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ABSTRACT ARTICLE HISTORY

A four-parameter extended bimodal lifetime model called the exponen- Received 10 June 2015
tiated log-sinh Cauchy distribution is proposed. It extends the log-sinh Accepted 28 October 2015
Cauchy and folded Cauchy distributions. We derive some of its mathemati- KEYWORDS

cal properties |ndud|n_g epr|CI_t expressions for the ordlpary moments an_d Bi-modality; exponentiated
generating and quantile functions. The method of maximum likelihood is sinh Cauchy distribution;
used to estimate the model parameters. We implement the fit of the model GAMLSS; lifetime distribution
in the GAMLSS package and provide the codes. The flexibility of the model

is illustrated by means of three real data sets.

1. Introduction

Generalizing lifetime distributions by introducing a few extra shape parameters is an essential method
to better explore the skewness and the tails and other properties of the transformed distributions.
Following the latest trend, applied statisticians are now able to construct more generalized distribu-
tions, which provide better goodness-of-fit measures when fitted to real data rather than by using the
classical distributions. The Weibull, log-normal and log-logistic are very popular distributions for
modelling lifetime data and phenomenon with unimodal and monotone failure rates. In these cases,
they may be chosen because of their negatively and positively skewed density shapes. However, these
models do not provide reasonable parametric fits for modelling phenomenon with non-monotone
failure rates such as the bathtub shaped and bimodal failure rates, which are common in reliability and
biological studies. In this paper, we study a four-parameter generalization of the exponentiated sinh
Cauchy (ESC) distribution on the basis of the sinh Cauchy (SC) model, both proposed by Cooray,[1]
for modelling bimodal and unimodal data. The advantage of this approach for constructing a para-
metric family of distributions lies in its flexibility to model both bathtub and bimodal failure rates
even though the baseline failure rate may be monotonic. The generated model is called the expo-
nentiated log-sinh Cauchy (ELSC) distribution. As we will see later, its hazard rate function (hrf) can
be constant, decreasing, increasing, upside-down bathtub (unimodal), bathtub and bimodal shaped.
Due to the great flexibility of the ELSC hrf, it thus provides a good alternative to many existing life
distributions in modelling positive real data sets.

Cooray [1] applied the hyperbolic sine transformation to the standard Cauchy distribution by
defining the SC model, whose cumulative density function (cdf) is given by

1 1 -
I(y) = > + - arctan [v sinh <}/G—M)} , yeR, (1)
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where u € Rand o > 0are thelocation and scale parameters, respectively,and v > 0is the symmetry
parameter, which characterizes the bi-modality of the distribution. The SC distribution produces both
bimodal and unimodal densities with a wide range of tail weights. It has a real support and therefore is
not appropriate for survival data. As a better alternative, we present the log-sinh Cauchy (LSC) model.

Let Y be a random variable having cdf (1). The random variable X = e¥ defines the LSC
distribution, whose cdf is given by

G(x) = % + %arctan |:v sinh <M)} , x>0. (2)

o

The SC and LSC models are not appropriate for modelling real data, even though they have some
theoretical advantages due to their symmetric nature. To provide an asymmetry for the SC distribu-
tion, Cooray [1] proposed the ESC distribution using the exponentiated class of distributions.[2] The
cdf of the exponentiated class is given by

F(x) = G(x)", 3)

where G(x) is the parent cdf and t > 0 denotes an extra power shape parameter. By differentiating
Equation (3), the probability density function (pdf) of the exponentiated class is given by

fx) = 1Gx)"g(x), (4)

where g(x) is the baseline pdf.

