmarks, showing their phenomenological complementar-
ity to GW studies.?

This paper is structured as follows. In Sec. 2, we show the
emergence of blind spots in di-Higgs production at the LHC as-
suming the xSM model. Next, we study the Higgs potential in
the vicinity of the blind spot and discuss the sensitivity prospects
to gravitational wave signals. We pay particular attention to the
parameters that control the stochastic gravitational wave signals.
This singles out the appearance of these suppressed heavy scalar
branching ratio regions. In Sec. 3, we perform a collider analysis
using the di-Higgs and di-boson channels. Finally, we present a
summary in Sec. 4.

2. Di-Higgs blind spots

In this Section, we build up our discussion in three stages. We
first provide a short summary with the general features of the XSM
model, then show that blind spots can appear simultaneously in
resonant as well as non-resonant di-Higgs production at collid-
ers. Finally, we study the scalar potential in the vicinity of these
relevant parameter space regions, paying particular attention to
the behavior of parameters that control the stochastic gravitational
wave signals.

2.1. Scalar potential

We consider the extension of the SM where there is an addi-

tional SM gauge singlet real scalar field [4]
a a

V(H,S)=—u?H H+ aHTH)? + ?lHTHS + 32HTH52
by 5, b3 3 ba_y
—=S —S — 57, 1
2 + 3 + 4 (1)
where S = vg +s is the new singlet scalar and HT = (G1, (vew +
h +iG%/+/2) is the SM Higgs doublet with vgyw = 246 GeV. All
parameters of the above scalar potential are real. Using the tadpole
conditions of the potential, we can replace two of these parameters

+

1 For further studies on this model associating the EWPT and collider phe-
nomenology see, e.g., Refs. [4,6,32,33,58,65-68]. For explorations associated with
GW signals see, e.g., Refs. [26,69-73].

2 It is important to highlight that the observation of GW signals can only favor
feeble BR(hy — hihy) for small or intermediary my,, in respect to the EW scale.
The decays of h; to vector bosons are fully determined by their Goldstone nature for
mp, > my, where BR(hy — hih1) = BR(hy > ZZ) = BR(h, > WW)/2=1/4.
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(i, by). The physical scalars in the model can be obtained by the
rotation

h1 =cph + sgs, hy = —sgh 4 cgs. (2)

We identify hy as the SM Higgs, mp, ~ 125 GeV, and h; as a heav-
ier scalar resonance. Three more parameters in the scalar potential
can be replaced by the masses and mixing angle of the phys-
ical scalars (mp,,my,,0). It is usual in the literature to replace
(A,aq,ay) by the above three physical parameters, with (bs, bs)
being considered independent parameters. In this paper, we take a
different approach and choose the cubic couplings (a1, b3) as inde-
pendent parameters instead. We opt for this path since the cubic
couplings play the most important role in forming a barrier during
the Electroweak Phase Transition (EWPT) and the subsequent pro-
duction of GW signals. Hence, the unknown free parameters within
our setup, which can specify the model completely, are

Vs, My, 6, ai, bz (3)

In the subsequent parameter scan for our analysis, we consider
both positive and negative values of cubic couplings (a;, b3) and
the singlet vev vg, but scan only positive values of sinf without
any loss of generality.

One can impose two general categories of constraints on the
parameter space of the xSM. The first set of constraints is theoret-
ical. They include the stability of the EW vacuum, boundedness of
the potential from below, and perturbative unitarity of 2 — 2 scat-
tering processes. All the other constraints are phenomenological. In
particular, Higgs signal strength measurements constrain the mix-
ing angle 6 [74-76]. EW precision measurements, such as correc-
tions to my [77,78] and the oblique S, T, U parameters [4,79,80],
constrain the model in (my,,0) plane at one-loop level. The W-
mass measurement typically provides the strongest bounds. For the
details of the model and the impact of the various limits on the
parameter space, we refer the reader to our previous paper [61].

