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Conditions for strong first-order phase transition and generation of observable gravitational wave (GW) 
signals are very restrictive to the profile of the Higgs potential. Working in the minimal extension of 
the SM with a new gauge singlet real scalar, we show that the production of signals relevant for future 
GW experiments, such as LISA, can favor depleted resonant and non-resonant di-Higgs rates at colliders 
for phenomenologically relevant regimes of scalar mixing angles and masses for the heavy scalar. We 
perform a comprehensive study on the emergence of these di-Higgs blind spot configurations in GWs and 
also show that di-boson channels, Z Z and W W , can restore the phenomenological complementarities 
between GW and collider experiments in these parameter space regimes.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The Higgs potential is a vital element of the Standard Model 
(SM) of particle physics. Its measurement is crucial for under-
standing the exact mechanism of electroweak symmetry breaking 
and the origin of mass in our universe [1–3]. Distinct shapes for 
the Higgs potential can display contrasting patterns of electroweak 
symmetry breaking in the early universe, from a smooth crossover 
in the SM to a strong first-order phase transition with new physics 
contributions [4–28] (see [29] for a recent review).

Higgs pair production pp → hh provides a direct probe of the 
Higgs potential at colliders [7,30–37]. This process is of central im-
portance in measuring the triple Higgs coupling as well as new 
heavy scalar interactions in the Higgs sector via non-resonant 
and resonant di-Higgs searches, respectively. Current ATLAS and 
CMS high-luminosity projections indicate that the triple Higgs cou-
pling will be constrained in the range 0.1 < λ3/λ3,SM < 2.3 at 95% 
CL [38]. Resonant searches are also being performed resulting in 
significant limits [39]. For the latter, the weak boson fusion pro-
cess provides relevant additional new physics sensitivity [40]. The 
measurement of the Higgs potential, in particular the Higgs self-
interactions, will remain as one of the prime targets for the Large 
Hadron Collider (LHC) and provides a strong motivation for future 
colliders [41–50].
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Gravitational Wave (GW) experiments, such as the future Laser 
Interferometer Space Antenna (LISA) [51], Big Bang Observer 
(BBO) [52], DECi-hertz Interferometer Gravitational wave Obser-
vatory (DECIGO) [53], Taiji [54], and Tianqin [55], present a new 
window to access the Higgs potential. First-order phase transi-
tions, that arise from a scalar field tunneling from a local to a 
true minimum across an energy barrier, result in a relevant source 
of gravitational radiation. In general, the significant characteristics 
of the effective potential are the relative depth of the true mini-
mum, the height of the barrier that separates the true minimum 
from the false one, and the distance between the two minima in 
field space at the nucleation temperature [56]. While this is an 
apparent simple picture, it has interesting phenomenological im-
plications when the Higgs boson mixes with other scalars. This is 
because the required conditions for experimentally detectable GW 
signals are in general very restrictive to the shape of the Higgs 
potential [57,58].

Working in the minimal extension of the SM with a new gauge 
singlet real scalar [59], commonly known in the literature as “xS-
M” [4,6,7,60–64], we show in this paper that the conditions for 
obtaining large GW signals from a first-order phase transition can 
favor suppressed branching ratios of the heavy scalar h2 to di-
higgs h2 → h1h1 in specific mh2 regimes, even above the Higgs 
boson threshold and with relatively large mixing angles. The same 
parameter regime displays characteristic Higgs self-couplings with 
suppressed non-resonant di-Higgs cross-sections. These observa-
tions have significant consequences for the complementarity of 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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probes for the Higgs sector using GW and collider experiments. 
They would imply that while LISA would be sensitive to certain 
parameter space regions, the LHC would not be able to observe 
the corresponding regions via di-Higgs resonant or non-resonant 
production. We dub these phenomenologically important parame-
ter space regions as di-Higgs blind spots.

