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Abstract
We prove that for all integers�, r ≥ 2, there is a constantC = C(�, r) > 0 such that
the following is true for every sequence F = {F1, F2, . . .} of graphs with v(Fn) = n
and �(Fn) ≤ �, for each n ∈ N. In every r -edge-coloured Kn , there is a collection
of at most C monochromatic copies from F whose vertex-sets partition V (Kn). This
makes progress on a conjecture of Grinshpun and Sárközy.

Keywords Tiling · Complete edge-coloured graph · Bounded-degree graphs ·
Monochromatic
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1 Introduction andMain Results

A conjecture of Lehel states that the vertices of any 2-edge-coloured complete graph
can be partitioned into two monochromatic cycles of different colours. Here, single
vertices and edges are considered cycles. This conjecture first appeared in [2], where
it was also proved for some special types of colourings of Kn . Łuczak, Rödl and
Szemerédi [23] proved Lehel’s conjecture for sufficiently large n using the regularity
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method. Allen [1] gave an alternative proof, with a better bound on n. Finally, Bessy
and Thomassé [3] proved Lehel’s conjecture for all integers n ≥ 1.

For colourings with more colours, Erdős, Gyárfás and Pyber [11] proved that the
vertices of every r -edge-coloured complete graph on n vertices can be partitioned into
O(r2 log r) monochromatic cycles. They further conjectured that r cycles should be
enough. The currently best-known upper bound is due to Gyárfás, Ruszinkó, Sárközy
and Szemerédi [18], who showed that O(r log r) cycles suffice. However, the conjec-
ture was refuted by Pokrovskiy [24], who showed that, for every r ≥ 3, there exist
infinitely many r -edge-coloured complete graphs which cannot be vertex-partitioned
into r monochromatic cycles. Nevertheless, Pokrovskiy conjectured that in every r -
edge-coloured complete graph one can find r vertex-disjoint monochromatic cycles
which cover all but at most cr vertices for some cr ≥ 1 only depending on r (in his
counterexample cr = 1 is possible).

In this paper, we study similar problems in which we are given a family of graphs
F and an edge-coloured complete graph Kn and our goal is to partition V (Kn) into
monochromatic copies of graphs from F . All families of graphs F we consider here
are of the formF = {F1, F2, . . .}, where Fi is a graph on i vertices for every i ∈ N.We
call such a family a sequence of graphs. A collection H of vertex-disjoint subgraphs
of a graph G is an F-tiling of G if H consists of copies of graphs from F with
V (G) = ⋃

H∈H V (H). If G is edge-coloured, we say that H is monochromatic if
every H ∈ H is monochromatic. Let τr (F , n) be the minimum t ∈ N such that for
every r -edge-coloured Kn , there is a monochromatic F-tiling of size at most t . We
define the tiling number of F as

τr (F) = sup
n∈N

τr (F , n).

Using this notation, the results of Pokrovskiy [24] and of Gyárfás, Ruszinkó,
Sárközy and Szemerédi [18] mentioned above imply that r + 1 ≤ τr (Fcycles) =
O(r log r), where Fcycles is the family of cycles. Note that, in general, it is not clear
at all that τr (F) is finite and it is a natural question to ask for which families this is
the case.

The study of such tiling problems for general families of graphs was initiated by
Grinshpun and Sárközy [17]. The maximum degree �(F) of a sequence of graphs
F is given by supF∈F �(F), where �(F) is the maximum degree of F . We denote
by F� the collection of all sequences of graphs F with �(F) ≤ �. Grinshpun and
Sárközy proved that τ2(F) ≤ 2O(� log�) for all F ∈ F�. In particular, τ2(F) is finite
whenever �(F) is finite. They also proved that τ2(F) ≤ 2O(�) for every sequence of
bipartite graphsF of maximum degree at most�, and showed that this is best possible
up to a constant factor in the exponent (see also Sect. 5 for a more detailed discussion
on the lower bound).

Sárközy [27] further proved that τ2(Fk-cycles) = O(k2 log k), where Fk-cycles
denotes the family of kth power of cycles.1 For more than two colours less is known.
Answering a question of Elekes, Soukup, Soukup and Szentmiklóssy [10], Busta-

1 The k-th power of a graph H is the graph obtained from H by adding an edge between any two vertices
at distance at most k.
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mante, Frankl, Pokrovskiy, Skokan and the first author [5] proved that τr (Fk-cycles) is
finite for all r , k ∈ N. Grinshpun and Sárközy [17] conjectured that the same should
be true for all families of graphs of bounded degree with an exponential bound.

Conjecture 1.1 (Grinshpun-Sárközy [17], 2016) For every r ,� ∈ N and F ∈ F�,
τr (F) is finite. Moreover, there is some Cr > 0 such that

τr (F) ≤ exp(�Cr ).

Our main theorem shows that τr (F) is indeed finite. For a given positive integer k,
we denote by expk the kth-composition of the exponential function.

Theorem 1.1 There is an absolute constant K > 0 such that for all integers r ,� ≥ 2
and all F ∈ F�, we have

τr (F) ≤ exp2
(
r Kr�3

)
.

In particular, τr (F) is finite whenever �(F) is finite.

In order to prove Theorem 1.1, we shall prove an absorption lemma (see Lemma
4.4) whose proof relies on a density increment argument. This is responsible for the
double exponential bound in our main theorem.

The paper is organized as follows. In Sect. 2, we present an overview of the proof of
our main theorem and the proof of our absorption lemma. In Sect. 3 we collect a few
lemmas regarding regular pairs and regular cylinders that we shall use repeatedly in
later sections. The proof of our absorption lemma and main theorem can be found in
Sect. 4.1 and Sect. 4.2, respectively. Finally, we finish the paper with some concluding
remarks in Sect. 5.

2 Proof Overview

The proof of Theorem 1.1, similarly to the proof of the two colour result of Grinshpun
and Sárközy [17], combines ideas from the absorption method as in the original paper
of Erdős, Gyárfás and Pyber [11] with somemodern approaches involving the blow-up
lemma and the weak regularity lemma of Duke, Lefmann and Rödl [9]. However, in
order to extend these ideas to more colours, we need to prove a significantly more
complicated absorption lemma, requiring new ideas involving a density increment
argument.

Our absorption lemma (Lemma 4.4) states that if we have k := � + 2 disjoint
sets of vertices V1, . . . , Vk with |Vi | ≥ 2|V1| for all i = 2, . . . , k such that every
vertex in V1 belongs to at least δ|V2| · · · |Vk | monochromatic k-cliques transversal2

in (V1, . . . , Vk), then it is possible to cover the vertices in V1 with a constant number
(depending on δ, r and �) of monochromatic vertex disjoint copies of graphs fromF .

2 A k-clique is transversal in (V1, . . . , Vk ) if it contains one vertex in each one of the sets V1, . . . , Vk .
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Furthermore, we can choose such a covering using no more than |V1| vertices in each
V2, . . . , Vk .

To deduce Theorem 1.1 from the absorption lemma, we need to partition V (Kn) in
a similar fashion as in [5]: first we find k − 1 monochromatic super-regular cylinders
Z1, . . . , Zk−1 covering a positive proportion of the vertices of Kn (see Sect. 3 for the
definition of super-regular cylinders). Then we apply a result of Fox and Sudakov [13]
to greedily cover with few disjoint monochromatic copies of graphs fromF almost all
of the vertices in V (Kn)\(Z1 ∪ · · · ∪ Zk−1), leaving uncovered a set Rk of size much
smaller than |Zk−1| (see Proposition 4.2).

Now we split Rk into two sets: the set R′
k of vertices belonging to at least

δ|Z1| · · · |Zk−1| monochromatic k-cliques transversal in (Rk, Z1, . . . , Zk−1), and the
set Vk = Rk \ R′

k . Using our absorption lemma, we can cover the vertices in R′
k

using no more than |R′
k | vertices of each of the cylinders Z1, . . . , Zk−1. For each

i = 1, . . . , k − 1, let Z ′
i be the set of vertices in Zi that has not been used to cover

R1. Since we |R′
k | is significantly smaller than |Zi |, it follows that each Z ′

i is still a
super-regular cylinder. Now, if the set Vk was empty, then we would be done. Indeed, a
consequence of the blow-up lemma (Theorem 3.3) guarantees that we can cover each
of the cylinders Z ′

1, . . . , Z
′
k−1 with k + 1 copies of vertex disjoint monochromatic

graphs from F .
So let us consider the case where Vk is non-empty. In this case, we first find a rea-

sonably large regular cylinder Zk in Vk , then we greedily cover most of the remaining
vertices in Vk \ Zk . Let Sk be the set of those vertices that we covered greedily and
let Rk+1 = Vk \ (Zk ∪ Sk). Then, our assumption is that |Rk+1| is much smaller than
|Zk |. If Rk+1 is empty, then we are done with covering Vk , since the vertices in Sk are
already covered and the vertices in Zk can be covered using the blow-up lemma.

So let us assume that Rk+1 is non-empty. Now we partition Rk+1 similarly
how we partitioned Rk : first, set apart into a set R′

k+1 those vertices of Rk+1 that
belong to many monochromatic k-cliques transversal in Rk+1 and k − 1 of the
cylinders Z ′

1, . . . , Z
′
k−1, Zk . Remember that those vertices in R′

k+1 can be covered
using our absorption lemma and we will not use more than |R′

k+1| vertices from
Z ′
1, . . . , Z

′
k−1, Zk to cover them. Since R′

k+1 is much smaller than any of those
cylinders, we still get super-regular cylinders after removing those vertices from
Z ′
1, . . . , Z

′
k−1, Zk that were used to cover R′

k+1. Let Vk+1 = Rk+1 \ R′
k+1 be the

set of remaining vertices. If Vk+1 is empty, then we are done, as discussed in the case
where Vk is empty.