The analysis of the phase transition and eventual calculation of
gravitational waves starts with the finite temperature effective po-
tential. This can be obtained in the high-temperature approxima-
tion, where gauge-independence is explicitly maintained [5]. The
resulting effective potential takes the same form except that the
parameters i and b, now become temperature-dependent. Addi-
tional contributions to the cubic term are of secondary importance
as the tree-level cubic terms are assumed to dominate the bar-
rier. If the effective potential can accommodate a first-order EWPT,
a stochastic background of gravitational waves can be generated
through the nucleation and collision of the electroweak bubbles in
the super-cooled plasma consisting of relativistic particles [81-89].
The parameters characterizing the dynamics of the phase transition
are: (T, Ty, o, B, Vw), where T, is the critical temperature when
the would-be true vacuum is degenerate with the meta-stable one;
T, is the nucleation temperature when there is approximately one
bubble per Hubble volume; « is the energy density released due
to the phase transition normalized by the radiation energy density
of the universe; 8 is roughly the inverse time scale for the phase
transition; and v, is the bubble wall velocity.

The EWPT would result in gravitational waves naturally falling
within the milli-Hertz frequency band and can potentially be de-
tected by future space-based detectors [90], of which many have
been proposed [51-55]. Different from a chirp signal coming from
binary black hole mergers, the most important feature of the grav-
itational wave signal generated from a cosmological first-order
phase transition is its stochastic origin. Therefore, its detection
requires at least a pair of independent interferometers, with the
strength of the signal represented by the signal-to-noise ratio
(SNR) [91-94].
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Fig. 1. Left panel: Branching ratios of the heavier scalar h; that can accommodate first-order phase transition with signal-to-noise ratio 10 < SNR < 50 (green), and SNR > 50
(red). Right panel: The coupling hph1h; for phenomenologically and theoretically allowed points (pink), and points that satisfy first-oder phase transition with all SNR (blue),

10 < SNR < 50 (green), and SNR > 50 (red). We assume sin6 = 0.2.

2.2. Emergence of blind spots

We now turn to an investigation of blind spots in this setting.
First-order phase transition can be realized for negative cubic and
positive quadratic terms, also keeping the potential bounded from
below. It is illuminating to trade the cubic couplings (ai, b3) for
the couplings of hohi1hy (g211) and hihaha (g122)

sin@ sin 26
S =—— [ - bz +
(vEW(l —3c0s20) + 3 Viw sinz@)a—1 +
Vs 4 V? 2
@mp, +mj )(L sin26 — COSZQ)]
! 27\2vs VEW
cos6 sin 26
8122 = N |: I bs +

v 3v2 a
EW 1 —3sin20) 4+ 2 —EW sin29)—] +
Vs 4 v? 2

sin29)]
VEW '

The triple Higgs coupling g111 is also relevant

(_

(m2 +2m?) lsin29+
hy /v

1 .3 b3
=—| —sin" 6 —=
8111 2[ 3 +
.9 VEW 1vdy . a
sin 9(——c059+§—sm9)?+

Vs v2

, (sin®6  cos?6
m (= ).
Vs VEW

(5)

h1

A blind spot for resonant di-Higgs production is obtained when
g211 is depleted, g11 ~ 0, while a different coupling can still pro-
vide a barrier for a first-order phase transition with appreciable
gravitational wave signals. When we fix sin6 and v, we get a lin-
ear combination of a; and b3 on the right hand side of Eq. (4). One
can readily evaluate the limiting case g>11 — 0 with

3aqv2
3avew

N

1
mp, = 5(—Sm,%1 +4b3vs —

(6)

4b3v? 4 a1vd, (1 - 2tan?6)\ /?
VEw tanf — vg '

Although the g;11 — 0 regime is allowed by the constraints on the
model, there is no condition favoring this parameter space point
for any particular mass. The conditions for obtaining large SNR for
GWs observation will, however, alter this scenario as we promptly
discuss.

