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ABSTRACT

The presence of  riparian vegetation can reduce the transport of  sediments into receiving water bodies from surface runoff  during 
rainfall events. However, this process is still overlooked in tropical watersheds, limiting the capacity of  managers and decision-makers 
to implement control measurements of  non-point pollution sources. This study evaluated suspended solids concentrations in a 
predominantly urban tropical stream near its outlet during stormflow conditions. It also examined how the structure and conservation 
of  riparian vegetation in the immediate surrounding of  an urban stream reach likely influenced the patterns of  inputs of  such non-point 
source pollutants. Four rainfall events with distinct hydrological characteristics were studied. Event Mean Concentrations (EMCs) and 
Mass versus Volume [M(V)] curves were obtained for all the monitored events. Two Rapid Assessment Protocols (RAPs) were used 
to assess the structure and conservation status of  riparian vegetation along the urban stream reach. The lack of  an adequate riparian 
vegetation buffer was found to exacerbate soil loss due to erosion. Direct surface runoff  generated within the watershed showed a 
high potential for pollution, with evidence of  non-point source pollution and first-flush effects observed during rainfall events with 
lower intensity. These findings are expected to contribute to the ongoing discussion on urban forestry and riparian zone reforestation, 
supporting the development of  strategies aimed at mitigating non-point source pollution.
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RESUMO

A presença de vegetação ripária pode reduzir o transporte de sedimentos do escoamento superficial em corpos de água receptores 
durante eventos de precipitação. No entanto, esse processo ainda é negligenciado em bacias hidrográficas tropicais, limitando a 
capacidade de gestores e tomadores de decisão de implementar medidas de controle para fontes de poluição difusa. Este estudo avaliou 
as concentrações de sólidos suspensos em um riacho tropical predominantemente urbano em seu trecho próximo ao exutório durante 
regime de cheia. Também examinou como a estrutura e a conservação da vegetação ripária no entorno imediato de um trecho de riacho 
urbano provavelmente influenciaram os padrões de entrada de tais poluentes de fonte de poluição difusa. Quatro eventos chuvosos 
com distintas características hidrológicas foram estudados. As Concentrações Médias dos Eventos (CMEs) e as curvas Massa versus 
Volume [M(V)] foram obtidas para todos os eventos monitorados. Dois Protocolos de Avaliação Rápida (PARs) foram utilizados para 
avaliar a estrutura e o estado de conservação da vegetação ripária ao longo do trecho urbano do riacho. A ausência de uma faixa de 
vegetação ripária adequada foi um fator agravante para a perda de solo em razão da erosão. O escoamento superficial direto gerado 
na bacia apresentou um alto potencial poluidor, com evidências poluição difusa e efeitos de primeira carga de lavagem observados em 
eventos de precipitação menos intensos. As informações do estudo contribuem para o debate contínuo e essencial sobre arborização 
urbana e reflorestamento de zonas ripárias, apoiando o desenvolvimento de estratégias voltadas à mitigação da poluição difusa.

Palavras-chave: Concentração média do evento; Primeira carga de lavagem; Escoamento de águas pluviais; Riacho tropical.
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INTRODUCTION

The rapid expansion of  Brazilian cities during the second 
half  of  the last century led to a myriad of  negative impacts 
on aquatic environments, primarily due to inefficient land use 
planning and high levels of  wastewater not properly managed 
(Ribeiro et al., 2022). While these anthropogenic pressures affect all 
aquatic ecosystems, urban waterways are among the most severely 
impacted (Richardson & Soloviev, 2021; Szymańska et al., 2020). 
They often exhibit symptoms of  the urban stream syndrome, 
such as higher peak flows, elevated concentrations of  nutrients 
and contaminants, altered channel morphology, and reduced 
biodiversity (Praskievicz, 2022; Walsh et al., 2005). Urbanization 
and economic development are often prioritized over environmental 
preservation, which is frequently overlooked by both public 
authorities and society (Çarkoğlu & Kentmen-Çin, 2015; Sheykhi, 
2022). In Brazil, for example, a recent federal law (14285/2021) 
has relaxed restrictions and penalties related to deforestation of  
natural areas and occupation of  permanent preservation areas 
along urban riverbanks (Brasil, 2021).