Thus, let’s assume that Vk+1 is non-empty. Then, we find a large regular cylinder
Zk+1 in Vk+1 and greedily cover a set Sk+1 ⊆ Vk+1 \ Zk+1, until the set of leftover
vertices Rk+2 is much smaller than Zk+1. If Rk+2 is empty, we are again done, since
we can cover Zk+1 using the blow-up lemma and the vertices in Sk+1 are already
covered. Now, if Rk+2 is non-empty, then we repeat this process to partition Rk+2.

Figure1may help to organize the placement of those sets aswell as their relative size
after several iterations of this process. Finally, using a lemma from [5] (see Lemma
4.6) and Ramsey’s theorem, we can show that we only need to repeat this process
few times. More precisely, we show that VN+1 must be empty, for N = Rr (Kk), the
r -colour Ramsey number of the graph Kk .

123



Combinatorica (2024) 44:311–335 315

Fig. 1 A partition of V (G) following the Framework described in the proof of Theorem 1.1. Each Zi is an
(ε, d)-super-regular k-cylinder, and for every i ∈ [k, N + 1], we have |Ri | ≤ α|Zi−1|. Each Si is a disjoint
union of monochromatic copies of graphs from F obtained by greedily covering. Each R′

i can be covered
by previous Z j using the Absorption Lemma 4.4. And, finaly, we show that VN+1 is empty, if N ≥ Rr (k)

In order to prove the absorption lemma, we employ a density increment argument.
This is the most difficult part of the proof and the key new idea in this paper. First,
we partition V1 into r sets V (1)

1 , . . . , V (r)
1 so that for every j ∈ [r ], every v ∈ V ( j)

i
is incident to at least d/r · |V2| · · · |Vk | monochromatic cliques of colour j which are
transversal in (V1, . . . , Vk). We will cover each of these sets separately, making sure
not to repeat vertices. Let us illustrate how to cover V (1)

1 .

We start by finding a large k-cylinder Z = (U1, . . . ,Uk) with U1 ⊆ V (1)
1 ,U2 ⊆

V2, . . .Uk ⊆ Vk which is super-regular in colour 1. We shall use Z as an absorber
at the end of the proof to cover any small set of leftovers. Next, we greedily cover
most of V (1)

1 \ U1 by monochromatic copies of F until the set of uncovered vertices
R has size much smaller then |U1|. To cover the set R, we will find a partition R =
S∪T2∪ . . .∪Tk , where each vertex in S belongs to many monochromatic k-cliques of
colour 1 which are transversal in (S,U2, . . . ,Uk) (allowing S to be absorbed into the
cylinder Z at the end of the proof) and each vertex in Ti , for i ∈ {2, . . . , k}, belongs
to at least (δ + η)|V2| · · · |Vi−1||Ui | · · · |Uk | monochromatic k-cliques transversal in
(Ti , V2, . . . , Vi ,Ui+1, . . . ,Uk), for some η � δ.

To cover the vertices in each Ti , with i ∈ {2, . . . , k}, we repeat the argument with
(V1, . . . , Vk) replaced by (Ti , V2, . . . , Vi ,Ui+1, . . . ,Uk) and δ replaced by δ + η.
This is our density increment argument. Since every time we repeat the argument we
significantly increase the density of k-cliques, we can bound the number of required
repetitions in terms of the initial density of k-cliques.

123



316 Combinatorica (2024) 44:311–335

While covering each of the sets T2, . . . , Tk , we shall guarantee that the set of vertices
Xi ⊆ Ui that we use to cover them has sizemuch smaller than |Ui | for all i = 2, . . . , k.
This way, the cylinder Z ′ = (U1 ∪ S,U2\X2, . . . ,Uk\Xk) will be super-regular in
colour 1 and thus we can cover Z ′ using the blow-up lemma. Repeating this for every
colour j ∈ [r ], we get a covering of V1 with Oδ,r ,�(1) many monochromatic disjoint
copies of graphs from F .

3 Regularity

In this section, we will gather all the notations and results related to the classical
regularity technique which we require for the proof. We start by introducing some
relevant notations. Let G = (V1, V2, E) be a bipartite graph with parts V1 and V2. For
any Ui ⊆ Vi , i = 1, 2, the density of the pair (U1,U2) in G is given by

d(U1,U2) = e(U1,U2)

|U1||U2| .

We say that G (or the pair (V1, V2)) is ε-regular if for all Ui ⊆ Vi with |Ui | ≥ ε|Vi |,
i = 1, 2, we have

|d(U1,U2) − d(V1, V2)| ≤ ε.

If additionally we have d(V1, V2) ≥ d and deg(v, Vi ) ≥ δ|Vi | for all v ∈ V3−i ,
i = 1, 2, then we say that G (or (V1, V2)) is (ε, d, δ)-super-regular. We often say that
G is (ε, d)-super-regular instead of (ε, d, d)-super-regular.

We begin with some simple facts about super-regular pairs. The first one is known
as the slicing lemma and roughly says that if we take a large induced subgraph in a
dense regular pair we still get a dense regular pair. Its proof is straightforward from
the definition of a regular pair.

Lemma 3.1 (Slicing lemma) Let β > ε > 0, d ∈ [0, 1] and let (V1, V2) be an (ε, d, 0)-
super-regular pair. Then any pair (U1,U2) with |Ui | ≥ β|Vi | and Ui ⊆ Vi , i = 1, 2,
is (ε′, d ′, 0)-super-regular with ε′ = max{ε/β, 2ε} and d ′ = d − ε.

The following lemma essentially says that after removing few vertices from a super-
regular pair and adding fewnewverticeswith large degree,we still have a super-regular
pair. The reader can find a proof of it in Appendix 1.

Lemma 3.2 Let 0 < ε < 1/2 and let d, δ ∈ [0, 1] so that δ ≥ 4ε. Let (V1, V2) be
an (ε, d, δ)-super-regular pair in a graph G. Let Xi ⊆ Vi for i ∈ {1, 2}, and let
Y1,Y2 be disjoint subsets of V (G)\(V1 ∪ V2). Suppose that for each i ∈ {1, 2} we
have |Xi |, |Yi | ≤ ε2|Vi | and deg(v, Vi ) ≥ δ|Vi | for every v ∈ Y3−i . Then the pair
((V1\X1) ∪ Y1, (V2\X2) ∪ Y2) is (8ε, d − 8ε, δ/2)-super-regular.

Let k ≥ 2 be an integer and let G be a graph. Given disjoint sets of vertices
V1, . . . , Vk ⊆ V (G), we call Z = (V1, . . . , Vk) a k-cylinder and often identify it with
the induced k-partite subgraphG[V1, . . . , Vk]. We write Vi (Z) = Vi for every i ∈ [k].
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We say that Z is ε-balanced if

max
i∈[k] |Vi (Z)| ≤ (1 + ε)min

i∈[k] |Vi (Z)| ,

and balanced if it is 0-balanced. Furthermore, we say that Z is ε-regular if all the
(k
2

)

pairs (Vi , Vj ) are ε-regular. If G is an r -edge-coloured graph and i ∈ [r ], we say that
Z is ε-regular in colour i if it is ε-regular in Gi , the graph consisting of all edges of G
with colour i . Similarly, we define (ε, d)-regular and (ε, d, δ)-super-regular cylinders.

As sketched in Sect. 2, we will use super-regular cylinders as absorbers. The fol-
lowing lemma, which Grinshpun and Sárközy [17] deduced from the blow-up lemma
[20, 21, 26] and the Hajnal-Szemerédi theorem [19],3 allows us to do this.

Lemma 3.3 There is a constant K , such that for all 0 ≤ δ ≤ d ≤ 1/2, � ∈ N,

k = � + 2, 0 < ε ≤ (δd�)
K
, and F ∈ F�, the following is true for every (ε, d, δ)-

super-regular k-cylinder Z = (V1, . . . , Vk).

(i) If Z is ε-balanced, then its vertices can be partitioned into at most � + 3 copies
of graphs from F .

(ii) If |Vi | ≥ |V1| for all i = 2, . . . , k, then there is a copy of a graph fromF covering
V1 and at most |V1| vertices of each of V2, . . . , Vk.

It is important in the proof of Theorem1.1 that we can find super-regular k-cylinders
which cover linearly many vertices. The existence of such a cylinder follows from the
regularity lemma. Conlon and Fox [7, Lemma 5.3] used the weak regularity lemma
of Duke, Lefmann, and Rödl [9] to obtain much larger cylinders. We shall use the
following coloured version of their result, the proof of which is very similar and can
be found in Appendix 1. See also [17, Lemma 2] for a 2-coloured version which
follows readily from the non-coloured version.

Lemma 3.4 Let k, r ≥ 2, 0 < ε < 1/(rk) and γ = εr
8rkε−5

. Then every r-edge-
coloured complete graph on n ≥ 1/γ vertices contains, in one of the colours, a
balanced (ε, 1/2r)-super-regular k-cylinder Z = (U1, . . . ,Uk) with parts of size at
least γ n.

The following lemma further guarantees that this remains possible as long as the
host-graph has many k-cliques. It is also a straightforward consequence of the weak
regularity lemma of Duke, Lefmann, and Rödl and we provide a proof in Appendix 1.