In Fig. 1 (left panel), we show the branching ratios of the
new scalar to SM Higgs pair h, — h1h; and to di-boson pair
h, — VV, where V = Z, W, assuming sin6 = 0.2. The parameters
(vs, a1, bs) are allowed to vary. The points are compatible with all
phenomenological and theoretical consistency requirements for the
model (we refer to Ref. [64] for an exhaustive discussion of phe-
nomenological constraints). The stochastic GW signals at LISA are
denoted in two different SNR regions: 10 < SNR < 50 (green) and
SNR > 50 (red). We have applied a reduction factor § = 0.01 for all
points in calculating the SNR to be conservative [64], considering
the recently observed reduction in gravitational wave production
from sound waves [95]. It is evident that the di-Higgs branch-
ing ratio falls precipitously near mjy, ~ 800 GeV, even though a
large stochastic gravitational wave signal is obtained. Since the al-
lowed parameter space displays suppressed branching ratios over
a wide range of mpy, going further beyond the limiting point
mpy ~ 800 GeV, we can foresee challenging collider prospects for
this channel, resulting in a significantly large di-Higgs blind spot
regime. The LHC prospects will be derived in Sec. 3.

In Fig. 1 (right panel), we directly plot g»11. The coupling
is normalized by vgw. The pink regions denote parameter space
points compatible with all theoretical and phenomenological re-
quirements. The blue points denote models that give rise to a
first-order phase transition and gravitational waves of any strength.
The horizontal line indicates the vanishing coupling g;11 — 0. It
is clear that while phenomenologically acceptable pink points are
distributed with relative uniformity, exploring the extra degrees of
freedom in the Higgs potential shown in Eq. (4), the requirement
of a successful first-order phase transition (i.e., with the condition
for defining T, satisfied) already restricts the parameter space to a
narrow region in gp1q — mp,. This space becomes even more con-
stricted as the requisite SNR becomes larger.

Before analyzing the reasons for this parameter constriction in
more detail, a few comments about the outlier points with large
but negative g>11/vew, on the right panel of Fig. 1, are in order.
Interestingly, these few points possess large negative v, while the
band structure is formed by positive v points. Although we start
our scan with equal number of points with positive and negative
values of v, phenomenological and theoretical constraints over-
whelmingly prefer positive v points. We obtain only ~ 5% points
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Fig. 2. Points in (g211/VEw, k) (top-left), (g211/VEw, 8122/ VEw) (top-right), (g211/VEw, Vs) (bottom-left) and (a1 /vew, b3/vew) (bottom-right) planes. The green points satisfy
780 GeV < my, <840 GeV and SNR > 10, assuming a universal suppression factor of 0.01. These are part of the green and red points near the blind spot regime depicted in
Fig. 1. The pink regions correspond to the pink points of Fig. 1, i.e., all points compatible with phenomenological and theoretical constraints.

with negative v;. Successful completion of first-order EWPT fur-
ther disfavors negative vs points, and they are only ~ 0.25% of
total number of points that undergo first-order EWPT. Imposing
the condition of requiring strong SNR does not change this ratio
significantly. Obviously the outliers require positive a; and bs to
form a barrier since they have vy < 0. We find that a; and bs en-
joy almost a linear relationship for the outliers. In contrast, the
points in the bulk prefer negative a; but are uniformly distributed
in b3. The relationship between a; and b3 plays an important
role in forming the blind spot, as we will discuss in the subse-
quent text. Also, we found that a modest ~ 1% of points undergo
two-step phase transition [61]. The mechanism of two-step phase
transition is different from one-step transition, thus the parameter
space preferred by those points will be naturally different. Because
of their suppressed likelihood, different physics origin and spec-
tral shapes, we do not further discuss those points in this paper.
Finally, we further point out a caveat on our calculation for the
nucleation criteria at a temperature very close to the minimum of
the action. These points naturally have a small first derivative B
and thus large SNR. While a better treatment might be obtained
by using the second derivative §;, (see, e.g., [89,96]), the true ob-
servable that determines the spectral shape is the mean bubble
separation, whose relation with 8 and B, needs to be studied case
by case as analyzed in Ref. [89]. We leave such a detailed analysis
for a future study.