Riparian vegetation (or riparian forest) refers to the 
permanently protected areas located along the banks of  rivers 
and streams and around their springs (Brasil, 2012). Beyond 
their fundamental hydrological and ecological roles, such as flood 
mitigation and water filtration, these areas are essential for reducing 
the transport of  sediments and other contaminants into rivers and 
streams during rainfall events by acting as natural barriers (Cicco 
& Arcova, 1999; González et al., 2017; Mello et al., 2020; Nunes 
& Rosa, 2020). Recent studies have shown that waterways with 
more extensive and preserved riparian vegetation generally have 
lower sediment inputs (Dufour et al., 2019; Martins et al., 2021). 
Understanding the interactions between rivers and streams and 
their riparian zones, particularly in terms of  vegetation structure, is 
crucial for establishing and maintaining healthy urban environments 
(Prado et al., 2022). This is especially important in tropical regions, 
where high precipitation and temperature levels are common 
and, therefore, severe episodes of  flooding and non-point source 
pollution are observed, increasingly exacerbated by climate change 
(Taniwaki et al., 2017).

Although sediment inputs into streams can occur even 
during baseflow conditions, the largest amounts are transported by 
stormwater runoff, along with other pollutants deposited through 
the ground that contribute to non-point source pollution (Xu et al., 
2021). The most common methods to characterize water pollution 
originating from diffuse sources are Event Mean Concentration 
(EMC) and Mass versus Volume [M(V)] curves (Righetto et al., 
2017). EMC estimates the mass of  pollutants discharged per unit 
volume of  runoff  during a specific rainfall event (Ferreira, 2008; 
Perera et al., 2021). M(V) curves in turn describe pollutant flushes 
during an event by plotting the relative cumulative mass (M) of  
pollutants as a function of  the relative cumulative volume (V) of  
runoff  (Jensen et al., 2022). The M(V) curve approach enables 
the analysis of  first flush (FF) phenomenon (Di Modugno et al., 
2015). FF is observed when the initial part of  the runoff  carries 
the majority of  the pollutant load in a given precipitation event 
(Gupta & Saul, 1996; Jensen et al., 2022; Lee et al., 2002). Identifying 
this phenomenon is essential for designing robust stormwater 
treatment systems that minimize the risk of  discharging high 

pollutant loads into receiving water bodies (Perera et al., 2021; 
Walsh et al., 2015). In Brazil and other low- and middle-income 
countries (LMICs), the analysis of  non-point source pollution is 
often constrained by high logistical costs and a lack of  specialized 
professional training (Righetto et al., 2017). These challenges can 
hinder the assessment of  pollutant loads, ultimately affecting 
the design and implementation of  stormwater control measures 
(Tuomela et al., 2019).

In this context, the present study aimed to analyze suspended 
solids concentrations in a predominantly urban tropical stream 
near its outlet during rainfall events using EMCs and M(V) curves. 
The stream’s watershed was considered urban because of  its advanced 
urbanization in its lower elevations and accelerated development 
towards its higher elevations, with the conversion of  agricultural 
and pasture lands into urban developments – reflecting a process 
observed in many watersheds in Brazil and other LMICs. Sediment 
transport is a key indicator in both urban and rural environments, as 
it reflects hydrological and environmental conditions that influence 
water quality, ecosystem health, and land-use sustainability. In urban 
areas, impervious surfaces accelerate runoff, increasing peak flows 
in watercourses and leading to excessive sediment mobilization 
from channel erosion. Also, sediment in urban waters often carries 
contaminants such as heavy metals, nutrients, and hydrocarbons, 
further degrading water quality. While nutrients could also serve 
as an important indicator in urban settings, the watershed in this 
study includes a rural portion, making suspended solids a more 
suitable indicator. In addition, we sought to examine how the 
structure and conservation of  riparian vegetation, particularly in 
the mostly urban portion of  the watershed, may influence non-
point source pollution. We hypothesized that non-point source 
pollution and the FF phenomenon would be evident in the 
studied stream across all monitored rainfall events for suspended 
solids. We further hypothesized that the riparian vegetation status 
immediately around our urban stream reach would be indicative 
of  unmanaged conservation practices, potentially contributing 
to increased suspended solids transport into the watercourse. 
By evaluating the role of  riparian vegetation in non-point source 
pollution control, this research provides insights for improving 
urban planning, highlighting the importance of  riparian recovery 
and conservation.

MATERIAL AND METHODS

Study area

The study was conducted in an urban stream located in São 
Carlos, a medium-sized city in the state of  São Paulo, southeastern 
Brazil, with an estimated population of  254,857 inhabitants, 
according to the last census (Figure 1) (Instituto Brasileiro de 
Geografia e Estatística, 2022). The stream’s watershed (11.18 km2) 
comprises the monitored main stem (baseflow < 200 L s-1) and six 
tributaries. The watershed perimeter was delineated using ArcGIS, 
leveraging its hydrology tools to process digital elevation model 
data. This involved performing flow direction and accumulation 
analyses, identifying pour points, and generating the watershed 
boundary to accurately define the drainage area of  interest. Land 
use within the watershed is divided into urban areas (34%), pasture 



RBRH, Porto Alegre, v. 30, e22, 2025

Paiva et al.