The paper is outlined as follows. In Section 2, we define the ELSC model by applying the expo-
nentiated generator to the LSC distribution. In Section 3, we derive a power series for the quantile
function (qf) of this distribution. In Section 4, we obtain explicit expressions for its moments. A
range of its mathematical properties is explored in Section 5 including generating function, mean
deviations and order statistics. The estimation of the model parameters by maximum likelihood is
addressed in Section 6. The performance of the maximum likelihood estimators (MLEs) is investi-
gated through a simulation study in Section 7. Applications to three real data sets are addressed in
Section 8 to prove empirically the flexibility of the model. In Section 9, we provide a brief discussion of
the template for the ELSC distribution implemented in the ‘GAMLSS’ R package.[3] We also provide
the computational codes used in the applications. Finally, Section 10 ends with some conclusions.

2. The ELSC model

We can add skewness for an extended LSC distribution by adopting the exponentiated class of dis-
tributions [2] given by Equation (3). Inserting Equation (2) into Equation (3), the ELSC cdf is given
by

1 1 t
F(x; u,0,0,7) = {E + — arctan[v sinh(w)]} , (5)
bid

where w = [log(x) — u]/o. For v = 1, the LSC distribution is just a special case of Equation (5). The
pdf corresponding to Equation (5) is given by

TV cosh(w) { 1

1 . 7—1
pr sinhz(w) .y -+ - arctan[v smh(w)]} . (6)

flsp,o,v,7) = 5

Henceforth, let X ~ELSC(u, 0, v, 7) be a random variable with density function (6). We can omit
sometimes the dependence on the parameters and and write simply f(x) = f(x; 1, 0, v, 7).

The survival function and hrf of X are given by S(x) = 1 — F(x) and h(x) = f(x)/S(x), respec-
tively. Plots of the ELSC density, survival and hazard functions for selected parameter values are
displayed in Figures 1-3, respectively.
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Figure 1. Plots of the ELSC density for fixed values of: (a) 0 = 0.1,v =02and 7t = 1;(b) u = 4,v =03and t = 0.7;(c) u = 4,
o=0%landt =1;(d)u =4,0 =0.Tandv =0.2.
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Figure 2. The ELSCsurvival functionwhen u = 4,0 = 0.1and:(a) for t = 1and different values of v; (b) for v = 0.05 and different
values of 7.

In Figure 1 (a)-(b), we check the effects of the location and scale parameters 1 and o on the
function f(x). Figure 1(c) reveals clearly the bi-modality effect caused by the parameter v. Fur-
ther, Figure 1(d) reveals that the density of X is bimodal and symmetric, bimodal and right-skewed,
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Figure 3. The ELSC hrf: (a) for t = 1 and different values of i, o and v; (b) for © = 4 and t = 0.01 and different values of o and
V.
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Figure 4. The ELSC hrf shapes as functions of v and t for x = 1and: (@) 0 = 0.4; (b) 0 = 0.7.

bimodal and left-skewed depending on the parameter 7. Figure 3(a) and 3(b) indicate that the hrf
of X has decreasing, unimodal and bimodal forms and double bathtub-shaped and unimodal and
bathtub-shaped, respectively.

We provide in Figure 4(a)-(b) a numerical investigation to identify how the parameter values
change the shapes of the hrf of X for some parameter ranges. Based on these plots, we can obtain
bimodal shapes for the hrf of X for small values of the parameters v and t. However, large values of
these parameters are necessary to obtain this characteristic when the parameter o increases.

Because of the current computational facilities, several researchers construct new lifetime models
to facilitate their use in lifetime data analysis. It is a common practical technique to fit new mod-
els to real data and develop scripts in statistical software R.[4] de Castro et al. [5] implemented some
long-term survival models by taking the Weibull as the parent distribution. Rodrigues et al. [6] imple-
mented the COM—Poisson cure rate model and illustrate its flexibility by means of a real data set.
Following these ideas, the ELSC model is implemented in the R software, where a short discussion is
given in Section 9.
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3. Expansion of the quantile function

Inverting F(x) = u (for 0 < u < 1), we obtain the qf of X

x = Q(u) = exp (/L + oarcsinh {étan[n(ul/r —0.5)] }) . (7)

Quantiles of interest can be obtained from Equation (7) by substituting appropriate values for u.
In particular, the median of X is obtained when u = % We can also use Equation (7) for simulating
ELSC random variables by setting u as a uniform random variable in the unit interval (0, 1). The qf
of the LSC distribution can be obtained by taking T = 1 in Equation (7).