Let us now focus primarily on the points that have suppressed
hy — hqhy branching ratio. In fact, for the red points, i.e., those

with SNR greater than 50, the fraction that has BR(hy — hihy) <
1072 (1073) is about 56% (16%). Restricting to the mass window
780 GeV < my, < 840 GeV, we obtain 100% (91%) of the simulated
events with BR(hy — hih1) <1072 (10~3). Whereas the di-Higgs
branching ratio gets further suppressed within the mass window
around gz11 — 0, a wider span of mjy, will remain beyond the am-
bit of resonant di-Higgs searches at the LHC. The reason for this
phenomenological effect is manifest in the right panel of Fig. 1,
where the red band crosses the g>11 = 0 line with a small slope,
and hence, |g211] does not attain large values within the GW mo-
tivated parameter space.

In Fig. 2 (top-left panel), we show the blind spot in the space
of couplings (g211/Vew, ki) where k; = g111/g5);. The mass of
hy has been restricted to the limiting range 780 GeV < my, <
840 GeV. The pink regions correspond to the pink region of the
right panel of Fig. 1. The green dots correspond to points with
SNR greater than 10, assuming a universal suppression factor of
0.01. Remarkably, these conditions imply in a narrow range for
the Higgs self-coupling 1.7 <k < 1.9. It is well known that the
non-resonant di-Higgs production cross-section becomes smaller
for k; > 1 due to the increasingly destructive interference of the
triangle and box diagrams with the minimum being at «, ~ 2.4
[48]. This implies that the non-resonant di-Higgs cross-section is
also suppressed to almost half of the SM rate, making it unlikely
to be probed by non-resonant searches either. We also show the
other triple coupling in the (g211/Vew, g122/VEw) plane in the top
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potential are highlighted by white stars (crosses). Although the b3 values are significantly different for these points, the shape of the potential for them is nearly identical

around the relevant region for phase transition.

right panel of the same figure. We see that a rather large range
of 1.8 < g122/vew < 4.1 is available to provide a first-order phase
transition in the limit g1 — 0.

We revisit Egs. (4)-(6) to understand why imposing the condi-
tion of detectable SNR results in a predictive value of gq11 at the
blind spot. As we already mentioned, for a fixed sin6 and vs, and
hence for a particular linear combination of a; and bz, we can
predict my, from Eq. (6) where g1 = 0. Similarly, for this specific
combination of a; and b3, we can predict a value of gi11 using
Eq. (5), provided sin6 and v remain fixed. For our scan results
shown in Fig. 2, although sin#é is fixed at 0.2, v is not. So, a large
variation in vs will clearly not be predictive for g111. However, we
have already shown in our previous study [61] that a detectable
GW signal favors v in a narrow range of 20 — 50 GeV for all phe-
nomenologically allowed sin6. For sin6 = 0.2, the allowed region
is even narrower (27 — 45 GeV). It is evident from the distribu-
tion of green dots in Fig. 2, where 780 GeV < my, < 840 GeV, that
vs is preferred to be almost constant (32 — 37 GeV), resulting in a
predictive value of «;.

We alluded before that the bulk points show no preference in
bs. In the bottom right panel of Fig. 2, we present the distribution
of a; and b3, normalized by vgw. Clearly, a; is preferred in a sig-
nificantly smaller range, a1/vew ~ [—6.5, —4.9], when compared
to b3, which spans the whole scan range. So, we can infer that bs
plays a minimal role in EWPT for the blind spot points. To stress
this property, we show in Fig. 3 the shape of the potential at re-
spective nucleation temperatures for three benchmark points with
SNR > 10. These three points have similar values of input parame-
ters (vs,my,,6,a1) and (T¢, Ty) but widely different values of bs.
Undoubtedly, the shape of the potential for these points is almost
identical around the relevant region for phase transition.