3/14

and sugarcane cultivation zones (55%), and native vegetation (11%). 
The area is located within a region of  secondary vegetation typical 
of  the Cerrado and its transition to the Atlantic Forest. The total 
annual precipitation is approximately 1,500 mm, characterized 
by rainy summers (monthly average > 150 mm) and dry winters 
(< 70 mm) (Saltarelli et al., 2018). According to the Köppen-Geiger 
classification, the climate is humid subtropical with dry winters 
(Cwa), where the average monthly air temperature generally ranges 
from 17 to 23°C (Kottek et al., 2006).

Structure and conservation of  the riparian vegetation

Rapid Assessment Protocol (RAP)

Two Rapid Assessment Protocols (RAPs) were used to 
assess the structure and conservation of  the riparian vegetation 
in the urban portion of  the studied stream: (1) Barbosa Neto et al. 
(2017), adapted from Callisto  et  al. (2002), and (2) Espíndola 

Figure 1. Schematic map showing the location of  the studied watershed and the analyzed sections. The sections are spaced approximately 
100 m apart, with section 1 being the farthest from the watershed outlet, followed by sections 2, 3, 4, and 5, which is the closest.
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(2022), adapted from Hannaford  et  al. (1997) and the U.S. 
Environmental Protection Agency (Environmental Protection 
Agency, 1987). Both protocols evaluate the riparian zone and the 
riverbed conditions. The first one uses eight indicators (type of  
land use along the waterbody margins, anthropogenic alterations, 
bank erosion, water odor, sediment deposits, presence of  aquatic 
plants, riparian forest discontinuity, and riparian forest width), 
each with four possible scores: 0, 2, 3, or 5. The classification 
levels are as follows: “impacted section” (0 - 20), “altered section” 
(21 - 30), and “natural section” (31 - 40). The second protocol is 
divided into two groups. The first group allows the assessment 
of  general characteristics of  the watershed sections and the 
levels of  environmental impacts resulting from human activities. 
The second group allows the evaluation of  habitat conditions and 
the conservation status. This RAP also takes into consideration 
a set of  indicators with evaluators. Scores for each evaluator in 
Group 1 (type of  land use along the waterbody margins, erosion 
near and/or along the riverbanks and sediment accumulation 
in the riverbed, anthropogenic alterations, vegetation cover in 
the riverbed, water odor, water oiliness, water transparency, and 
substrate types) can be 0, 2, or 4, while in Group 2 (substrate 
types, rapids extent, rapids frequency, mud deposition, sediment 
deposits, alterations in the river channel, water flow characteristics, 
presence of  riparian forest, bank stability, and riparian forest extent), 
scores can be 0, 2, 3, or 5. The final score, obtained by summing 
the values assigned to each indicator in both groups, reflects the 
level of  ecological preservation of  the studied sections, classifying 
them as “impacted” (0 - 40), “altered” (41 - 60), or “natural” 
(> 60). Using these RAPs enabled us to compare results across 
protocols, enhancing consistency and reliability in assessments 
while reducing the risk of  bias or errors from a single method. 
Furthermore, the variation in their indicators highlights different 
aspects of  riparian vegetation and riverbed conditions, providing 
a more comprehensive characterization (Masqueto et al., 2021; 
Cionek et al., 2024; Hurtado et al., 2024).

Riparian Vegetation (RV) and Riparian Forest Structure 
(RFS)

Two sets of  variables proposed by Souza et al. (2013) were 
also analyzed: (1) Riparian Vegetation (RV), which includes tree 
density (number of  trees per transect), basal area per hectare (sum 
of  all cross-sectional areas per hectare), and average Diameter at 
Breast Height (DBH); and (2) Riparian Forest Structure (RFS), 
which includes the width of  riparian vegetation, light availability, 
and the percentage of  different vegetation types (trees, grasses, 
vines and bamboo, leaf  litter, and exposed soil). All DBHs 
greater than 5 cm were measured at 1.3 m above ground level. 
The percentage of  each vegetation type was determined through 
visual analysis and then calculated using a simple area percentage 
method. The percentage of  trees was derived from the sum of  
the basal areas of  the trees’ DBHs. The width of  the riparian 
vegetation was measured using a tape measure. Light availability 
along the stream, expressed as a percentage, was assessed using 
a spherical densiometer (Lemmon, 1956, 1957).