Next, we derive an expansion for the qf of X to obtain some ELSC properties in the following

sections. Expanding Equation (7) in power series using Mathematica, we obtain

Q(u) = et exp (Z ckz2k+1> ,

k=0

where z = ul/T — 0.5, ¢, = abk/(zk-i- 1)'(7r/v)2k+1 and by =1, by = (21) -1, bz = (16v* —
2002 4 9), by = (27208 — 616v* + 630v% — 225), by = (793618 — 28160v° + 48384v* — 3780012
+11025),. ..

By simple transformation of quantities, we can write

>.d
Q(u) = e exp ( k}'( k) , (8)
k=1
where
dyj=0forj=1,2,... and dpjy1 = (2j + Dl¢jforj=0,1,2,.... 9)

We can use the Bell polynomials! to rewrite Equation (8). The exponential partial Bell polynomials
in formal double series expansion are defined by Comtet [7, p.133] as

" Buk . &
exp umeﬁ = Z Wt us, (10)
m>1 n,k>0
where
B,k = Bx(x1,x X ) = Z n! x xS
A T I ST e R

and the summation is over all integers ci, ¢3,¢3,... > 0 such that ¢; +2¢ +3¢3 +--- = nand ¢; +
¢2 + ¢3 + - - - = k. These exponential partial Bell polynomials can be evaluated in Mathematica and

Maple using BellY[n,k,{X1,. .., Xns1}] and IncompleteBellB(n, k, x[1], z[2],..., x[n-k+1]).
Using the definition of the complete Bell polynomials and Equation (10), Equation (8) can be
expressed as

Qu) = MZBk(dlw- dk) k

where By, = Bi(dy,...,dy) = Zle B (di,. .., dk—rs1) (for k > 0) is the complete Bell polynomial
of order k.
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The coeflicients By can be easily obtained using Mathematica, Maple and Sage softwares.
Replacing z in the last equation, the qf of X can be rewritten as

oo
Bk(dl,,dk) 1
— ot /T _0.5)k
Qu) =e Z o (u 0.5)k. (11)
k=0
By expanding the binomial term, we have

DRl (k
Q(u) = e ZZ = 21—114 (j)Bk(dl,...,dk).

k=0 j=0

Further, changing 3 2% >°° by 3575 > "iZ, we can write

Qw =) pi'", (12)
where the coeflicients
(-
:eukz . () Bi(dy, .. ., ) (13)
=j

an be evaluated using the analytical softwares cited before.
Let W(-) be any integrable function in the positive real line. We can write from Equations (6)
and (12)

0 1 00
/ W(x)f(x;u,a,v,r)dx:/ w ijujﬁ du. (14)
0 0 j=0

Equation (14) is an important result since it allows to obtain various mathematical properties
for the ELSC distribution using integrals over (0,1). For the great majority of the applications of
Equation (14), we can adopt 10 terms in the power series. Equations (12) and (14) are the main
results of this section. The formulae derived throughout the paper can be easily handled in most
symbolic computation software platforms such as those cited before. They have currently the ability
to deal with analytic expressions of formidable size and complexity. Established explicit expressions
to evaluate statistical measures can be more efficient than computing them directly by numerical
integration.