In previous papers, we have studied the general complemen-
tarity of probes between colliders and GW experiments, exploring 
the resonant di-Higgs in the h2 → h1h1 → b̄bγ γ [63], 4b [64], 
and h2 → V V (V = W , Z) [61] channels.1 In contrast, in this work, 
we carefully study the phenomenological conditions on the Higgs 
potential, as well as the parameters governing the observation of 
GWs, that restrict the Higgs sector to the blind spots. This includes 
a detailed exploration of the shape of the Higgs potential, in the 
vicinity of these parameter space regimes, through scrutiny of the 
Higgs couplings, potential barrier, potential depth, and the sepa-
ration of the minima during the phase transition. We find that 
whereas the di-Higgs channel cannot lead to complementary LHC 
signals, the collider reciprocity can nonetheless be restored with 
other relevant decay channels: h2 → W W , Z Z . We go on to per-
form detailed analyses of di-Higgs and di-boson searches at blind 
spot benchmarks, showing their phenomenological complementar-
ity to GW studies.2

This paper is structured as follows. In Sec. 2, we show the 
emergence of blind spots in di-Higgs production at the LHC as-
suming the xSM model. Next, we study the Higgs potential in 
the vicinity of the blind spot and discuss the sensitivity prospects 
to gravitational wave signals. We pay particular attention to the 
parameters that control the stochastic gravitational wave signals. 
This singles out the appearance of these suppressed heavy scalar 
branching ratio regions. In Sec. 3, we perform a collider analysis 
using the di-Higgs and di-boson channels. Finally, we present a 
summary in Sec. 4.

2. Di-Higgs blind spots

In this Section, we build up our discussion in three stages. We 
first provide a short summary with the general features of the xSM 
model, then show that blind spots can appear simultaneously in 
resonant as well as non-resonant di-Higgs production at collid-
ers. Finally, we study the scalar potential in the vicinity of these 
relevant parameter space regions, paying particular attention to 
the behavior of parameters that control the stochastic gravitational 
wave signals.

2.1. Scalar potential

We consider the extension of the SM where there is an addi-
tional SM gauge singlet real scalar field [4]

V (H, S) = −μ2 H† H + λ(H† H)2 + a1

2
H† H S + a2

2
H† H S2

+ b2

2
S2 + b3

3
S3 + b4

4
S4, (1)

where S = vs + s is the new singlet scalar and HT = (G+, (vEW +
h + iG0)/

√
2) is the SM Higgs doublet with vEW = 246 GeV. All 

parameters of the above scalar potential are real. Using the tadpole 
conditions of the potential, we can replace two of these parameters 

1 For further studies on this model associating the EWPT and collider phe-
nomenology see, e.g., Refs. [4,6,32,33,58,65–68]. For explorations associated with 
GW signals see, e.g., Refs. [26,69–73].

2 It is important to highlight that the observation of GW signals can only favor 
feeble BR(h2 → h1h1) for small or intermediary mh2 , in respect to the EW scale. 
The decays of h2 to vector bosons are fully determined by their Goldstone nature for 
mh2 � mW , where BR(h2 → h1h1) = BR(h2 → Z Z) = BR(h2 → W W )/2 = 1/4.
2

(μ, b2). The physical scalars in the model can be obtained by the 
rotation

h1 = cθh + sθ s, h2 = −sθh + cθ s. (2)

We identify h1 as the SM Higgs, mh1 ∼ 125 GeV, and h2 as a heav-
ier scalar resonance. Three more parameters in the scalar potential 
can be replaced by the masses and mixing angle of the phys-
ical scalars (mh1 , mh2 , θ). It is usual in the literature to replace 
(λ, a1, a2) by the above three physical parameters, with (b3, b4)

being considered independent parameters. In this paper, we take a 
different approach and choose the cubic couplings (a1, b3) as inde-
pendent parameters instead. We opt for this path since the cubic 
couplings play the most important role in forming a barrier during 
the Electroweak Phase Transition (EWPT) and the subsequent pro-
duction of GW signals. Hence, the unknown free parameters within 
our setup, which can specify the model completely, are

vs, mh2 , θ, a1, b3. (3)

In the subsequent parameter scan for our analysis, we consider 
both positive and negative values of cubic couplings (a1, b3) and 
the singlet vev vs , but scan only positive values of sin θ without 
any loss of generality.

One can impose two general categories of constraints on the 
parameter space of the xSM. The first set of constraints is theoret-
ical. They include the stability of the EW vacuum, boundedness of 
the potential from below, and perturbative unitarity of 2 → 2 scat-
tering processes. All the other constraints are phenomenological. In 
particular, Higgs signal strength measurements constrain the mix-
ing angle θ [74–76]. EW precision measurements, such as correc-
tions to mW [77,78] and the oblique S, T , U parameters [4,79,80], 
constrain the model in (mh2 , θ) plane at one-loop level. The W -
mass measurement typically provides the strongest bounds. For the 
details of the model and the impact of the various limits on the 
parameter space, we refer the reader to our previous paper [61].