Sampling locations and frequency

The RAPs and the RV and RFS variables were assessed 
on both margins of  five sections along the stream urban reach. 
Each section covered an area of  approximately 100 m2 and was 
spaced 100 m apart (Figure 1). Two sampling campaigns were 
conducted for the RAPs: one during the rainy season (February 
2023) and another during the dry season (July 2023). The RV 
and RFS variables were analyzed only during the dry season, 
as seasonal changes in riparian vegetation composition in the 
study area were deemed negligible. Even though our focus was 
specifically on the most urbanized area of  the watershed – near 
to its outlet and immediately surrounding the urban reach, where 
conditions likely exacerbate nonpoint source pollution inputs and 
are particularly relevant to this issue (Feijó-Lima et al., 2018) –, 
we recognize that analyzing additional sections along the entire 
main stem would provide a more comprehensive understanding 
of  how vegetation structure and conservation influence sediment 
input into the watercourse system.

Characterization of  non-point source pollution

Sampling and laboratory analysis

Samples to analyze the non-point source pollution 
influence on the urban stream were collected during stormflow 
conditions across four rainfall events (Table 3). To identify events 
likely to generate surface runoff, we used meteograms from the 
Center for Weather Prediction and Climate Studies (CPTEC) of  
the National Institute for Space Research (INPE) (www.inmet.
gov.br/meteogramas), the Bauru Radar from São Paulo State 
University (Unesp) (www.ipmetradar.com.br), and Climatempo 
(www.climatempo.com.br/). Additionally, cloud formations were 
observed in the field to predict imminent precipitation. Rainfall 
indices [rainfall depth, rainfall duration, rainfall intensity, and previous 
days without precipitation (PDP)] were obtained from a weather 
station of  the National Institute of  Meteorology (INMET). Water 
levels in the stream during precipitation events were measured 
using a limnimeter that had already been installed at the watershed 
outlet prior to this study. Discharges were calculated with a rating 
curve (water level versus discharge) specific to the studied stream 
(Equation 1) (Fava, 2019).

3 2  24.191 –  41.262  33.249  –  5.951Q h h h= + 	 (1)

where Q is the discharge (m3 s-1) and h is the water level (m).
Stream water samples were collected manually. The number 

of  samples per event (between 10 and 12) depended on the rainfall 
intensity and changes in water levels. For more intense events 
(≥ 10 mm h-1), a greater variation in water level was used for 
surface water sampling compared to less intense events. Sampling 
was conducted during both the rising and falling phases of  the 
hydrograph and samples were collected at the beginning and end of  
the stormflow condition (base values) for all events. The samples 
were stored in 1-liter polyethylene bottles, kept cool, and sent to 
the Laboratory of  Biotoxicology of  Freshwater and Effluents 
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(BIOTACE) at the São Carlos School of  Engineering (EESC) 
of  the University of  São Paulo (USP). The analyzed parameters 
included total suspended solids (TSS), fixed suspended solids 
(FSS), and volatile suspended solids (VSS). The analyses followed 
the protocols of  the Standard Methods for the Examination of  
Water and Wastewater (American Public Health Association, 2017). 
EMCs were calculated and pollutographs and M(V) curves were 
elaborated for all parameters across all rainfall events.

Event Mean Concentration (EMC)

The EMC was calculated as the total mass of  the pollutant 
divided by the total volume of  runoff  for an entire precipitation 
event (Equation 2) (Charbeneau & Barrett, 1998; Perera et al., 
2021; Sansalone & Buchberger, 1997).
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where M is the total mass of  the pollutant over the entire event 
duration (g), V is the total volume of  runoff  over the entire event 
duration (m3), tr is the duration of  the stormflow condition (min), 
Ct is the concentration of  the variable over time (mg L-1), Qt is 
the discharge of  the variable over time (m3 min-1), and ∆t is the 
discrete time interval (min).

Mass versus Volume [M(V)] curves

The M(V) curve was generated by plotting the cumulative 
mass of  pollutants as a function of  the cumulative volume of  
runoff, based on discharge (Qi) and concentration (Ci) values 
measured N times during the rainfall event at each interval ∆ti, 
assuming that Qi and Ci vary linearly between two measurements 
(Equation 3) (Bertrand-Krajewski et al., 1998).
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where N is the total number of  measurements, j is the index from 
1 to N, and Vi is the volume in the interval ∆ti.