Obtaining an analytical expression for why the large SNR re-
quirement imposes regimes with constricted parameter regions is
not straightforward. The main challenge is obtaining the bounce
solution for the phase transition (see, e.g., Refs. [97,98] for detailed
calculations or [99] for an introduction). Denoting the fields col-
lectively as q_ﬁ the bounce solution minimizes the 3-dimensional
Euclidean action

- 2
S3(, T)=4n/r2dr %(?) +V@$ |, (7)

with the following boundary conditions

d—> N -
Zir) = 0,  ¢(r=00) = Poutsides ®

where $Out5ide denotes the vacuum outside the bubble. Analytic so-
lutions to this minimization problem cannot be obtained except for
very special potentials. Given the difficulty in obtaining an analytic
condition, we now turn to a detailed numerical study of the scalar
potential.

2.3. Gravitational wave production

In this section, our goal is to study the shape of the potential
in the vicinity of a blind spot regime, paying particular atten-
tion to the parameters that control the production of gravitational
waves. In the top panel of Fig. 4, we show the correlation between
the barrier height Vpgamier(Tn) and the depth of the electroweak
vacuum |Vew(Ty)|, where the height and depth are defined with
respect to the meta-stable vacuum, for points with SNR larger than
1. The results are shown for different values of SNR, «, 8/H;, and

v(Tn)z,/vﬁ(Tn)+v§(Tn). We also show « versus B/Hp, color-

coding SNR. We use CosmoTransitions to trace the evolution
of the phases and obtain the bounce solutions [100]. From these
plots, we can see that shapes of the potential show the desired
behavior for accommodating large SNR for gravitational waves,
i.e, a deeper true vacuum, lower barrier, larger o, and smaller
B/Hy [101]. For the plot of o — 8/H}, with SNR color-coding, there
are points with large o and small 8/H, but relatively small SNR,
which might seem counter intuitive as they should, in principle,
give a large signal. The reason is that a very small 8/H, would
lead to a correspondingly very small frequency, which then shifts
the spectrum out of the most sensitive band of LISA and thus
results in a smaller SNR [51]. The peak frequency fsw for the dom-
inant source, the sound waves, is shown in a similar (o« — 8/H;)
plot here and serves to explain the behavior of these points.

To further understand the origin of the band structure in Fig. 1
and thus the appearance of the blind spot, we choose a bench-
mark point with mp, = 788.5GeV and vary my,. For each new
point obtained by this variation, the resulting phase transition is
calculated and presented in Fig. 5. The top left panel shows the
phase histories, i.e., the variation of the effective potential value at
the true minimum Veg(vy(T), vs(T)) as a function of temperature,
T. In this plot the temperature drops from right to left. The color
shading represents the variation of mjp, values. Not all points on
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Fig. 4. The shape of the potential as characterized by |Vew(Tn)|, VBarrier(Tn), also o and B/Hy for the points with SNR larger than 1 for sinf = 0.2. The bottom right figure

shows the peak frequency fsw for the dominant spectrum from the sound waves.

this plane achieve a nucleation temperature T, and have a suc-
cessful phase transition. For those that do, we use a black dot
to denote its location on the plane, i.e., the potential and value
of T, at the corresponding vacuum. The magenta point denotes
the starting benchmark point. The top right panel shows the ma-
genta and black dots on the gz11 — mp, plane, while the green
dots correspond to points that do not achieve a nucleation tem-
perature Tp. The blue band corresponds to the blue points on the
right panel of Fig. 1, i.e,, points with a valid nucleation tempera-
ture but any SNR. It is clear that the black dots constitute a single
line cutting through the band structure, and from Fig. 1 (bottom-
right panel), we know that moving from the left to the right of
this line, we obtain signals with larger SNR. The two bottom pan-
els show the black and magenta points on the plane of (a,my,)
and (B/Hpn, my,), respectively. It is clear that as one approaches
the magenta point, o becomes larger and 8/H, smaller, imply-
ing a larger SNR. The reason that « increases is due to a delayed
transition and thus a more supercooled transition at a lower tem-
perature. For 8/Hp, it becomes smaller, which means slower phase
transition and thus enhancement for gravitational wave produc-
tion. However, a transition that is too slow would be prevented
from completion. This makes larger my, infeasible in obtaining
a valid nucleation temperature T,. This explains why, as one in-
creases my, and overshoots the magenta point in the top right
panel, the black dots give way to the green dots. The conclusion
is that requiring a sufficiently large SNR narrows down the range
of possible masses my,, explaining the emergence of the narrow
band structure in the g»11 — mpy plane.