The analysis of the phase transition and eventual calculation of 
gravitational waves starts with the finite temperature effective po-
tential. This can be obtained in the high-temperature approxima-
tion, where gauge-independence is explicitly maintained [5]. The 
resulting effective potential takes the same form except that the 
parameters μ and b2 now become temperature-dependent. Addi-
tional contributions to the cubic term are of secondary importance 
as the tree-level cubic terms are assumed to dominate the bar-
rier. If the effective potential can accommodate a first-order EWPT, 
a stochastic background of gravitational waves can be generated 
through the nucleation and collision of the electroweak bubbles in 
the super-cooled plasma consisting of relativistic particles [81–89]. 
The parameters characterizing the dynamics of the phase transition 
are: (Tc , Tn , α, β , v w), where Tc is the critical temperature when 
the would-be true vacuum is degenerate with the meta-stable one; 
Tn is the nucleation temperature when there is approximately one 
bubble per Hubble volume; α is the energy density released due 
to the phase transition normalized by the radiation energy density 
of the universe; β is roughly the inverse time scale for the phase 
transition; and v w is the bubble wall velocity.

The EWPT would result in gravitational waves naturally falling 
within the milli-Hertz frequency band and can potentially be de-
tected by future space-based detectors [90], of which many have 
been proposed [51–55]. Different from a chirp signal coming from 
binary black hole mergers, the most important feature of the grav-
itational wave signal generated from a cosmological first-order 
phase transition is its stochastic origin. Therefore, its detection 
requires at least a pair of independent interferometers, with the 
strength of the signal represented by the signal-to-noise ratio 
(SNR) [91–94].
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Fig. 1. Left panel: Branching ratios of the heavier scalar h2 that can accommodate first-order phase transition with signal-to-noise ratio 10 < SNR < 50 (green), and SNR > 50
(red). Right panel: The coupling h2h1h1 for phenomenologically and theoretically allowed points (pink), and points that satisfy first-oder phase transition with all SNR (blue), 
10 < SNR < 50 (green), and SNR > 50 (red). We assume sin θ = 0.2.
2.2. Emergence of blind spots

We now turn to an investigation of blind spots in this setting. 
First-order phase transition can be realized for negative cubic and 
positive quadratic terms, also keeping the potential bounded from 
below. It is illuminating to trade the cubic couplings (a1, b3) for 
the couplings of h2h1h1 (g211) and h1h2h2 (g122)

g211 = sin θ

2

[
− sin 2θ

2
b3 +

( vEW

vs
(1 − 3 cos2 θ) + 3

4

v2
EW

v2
s

sin 2θ
)a1

2
+

(2m2
h1

+ m2
h2

)
( 1

2vs
sin 2θ − cos2 θ

vEW

)]
,

g122 = cos θ

2

[
− sin 2θ

2
b3 +

(
− vEW

vs
(1 − 3 sin2 θ) + 3

4

v2
EW

v2
s

sin 2θ
)a1

2
+

(m2
h1

+ 2m2
h2

)
( 1

2vs
sin 2θ + sin2 θ

vEW

)]
. (4)

The triple Higgs coupling g111 is also relevant

g111 = 1

2

[
− sin3 θ

b3

3
+

sin2 θ
(

− vEW

vs
cos θ + 1

2

v2
EW

v2
s

sin θ
)a1

2
+

m2
h1

( sin3 θ

vs
+ cos3 θ

vEW

)]
. (5)

A blind spot for resonant di-Higgs production is obtained when 
g211 is depleted, g211 ≈ 0, while a different coupling can still pro-
vide a barrier for a first-order phase transition with appreciable 
gravitational wave signals. When we fix sin θ and vs , we get a lin-
ear combination of a1 and b3 on the right hand side of Eq. (4). One 
can readily evaluate the limiting case g211 → 0 with

mh2 = 1

2

(
− 8m2

h1
+ 4b3 vs − 3a1 v2

EW

vs
+

4b3 v2
s + a1 v2

EW(1 − 2 tan2 θ)
)1/2

. (6)

vEW tan θ − vs

3

Although the g211 → 0 regime is allowed by the constraints on the 
model, there is no condition favoring this parameter space point 
for any particular mass. The conditions for obtaining large SNR for 
GWs observation will, however, alter this scenario as we promptly 
discuss.