The occurrence of  the FF phenomenon was evaluated using 
the Geiger (1987) method through graphical analysis of  the M(V) 
curve. FF is considered likely if  the dimensionless cumulative mass 
of  pollutants exceeds the dimensionless cumulative runoff  volume 
at any point during the flow period. When plotting cumulative 
pollutant mass against cumulative runoff  volume, a 45° line (the 
bisector) indicates uniform distribution of  pollutants throughout 
the precipitation events. If  the data for a specific event fall above 
the bisector, it suggests the presence of  FF. Conversely, if  the 
data fall below the bisector, it indicates that dilution is occurring.

Export of  Total Suspended Solids (TSS)

The mass of  suspended solids exported in the stream 
during stormflow conditions in each rainfall event was calculated 
according to Equation 4.

   •  •  averageEM EMC Q D= 	 (4)

where EM is the exported mass of  the pollutant (kg), EMC is the 
event mean concentration (kg L-1), Qaverage is the average discharge 
(L d-1), and D is the duration of  the rainfall event (d).

RESULTS AND DISCUSSION

Structure and conservation of  riparian vegetation in 
the urban stream reach

A general agreement between the protocols was observed. 
Average scores for the urban stream reach in the rainy and dry 
seasons were 17 and 18 in RAP 1 (Barbosa Neto et al., 2017) and 
34 and 38 in RAP 2 (Espíndola, 2022), respectively (Table 1). 
For the left and right margins, the average scores were, respectively, 
18 and 17 in RAP 1 (Barbosa Neto  et  al., 2017) and 39 and 
34 in RAP 2 (Espíndola, 2022) (Table 1). These findings suggest 
that the dry season and the left margin displayed higher levels 
of  environmental preservation. Overall, the average values for 
both margins classified the stream reach as “impacted” in both 
periods and no section was classified as “natural” according to 
the protocols considered.

The most significant changes observed between the seasons 
were primarily related to the degree of  bank erosion and sediment 
deposition in the stream. During the dry season, some sections 
experienced increased bank erosion following intense rainfall events 

Table 1. Scores from the rapid assessment protocols for the five sections (S) of  the stream reach during the rainy and dry seasons. 

Protocol Left margin Right margin
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Rainy season
Barbosa Neto et al. (2017) 21* 21* 19 16 15 10 19 30* 8 15

Espíndola (2022) 41* 43* 39 33 32 32 33 43* 23 26
Dry season

Barbosa Neto et al. (2017) 20 19 19 19 15 17 17 30* 11 15
Espíndola (2022) 39 47* 38 42 32 31 48* 42* 29 32

Sections classified as “altered” were highlighted with an asterisk (*), while those classified as “impacted” were left unmarked.
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(Supplementary Material, Figures S1A and S1B). The capacity of  
rainfall to transport solid particles is a preponderant factor in water 
erosion (Machado et al., 2008). Regarding sediment deposition, 
more pronounced siltation was observed during the rainy season, 
with alluvial deposits and signs of  undermining, particularly on 
the right margin (Supplementary Material, Figure S1C). The high 
level of  sediment deposition on the right margin, especially during 
the rainy season, may be linked to the narrower riparian vegetation 
widths in the urban stream reach (Table 2). According to the Forest 
Code (Law No. 12.651; Brasil, 2012), a minimum strip of  30 m of  
riparian vegetation is required as a permanent preservation area along 
watercourses less than 10 m wide. The Urban Land Parceling Law 
(Law No. 6766; Brasil, 1979) prohibits construction within a 15-m 
strip around watercourses. However, in-situ measurements of  the 
riparian vegetation along the stream reach revealed widths below 
the minimum required in all the monitored sections, highlighting 
the environmental degradation in this portion of  our study area. 
This situation is very common in Brazil, so the results obtained 
here are representative of  a large number of  Brazilian urban rivers 
and streams (Bega et al., 2021; Martins et al., 2021; Mello et al., 
2018; Miranda et al., 2021; Pimentel et al., 2021).

Regarding the RV variables, the highest tree density was 
observed on the left margin of  S2 and S5 (Table 2). Although these 
sections had the same number of  trees, their average DBH differed 
due to variations in basal area per hectare. The trees in S5 were 
shorter compared to those in S2, which explains the difference 
in DBH (Supplementary Material, Figures S1D and S1E). In the 
RFS assessment, the left margin of  S2 was the most densely 
occupied by trees (18.1%) among all sections. However, leaf  
litter was predominant in this area (81.9%), similar to the left and 
right margins of  S5. The left margin of  S4 and the right margin 
of  S1 were primarily covered with grasses (96.3% and 94.6%, 
respectively). The presence of  bamboos on the right margin of  
S3 (47.0%) was also significant (Supplementary Material, Figure S1F). 
Another point of  concern was the high percentage of  exposed 
soil on the right margin of  S4 (48.4%). This section was almost 
entirely cleared to construct a recreation area, leading to substantial 
irregularities in riparian zone occupation. Fernandes et al. (2011) 
found that proximal land use (30 m land use buffer) affects the 
structure of  riparian vegetation more than distal land use (200 m 

land use buffer). Overall, the narrow riparian vegetation on both 
margins, along with low tree density and the dominance of  
grass and exposed soil in most sections, highlights the need for 
restoration efforts to increase vegetation cover, particularly in the 
most urbanized region of  the watershed.