4. Moments
Some of the most important features and characteristics of a distribution can be studied through

moments (e.g. tendency, dispersion, skewness and kurtosis). Using Equation (4), the nth moment of
X can be expressed as

00 1
w, = EX™) = r/ "G g(x) dx = r/ Qusc(w)"u™ ! du, (15)
0 0

where Qrsc(u) denotes the gf of the LSC distribution.
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Here, we give two explicit expressions for u/,. For the first one, we use the power series for
Qusc(u)", which follows by changing p by nut, 0 by no and taking = 1 in Equation (11). We have

°° Bi(d%, ..., d;';)

o (u—0.5)k, (16)

Qusc(w)" = e™*
k=0

where
dﬁj =0 forj=12,..., d’z"j+1 =Qj+ 1)!6;‘ forj=0,1,2,... (17)

and ¢f = ko by 2+ ) 2k + 1)1
Replacing Equation (16) in Equation (15), we have

© Bi(dh, ..., d* 1
W, =rte™ Z Bitdy, -, dp) (u—0.5)%""1du.
" — k! 0

Let 2F1(p,q;13y) = Z;io(p)j(q)jyf/[(r)jj!] be the hypergeometric function, (p); the Pochham-

mer symbol defined by (p); =p(p+1)---(p+j—D =T +))/T(p) = (=11 —-p)/T(1~
p —j), and T'(-) the gamma function.
The last equation can be expressed in terms of the hypergeometric function? as

o (=DF
W, =e">" o 2Fi(—k 75T + 1,2)Br(d}, . . ., d}). (18)
k=0 ’

The hypergeometric function »F;(p,q;r;y) can be evaluated from Mathematica and Maple
as HypergeometricPFQ[{p,a}, {r},y] and Hypergeometric([p,ql],[r],y),
respectively.

The second expression for 1), can be determined using Equations (7) and (12) in Equation (15)
and changing p by npt, o by no and setting ¢ = 1. We obtain

00 P*
=1 L 19
=T (19)

j=0

where p¥ = " Z,fi] (—1)k—f/2k—fk!(;?)3k(d*, ...»dy) and df is defined by Equation (17).
Equations (18) and (19) are the main results of this section. The central moments (u;) and cumu-

lants (k) of X are determined as pu; = Zizo(—l)k(i)u’f,u;_k and ks = p, — i) (i:ll)xku;_k,

respectively, where k1 = p}. The skewness y; = k3/ K23/ % and kurtosis 2 = ka/3 follow from the
third and fourth standardized cumulants, respectively.

When these moments do not exist, for example, for the Cauchy, Lévy and Pareto distributions,
alternative measures for the skewness and kurtosis, based on qfs, are sometimes more appropriate for

these distributions. The measures of skewness 53 [8] and kurtosis M [9] are given by

_ Q6/8) +Q(2/8) — 2Q(4/8) M= Q(7/8) — Q(5/8) + Q(3/8) — Q(1/8)
Q(6/8) — Q(2/8) Q(6/8) — Q(2/8)

>

respectively.

For the ELSC and LSC distributions, Galton’s skewness and Moors’ kurtosis can be computed using
the qf (7). Figure 5 displays some plots of the measures B and M as functions of the shape and bi-
modality parameters. The additional shape parameter 7 has substantial effect on the skewness and
kurtosis of X.
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Figure 5. Plots of the measures (a) 3 and (b) M as functions of 7 and v for u = 3and o = 0.2.

5. Other measures

In this section, we derive the generating function, mean deviations and order statistics of X.

5.1. Generating function

The moment generating function (mgf) M(t) = E(e™) of X can be determined from Equation (4) in
terms of its qf. We have

00 1
M=t | e*Gx)" 'g)dx=1 | u"exp[tQrsc(w)]du.
0 0

Combining Equations (8) and (12) when t = 1, the mgf of X can be written as

1 00 pryj
M) =te? [ u"lexp Z <2 | du,
0 j=1 '

where p™* = ipjj! and pj is given by Equation (13). Using again the complete Bell polynomials, we
have

pi*u Bj(p1*,..., ; ) .
P I
T j=0 '

and then, the mgf of X follows as

 Bi(pt*, ..., p)
M(t) = ‘L'etp0 Z JP(IT']
i—0 T+])