In Fig. 1 (left panel), we show the branching ratios of the 
new scalar to SM Higgs pair h2 → h1h1 and to di-boson pair 
h2 → V V , where V = Z , W , assuming sin θ = 0.2. The parameters 
(vs, a1, b3) are allowed to vary. The points are compatible with all 
phenomenological and theoretical consistency requirements for the 
model (we refer to Ref. [64] for an exhaustive discussion of phe-
nomenological constraints). The stochastic GW signals at LISA are 
denoted in two different SNR regions: 10 < SNR < 50 (green) and 
SNR > 50 (red). We have applied a reduction factor δ = 0.01 for all 
points in calculating the SNR to be conservative [64], considering 
the recently observed reduction in gravitational wave production 
from sound waves [95]. It is evident that the di-Higgs branch-
ing ratio falls precipitously near mh2 ∼ 800 GeV, even though a 
large stochastic gravitational wave signal is obtained. Since the al-
lowed parameter space displays suppressed branching ratios over 
a wide range of mh2, going further beyond the limiting point 
mh2 ∼ 800 GeV, we can foresee challenging collider prospects for 
this channel, resulting in a significantly large di-Higgs blind spot 
regime. The LHC prospects will be derived in Sec. 3.

In Fig. 1 (right panel), we directly plot g211. The coupling 
is normalized by vEW. The pink regions denote parameter space 
points compatible with all theoretical and phenomenological re-
quirements. The blue points denote models that give rise to a 
first-order phase transition and gravitational waves of any strength. 
The horizontal line indicates the vanishing coupling g211 → 0. It 
is clear that while phenomenologically acceptable pink points are 
distributed with relative uniformity, exploring the extra degrees of 
freedom in the Higgs potential shown in Eq. (4), the requirement 
of a successful first-order phase transition (i.e., with the condition 
for defining Tn satisfied) already restricts the parameter space to a 
narrow region in g211 − mh2 . This space becomes even more con-
stricted as the requisite SNR becomes larger.

Before analyzing the reasons for this parameter constriction in 
more detail, a few comments about the outlier points with large 
but negative g211/vEW, on the right panel of Fig. 1, are in order. 
Interestingly, these few points possess large negative vs , while the 
band structure is formed by positive vs points. Although we start 
our scan with equal number of points with positive and negative 
values of vs , phenomenological and theoretical constraints over-
whelmingly prefer positive vs points. We obtain only ∼ 5% points 
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Fig. 2. Points in (g211/vEW, κλ) (top-left), (g211/vEW, g122/vEW) (top-right), (g211/vEW, vs) (bottom-left) and (a1/vEW, b3/vEW) (bottom-right) planes. The green points satisfy 
780 GeV < mh2 < 840 GeV and SNR > 10, assuming a universal suppression factor of 0.01. These are part of the green and red points near the blind spot regime depicted in 
Fig. 1. The pink regions correspond to the pink points of Fig. 1, i.e., all points compatible with phenomenological and theoretical constraints.
with negative vs . Successful completion of first-order EWPT fur-
ther disfavors negative vs points, and they are only ∼ 0.25% of 
total number of points that undergo first-order EWPT. Imposing 
the condition of requiring strong SNR does not change this ratio 
significantly. Obviously the outliers require positive a1 and b3 to 
form a barrier since they have vs < 0. We find that a1 and b3 en-
joy almost a linear relationship for the outliers. In contrast, the 
points in the bulk prefer negative a1 but are uniformly distributed 
in b3. The relationship between a1 and b3 plays an important 
role in forming the blind spot, as we will discuss in the subse-
quent text. Also, we found that a modest ∼ 1% of points undergo 
two-step phase transition [61]. The mechanism of two-step phase 
transition is different from one-step transition, thus the parameter 
space preferred by those points will be naturally different. Because 
of their suppressed likelihood, different physics origin and spec-
tral shapes, we do not further discuss those points in this paper. 
Finally, we further point out a caveat on our calculation for the 
nucleation criteria at a temperature very close to the minimum of 
the action. These points naturally have a small first derivative β
and thus large SNR. While a better treatment might be obtained 
by using the second derivative β2 (see, e.g., [89,96]), the true ob-
servable that determines the spectral shape is the mean bubble 
separation, whose relation with β and β2 needs to be studied case 
by case as analyzed in Ref. [89]. We leave such a detailed analysis 
for a future study.