3. Probing di-Higgs blind spots at the LHC

In this section, we analyze the collider limits on the heavy
Higgs resonance hy, focusing on the blind spot regime. Two bench-

Table 1
Definitions for the benchmark points illustrated in Fig. 6 with the corresponding
SNR.

Benchmark  my, [GeV]  sin6 vs [GeV] b3 [GeV]  aj [GeV]  SNR
A 825 020 346 1420 —1364 219
B 1068 0.15 25.0 677 —1810 103

mark points displaying these features are defined in Table 1.
They are characterized by depleted h, branching ratio to di-Higgs
BR(hy — hihy), distinct mixing angles sin®, and SNR > 10. We
explore the complementarity between h, — hihy and hy — VV
searches to probe these parameter regimes.

We start this phenomenological study focusing on the pp —
hy — hihi1 — 4b channel. The ATLAS collaboration obtained the
current 95% confidence level limit to this channel in Ref. [102]. In
Fig. 6 (left panel), we present the corresponding limit to the heavy
Higgs cross-section decaying to di-Higgs (dashed line). The results
are scaled to the high-luminosity LHC, £ =3 ab™'.

In addition, we display model points that present complemen-
tary GWs signals at LISA with SNR > 10. For illustration, we show
two mixing scenarios: sinf = 0.2 and 0.15. The benchmark points
defined in Table 1 are also depicted (black stars). For more de-
tails on the respective signal cross-section and branching ratios see
Table 2. The signal cross-section is at NNLO+NNLL QCD and in-
cludes top and bottom quark mass effects up to NLO [103,104].
While we optimistically scaled the present ATLAS limits to the
high-luminosity LHC scenario without accounting for systematic
uncertainties, the benchmarks do not display relevant sensitivities
and have rates more than two orders of magnitude below the pro-
jected ATLAS constraints. The small branching ratio of the heavy
scalar hy into Higgs bosons hi results in a large blind spot for the
resonant double Higgs searches.
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and bs =4.19, which has very small branching to di-Higgs (g211 ~ 0), and we vary my, around this blind point. The initial benchmark point is shown in magenta in all the
panels. As my, is varied, the other points in the variation are shown in black if a valid nucleation temperature T, can be found and in green if not. In the top left panel, the
different curves correspond to the phase histories for all the parameters with the mass shown through a color map. The top right panel shows the coupling g»11, with the
blue band corresponding to the blue points on the right panel of Fig. 1. The bottom panels show « and g/H, for the magenta and black points.

Table 2

Cross-section and branching ratios associated with the benchmark points A and B defined in Table 1. The cross-section is
at NNLO+NNLL QCD and includes top and bottom quark mass effects up to NLO [103,104].