5.2. Mean deviations

For empirical purposes, the first incomplete moment m; (s) = [°__ xf(x) dx plays an important role
for measuring inequality, for example, mean deviations and Lorenz and Bonferroni curves. A formula
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for m; (s) follows by setting u = G(x) in Equation (4) as
S
my(s) = T/ Qusc(w)u™ ' du. (20)
0

Here, we provide two alternatives to compute the first incomplete moment of X. First, m;(s) can
be derived from Equation (18) by taking n = 1 as

N (1 —25) 7K (s — 0.5)ks7
@ = et 3 T2 CZIE p ke b 2B, d), @D
k=0 ’

where dj is given by Equation (9). A second formula for m;(s) can be derived by inserting
Equation (12) in Equation (20) and setting t = 1 as

S‘[+j

(s) = ' . (22)

The main applications of Equations (21) or (22) are related to the Bonferroni and Lorenz curves
defined (for a given probability 77) by B(rw) = m(q)/(w ) and L(7r) = m1(q)/ i}, respectively,
where p} = E(X) and ¢ = Q(r) is the gf of X at v obtained from Equation (7).

The mean deviations about the mean (§; = E(|X — p})) and the median (8, = E(|X — M|)) of X
are given by

81(X) = 2u F(uy) —2mi(u)) and  8:(X) = p} — 2my (M), (23)

respectively, where M = Median(X) = Q(0.5) is the median, F(u}) is easily evaluated from the
cdf (5) and m; (2) is given by Equations (21) or (22).

5.3. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Suppose
X1, ...,X, is a random sample from the ELSC distribution. Let X;,, denote the ith order statistic.
Using Equations (5) and (6), the pdf of X;., can be expressed as

n—i

fin(¥) = KF)F()"™ {1 — F(x)}" ' =K Z(_l)J(n ]— i) F GO F Gy

j=0

>

n—i o h 11 (+iT—1
= KZ(—I)] <n . l) = coshiw) {— + — arctan [v sinh(w)]}
j=0 J g

xom [v2sinh?(w) 4+ 1] |2

where w = [log(x) — n]/o and K = n!/[(i — 1)!I(n — i)!].

6. Inference

We consider the situation when the time-to-event is not completely observed and is subject to right
censoring. Let C; denote the censoring time. We observe x; = min{X;, C;} and §; = I(X; < C;), where
8; = 1 if X; is a time-to-event and §; = 0 if it is right censored (for i =1, ..., n). Let ¢ denote the
parameter vector of the distribution of the time-to-event. Let X; be a random variable following
Equation (6) with the vector of parameters y = (u,o,v,7)’. From n pairs of times and censoring
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indicators (x1, 1), . . ., (xu, 8n), the log-likelihood function under non-informative censoring is given
by

I(y) = rllog(zv) — log(om)] — Zlog(x,-) + Zlog cosh(w;) — Zlog[l + v? sinh?(w;)]
ieF ieF ieF

+ (-1 Z log {% + % arctan[v sinh(w,-)]}

ieF

Z log ( {— l arctan [v sinh (w;) ]} ) , (24)

ieC

where r is the number of failures (uncensored observations).

We can obtain the MLE p of y by maximizing the log-likelihood (24) either directly in R using the
optimfunction, in SAS using the NLMixed procedure and in other statistical software or by solving
the nonlinear likelihood equations obtained by differentiating Equation (24). The score functions for
the parameters in y are given by

Uur) = =2 ”“;(W” Ly ) (g veoshin) g v coshOn)f L

icF e ok ier oK icc ToKiUi —1)
Us(y) = —— — Z — tanh(w,) + Z smh(wl) cosh(w;) + (t — 1) Z cosh(wj)
ieF ieF B
Tow T !