Let us now focus primarily on the points that have suppressed 
h2 → h1h1 branching ratio. In fact, for the red points, i.e., those 
4

with SNR greater than 50, the fraction that has BR(h2 → h1h1) <
10−2 (10−3) is about 56% (16%). Restricting to the mass window 
780 GeV < mh2 < 840 GeV, we obtain 100% (91%) of the simulated 
events with BR(h2 → h1h1) < 10−2 (10−3). Whereas the di-Higgs 
branching ratio gets further suppressed within the mass window 
around g211 → 0, a wider span of mh2 will remain beyond the am-
bit of resonant di-Higgs searches at the LHC. The reason for this 
phenomenological effect is manifest in the right panel of Fig. 1, 
where the red band crosses the g211 = 0 line with a small slope, 
and hence, |g211| does not attain large values within the GW mo-
tivated parameter space.

In Fig. 2 (top-left panel), we show the blind spot in the space 
of couplings (g211/vEW, κλ) where κλ ≡ g111/gSM

111. The mass of 
h2 has been restricted to the limiting range 780 GeV < mh2 <

840 GeV. The pink regions correspond to the pink region of the 
right panel of Fig. 1. The green dots correspond to points with 
SNR greater than 10, assuming a universal suppression factor of 
0.01. Remarkably, these conditions imply in a narrow range for 
the Higgs self-coupling 1.7 � κλ � 1.9. It is well known that the 
non-resonant di-Higgs production cross-section becomes smaller 
for κλ > 1 due to the increasingly destructive interference of the 
triangle and box diagrams with the minimum being at κλ ≈ 2.4
[48]. This implies that the non-resonant di-Higgs cross-section is 
also suppressed to almost half of the SM rate, making it unlikely 
to be probed by non-resonant searches either. We also show the 
other triple coupling in the (g211/vEW, g122/vEW) plane in the top 
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Fig. 3. The shape of the potential at respective nucleation temperatures for three benchmark points with SNR > 10. The potentials are shown in the logarithmic scale in 
the z−axis and normalized as log10

[
(V (h, s, Tn) − V (v EW (Tn), vs(Tn), Tn)/v(Tn)4 + 1

]
, where v(Tn) ≡ (v2

h(Tn) + v2
s (Tn))1/2. The input parameters (vs, mh2 , sin θ, a1, b3) for 

the three points are (34.1 GeV, 818 GeV, 0.2, −1394 GeV, 612 GeV), (33.8 GeV, 814 GeV, 0.2, −1408 GeV, −9.56 GeV) and (33.6 GeV, 813 GeV, 0.2, −1468 GeV, −821 GeV), 
respectively. They are very similar except for b3. The corresponding nucleation temperatures are Tn = 36.9 GeV, 35.8 GeV and 23.2 GeV. The minima (maxima) of the 
potential are highlighted by white stars (crosses). Although the b3 values are significantly different for these points, the shape of the potential for them is nearly identical 
around the relevant region for phase transition.
right panel of the same figure. We see that a rather large range 
of 1.8 � g122/vEW � 4.1 is available to provide a first-order phase 
transition in the limit g211 → 0.

We revisit Eqs. (4)-(6) to understand why imposing the condi-
tion of detectable SNR results in a predictive value of g111 at the 
blind spot. As we already mentioned, for a fixed sin θ and vs , and 
hence for a particular linear combination of a1 and b3, we can 
predict mh2 from Eq. (6) where g211 = 0. Similarly, for this specific 
combination of a1 and b3, we can predict a value of g111 using 
Eq. (5), provided sin θ and vs remain fixed. For our scan results 
shown in Fig. 2, although sin θ is fixed at 0.2, vs is not. So, a large 
variation in vs will clearly not be predictive for g111. However, we 
have already shown in our previous study [61] that a detectable 
GW signal favors vs in a narrow range of 20 − 50 GeV for all phe-
nomenologically allowed sin θ . For sin θ = 0.2, the allowed region 
is even narrower (27 − 45 GeV). It is evident from the distribu-
tion of green dots in Fig. 2, where 780 GeV < mh2 < 840 GeV, that 
vs is preferred to be almost constant (32 − 37 GeV), resulting in a 
predictive value of κλ .

We alluded before that the bulk points show no preference in 
b3. In the bottom right panel of Fig. 2, we present the distribution 
of a1 and b3, normalized by vEW. Clearly, a1 is preferred in a sig-
nificantly smaller range, a1/vEW ∼ [−6.5, −4.9], when compared 
to b3, which spans the whole scan range. So, we can infer that b3
plays a minimal role in EWPT for the blind spot points. To stress 
this property, we show in Fig. 3 the shape of the potential at re-
spective nucleation temperatures for three benchmark points with 
SNR > 10. These three points have similar values of input parame-
ters (vs, mh2 , θ, a1) and (Tc, Tn) but widely different values of b3. 
Undoubtedly, the shape of the potential for these points is almost
identical around the relevant region for phase transition.