Benchmark o (pp — h2)131ev (fb) 0 (pp — h2)1a1ev (fb)  BR(h — ZZ)  BR(hy — WW)  BR(hy — hihy)
A 15.1 18.6 28.9% 58.8% 0.0109%
B 1.85 2.35 30.3% 61.2% 0.0104%

In addition to the absence of a resonant peak in the myp, dis-
tribution for the double-Higgs channel, the benchmarks considered
have a modified trilinear Higgs couplings gi11. The interference
between the triangle and box diagrams in the non-resonant hih
production is increasingly destructive for «, between 1 and 2.4,
where o (pp — hihy) reaches a minimum. The benchmark points
display «; ~ 1.8, resulting in a suppressed hihj cross-section to
approximately half of the SM rate, see Fig. 7. Since the current
ATLAS and CMS high-luminosity LHC projections indicate that the
trilinear Higgs coupling will be poorly probed 0.1 < k; < 2.3 at
95% CL [38], we should not expect an observation of non-resonant
double Higgs production in these blind spot scenarios, in addition
to their blindness to the resonant pp — hy — h1hy channel.

Now we move on to the complementary di-boson channels
hy — VV, where V = Z, W. The CMS and ATLAS collaborations
studied the high-luminosity LHC projected sensitivities to heavy
Higgs resonant searches in the channels pp — hy, — ZZ — 2{2q at

V/S=13 TeV and pp — hy > WW — ¢v2q at +/S = 14 TeV, re-
spectively [105,106]. The results are shown in Fig. 6 (central and
right panels). While the di-Higgs searches are blind to the bench-
mark points defined in Table 1, the di-boson analyses result in bet-
ter limits, benefiting from the large heavy Higgs branching ratios
to VV, see Table 2. We observe that the ZZ search will present
sensitivity to the di-Higgs blind spot parameter region for mixing
sin@ = 0.2. In fact, the bulk of parameter points that lead to GWs
signals at LISA with sinf = 0.2 can also be probed at the LHC,
using the ZZ channel. Notice that W-mass constraint excludes
the region with mp; = 1 TeV for sinf = 0.2 [77,78]. Whereas the
smaller mixing scenario siné = 0.15 is more challenging at collid-
ers, due to the depleted event rate o (pp — h3) o sin? 6, it also dis-
plays relevant phenomenological complementarities between LISA
and LHC for mp; < 800 GeV.
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Fig. 7. Distribution of parameter space points for GWs signals in the (k;,mp,) plane
for sind = 0.2 (magenta) and sin® = 0.15 (green). The projected 95% confidence
level HL-LHC sensitivity for non-resonant di-Higgs production 0.1 < k; < 2.3 is also
shown [38].

4. Summary

Future gravitational wave experiments, such as LISA, will pro-
vide complementary information to collider experiments on the
shape of the Higgs potential. The conditions for strong first-order
phase transition and generation of observable GW signals are,
however, very restrictive to the profile of the Higgs potential. Using
the xSM model as a template, we have shown that the produc-
tion of signals relevant for future GW experiments can favor feeble
hah1hy interactions and characteristic Higgs self-couplings in phe-
nomenologically relevant siné and my, regimes. These coupling
regimes result in suppressed cross-sections for both resonant and
non-resonant di-Higgs signals. While this parameter space is al-
lowed by the theoretical and phenomenological constraints on the
model, the restriction to this parameter region is only established
after requiring observable GW signals.

Given the importance for the complementarity picture between
GW and collider experiments, we have performed a comprehensive
study on the emergence of these di-Higgs blind spot regimes. The
requirement for high latent heat release «, slow phase transition
(i.e., small 8/Hy), and large SNR induce a clear band structure on
the (g211,mp,) plane. This dependence is ultimately driven by the

term a;HTHS in the Higgs potential, that controls the size of the
tree level barrier in the effective potential, and small v with sub-
leading dependence on the other free model parameters.

While GWs can favor parameter space regimes resulting in null
di-Higgs searches, we show that the complementarity between col-
liders and GW experiments can be restored in these parameter
regions after accounting for both di-Higgs and di-boson channels.
We perform such an analysis using the high-luminosity LHC pro-
jections for resonant hy — hih1, ZZ, and WW searches. We find
that the LHC will be sensitive to the bulk of points displaying GWs
signals at LISA with sin6 = 0.2 and to points with mp, <800 GeV
with siné = 0.15.
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