+ ZC —noK ) cosh(w;),

r 2v sinh? (w;) smh(wl 777 sinh(w;)
U(y) = - — —_— -1 : P

v ; K; ; ; rKi(Ji = 1)

and
Ur(y) = - + S log) + 3 -2 ], — log(,

ieF ieC

where J; = % + 1/7 arctan[v sinh(w;)] and K; = v? sinh?(w;) + 1.

The numerical maximization of the log-likelihood function (24) can also be performed in the
GAMLSS package in R. The advantage of this package is that we can use many maximization meth-
ods, which will depend only on the current fitted model. When there are no explanatory variables or
censored observations, we can use the gam1ssML function for fitting (24) using a nonlinear maxi-
mization algorithm. When we have censored observations, the additional package gamlss.cens
is required to determine numerically the observed information of the likelihood function referring
to the censored observations. The maximization algorithms adopted in the presence of censored data
are the RS and CG procedures. All methods and algorithms are described by Rigby and Stasinopoulos
[10] and Stasinopoulos and Rigby [3] and they are available in the documentation of the GAMLSS
package. The RS algorithm requires the first order derivatives of the logarithm of the density func-
tion (6) given in the above equations, and the second order derivatives. The RS method, different
from the CG algorithm, does not use the cross derivatives, and thus it is faster for larger data sets.
The second order derivatives can be determined numerically in the script discussed in Section 8.

Under standard regularity conditions, the asymptotic distribution of (p — p) is N4(0, 1 b,
where I(p) is the expected information matrix. This asymptotic behaviour holds if I(p) is replaced
by J(p), that is, the observed information matrix evaluated at the MLE p. Thus, the multivariate
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normal Ny (0, J()~!) distribution can be used to construct approximate confidence intervals for the
individual parameters.

Further, we can compute the maximum values of the log-likelihoods to obtain the likelihood ratio
(LR) statistics for testing some sub-models of the ELSC distribution. For example, the test of Hy :
T =1 versus H:t # 1 is equivalent to compare the LSC and ELSC distributions. In this case, the
LR statistic is given by

w = 2{l(f1, 6,9, %) — I(1, &, ,0)},
where [i, 6, D and T are the MLEs under H and /i, & and ¥ are the estimates under Hy.

Table 1. The AEs, biases and MSEs based on 1000 simulations of the ELSC distribution for « = 4 and o = 0.1, v = 0.05,0.6, 1.2
and t = 0.5,1.5,2,and n = 50, 150 and 300.