Obtaining an analytical expression for why the large SNR re-
quirement imposes regimes with constricted parameter regions is 
not straightforward. The main challenge is obtaining the bounce 
solution for the phase transition (see, e.g., Refs. [97,98] for detailed 
calculations or [99] for an introduction). Denoting the fields col-
lectively as 	φ , the bounce solution minimizes the 3-dimensional 
Euclidean action

S3( 	φ, T ) = 4π

∫
r2dr

⎡
⎣1

2

(
d 	φ(r)

dr

)2

+ V ( 	φ, T )

⎤
⎦ , (7)

with the following boundary conditions
5

d 	φ(r)

dr

∣∣∣
r=0

= 0, 	φ(r = ∞) = 	φoutside, (8)

where 	φoutside denotes the vacuum outside the bubble. Analytic so-
lutions to this minimization problem cannot be obtained except for 
very special potentials. Given the difficulty in obtaining an analytic 
condition, we now turn to a detailed numerical study of the scalar 
potential.

2.3. Gravitational wave production

In this section, our goal is to study the shape of the potential 
in the vicinity of a blind spot regime, paying particular atten-
tion to the parameters that control the production of gravitational 
waves. In the top panel of Fig. 4, we show the correlation between 
the barrier height V Barrier(Tn) and the depth of the electroweak 
vacuum |V EW(Tn)|, where the height and depth are defined with 
respect to the meta-stable vacuum, for points with SNR larger than 
1. The results are shown for different values of SNR, α, β/Hn , and 
v(Tn) =

√
v2

h(Tn) + v2
s (Tn). We also show α versus β/Hn , color-

coding SNR. We use CosmoTransitions to trace the evolution 
of the phases and obtain the bounce solutions [100]. From these 
plots, we can see that shapes of the potential show the desired 
behavior for accommodating large SNR for gravitational waves, 
i.e., a deeper true vacuum, lower barrier, larger α, and smaller 
β/Hn [101]. For the plot of α−β/Hn , with SNR color-coding, there 
are points with large α and small β/Hn but relatively small SNR, 
which might seem counter intuitive as they should, in principle, 
give a large signal. The reason is that a very small β/Hn would 
lead to a correspondingly very small frequency, which then shifts 
the spectrum out of the most sensitive band of LISA and thus 
results in a smaller SNR [51]. The peak frequency fSW for the dom-
inant source, the sound waves, is shown in a similar (α − β/Hn)

plot here and serves to explain the behavior of these points.
To further understand the origin of the band structure in Fig. 1

and thus the appearance of the blind spot, we choose a bench-
mark point with mh2 = 788.5 GeV and vary mh2 . For each new 
point obtained by this variation, the resulting phase transition is 
calculated and presented in Fig. 5. The top left panel shows the 
phase histories, i.e., the variation of the effective potential value at 
the true minimum V eff(vh(T ), vs(T )) as a function of temperature, 
T . In this plot the temperature drops from right to left. The color 
shading represents the variation of mh values. Not all points on 
2
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Fig. 4. The shape of the potential as characterized by |V EW(Tn)|, V Barrier(Tn), also α and β/Hn for the points with SNR larger than 1 for sin θ = 0.2. The bottom right figure 
shows the peak frequency fSW for the dominant spectrum from the sound waves.
this plane achieve a nucleation temperature Tn and have a suc-
cessful phase transition. For those that do, we use a black dot 
to denote its location on the plane, i.e., the potential and value 
of Tn at the corresponding vacuum. The magenta point denotes 
the starting benchmark point. The top right panel shows the ma-
genta and black dots on the g211 − mh2 plane, while the green 
dots correspond to points that do not achieve a nucleation tem-
perature Tn . The blue band corresponds to the blue points on the 
right panel of Fig. 1, i.e., points with a valid nucleation tempera-
ture but any SNR. It is clear that the black dots constitute a single 
line cutting through the band structure, and from Fig. 1 (bottom-
right panel), we know that moving from the left to the right of 
this line, we obtain signals with larger SNR. The two bottom pan-
els show the black and magenta points on the plane of (α, mh2 )

and (β/Hn, mh2), respectively. It is clear that as one approaches 
the magenta point, α becomes larger and β/Hn smaller, imply-
ing a larger SNR. The reason that α increases is due to a delayed 
transition and thus a more supercooled transition at a lower tem-
perature. For β/Hn , it becomes smaller, which means slower phase 
transition and thus enhancement for gravitational wave produc-
tion. However, a transition that is too slow would be prevented 
from completion. This makes larger mh2 infeasible in obtaining 
a valid nucleation temperature Tn . This explains why, as one in-
creases mh2 and overshoots the magenta point in the top right 
panel, the black dots give way to the green dots. The conclusion 
is that requiring a sufficiently large SNR narrows down the range 
of possible masses mh2 , explaining the emergence of the narrow 
band structure in the g211 − mh2 plane.