The association between vegetation types and light 
availability was evident across the evaluated sections. The right 
margin of  S1, predominantly composed of  grassland with sparse 
tree cover, exhibited the highest level of  direct light availability 
(85.8%) compared to all the sections, followed by the right margin 
of  S4 (51.5%), which was dominated by grass and exposed soil. 
The higher light availability suggests reduced canopy cover or gaps 
in vegetation, which raises concerns about increased potential 
erosion and non-point source pollution.

Characteristics of  non-point source pollution in 
different rainfall events

This study encompassed rainfall events with varying 
hydrological characteristics, with rainfall intensities ranging 
from 4.2 to 19.0 mm h-1 and peak discharges between 1.9 and 
10.2 m3 s-1 (Table 3). The peaks of  pollutographs often coincided 
with those of  the hydrographs, with increases in discharges generally 
followed by rises in suspended solids concentrations (Figure 2). 
This pattern was especially evident during rainfall events with 
the lowest intensities and durations (1 and 2), suggesting that 
sediments from the watershed were transported into the stream 
along with runoff. Moreover, contrary to our hypothesis, analysis 
of  the M(V) curves revealed no evidence of  non-point source 
pollution related to suspended solids in the study watershed during 
rainfall events with the highest intensities and durations (3 and 4) 
(Figure 3). This may be partially attributed to the high volume of  
water draining into the stream, which likely diluted the solids. These 
events were monitored in the months with the region’s highest 
accumulated rainfall. During the rainy season, soil moisture levels 
are often elevated due to frequent precipitation events, which 
leads to increased surface runoff  as a result of  reduced infiltration 
rates (Breinl et al., 2021). On the other hand, non-point source 
pollution of  suspended solids was observed during rainfall events 

Table 2. Riparian Forest Structure (RFS) and Riparian Vegetation (RV) variables assessment for the five sections (S) in the urban 
stream reach margins.

Section Left margin Right margin
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Riparian Vegetation
​​Tree density (individuals m-2) 6.0 14.0 4.0 3.0 14.0 6.0 4.0 4.0 4.0 3.0
Basal area per hectare (m2) 4.7 18.1 5.0 3.7 9.1 5.4 1.8 6.0 3.1 13.1

Diameter at breast height (m) 0.9 1.0 0.9 1.1 0.7 0.7 0.7 1.1 1.0 2.1
Riparian Forest Structure

Vegetation 
type (%)

Trees 4.7 18.1 5.0 3.7 9.1 5.4 1.8 6.0 3.1 13.1
Grasses 23.8 0.0 47.5 96.3 0.0 94.6 49.1 0.0 48.4 0.0

Vines and bamboos 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.0 0.0 0.0
Leaf  litter 71.4 81.9 0.0 0.0 90.9 0.0 49.1 47.0 0.0 86.9

Exposed soil 0.0 0.0 47.5 0.0 0.0 0.0 0.0 0.0 48.4 0.0
Width of  riparian vegetation (m) 6.0 6.5 3.0 7.0 7.0 7.5 6.0 8.0 2.0 4.0

Light availability (%) 17.2 15.3 22.1 19.2 12.2 85.8 26.0 15.3 51.5 47.3
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characterized by the lowest intensities and durations (1 and 2). 
In these events, the runoff  was not able to dilute the suspended 
solids and increased their in-stream concentrations.

Moreover, in cases of  non-point source pollution involving 
suspended solids, the presence of  FF was also observed (Figure 3). 
This phenomenon occurred after approximately 20% of  the volume 
had drained for both TSS and their fractions, suggesting that runoff  

from the higher elevations of  the watershed likely reached the 
outlet. Controlling FF is crucial in urban watersheds, especially in 
areas that are either highly urbanized or undergoing urbanization. 
This is particularly important in regions with degraded riparian 
vegetation, where surface runoff  flows unimpeded, increasing the 
likelihood of  water pollution. It has been demonstrated in numerous 
studies that a comprehensive understanding of  the characteristics 

Table 3. Characteristics of  the monitored rainfall events, along with the values ​​for event mean concentrations (EMCs) and exported 
masses (EMs) of  total suspended solids (TSS), fixed suspended solids (SSF), and volatile suspended solids (SSV). 