Lemma 3.5 Let k ≥ 2, and let 0 < ε < 1/2 and 2kε ≤ d ≤ 1. Let γ = εk
2ε−12

.
Suppose that G is a k-partite graph with parts V1, . . . , Vk with at least d|V1| · · · |Vk |
cliques of size k. Then there is some γ ′ ∈ [γ, ε] and an (ε, d/2)-super-regular k-
cylinder Z = (U1, . . . ,Uk) in G with Ui ⊆ Vi and |Ui | = 	γ ′|Vi |
 for every i ∈ [k].
3 The second part of the theorem is not explicitly stated in [17] but follows readily from the blow-up lemma
and the Hajnal-Szemerédi theorem.
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4 Proof of Theorem 1.1

In the proof, wewill use the following theoremof Fox and Sudakov [13] about r -colour
Ramsey numbers of bounded-degree graphs.

Theorem 4.1 ([13, Theorem 4.3]) Let k,�, r , n ∈ N with r ≥ 2 and let H1, . . . , Hr

be k-partite graphs with n vertices and maximum degree at most �. Then

R(H1, . . . , Hr ) ≤ r2rk�n.

Recall thatF� denotes the collection of all sequences of graphsF with�(F) ≤ �,
for every F ∈ F , and let F�,k be the collection of sequences F ∈ F� such that F is
k-partite, for every F ∈ F . Note that F� = F�,�+1. The following consequence of
the previous theorem states that, for each F ∈ Fk,�, we can cover almost all vertices
of Kn with monochromatic copies of graphs from F .

Proposition 4.2 Let �, k, r ∈ N, let γ ∈ (0, 1] and let C = 4r2rk� log(1/γ ). Then,
for every F ∈ F�,k and every r-edge-coloured Kn with n ≥ r2rk�, it is possible to
cover all but γ n vertices of Kn with at most C vertex-disjoint monochromatic copies
of graphs from F .

Proof Let F = {F1, F2, . . .} ∈ F�,k , t = r−2rk�, C = (4/t) log(1/γ ) and n ≥
r2rk�.

Consider n1 = 	tn
 ≥ tn/2. By Theorem 4.1, since Rr (Fn1) ≤ t−1n1 ≤ n, there
is a monochromatic copy of Fn1 in Kn . Let H1 be such copy and let V1 = V \ V (H1).
Note that |V1| = n − n1 ≤ (1 − t/2)n.

Suppose that we have inductively found vertex-disjoint monochromatic graphs
H1, . . . , Hi ⊆ Kn that are copies of graphs inF and such that Vi := V (Kn)\ (V (H1)

∪ · · · ∪ V (Hi )) has at most (1 − t/2)i n vertices. If |Vi | ≤ 2/t , then we cover the
vertices in Vi with single vertices and stop the process. Therefore, suppose that |Vi | ≥
2/t . Then let ni+1 = 	t |Vi |
 ≥ t |Vi |/2. Again by Theorem 4.1, since Rr (Fni+1) ≤
t−1ni+1 ≤ |Vi |, there is a monochromatic copy of Fni+1 contained in Vi . Let Hi+1 be
such a copy. Thus the set Vi+1 := V (Kn)\ (V (H1) ∪ · · · ∪ V (Hi+1)) has size

|Vi+1| = |Vi | − ni+1 ≤ (1 − t/2)|Vi | ≤ (1 − t/2)i+1n.

Now, after C/2 steps, we have covered all but at most

(1 − t/2)C/2n ≤ e−(t/4)Cn ≤ γ n

vertices of Kn using at most C/2 + 2/t ≤ C vertex-disjoint monochromatic copies
of graphs from F . ��

In particular, by choosing γ = 1/n, we get the following corollary.

Corollary 4.3 Let �, k, r ∈ N and let C = 4r2rk� log n. Then, for every F ∈ F�,k

and every r-edge-coloured Kn, there is a collection of at most C monochromatic
vertex-disjoint copies of graphs from F whose vertex-sets partition V (G).
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4.1 The Absorption Lemma

Given a graph G and U ⊆ V , recall that we denote by G[U ] the subgraph of G
induced by U . Given disjoint sets V1, . . . , Vk ⊆ V (G), with k ≥ 2, we denote by
G[V1, . . . , Vk] the subgraph of G with vertex set V1 ∪ · · · ∪ Vk containing only edges
that are between two of the sets V1, . . . , Vk . Furthermore, for each v ∈ V1, let

degG(v, V2, . . . , Vk) = |{(v2, . . . , vk) ∈ V2 × · · ·
×Vk : {v, v2, . . . , vk} is ak-clique inG}|,

and

dG(v, V2, . . . , Vk) := degG(v, V2, . . . , Vk)

|V2| · · · |Vk | .

If additionally, we have an edge colouring χ : E(G) → [r ] of E(G), then we denote
by degG,i (v, V2, . . . , Vk) = degGi

(v, V2, . . . , Vk), where Gi is the graph with vertex
set V (G) consisting of the edges of G with colour i . We define dG,i (v, V2, . . . , Vk)
similarly and denote dG,I (v, V2, . . . , Vk) := ∑

i∈I dG,i (v, V2, . . . , Vk), for each I ⊆
[r ]. If the graph G is clear from context, we may drop the G in the subscript.

Given a set V , we denote by K (V ) the complete graph with vertex set V . Given
disjoint sets V1, . . . , Vk , we denote by K (V1, . . . , Vk) the complete k-partite graph
with parts V1, . . . , Vk . Let G = K (V1) ∪ K (V1, . . . , Vk) and let H be a collection of
subgraphs of G. We denote by ∪H the graph with edge set

⋃
H∈H E(H) and vertex

set V (H) := ⋃
H∈H V (H). We say thatH canonically covers V1 if V1 ⊆ V (H) and

|V (H) ∩ Vi | ≤ |V (H) ∩ V1| ,

for all i ∈ [2, k].4 The following lemma is the key ingredient of the proof of our main
theorem.

Lemma 4.4 (Absorption Lemma) There is some absolute constant K > 0, such that
the following is true for all d > 0, all integers �, r ≥ 2 and for every F ∈ F�. Let
k = � + 2 and let

C = exp2
(( r

d

)K�
)

.

Consider k disjoint sets V1, . . . , Vk with |Vi | ≥ 4|V1|, for all i ∈ [2, k], and let
G = K (V1) ∪ K (V1, . . . , Vk). Suppose that χ : E(G) → [r ] is a colouring in which
for every v ∈ V1 we have d[r ](v, V2, . . . , Vk) ≥ d. Then, there is a collection of at
mostC vertex-disjointmonochromatic copies of graphs fromF in G which canonically
covers V1.

4 Here, we denote by [i, j] the set of integers z with i ≤ z ≤ j .
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The edges of G inside V1 will only be used to find copies fromF which lie entirely
in V1 in order to greedily cover most vertices of V1. The difficult part is finding
monochromatic copies in K (V1, . . . , Vk) covering the remaining vertices. To do so,
we will reduce the problem to only one colour within K (V1, . . . , Vk) and then deduce
Lemma 4.4 from the following lemma.

Lemma 4.5 There is some absolute constant K > 0, such that the following is true
for all d > 0, all integers �, r ≥ 2 and for every F ∈ F�. Let k = � + 2 and let

C = exp2
(( r

d

)K�
)

.

Consider k disjoint sets V1, . . . , Vk with |Vi | ≥ 2|V1|, for all i ∈ [2, k] and let
G = K (V1) ∪ K (V1, . . . , Vk). Suppose that χ : E(G) → [r ] is a colouring in which
for every v ∈ V1 we have d1(v, V2, . . . , Vk) ≥ d. Then, there is a collection of at most
C vertex-disjoint monochromatic copies of graphs from F in G which canonically
covers V1.

Lemma 4.4 follows routinely from Lemma 4.5.

Proof of Lemma 4.4 Let K ′ be the absolute constant from Lemma 4.5 and let d ′ =
d/(2r), γ = d ′/(kr), and C ′ = exp2

(
(r/d ′)K

′�
)
. Partition V1 = U1 ∪ . . . ∪ Ur

such that for each j ∈ [r ] we have d j (v, V2, . . . , Vk) ≥ 2d ′, for all v ∈ Uj . We will
inductively cover Uj , for each j ∈ [k].

Let us first consider the base case, i.e., j = 1. From Proposition 4.2, there is a
collectionH′ of at most5 C ′ disjoint monochromatic copies of graphs fromF covering
all but γ |U1| ≤ γ |V1| vertices of G[U1]. Let V ′

1 = U1\V (H′). By applying Lemma
4.5 to G ′ := G[V ′

1 ∪ V2 ∪ · · · ∪ Vk] (with d ′), there is a collection H′′ of at most C ′
disjoint monochromatic copies of graphs from F in G ′ which canonically covers V ′

1.
Let H1 = H′ ∪ H′′. Note that H1 canonically covers U1 and covers at most γ |V1|
vertices of Vi , for each i ∈ [2, k].

Now consider j ≥ 2 and suppose that we have found a collectionH j−1 of at most
2( j − 1)C ′ disjoint monochromatic copies of graphs from F in G that canonically
coversU1∪· · ·∪Uj−1 and covers atmost ( j−1)γ |V1|vertices ofVi , for each i ∈ [2, k].
From Proposition 4.2, there is a collection H′ of at most C ′ disjoint monochromatic
copies of graphs from F covering all but γ |Uj | ≤ γ |V1| vertices of G[Uj ]. Let
V ′
1 = Uj\V (H′) and let V ′

i := Vi\V (H j−1), for each i ∈ [2, k]. Note that

|V ′
i | ≥ |Vi | − ( j − 1)γ |V1| ≥ 4|V1| − rγ |Vi | ≥ 2|V1| ≥ 2|V ′

1|.