3. Probing di-Higgs blind spots at the LHC

In this section, we analyze the collider limits on the heavy 
Higgs resonance h2, focusing on the blind spot regime. Two bench-
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Table 1
Definitions for the benchmark points illustrated in Fig. 6 with the corresponding 
SNR.

Benchmark mh2 [GeV] sin θ vs [GeV] b3 [GeV] a1 [GeV] SNR

A 825 0.20 34.6 1420 −1364 21.9
B 1068 0.15 25.0 677 −1810 10.3

mark points displaying these features are defined in Table 1. 
They are characterized by depleted h2 branching ratio to di-Higgs 
BR(h2 → h1h1), distinct mixing angles sin θ , and SNR > 10. We 
explore the complementarity between h2 → h1h1 and h2 → V V
searches to probe these parameter regimes.

We start this phenomenological study focusing on the pp →
h2 → h1h1 → 4b channel. The ATLAS collaboration obtained the 
current 95% confidence level limit to this channel in Ref. [102]. In 
Fig. 6 (left panel), we present the corresponding limit to the heavy 
Higgs cross-section decaying to di-Higgs (dashed line). The results 
are scaled to the high-luminosity LHC, L = 3 ab−1.

In addition, we display model points that present complemen-
tary GWs signals at LISA with SNR > 10. For illustration, we show 
two mixing scenarios: sin θ = 0.2 and 0.15. The benchmark points 
defined in Table 1 are also depicted (black stars). For more de-
tails on the respective signal cross-section and branching ratios see 
Table 2. The signal cross-section is at NNLO+NNLL QCD and in-
cludes top and bottom quark mass effects up to NLO [103,104]. 
While we optimistically scaled the present ATLAS limits to the 
high-luminosity LHC scenario without accounting for systematic 
uncertainties, the benchmarks do not display relevant sensitivities 
and have rates more than two orders of magnitude below the pro-
jected ATLAS constraints. The small branching ratio of the heavy 
scalar h2 into Higgs bosons h1 results in a large blind spot for the 
resonant double Higgs searches.
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Fig. 5. The behavior of the potential in the vicinity of the blind spot. A benchmark point is chosen, with sin θ = 0.2, mh2 = 788.5 GeV, vs = 32.36 GeV, b3 = −2826.11 GeV, 
and b4 = 4.19, which has very small branching to di-Higgs (g211 ∼ 0), and we vary mh2 around this blind point. The initial benchmark point is shown in magenta in all the 
panels. As mh2 is varied, the other points in the variation are shown in black if a valid nucleation temperature Tn can be found and in green if not. In the top left panel, the 
different curves correspond to the phase histories for all the parameters with the mass shown through a color map. The top right panel shows the coupling g211, with the 
blue band corresponding to the blue points on the right panel of Fig. 1. The bottom panels show α and β/Hn for the magenta and black points.

Table 2
Cross-section and branching ratios associated with the benchmark points A and B defined in Table 1. The cross-section is 
at NNLO+NNLL QCD and includes top and bottom quark mass effects up to NLO [103,104].

Benchmark σ(pp → h2)13 TeV (fb) σ(pp → h2)14 TeV (fb) B R(h2 → Z Z) B R(h2 → W W ) B R(h2 → h1h1)

A 15.1 18.6 28.9% 58.8% 0.0109%
B 1.85 2.35 30.3% 61.2% 0.0104%
In addition to the absence of a resonant peak in the mh1h1 dis-
tribution for the double-Higgs channel, the benchmarks considered 
have a modified trilinear Higgs couplings g111. The interference 
between the triangle and box diagrams in the non-resonant h1h1

production is increasingly destructive for κλ between 1 and 2.4, 
where σ(pp → h1h1) reaches a minimum. The benchmark points 
display κλ ≈ 1.8, resulting in a suppressed h1h1 cross-section to 
approximately half of the SM rate, see Fig. 7. Since the current 
ATLAS and CMS high-luminosity LHC projections indicate that the 
trilinear Higgs coupling will be poorly probed 0.1 < κλ < 2.3 at 
95% CL [38], we should not expect an observation of non-resonant 
double Higgs production in these blind spot scenarios, in addition 
to their blindness to the resonant pp → h2 → h1h1 channel.