Parameter Unit Rainfall 1 Rainfall 2 Rainfall 3 Rainfall 4
Rainfall duration min 51 21 152 100
Rainfall height mm 3.6 3.8 44.4 31.6

Rainfall intensity mm h-1 4.2 10.9 17.5 19.0
PDP d 0.8 0.4 0.8 18.6
TPV m3 40,248 42,484 496,392 353,288

Basal water level m 0.28 0.29 0.30 0.35
Average water flow m3 s-1 1.4 1.8 4.2 3.3

Peak flow m3 s-1 1.9 2.6 10.2 5.4
EMC TSS mg L-1 74 103 205 131

FSS mg L-1 58 76 164 87
VSS mg L-1 17 27 40 44

EM TSS kg 317 234 7852 2594
FSS kg 249 172 6282 1723
VSS kg 73 61 1532 871

Abbreviations: PDP, previous days without precipitation; TPV, total precipitated volume.

Figure 2. Hydrographs and pollutographs of  total suspended solids (TSS), volatile suspended solids (VSS), and fixed suspended solids 
(FSS) obtained in the stream water for the monitored rainfall events (A) 1, (B) 2, (C) 3, and (D) 4.
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of  the FF can inform the design of  effective stormwater treatment 
systems (Maniquiz-Redillas et al., 2022). By targeting the removal 
of  pollutants from the initial runoff  before it reaches receiving 
bodies, these systems can significantly reduce water pollution (Di 
Modugno et al., 2015; Maniquiz-Redillas et al., 2022).

The highest EMCs of  suspended solids were observed during 
the rainfall event with the greatest peak flow, rainfall depth, and duration, 
highlighting the substantial sediment-loading capacity of  intense events 
(Table 3) (Rodríguez-Blanco et al., 2019). A comparison between the 
EMCs of  FSS and VSS indicated that the suspended solids present 
in the stream water during rainfall events were primarily non-volatile 
(inorganic). It suggests a link to erosive processes in the watershed 
area, where minerals from the sandy soil of  the region – exposed due 
to the absence or reduction of  riparian vegetation – are transported 
to the receiving watercourse. This process contributes to siltation 
and increases the frequency of  floods, a common occurrence in the 
study area (Fava et al., 2019; Peres & Schenk, 2021). In addition, the 
FSS and VSS displayed similar M(V) curves across all four events, 
indicating that both exhibited consistent transport and accumulation 
patterns across the different rainfall events (Figure 3).

Regarding the exported mass of  suspended solids in the 
stream during each monitored event (Table 3), the highest values 
were associated with more intense rainfall (Beckers et al., 2024). 
Rainfall duration also seems to be directly related to sediment 
export (Haddadchi & Hicks, 2020). In the rainfall event with the 
longest duration and highest height, exported TSS reached 8 tons. 
In addition to significantly contribute to river silting, these solids 
may also act as mobile substrates, facilitating the transportation 
of  additional pollutants, such as heavy metals and hydrocarbons 
(Settle et al., 2007). Given their substantial quantity, they should 
be considered into urban (and rural) runoff  management.

The potential role of  riparian vegetation in 
protecting stream water quality during rainfall events

As we hypothesized, the monitored sections were predominantly 
classified as “impacted” based on the RAPs, regardless of  season 
and stream margin (Table  1). Visible erosion along the stream 
banks, siltation of  the streambed, and the limited extent and 
fragmentation of  riparian vegetation in the highly urbanized area 
are key factors likely contributing to non-point source pollution 
from suspended solids during the lower-intensity rainfall events, 
as well as the elevated EMCs. For example, Righetto et al. (2017) 
reported TSS EMCs ranging from 16 to 130 mg L-1 in a small 
Brazilian urban catchment with low permeability (n = 9) and an area 
of  ​​0.14 km2, whereas the present study presented higher EMCs, 
ranging from 74 to 205 mg L-1 (Table 3). Supporting these findings, 
Haddadchi & Hicks (2020) identified that watershed size and land 
use predominantly influence suspended sediment generation during 
smaller and more frequent rainfall events. It is important to note that 
while the five assessed sections near the watershed outlet provide 
a representative overview, they do not fully account for the spatial 
variability of  riparian vegetation effects on sediment dynamics across 
the entire watershed, representing a limitation of  the present study. 
Although rural areas at higher elevations may contribute to sediment 
inputs into the stream, their riparian buffers were better preserved. 
The average (± standard deviation) riparian vegetation width in the 

studied urban stream reach was narrower than in the rural portion 
of  the watershed (5.7 ± 2.0 m vs. 59.4 ± 32.9 m) (Supplementary 
Material, Figure S2). This contrast highlights the more degraded 
condition of  riparian vegetation in the urban portion at lower 

Figure 3. Mass versus volume [M(V)] curves of  total suspended 
solids (TSS), volatile suspended solids (VSS), and fixed suspended 
solids (FSS) for the monitored rainfall events in the stream water.