Also, for each v ∈ V ′
1, we have

deg j (v, V ′
2, . . . , V

′
k) ≥ deg j (v, V2, . . . , Vk) − k( j − 1)γ |V2| · · · |Vk |.

5 Note that the constant from Proposition 4.2 is smaller than C ′.
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Consequently,

d j (v, V ′
2, . . . , V

′
k) ≥ d j (v, V2, . . . , Vk) − krγ ≥ 2d ′ − d ′ ≥ d ′.

Therefore, we can apply Lemma 4.5 toG ′ := G[V ′
1∪· · ·∪V ′

k] and get a collectionH′′
of at most C ′ disjoint monochromatic copies of graphs from F in G that canonically
covers V ′

1. In particular, H′′ covers at most |V ′
1| ≤ γ |V1| vertices of Vi , for each

i ∈ [2, k]. LetH j = H j−1∪H′ ∪H′′. ThenH j is a collection of at most 2 jC ′ disjoint
monochromatic copies of graphs from F in G that canonically covers U1 ∪ · · · ∪Uj

and covers at most jγ |V1| vertices of Vi , for each i ∈ [2, k].
In the end, we have found a collection Hr of disjoint monochromatic copies of

graphs from F that canonically covers V1. Furthermore, Hr has at most 2rC ′ ≤
exp2

(
(r/d)4K

′�
)
graphs, finishing the proof. ��

The proof of Lemma 4.5 is quite long and technical (see Sect. 2 for a sketch), and
we will therefore break it up into smaller claims. We use � to denote the end of the
proof of a claim and � to denote the end of the main proof.

Proof of Lemma 4.5. Let � and r be given positive integers, k = � + 2 and F ∈ F�.
For each d > 0, let C(d) be the smallest positive integer C such that the following
holds:

(�) Let V1, . . . , Vk be disjoint sets with |Vi | ≥ 2|V1| for all i ∈ [2, k], let
H ⊆ K (V1, . . . , Vk) be a graph with dH (v, V2, . . . , Vk) ≥ d for every v ∈ V1
andG = K (V1)∪H . Let χ : E(G) → [r ] be a colouring such that every edge in
E(H) receives colour 1. Then, there is a collectionH of atmostC vertex-disjoint
monochromatic copies of graphs fromF contained in G that canonically covers
V1.

Note that C(d) is a decreasing function in d, and that C(d) = 0 for every d > 1. Our
goal is to show that C(d) is finite for every d > 0. We will do this by establishing a
recursive upper bound (see (4.1)).

Let us first define all relevant constants used in the proof. Let K ′ be the universal
constant given by Theorem 3.3 and fix some 0 < d ≤ 1. Define

ε =
(

d

100

)2K ′�
, γ = 1

r · εk
2ε−12

and η = dγ k

2
.

It might be of benefit for the reader to have in mind that those constants obey the
following hierarchy:

1 ≥ d � ε � γ � η > 0.

Furthermore, define

P(d) := 4r4rk
2
log(2/η2) + 1.
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We will prove that for every d ′ ≥ d we have

C(d ′) ≤ P(d) + kC
(
d ′ + η

)
. (4.1)

Since C(d ′) = 0 if d ′ > 1, it follows by iterating that C(d) ≤ (2k)2/ηP(d). Further-
more, we have

2/η ≤ γ −2k ≤ ε−2rk3ε−12 ≤ exp
(
rε−20

)
≤ exp

(
(r/d)400K

′�
)

.

It follows that

C(d) ≤ exp2
(
(r/d)500K

′�
)
P(d) ≤ exp2

(
(r/d)1000K

′�
)

,

concluding the proof of Lemma 4.5.
It remains to prove (4.1). Let d ′ ≥ d be fixed now and let V1, . . . , Vk , G and

χ : E(G) → [r ] be as in (�) (with d ′ playing the role of d). By assumption, there
are at least d|V1||V2| · · · |Vk | cliques of size k in G[V1, V2, . . . , Vk] each of which is
monochromatic in colour 1. Since γ = εk

2ε−12
and d ≥ 2kε, we can apply Lemma

3.5 to get some γ ′ ≥ γ and a k-cylinder Z = (U1, . . . ,Uk) which is (ε, d/2)-super-
regular withUi ⊆ Vi and |Ui | = 	γ ′|Vi |
 for every i ∈ [k]. Without loss of generality
we may assume that γ |Vi | is an integer for every i ∈ [k] and that we have γ ′ = γ . By
Proposition 4.2, there is a collection HR of at most 4r4rk

2
log(2/η2) vertex-disjoint

monochromatic copies of graphs fromF contained in K (V1 \U1) covering all vertices
in V1 \U1 except for a set R with |R| ≤ η2|V1|. We remark here that

|R| ≤ η/(4k) · |U1| ≤ ε2|U1|. (4.2)

It remains now to cover the vertices in R. For each i ∈ [k], let

di = 1 − γ i

1 − γ k
· d ′ (4.3)

and note that (1 − γ )d ′ ≤ d1 ≤ · · · ≤ dk = d ′. For i ∈ [2, k], let Ṽi = Vi \ Ui and
define

Si = {v ∈ R : d(v, V2, . . . , Vi−1, Vi ,Ui+1, . . . ,Uk) ≥ di },
Ti = {v ∈ R : d(v, V2, . . . , Vi−1, Ṽi ,Ui+1, . . . ,Uk) > d ′ + 2η}.

We will prove (4.1) using a series of claims, which we shall prove at the end.

Claim 4.1.1 We have R = S1 ∪ T2 ∪ . . . ∪ Tk.

Without loss of generality, we may assume that S1, T2, . . . , Tk are pairwise disjoint
(more formally, we can define T ′

i := Ti\(S1 ∪ T2 ∪ . . . ∪ Ti−1) for all i ∈ [2, k]
and continue the proof with these sets). Our goal now is to cover each of the sets
S1, T2, . . . , Tk one by one using the following claims.
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Claim 4.1.2 For every i ∈ [2, k] and every set A ⊆ V (G)\Ti with |A ∩ Vs | ≤ |R| for
all s ∈ [2, k], there is a collection Hi of at most C(d ′ + η) monochromatic disjoint
copies of graphs from F in G, such that

(i) V (Hi ) ∩ V1 = Ti ,
(ii) V (Hi ) ∩ A = ∅, and
(iii)

∣
∣V (Hi ) ∩ Vj

∣
∣ ≤ |Ti | for all j ∈ [2, k].

Claim 4.1.3 For every set A ⊆ V (G)\(S1 ∪U1) with |A∩Vs | ≤ |R| for all s ∈ [2, k],
there is a monochromatic copy H1 of a graph from F in G, such that

(i) V (H1) ∩ V1 = S1 ∪U1,
(ii) V (H1) ∩ A = ∅ and
(iii)

∣
∣V (H1) ∩ Vj

∣
∣ ≤ |S1 ∪U1| for all j ∈ [2, k].

With these claims at hand, we can now prove (4.1). First, we apply Claim 4.1.2
repeatedly to get collections H2, . . . ,Hk of at most C(d ′ + η) disjoint monochro-
matic copies of graphs from F that canonically covers T2, . . . , Tk , respectively, as
follows. Let i ∈ {2, . . . , k} and suppose we have constructed H2, . . . ,Hi−1. Let
Ai := V (H2)∪ . . .∪V (Hi−1) and note that |Ai ∩Vs | ≤ |T2|+ · · ·+ |Ti−1| ≤ |R| for
all s ∈ [2, k]. Apply now Claim 4.1.2 for i and A = Ai to get the desired collection
Hi .

Next, we apply Claim 4.1.3 with A = V (H2) ∪ . . . ∪ V (Hk) to get a copy H1 of
a graph from F with the desired properties. Note that, similarly as above, we have
|A ∩ Vs | ≤ |R| for all s ∈ [2, k]. By construction V (H1), V (H2), . . . , V (Hk) and
V (HR) are disjoint and cover V1. Moreover, for every s ∈ [2, k], we have

|(V (H1) ∪ . . . ∪ V (Hk) ∪ V (HR)) ∩ Vs | ≤ |S1 ∪U1| + |T1| + |T2| + · · · + |Tk |
≤ |U1 ∪ R| ≤ |V1|.

Hence, {H1} ∪ . . . ∪ Hk ∪ HR canonically covers V1. Finally, we have |{H1} ∪ . . .|
|∪Hk ∪ HR | ≤ P(d) + kC

(
d ′ + η

)
, proving (4.1). It remains now to prove Claims

4.1.1,4.1.2,4.1.3.

Proof of Claim 4.1.1 Since Sk = R, it suffices to show Si ⊆ Si−1∪Ti for each i ∈ [2, k].
Let i ∈ [2, k] and let v ∈ Si\Si−1. We have

deg(v, V2, . . . , Vi−1, Ṽi ,Ui+1, . . . ,Uk) = deg(v, V2, . . . , Vi−1, Vi ,Ui+1, . . . ,Uk)

− deg(v, V2, . . . , Vi−1,Ui ,Ui+1, . . . ,Uk).