Now we move on to the complementary di-boson channels 
h2 → V V , where V = Z , W . The CMS and ATLAS collaborations 
studied the high-luminosity LHC projected sensitivities to heavy 
Higgs resonant searches in the channels pp → h2 → Z Z → 2�2q at 
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√
S = 13 TeV and pp → h2 → W W → �ν2q at 

√
S = 14 TeV, re-

spectively [105,106]. The results are shown in Fig. 6 (central and 
right panels). While the di-Higgs searches are blind to the bench-
mark points defined in Table 1, the di-boson analyses result in bet-
ter limits, benefiting from the large heavy Higgs branching ratios 
to V V , see Table 2. We observe that the Z Z search will present 
sensitivity to the di-Higgs blind spot parameter region for mixing 
sin θ = 0.2. In fact, the bulk of parameter points that lead to GWs 
signals at LISA with sin θ = 0.2 can also be probed at the LHC, 
using the Z Z channel. Notice that W -mass constraint excludes 
the region with mh2 � 1 TeV for sin θ = 0.2 [77,78]. Whereas the 
smaller mixing scenario sin θ = 0.15 is more challenging at collid-
ers, due to the depleted event rate σ(pp → h2) ∝ sin2 θ , it also dis-
plays relevant phenomenological complementarities between LISA 
and LHC for mh2 � 800 GeV.
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Fig. 6. 95% CL limit on the heavy Higgs cross-section decaying to di-Higgs h2 → h1h1 (left panel), di-boson h2 → Z Z (central panel), and h2 → W W (right panel). The black 
dashed line represents the LHC limit with 3 ab−1 of data. While the h2 → hh and Z Z studies assume the LHC at 13 TeV, the W W ATLAS analysis uses the LHC center 
of mass energy at 14 TeV. The benchmarks A and B, marked as black stars, are defined in Tables 1 and 2. The magenta and green points have sin θ fixed at 0.2 and 0.15, 
respectively. All points have SNR > 10.
Fig. 7. Distribution of parameter space points for GWs signals in the (κλ, mh2 ) plane 
for sin θ = 0.2 (magenta) and sin θ = 0.15 (green). The projected 95% confidence 
level HL-LHC sensitivity for non-resonant di-Higgs production 0.1 < κλ < 2.3 is also 
shown [38].

4. Summary

Future gravitational wave experiments, such as LISA, will pro-
vide complementary information to collider experiments on the 
shape of the Higgs potential. The conditions for strong first-order 
phase transition and generation of observable GW signals are, 
however, very restrictive to the profile of the Higgs potential. Using 
the xSM model as a template, we have shown that the produc-
tion of signals relevant for future GW experiments can favor feeble 
h2h1h1 interactions and characteristic Higgs self-couplings in phe-
nomenologically relevant sin θ and mh2 regimes. These coupling 
regimes result in suppressed cross-sections for both resonant and 
non-resonant di-Higgs signals. While this parameter space is al-
lowed by the theoretical and phenomenological constraints on the 
model, the restriction to this parameter region is only established 
after requiring observable GW signals.

Given the importance for the complementarity picture between 
GW and collider experiments, we have performed a comprehensive 
study on the emergence of these di-Higgs blind spot regimes. The 
requirement for high latent heat release α, slow phase transition 
(i.e., small β/Hn), and large SNR induce a clear band structure on 
the (g211, mh ) plane. This dependence is ultimately driven by the 
2
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term a1 H† H S in the Higgs potential, that controls the size of the 
tree level barrier in the effective potential, and small vs with sub-
leading dependence on the other free model parameters.

While GWs can favor parameter space regimes resulting in null 
di-Higgs searches, we show that the complementarity between col-
liders and GW experiments can be restored in these parameter 
regions after accounting for both di-Higgs and di-boson channels. 
We perform such an analysis using the high-luminosity LHC pro-
jections for resonant h2 → h1h1, Z Z , and W W searches. We find 
that the LHC will be sensitive to the bulk of points displaying GWs 
signals at LISA with sin θ = 0.2 and to points with mh2 � 800 GeV
with sin θ = 0.15.
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