v=005andt =2 v=06andt =2 v=12andt =2
n Parameter AE Bias MSE AE Bias MSE AE Bias MSE
50 i 4.001 0.001 0.001 2913 —0.014 0.007 3.987 —0.013 0.003
o 0.097 —0.003 0.000 0.095 —0.005 0.001 0.099 —0.001 0.001
v 0.048 —0.002 0.001 0.635 0.035 1.371 1.321 0.121 0.433
T 2.050 0.050 0.143 2913 0.913 42.345 2.884 0.884 7.379
150 n 4.000 0.000 0.000 3.996 —0.004 0.003 3.989 —0.011 0.001
o 0.099 —0.001 0.000 0.098 —0.022 0.000 0.100 0.001 0.001
v 0.050 0.000 0.000 0.578 —0.022 0.026 1.209 0.009 0.093
T 2.014 0.014 0.045 2.181 0.181 1.051 2.368 0.368 1.044
300 i 4.000 0.000 0.000 3.999 —0.001 0.002 3.996 —0.004 0.001
o 0.100 0.000 0.000 0.098 —0.002 0.000 0.100 0.001 0.001
v 0.050 0.000 0.000 0.580 —0.020 0.011 1.203 0.003 0.040
T 2.008 0.008 0.023 2.062 0.062 0.293 2.145 0.145 0.321
v=005andt =15 v=06andt =15 v=12andt = 1.5
n Parameter AE Bias MSE AE Bias MSE AE Bias MSE
50 n 4.001 0.001 0.001 3.989 —0.011 0.006 3.990 —0.010 0.003
o 0.098 —0.002 0.001 0.097 —0.003 0.001 0.097 —0.003 0.001
v 0.050 0.001 0.001 0.581 —0.019 0.089 1.224 0.024 0.351
T 1.537 0.037 0.083 1.769 0.269 1.004 1.921 0.421 2.007
150 " 4.001 0.001 0.001 3.995 —0.005 0.003 3.996 —0.004 0.001
o 0.099 —0.001 0.001 0.097 —0.003 0.001 0.101 0.001 0.001
) 0.050 0.001 0.001 0.578 —0.022 0.024 1.228 0.028 0.094
T 1.508 0.008 0.026 1.610 0.110 0.297 1.631 0.131 0.319
300 % 4.000 0.001 0.001 3.998 —0.002 0.001 3.998 —0.002 0.001
o 0.100 0.001 0.001 0.099 —0.001 0.001 0.099 —0.001 0.001
v 0.050 0.001 0.001 0.583 —0.017 0.011 1.197 —0.003 0.040
T 1.508 0.008 0.013 1.550 0.050 0.129 1.562 0.062 0.107
v=0.05andt =05 v=_06andt =0.5 v=12andt =05
n Parameter AE Bias MSE AE Bias MSE AE Bias MSE
50 n 3.998 —0.002 0.001 3.982 —0.018 0.008 4.003 0.003 0.003
o 0.097 —0.003 0.001 0.100 0.000 0.002 0.094 —0.006 0.002
v 0.049 —0.001 0.001 0.611 0.011 0.143 1.226 0.026 0.419
T 0.503 0.003 0.012 0.578 0.078 0.127 0.498 —0.002 0.075
150 n 4.000 0.001 0.001 3.990 —0.010 0.003 4.006 0.006 0.001
o 0.099 —0.001 0.001 0.101 0.001 0.001 0.097 —0.003 0.001
v 0.049 —0.001 0.001 0.600 0.000 0.038 1.200 0.000 0.122
T 0.498 —0.002 0.004 0.538 0.038 0.040 0.485 —0.015 0.015
300 n 4.000 0.001 0.001 3.996 —0.004 0.001 4.002 0.002 0.001
o 0.100 0.001 0.001 0.101 0.001 0.001 0.099 —0.001 0.001
v 0.050 0.001 0.001 0.602 0.002 0.018 1.205 0.005 0.054
T 0.500 0.001 0.002 0.516 0.016 0.015 0.493 —0.007 0.007
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7. Simulation

We simulate the ELSC distribution (for u = 4,0 = 0.1,v = 0.05,0.6,1.2 and T = 0.5, 1.5,2), con-
sidering bi-modality and unimodal forms, from Equation (7) by using a random variable U having
a uniform distribution in (0, 1). We take n =50, 150 and 300 and, for each replication, we calculate
the MLEs /i, 6, b and 7. We repeat this process 1000 times and determine the average estimates
(AEs), biases and means squared errors (MSEs). The results of the Monte Carlo study are given in
Table 1. They indicate that the MSEs of the MLEs of i, o, v and 7 decay toward zero as the sample
size increases, as expected under standard asymptotic theory.

We conclude from the figures in Table 1 that the AEs of the parameters tend to be closer to the true
parameters when # increases. This fact supports that the asymptotic normal distribution provides an
adequate approximation to the finite sample distribution of the MLEs. The normal approximation can
be oftentimes improved by using bias adjustments to these estimators. Approximations to the their
biases in simple models may be determined analytically. Bias correction typically does a very good job
for correcting the MLEs. However, it may also increase the MSEs. Whether bias correction is useful
in practice depends basically on the shape of the bias function and on the variance of the MLE. In
order to improve the accuracy of these estimators using analytical bias reduction one needs to obtain
several cumulants of log-likelihood derivatives, which are notoriously cumbersome for the proposed
model. We illustrate the convergence in Figures 6 and 7, where the true densities are given at selected
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Figure 6. Some ELSC density functions at the true parameter values and at the AEs for u = 4,0 = 0.1,v = 0.05and t = 2 when:
(@)n =50;(b) n = 150; (c) n = 300.
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Figure 7. Some ELSC density functions at the true parameter values and at the AEs for © = 4,0 = 0.1, v = 0.6 and T = 2 when:
(@)n =50;(b) n = 150; (c) n = 300.