Therefore,

d(v, V2, . . . , Vi−1, Ṽi ,Ui+1, . . . ,Uk) = d(v, V2, . . . , Vi−1, Vi ,Ui+1, . . . ,Uk)
|Vi |
|Ṽi |

− d(v, V2, . . . , Vi−1,Ui ,Ui+1, . . . ,Uk)
|Ui |
|Ṽi |
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> di
|Vi |
|Ṽi |

− di−1
|Ui |
|Ṽi |

= di − γ di−1

1 − γ

= (1 − γ i )d ′ − γ (1 − γ i−1)d ′

(1 − γ )(1 − γ k)

= d ′

1 − γ k
≥ d ′ + 2η,

where we use (4.3) and the definition of η to obtain the last identities. Thus v ∈ Ti
and hence Si ⊆ Si−1 ∪ Ti . ��
Proof of Claim 4.1.2 Let V ′

s := Vs\A for all s ∈ [2, i − 1], Ṽ ′
i := Ṽi\A and U ′

s :=
Us\A for all s ∈ [i + 1, k]. Then, by (4.2), we have

|V ′
s | ≥ |Vs | − |R| ≥ (

1 − η
4k

) |Vs | ≥ |Vs |
2

, for s = 2, . . . , i − 1,

|Ṽ ′
i | ≥ |Ṽi | − |R| ≥ (

1 − η
4k

) |Ṽi | ≥ |Ṽi |
2

, and

|U ′
s | ≥ |Us | − |R| ≥ (

1 − η
4k

) |Us | ≥ |Uj |
2

, for s = i + 1, . . . , k.

In particular, it follows that

|Vs \ V ′
s | ≤ |R| ≤ η

4k
|Vs | ≤ η

2k
|V ′

s |, for s = 2, . . . , i − 1,

|Vi \ V ′
i | ≤ |R| ≤ η

4k
|Vi | ≤ η

2k
|V ′

i |, and
|Us \U ′

s | ≤ |R| ≤ η

4k
|Us | ≤ η

2k
|U ′

s |, for s = i + 1, . . . , k.

Therefore, for every v ∈ Ti , we have

d(v, V ′
2, . . . , V

′
i−1, Ṽ

′
i ,U

′
i+1, . . . ,U

′
k)

≥ d ′ + 2η −
i−1∑

s=2

|Vs \ V ′
s |

|V ′
s |

− |Ṽi \ Ṽ ′
i |

|Ṽ ′
i |

−
k∑

s=i+1

|Us \U ′
s |

|U ′
s |

≥ d ′ + 2η − (k − 1)
η

2k
≥ d ′ + η.

Hence, by definition of C(d ′ + η) (see (�)), there exists a collection Hi of at most
C(d ′ + η) monochromatic copies of graphs from F that canonically covers Ti in the
graph

K (Ti ) ∪ K (Ti , V
′
2, . . . , V

′
i−1, Ṽ

′
i ,U

′
i+1, . . . ,U

′
k).
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By construction,Hi satisfies the requirements of the claim (note that (i i i) holds since
Hi is a canonical covering). ��
Proof of Claim 4.1.3 Let Y1 = S1 and, for each i ∈ [2, k], let Xi = Ui ∩ A. Observe
that |Y1| ≤ |R| ≤ ε2|U1| and |Xi | ≤ |R| ≤ ε2|Ui | for all i ∈ [2, k]. Let U ′

1 =
U1 ∪ Y1 and, for each i ∈ [2, k], let U ′

i := Ui \ Xi . We now consider the cylinder
Z ′ := (U ′

1, . . . ,U
′
k). By definition of S1, we have d(v,U2, . . . ,Uk) ≥ d1 ≥ d/2 and

in particular deg(v,Ui ) ≥ d/2 · |Ui | for all v ∈ Y1 and i ∈ [2, k].
Hence, by Lemma 3.2, Z ′ is (8ε, d/4)-super-regular. Furthermore, we have |U ′

1| ≤
|U ′

i | for all i ∈ [k]. Thus, by Theorem 3.3, there is a monochromatic copy H1 of a
graph from F in Z that covers U ′

1 = U1 ∪ S1 and at most |U ′
1| vertices from each of

U ′
2, . . . ,U

′
k . By construction, this copy satisfies the requirements of the claim.

This finishes the proof of Lemma 4.5. ��

4.2 Proof of Theorem 1.1

In this section, we will finish the proof of Theorem 1.1. We will make use of the
following lemma from [5] and follow the same proof technique. Since our proof of
this lemma is short, we include it here for completeness. Given a k-uniform hypergraph
H, a vertex v ∈ V (H) and sets B2, . . . , Bk ⊆ V (H), we define

degH(v, B2, . . . , Bk) := |{(v2, . . . , vk) ∈ B2 × . . . × Bk : {v, v2, . . . , vk} ∈ E(H)}| .

Lemma 4.6 Let k and N be positive integers and let H be a k-uniform hypergraph.
Suppose that B1, . . . , BN ⊆ V (H) are non-empty disjoint sets such that for every
1 ≤ i1 < · · · < ik ≤ N, we have

degH(v, Bi1 , . . . , Bik−1) <

(
N

k

)−1

|Bi1 | · · · |Bik−1 |,

for all v ∈ Bik . Then, there exists an independent set {v1, . . . , vN } with vi ∈ Bi , for
each i ∈ [N ].
Proof For each i ∈ [N ], let vi be chosen uniformly at random from Bi . Let I =
{v1, . . . , vN }. Then we have

P
[
I is not an independent set

] ≤
∑

1≤i1<···<ik≤N

P
[{vi1, . . . , vik } ∈ E(H)

]

=
∑

1≤i1<···<ik≤N

1

|Bik |
∑

v∈Bk
P

[{vi1 , . . . , vik }
]

P
[∈ E(H) | vik = v

]

=
∑

1≤i1<···<ik≤N

1

|Bik |
∑

v∈Bk

degH(v, Bi1 , . . . , Bik−1)

|Bi1 | · · · |Bik−1 |
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<
∑

1≤i1<···<ik≤N

(
N

k

)−1

= 1.

Therefore, there exists an independent set {v1, . . . , vN }with vi ∈ Bi , for each i ∈ [N ].
��

We are now able to prove Theorem 1.1. Themain idea is to find reasonably large cylin-
ders that are super-regular for one of the colours, greedily cover most of the remaining
vertices using Proposition 4.2 and then apply the Absorption Lemma (Lemma 4.4) to
the set of remaining vertices that share many monochromatic cliques with the cylin-
ders. We then iterate this process until no vertices remain. Using Lemma 4.6, we will
show that a bounded number of iterations suffices.

Proof of Theorem 1.1 Fix r ,� ≥ 2, F ∈ F�. Let G be an r -edge-coloured complete
graph on n vertices. Let

k = � + 2, N = rrk, δ =
(
N + 1

k

)−1

and d = 1

2r
.

In order to use Theorem 3.3 and Lemma 3.4, respectively, consider the constants

ε = (δd�)
2K ′

and γ = εr
8rkε−5

,

where K ′ is the universal constant given by Theorem 3.3. Consider also the constants

α = ε2 and C1 = 4r2rk� log

(
4

αγ

)

,

in order to use Proposition 4.2. Finally, let

C2 = exp2((2r/δ)K̃�) ≤ exp2
(
r16K̃ r�3

)
,

where K̃ is the universal constant from Lemma 4.4, and let K = 20K̃ .

We will build a framework consisting of many k-cylinders working as absorbers
and small sets that can be absorbed by them. More precisely, our goal is to define sets
with the following properties (Fig. 1 should help the reader to understand the structure
of those sets as we define them):

Framework There are sets Z1, . . . , ZN , Sk−1, . . . , SN , Rk, . . . , RN+1, R′
k, . . . , R

′
N+1

with the following properties.

(F.1) V (G) = ⋃N
i=1 Zi ∪ ⋃N

i=k−1 Si ∪ ⋃N+1
i=k R′

i is a partition.
(F.2) Z1, . . . , ZN

6 are k-cylinders which are (ε, d)-super-regular in one of the colours
(or empty).

6 We shall identify the cylinders with their vertex-set.
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(F.3) Sk−1, . . . , SN are sets of verticeswhichwewill cover greedily bymonochromatic
copies of graphs from F .

(F.4) For every i ∈ [k, N ] and every u ∈ R′
i+1, there exists {i1, . . . , ik−1} ⊆ [i] for

which d[r ](u, Zi1 , . . . , Zik−1) ≥ δ.
(F.5) For each k ≤ i < j ≤ N + 1, we have S j ∪ Z j ∪ R′

j ⊆ Ri and |Ri | ≤ α|Zi−1|.
So let us construct those sets from the framework. First, if n < 1/4γ , then Corollary

4.3 gives a covering with at most C2 monochromatic vertex-disjoint copies of graphs
from F . Therefore we may assume that n ≥ 1/4γ . Hence, by applying Lemma
3.4 multiple times, we find k − 1 vertex-disjoint k-cylinders Z1, . . . , Zk−1 such that
each of them is (ε, d)-super-regular in some colour (not necessarily the same) and
|Z1| ≥ · · · ≥ |Zk−1| ≥ γ n/2. Let Vk−1 = V (G) \ (Z1 ∪ · · · ∪ Zk−1). By Propo-
sition 4.2, there is a collection of at most C1 monochromatic vertex-disjoint copies
from F in Vk−1 covering a set Sk−1 such that the leftover vertices Rk = Vk−1\Sk−1
satisfies |Rk | ≤ αγ n/2 ≤ α|Zk−1|. Let R′

k ⊆ Rk be the set of vertices u ∈ Rk with
d[r ](u, Z1, . . . , Zk−1) ≥ δ. Let R′

k,[k−1] = R′
k and Vk = Rk\R′

k .
Inductively, for each i = k, . . . , N , we do the following. If |Vi | < 1/4γ , we

use Corollary 4.3 to cover Vi using at most C2 monochromatic vertex-disjoint copies
from F and let Zi = Si = Ri+1 = R′

i+1 = Vi+1 = ∅. Otherwise, we apply Lemma
3.4 to find a monochromatic (ε, d)-super-regular k-cylinder Zi contained in Vi with
|Zi | ≥ γ |Vi |. By Proposition 4.2, there is a collection of at most C1 monochromatic,
vertex-disjoint copies from F in Vi \ Zi covering a set Si ⊆ Vi , so that the set of
leftover vertices Ri+1 = Vi\Si has size at most αγ |Vi | ≤ α |Zi |.