RBRH, Porto Alegre, v. 30, e22, 2025

Paiva et al.

9/14

watershed elevations. We acknowledge that a more comprehensive 
investigation across the watershed would be necessary to confirm 
the influence of  degraded riparian vegetation in the predominantly 
urbanized portion of  the watershed.

Riparian vegetation performs several critical environmental 
functions, such as stabilizing riverbanks through the development 
and maintenance of  root networks that prevent erosion (Cicco & 
Arcova, 1999). Studies by Vigiak et al. (2016) and Martins et al. 
(2021) further emphasized the effectiveness of  riparian vegetation 
in reducing sediment fluxes in river networks. Nevertheless, as also 
observed in our study, the absence of  vegetation or insufficient 
width potentially increases soil loss due to water erosion, 
which can lead to reduced soil thickness, increased sediment 
deposition, diminished capacity to retain and redistribute water, 
and accelerated surface runoff  (Santos et al., 2010). Moreover, the 
loss of  important ecosystem services (e.g., flood buffering and the 
filtering of  sediments and nutrients from the water) may occur 
in urban areas as a result of  the riparian vegetation degradation 
(Giling et al., 2013; McTammany et al., 2007; Bega et al., 2024). 
If  our studied urban stream reach had higher levels of  riparian 
vegetation preservation, sediment inputs could be lower than 
obtained, particularly in lower intensity rainfall events and in the 
portion closer to the watershed outlet.

The erosion processes observed in the sections evaluated 
highlight the importance of  riparian vegetation in protecting river 
water quality, especially during rainfall. In fact, the right bank 
of  S3 exhibited no evidence of  erosion in both periods. This 
section was composed primarily of  bamboo (47.0%) and it had 
the second highest average DAP, indicating the presence of  large 
trees (Table 2). In this context, the role of  bamboo in mitigating 
erosion requires further discussion. Bambusoideae species are known 
for their adaptability to disturbed areas and, due to their rhizomes 
and underground stems, help contain slopes and reduce erosion. 
However, while the erosion control benefits of  bamboo are well-
documented, most of  the identified species are non-native and 
largely of  Asian origin. The introduction of  invasive exotic species 
raises ecological concerns, as they can alter hydrological and nutrient 
cycles, outcompete native flora, and disrupt fauna-soil interactions 
by altering the composition and functioning of  soil biota (Santos & 
Calafate, 2018; Silva et al., 2011). Indeed, there is a critical research 
gap regarding plant-soil interactions involving exotic Bambusoideae 
species (Calheiros et al., 2023). Understanding these interactions 
is important for assessing the long-term ecological consequences 
of  using these species in restoration projects.

CONCLUSIONS

The absence of  a proper riparian buffer near to the 
watershed outlet and within the urban area likely contributed 
to erosion, observed visually throughout the RAPs assessment, 
leading to sediment transport and deposition in the stream. Areas 
with grasses and exposed soil showed the most pronounced signs 
of  erosion, while bamboo-dominated sections exhibited fewer 
signs of  erosive processes, though its introduction requires further 
evaluation regarding potential ecological implications. Furthermore, 
non-point source pollution and the FF phenomenon occurred in 
half  of  the analyzed events, potentially highlighting the influence 

of  fragmented riparian vegetation in exacerbating erosion and 
downstream siltation. Conservation measures are crucial to restoring 
riparian vegetation and mitigating these impacts.

Our research contributes to the ongoing and important 
debate on urban afforestation and the reforestation of  riparian zones, 
supporting the development of  strategies to mitigate non-point 
source pollution. Nevertheless, RAPs — being visual and qualitative 
in nature — are inherently subjective and results may vary depending 
on the observer’s experience. Future research should incorporate 
advanced analytical tools and include paired watersheds studies in 
areas with varying riparian vegetation conditions, land use and land 
cover. At last, we reiterate that to gain a better understanding of  the 
effects of  riparian vegetation structure and conservation on sediment 
input to river systems during rainfall events, future studies should 
evaluate sections evenly distributed across the entire watershed.
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