Let R′
i+1 be the set of vertices u in Ri+1 forwhich there is a set I = {i1, . . . , ik−1} ⊆

[i] such that d[r ](u, Zi1 , . . . , Zik−1) ≥ δ. Let

R′
i+1 =

⋃

I∈( [i]
k−1)

R′
i+1,I ,

be a partition of R′
i+1 so that, for each I = {i1, . . . , ik−1} ⊆ [i], we have

d[r ](u, Zi1 , . . . , Zik−1) ≥ δ for all u ∈ R′
i+1,I . Finally, let Vi+1 = Ri+1 \ R′

i+1.
The following claim implies that these sets partition V (G) as in (F.1).

Claim 4.2.1 The set VN+1 is empty.

Proof Define a k-uniform hypergraphHwith vertex setU = Z1∪. . .∪ZN ∪VN+1 and
hyperedges corresponding tomonochromatic k-cliques inG[U ]. IfVN+1 is non-empty,
then so are Z1, . . . , ZN . In order to apply Lemma 4.6, consider the sets Bi = Zi , for
i ∈ [N ], and BN+1 = VN+1. Since for each i = k, . . . , N + 1 we have Bi ⊆ Ri \ R′

i ,
it follows that for every 1 ≤ i1 < · · · < ik ≤ N + 1, we have

degH(v, Bi1 , . . . , Bik−1) < δ|Bi1 | · · · |Bik−1 |

=
(

N

k + 1

)−1

|Bi1 | · · · |Bik−1 |.

That is, H and the sets Bi satisfy the hypothesis of Lemma 4.6. Therefore, there
is an independent set {v1, . . . , vN+1} in H of size N + 1. On the other hand, since
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N ≥ Rr (Kk), it follows that the set {v1, . . . , vN+1} has a monochromatic k-clique in
G[U ], which is a contradiction.

The vertices in Sk−1∪· · ·∪SN are already covered bymonochromatic copies of graphs
from F . Our goal now is to cover the sets R′

k, . . . , R
′
N+1 using Lemma 4.4 without

using too many vertices from the cylinders Z1, . . . , ZN . This way, we can cover the
remaining vertices in Z1 ∪ · · · ∪ ZN using Theorem 3.3.

Claim 4.2.2 Let i ∈ {k, . . . , N+1}and I = {i2, . . . , ik} ⊆ [i−1]. Let A ⊆ V (G)\Ri,I

be a set with
∣
∣A ∩ Z j

∣
∣ ≤ α

∣
∣Z j

∣
∣ for each j ∈ I . Then there is a collection of at most

C2 monochromatic vertex-disjoint copies of graphs from F in

G ′ = K (R′
i,I ) ∪ K (R′

i,I , Zi2 , . . . , Zik ),

which are disjoint from A and canonically cover R′
i,I .

Proof Let Ṽ1 = R′
i,I and for j ∈ [k] \ {1}, let Ṽ j = Zi j \ A. Note that |Ṽ j | ≥ 4|Ṽ1|

for every j ∈ [k]\{1} and

deg[r ](v, Ṽ2, . . . , Ṽk) ≥ deg[r ](v, Zi2 , . . . , Zik ) − kα|Zi2 | · · · |Zik |
≥(δ − kα)|Zi2 | · · · |Zik |
≥δ/2 · |Zi2 | · · · |Zik |

for every v ∈ Ṽ1. Hence, by Lemma 4.4, there is a collection of at most C2 vertex-
disjoint copies from F in Ṽ1 ∪ . . . ∪ Ṽk that canonically covers Ṽ1, finishing the
proof.

We will use Claim 4.2.2 now to cover
⋃N+1

i=k R′
i . Let ≺ be a linear order on

I :=
{
(i, I ) : i ∈ [k, N + 1], I ∈ ([i−1]

k−1

)}
. Let (i, I ) ∈ I and suppose that, for

all (i ′, I ′) ∈ I with (i ′, I ′) ≺ (i, I ), we have already constructed a family Hi ′,I ′
of monochromatic copies of graphs from F which canonically covers R′

i ′,I ′ in
K (R′

i ′,I ′) ∪ K (R′
i ′,I ′ , Zi ′2 , . . . , Zi ′k ), where I ′ = {i ′2, . . . , i ′k}, and such that the sets

V (Hi ′,I ′), for (i ′, I ′) ≺ (i, I ), are disjoint.
Let A = ⋃

(i ′,I ′)≺(i,I ) V (Hi ′,I ′) be the set of already covered vertices. We claim
that ∣

∣A ∩ Z j
∣
∣ ≤ α|Z j | (4.4)

for each j ∈ [N ]. Indeed, given some j ∈ [N ], for all (i ′, I ′) ∈ I with
i ′ ≤ j , we have V (Hi ′,I ′) ∩ Z j = ∅, since Hi ′,I ′ canonically covers R′

i ′,I ′ in
K (R′

i ′,I ′) ∪ K (R′
i ′,I ′ , Zi ′2 , . . . , Zi ′k ). Now for all (i ′, I ′) ∈ I with i ′ > j , we have

∣
∣V (Hi ′,I ′) ∩ Z j

∣
∣ ≤ |R′

i ′,I ′ |, again because Hi,I canonically covers R′
i ′,I ′ . Therefore,

∣
∣A ∩ Z j

∣
∣ ≤

∑

(i ′,I ′)≺(i,I )

∣
∣V (Hi ′,I ′) ∩ Z j

∣
∣ ≤

∑

(i ′,I ′)∈I : i ′> j

∣
∣
∣R′

i ′,I ′
∣
∣
∣ ≤ ∣

∣R j+1
∣
∣ ,
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since the sets {R′
i ′,I ′ : (i ′, I ′) ∈ I, i > j} are disjoint subsets of R j+1. Finally,

since
∣
∣R j+1

∣
∣ ≤ α

∣
∣Z j

∣
∣, this implies (4.4). In particular, by Claim 4.2.2, there is a

collection Hi,I of monochromatic copies of graphs from F that canonically covers
R′
i,I in K (R′

i,I )∪K (R′
i,I , Zi2 , . . . , Zik ),where I = {i2, . . . , ik}, and such thatV (Hi,I )

is disjoint from A.
It remains to cover

⋃N
i=1 Zi . Let A := ⋃

(i,I )∈I V (Hi,I ) be the set of vertices
covered in the previous step. Note that, similarly as in (4.4), we have |A∩ Z j | ≤ α|Z j |
for all j ∈ [N ]. Therefore, by Lemma 3.2, the cylinder Z̃ j obtained from Z j by
removing all vertices in A is (8ε, d/2)-super-regular and ε-balanced for every j ∈ [N ].
It follows from Theorem 3.3 that, for every j ∈ [N ], there is a collection H j of at
most � + 3 monochromatic vertex-disjoint copies of graphs from F contained in Z j

covering V (Z j ).
In total, the number of monochromatic copies we used to cover V (G) is at most

N · C1 + Nk · C2 + N · (� + 3) ≤ 2NkC2

≤ 2rrk
2 · exp2

(
r16K̃ r�3

)

≤ exp2
(
r Kr�3

)
.

This concludes the proof of Theorem 1.1. ��

5 Concluding Remarks

We were able to prove that sequences of graphs with maximum degree � have finite
r -colour tiling number for every r ≥ 3, but our bound is super-exponential in �.
Grinshpun and Sárközy [17] conjectured that it is possible to prove an upper bound
which is essentially exponential in � (see Conjecture 1.1). The problem becomes
somewhat easier when restricted to bipartite graphs. In fact, our proof gives a double
exponential upper bound in � for r -colour tiling numbers of sequences of bipartite
graph with maximum degree �. Indeed, the factor k in the recursive bound (4.1) can
be dropped for bipartite graphs. It would be very interesting to confirm Conjecture 1.1
for sequences of bipartite graphs.

Another interestingproblem is to prove aversionofTheorem1.1 for other sequences
of graphs. Given a sequence of graphs F = {Fi : i ∈ N} with |Fi | = i , for every
i ∈ N, let ρr (F) = supi∈N Rr (Fi )/i . If ρr (F) is finite, then we say that F has linear
r -colour Ramsey number. If F is increasing,7 then it follows from the pigeon-hole
principle that τr (F) ≥ ρr (F). Indeed, for each n ∈ N, every r -edge-coloured Kn

contains a monochromatic copy from F of size at least i = �n/τr (F)�. In particular,
since F is increasing, there is a monochromatic copy of Fi in every r -edge colouring
of Kn . This implies that Rr (Fi ) ≤ τr (F) · i , and therefore ρr (F) ≤ τr (F).

Graham, Rödl and Ruciński [16] proved that there exists a sequence of bipartite
graphs F = {Fi : i ∈ N} with ρ2(F) ≥ 2
(�). Grinshpun and Sárközy observed that

7 That is, Fi ⊆ Fi+1, for every i ∈ N.
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one can make this sequence increasing, thereby showing that τ2(F) ≥ 2
(�) as well.
Conlon, Fox and Sudakov [8] proved that for every sequence of graphs with degree at
most �, we have ρ2(F) ≤ 2O(� log�) while Grinshpun and Sárközy [17] proved that
τ2(F) ≤ 2O(� log�). For more colours, Fox and Sudakov [13] proved that for every
sequence of graphs with degree at most �, we have ρr (F) ≤ 2Or (�

2), while our main
result shows that τr (F) ≤ exp3(Or (�

3)).
With these results inmind, one cannaturally ask if there exists a function f : R → R

such that for every sequence of graphsF = {Fi : i ∈ N} we have τr (F) ≤ f (ρr (F)).
That is, if it is possible to bound τr (F) in terms of ρr (F). In particular, this would
imply that sequences of graphs with linear Ramsey number have finite tiling number.
However, the following example due to Alexey Pokrovskiy (personal communication)
shows that τr (F) cannot be bounded byρr (F) in general. Let Si be a starwith i vertices
and let S = {Si : i ∈ N} be the family of stars. It follows readily from the pigeonhole
principle that Rr (Si ) ≤ r(i − 2) + 2, for every i ∈ N, and thus ρr (S) ≤ r . However,
the following shows that τr (S) = ∞, for every r ≥ 2.

Example 5.1 For all r ≥ 2 and all sufficiently large n, we have τr (S, n) ≥ r · log(n/8).

Proof Let τ = r log(n/8) and colour E(Kn) uniformly at random with r colours.
Given a vertex v ∈ [n] and a colour c, let Sc(v) be the star centred at v formed
by all the edges of colour c incident on v. Note that there is a monochromatic S-
tiling of size at most τ if and only if there are distinct vertices v1, . . . , vτ and colours
c1, . . . , cτ ∈ [r ] such that

⋃
i∈[τ ] V (Sci (vi )) = [n].

Fix distinct vertices v1, . . . , vτ ∈ [n] and colours c1, . . . , cτ ∈ [r ]. Let U
be the random set U = ⋃

i∈[τ ] V (Sci (vi )). Note that the events {v ∈ U }, for
v ∈ [n]\{v1, . . . , vτ }, are independent and each has probability 1−(1 − 1/r)τ . There-
fore, using e−x/(1−x) ≤ 1 − x ≤ e−x for all x ≤ 1, we get

P [U = [n]] = (
1 − (1 − 1/r)τ

)n−τ

≤ exp
(−(n − τ)(1 − 1/r)τ

)

≤ exp
(
−n(1 − 1/r)τ+1

)

≤ exp (−n exp (−4τ/r))

≤ exp
(−√

n
)
.

Taking a union bound over all choices of v1, . . . , vτ and c1, . . . , cτ , we conclude
that the probability that there is a monochromatic S-tiling of size τ is at most

(rn)−τ · e−√
n < 1,

for all sufficiently large n. Hence, there exists an r -colouring of E(Kn) without a
monochromatic S-tiling of size at most τ , finishing the proof. ��
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Lee [22] proved that graphswith bounded degeneracy8 have linear Ramsey number.
Example 5.1 shows however that it is not possible to extend this result to a tiling result.
Nevertheless, it may be possible to allow unbounded degrees in this case.

Question 1 conj:boundedspsdegeneracy Is there a function ω : N → N with
limn→∞ ω(n) = ∞, such that the following is true for all integers r , d ≥ 2?
If F = {F1, F2, . . .} is a sequence of d-degenerate graphs with v(Fn) = n and
�(Fn) ≤ ω(n) for all n ∈ N, then τr (F) < ∞.

Böttcher, Kohayakawa, Taraz and Würf [4] proved an extension of the blow-up
lemma to graphs H of bounded arrangeability9 with �(H) ≤ √

n/ log(n). Using
their result, it is possible to prove the following strengthening of Theorem 1.1.

Theorem 5.2 For all integers r , a ≥ 2 and all sequences of a-arrangeable graphs
F = {F1, F2, . . .} with |Fn| = n and �(Fn) ≤ √

n/ log(n) for all n ∈ N, we have
τr (F) < ∞.

The proof is almost identical, with the following two differences. First, instead of
Theorem 3.3, we need to use the blow-up lemma mentioned above together with the
following alternative to Hajnal’s and Szemerédi’s theorem which guarantees balanced
partitions of graphs with small degree. Given a sequence F = {F1, F2, . . .} of a-
arrangeable graphs with �(Fn) ≤ √

n/ log(n) for every n ∈ N, we define another
sequence of graphs F̃ = {F̃1, F̃2, . . . } as follows. Since every a-arrangeable graph
is (a + 2)-colourable, we can fix a partition of V (Fn) = V1(Fn) ∪ . . . ∪ Vk(Fn) into
independent sets, where k = a + 2. Then, for every j ∈ N, we define F̃jk to be the
disjoint union of k copies of Fj . Note that each F̃jk has a k-partition into parts of
equal sizes (by rotating each copy around). Finally, for each j ∈ N ∪ {0} and every
i ∈ [k − 1], we define F̃jk+i to be the disjoint union of F̃jk and i isolated vertices
(here F̃0 is the empty graph). Observe that all F̃n have k-partitions into parts of almost
equal sizes. Furthermore, every F̃-tiling T corresponds to an F-tiling T̃ of size at
most (2k−1)|T |. Therefore, it suffices to prove Theorem 5.2 for graphs with balanced
(a + 2)-partitions.

Second, we need to replace Theorem 4.1 with a similar theorem for a-arrangeable
graphsG with�(G) ≤ √

n/ log(n), where n = v(G). For two colours, such a theorem
was proved by Chen and Schelp [6]. For more than two colours, this was (to the best
of the author’s knowledge) never explicitly stated, but is easy to obtain using modern
tools (for example, by applying the abovementioned blow-up lemma for a-arrangeable
graphs).

Acknowledgements The authorswould like to thank the organisers of theworkshopExtremal andStructural
Combinatorics, held at IMPA in Rio de Janeiro, where this work began, and thank Rob Morris for reading
a previous version of this paper.

8 A graph G is d-degenerate if there is an ordering of its vertices so that every v ∈ V (G) is adjacent to at
most d vertices which come before v.
9 A graph G is called a-arrangeable for some a ∈ N if its vertices can be ordered in such a way that for
every v ∈ V (G), there are at most a vertices to the left of v that have some common neighbour with v to
the right of v.
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Appendix

In this appendix, we shall prove the lemmas stated in Sect. 3 for which we could not
find a proof in the literature. Their proofs however are standard and not difficult.

Proof of Lemma 3.2 LetUi = (Vi \ Xi )∪Yi for i ∈ {1, 2}. We will show that (U1,U2)

is (8ε, d − 8ε, δ/2)-super-regular. Let now Zi ⊆ Ui with |Zi | ≥ 8ε|Ui |, and let
Z ′
i = Zi\Yi and Z ′′

i = Zi ∩ Yi for i ∈ {1, 2}. Note that we have

|Zi | ≥ 8ε|Ui | ≥ ε|Vi |, (A.1)

|Z ′′
i | ≤ |Yi | ≤ ε2|Vi |

(A.1)≤ ε|Zi | and (A.2)

|Z ′
i | = |Zi | − |Z ′′

i |
(A.2)≥ (1 − ε)|Zi | (A.3)

for both i ∈ {1, 2}. We therefore have

e(Z1, Z2) ≤ e(Z ′
1, Z

′
2) + e(Z ′′

1 , Z2) + e(Z1, Z
′′
2 )

(A.2)≤ e(Z ′
1, Z

′
2) + 2ε|Z1||Z2|,

and thus

d(Z1, Z2) ≤ d(Z ′
1, Z

′
2) + 2ε.

On the other hand, we have

d(Z1, Z2) = e(Z1, Z2)

|Z1||Z2| ≥ e(Z ′
1, Z

′
2)

|Z ′
1||Z ′

2|
· |Z ′

1||Z ′
2|

|Z1||Z2|
(A.3)≥ d(Z ′

1, Z
′
2)(1 − ε)2 ≥ d(Z ′

1, Z
′
2) − 2ε

and hence d(Z1, Z2) = d(Z ′
1, Z

′
2)± 2ε. Furthermore, by ε-regularity of (V1, V2), we

have d(Z ′
1, Z

′
2) = d(V1, V2) ± ε and we conclude

d(Z1, Z2) = d(V1, V2) ± 3ε.

This holds in particular for Z1 = U1 and Z2 = U2 and therefore the pair (U1,U2) is
(8ε, d−8ε, 0)-super-regular. Let u1 ∈ U1 now.By assumption,we have deg(u1, V2) ≥
δ|V2| and therefore

deg(u1,U2) ≥ deg(u1, V2 \ X2) ≥ (δ − ε2)|V2|
≥ (δ − ε2)|U2| ≥ δ/2 · |U2|.

A similar statement is true for every u2 ∈ U2 finishing the proof. ��
The following consequence of the slicing lemma will be useful when we prove

Lemmas 3.4,3.5.
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Lemma A.1 Let k be a positive integer and d, ε > 0 with ε ≤ 1/(2k). If Z =
(V1, . . . , Vk) is an ε-regular k-cylinder and d(Vi , Vj ) ≥ d for all 1 ≤ i < j ≤ k,
then there is some γ ≤ kε and sets Ṽ1 ⊆ V1, . . . , Ṽk ⊆ Vk with |Ṽi | = �(1 − γ )|Vi |�
for all i ∈ [k] so that the k-cylinder Z̃ = (Ṽ1, . . . , Ṽk) is (2ε, d − kε)-super-regular.

Proof For i �= j ∈ [k], let Ai, j := {v ∈ Vi : deg(v, Vj ) < (d − ε)|Vj |}. By definition
of ε-regularity, we have

∣
∣Ai, j

∣
∣ < ε|Vi | for every i �= j ∈ [k]. For each i ∈ [k], let

Ai = ⋃
j∈[k]\{i} Ai, j . Clearly |Ai | < (k − 1)ε|Vi | for every i ∈ [k], so we can add

arbitrary vertices from Vi \ Ai to Ai until |Ai | = 	(k − 1)ε|Vi |
 for every i ∈ [k].
Let now Ṽi = Vi\ Ãi for every i ∈ [k] and let Z̃ = (Ṽ1, . . . , Ṽk). Observe that
|Ṽi | = �(1− γ )|Vi |� for all i ∈ [k], where γ = (k − 1)ε. It follows from Lemma 3.1
and definition of Ai that Z̃ is (2ε, d − ε, d − kε)-super-regular. ��

Given k disjoint setsV1, . . . , Vk ,we call a cylinder (U1, . . . ,Uk) relatively balanced
(w.r.t. (V1, . . . , Vk)) if there exists some γ > 0 so that Ui ⊆ Vi with |Ui | = 	γ |Vi |

for every i ∈ [k]. We say that a partition K of V1 × · · · × Vk is cylindrical if each
partition class is of the form W1 × · · · × Wk (which we associate with the k-cylinder
Z = (W1, . . . ,Wk)) with Wj ⊆ Vj for every j ∈ [k]. Finally, we say that K =
{Z1, . . . , ZN } is ε-regular if

(i) K is a cylindrical partition of V1 × · · · × Vk ,
(ii) each Zi , i ∈ [k], is a relatively balanced w.r.t. (V1, . . . , Vk), and
(iii) all but ε|V1| · · · |Vk | of the k-tuples (v1, . . . , vk) ∈ V1 × · · · × Vk are in ε-regular

cylinders.

For technical reasons, we will allow some of the sets V1, . . . , Vk to be empty. In this
case (A,∅) is considered ε-regular for every set A and ε > 0. If G is an r -edge-
coloured graph and i ∈ [r ], we say that a cylinder K is ε-regular in colour i if is
ε-regular in Gi (the graph on V (G) with all edges of colour i).

In [7], Conlon and Fox used the weak regularity lemma of Duke, Lefmann and Rödl
[9] to find a reasonably large balanced k-cylinder in a k-partite graph. In order to prove
a coloured version of Conlon and Fox’s result, we will need the following coloured
version of the weak regularity lemma of Duke, Lefmann and Rödl. Note that, like the
weak regularity lemma of Frieze and Kannan [15], we get an exponential bound on
the number of cylinders, in contrast to the much worse tower-type bound required by
Szemerédi’s regularity lemma (see [14]).

Theorem A.2 (Duke-Lefmann-Rödl [9]) Let 0 < ε < 1/2, k, r ∈ N and let β =
εrk

2ε−5
. Let G be an r-edge-coloured k-partite graph with parts V1, . . . , Vk. Then

there exist some N ≤ β−k , sets R1 ⊆ V1, . . . , Rk ⊆ Vk with |Ri | ≤ β−1 and a
partition K = {Z1, . . . , ZN } of (V1 \ R1) × · · · × (Vk \ Rk) so that K is ε-regular in
every colour and Vi (Z j ) ≥ 	β|Vi |
 for every i ∈ [k] and j ∈ [N ].

Although the original statement of Duke, Lefmann and Rödl [9, Proposition 2.1]
does not involve the colouring and assume that sets V1, . . . , Vk have the same size,
their proof can be easily adapted to prove Theorem A.2.

We are now ready to prove Lemmas 3.4,3.5.
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Proof of Lemma 3.4 Let k, r ≥ 2, 0 < ε < 1/(rk) and γ = εr
8rkε−5

. Let n ≥ 1/γ and
suppose we are given an r -edge coloured Kn . Let k̃ = rrk and let V1, . . . , Vk̃ ⊆ [n]
be disjoint sets of size 	n/k̃
 and let G be the k̃-partite subgraph of Kn induced by
V1, . . . , Vk̃ (inheriting the colouring). Let ε̃ = ε/2 and β = ε̃r

2rk+1ε̃−5
. We apply

Theorem A.2 to get some N ≤ β−k̃ , sets R1 ⊆ V1, . . . , Rk̃ ⊆ Vk̃ each of which
of size at most β−1 and a partition K = {Z1, . . . , ZN } of (V1\Ri ) × · · · × (Vk̃\Rk̃)

which is ε̃-regular in every colour, and with Vi (Z j ) ≥ 	β|Vi |
 ≥ 2γ n for every
i ∈ [k̃] and j ∈ [N ]. Note that one of the cylinders (say Z1) must be ε̃-regular in every
colour and, since (V1, . . . , Vk) is balanced, so is Z1. We consider now the complete
graph with vertex-set {V1(Z1), . . . , Vk̃(Z1)} and colour every edge Vi (Z1)Vj (Z1),
1 ≤ i < j ≤ k̃, with a colour c ∈ [r ] so that the density of the pair (Vi (Z1), Vj (Z1))

in colour c is at least 1/r . By Ramsey’s theorem [12, 25], there is a colour, say 1,
and k parts (say V1(Z1), . . . , Vk(Z1)) so that the cylinder (V1(Z1), . . . , Vk(Z1)) is
(ε̃, 1/r , 0)-super-regular in colour 1. By Lemma A.1, there is an (ε, 1/(2r))-super-
regular balanced subcylinder Z̃1 with parts of size at least γ n. ��

Proof of Lemma 3.5 Let k ≥ 2, and let d, ε > 0 with 2kε ≤ d ≤ 1. Let γ = εk
2ε−12

and let G be a k-partite graph with parts V1, . . . , Vk . Let ε̃ = ε/4 and β = ε̃k
2 ε̃−5

.
We may assume that |Vi | ≥ 1/γ for every i ∈ [k] (otherwise we set Ui := ∅ for all
i ∈ [k] with |Vi | < 1/γ ). In particular, we have |Vi | ≥ k/(ε̃β) for all i ∈ [k].

We applyTheoremA.2 (with r = 1) to get some N ≤ β−k , sets R1 ⊆ V1, . . . , Rk ⊆
Vk , each of which of size at most β−1, and an ε̃-regular partition K = {Z1, . . . , ZN }
of (V1\R1) × · · · × (Vk\Rk) with Vi (Z j ) ≥ 	β|Vi |
 for every i ∈ [k] and j ∈ [N ].

Note that the number of cliques of size k incident to R = R1 ∪ . . . ∪ Rk is at most

k∑

i=1

β−1
∏

j∈[k]\{i}
|Vj | ≤ ε̃|V1| · · · |Vk |.

Furthermore, since K is ε̃-regular, there are at most ε̃|V1| · · · |Vk | cliques of size k
in G that belong to a cylinder of K that is not ε-regular. Suppose that each cylinder
Z ∈ K has at most (d − 2ε̃)|V1(Z)| · · · |Vk(Z)| cliques of size k. Then the number of
k-cliques in G is at most

ε̃|V1| · · · |Vk | +
∑

Z∈K
(d − 2ε̃)|V1(Z)| · · · |Vk(Z)| ≤ (d − ε̃)|V1| · · · |Vk |,

which contradicts our hypothesis over G. Therefore, there is a cylinder Z̃ in K that
contains at least (d − 2ε̃)|V1(Z̃)| · · · |Vk(Z̃)| cliques of size k. In particular, Z̃ is
(ε̃, d − 2ε̃, 0)-super-regular and relatively balanced with parts of size at least 	β|Vi |
.
Finally, we apply Lemma A.1 (and possibly delete a single vertex from some parts)
to get a relatively balanced (ε, d − (k + 2)ε̃)-super-regular k-cylinder Z with parts of
size at least β

2 |Vi | ≥ γ |Vi |. This completes the proof since (k + 2)ε̃ ≤ kε ≤ d/2. ��

123



Combinatorica (2024) 44:311–335 335

References

1. Allen, P.: Covering two-edge-coloured complete graphswith two disjointmonochromatic cycles. Com-
bin. Probab. Comput. 17(4), 471–486 (2008)

2. Ayel, J.: Sur l’existence de deux cycles supplémentaires unicolores, disjoints et de couleurs différentes
dans un graphe complet bicolore, Theses, Université Joseph-Fourier — Grenoble I, (1979)

3. Bessy, S., Thomassé, S.: Partitioning a graph into a cycle and an anticycle, a proof of Lehel’s conjecture.
J. Combin. Theory Ser. B 100(2), 176–180 (2010)

4. Böttcher, J., Kohayakawa, Y., Taraz, A., Würfl, A.: An extension of the blow-up lemma to arrangeable
graphs. SIAM J. Discrete Math. 29(2), 962–1001 (2015)

5. Bustamante, S., Corsten, J., Frankl, N., Pokrovskiy, A., Skokan, J.: Partitioning hypergraphs into few
monochromatic tight cycles. SIAM J. Discrete Math. 34(2), 1460–1471 (2020)

6. Chen, G.T., Schelp, R.H.: Graphs with linearly bounded Ramsey numbers. J. Combin. Theory Ser. B
57(1), 138–149 (1993)

7. Conlon, D., Fox, J.: Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22(5),
1191–1256 (2012)

8. Conlon, D., Fox, J., Sudakov, B.: On two problems in graph Ramsey theory. Combinatorica 32(5),
513–535 (2012)

9. Duke, R.A., Lefmann, H., Rödl, V.: A fast approximation algorithm for computing the frequencies of
subgraphs in a given graph. SIAM J. Comput. 24(3), 598–620 (1995)

10. Elekes, M., Soukup, D.T., Soukup, L., Szentmiklóssy, Z.: Decompositions of edge-colored infinite
complete graphs into monochromatic paths. Discrete Math. 340(8), 2053–2069 (2017)
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