parameter values and the density functions are computed at the AEs given in Table 1 for some sample
sizes and v = 0.05 and v = 0.6, respectively. In Figures 8 and 9, we present the estimated densities
based on 1000 samples of the AEs of the parameters u, o, T for v = 0.05 and v = 0.6, respectively,
and n = 50, 150 and 300. These plots are in agreement with the standard asymptotic theory for the
MLEs.

8. Applications

In this section, we provide three applications to real data to prove empirically the flexibility of the
ELSC and LSC models. The computations are performed using the gamlss subroutine in the R soft-
ware. In the first application, we give an application for bimodal data comparing the ELSC and LSC
models with other models implemented in gamlss. In the second application, we show the flexibility
of the distribution for censored data and, in the third application, we study the adequacy of the LSC
model.

Recently, Cordeiro et al. [11] proposed the McDonald-Weibull (McW) model with scale parame-
ter A > 0, shape parameter y > 0 and three extra shape parametersa > 0,b > 0and ¢ > 0. We focus
on this model since it extends various distributions previously discussed in the lifetime literature, such
as the beta Weibull (BW) [12] (for ¢ = 1), Kumaraswamy Weibull (KwW) [13] (for a = c), exponenti-
ated Weibull (EW) [14] (for b = ¢ = 1), Weibull (for a = b = ¢ = 1) and other distributions. Besides
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Figure 8. Estimated densities from 1000 samples for n = 50, 150, 300 of the parameters: (a) u = 4; (b) & = 0.1; (c) v = 0.05; (d)
T = 2 (based on selected parameter values in Table 1 for v = 0.05).

of its flexibility, the McW model can take bimodal forms and thus is a competitive model for the ELSC
distribution.

All computations in this section are performed using the gamlss subroutine in R and the scripts
are described in Section 9.

8.1. Eruption data

First, we provide an analysis of some data on the Old Faithful Geyser in Yellowstone National Park,
Wyoming, USA. The data consist of n = 299 pairs of measurements referring to the times between the
starts of successive eruptions. These data were collected continuously from 1 August until 15 August
1985; see [15] for more details.

We compute the Hartigans’ Dip statistic D and its p-value for the test for unimodality. For i.i.d.
random variables, the null hypothesis is that X; has a unimodal distribution. Consequently, the alter-
native hypothesis is non-unimodal, that is, at least bimodal. The Dip test can be obtained using a
function dip . test available in ‘diptest’ R package. More details about the dip test can be obtained
in [16]. Applying the Dip test to verify that a unimodal distribution would be appropriate to fit the
eruption data gives D = 0.039 with the p-value 0.002. So, we reject the null hypothesis in favour of a
bimodal distribution.
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Figure 9. Estimated densities from 1000 samples for n = 50, 150,300 of the parameters: (a)

T = 2 (based on selected parameter values in Table 1 for v = 0.6).

Table 2. MLEs of the model parameters for the eruption data, the corresponding SEs and the AIC and BIC statistics.

Model " o v T AIC BIC w* A*

ELSC 4153 0.069 0.089 1.728 2328.23 2343.03 0.08 0.70
(0.008) (0.056) (0.193) (0.078)

LSC 4.193 0.065 0.101 - 2368.26 2379.36 0.32 2.18
(0.007) (0.057) (0.201) -

BCPEo 70.675 0.191 0.966 4.973 2387.22 2402.02 0.82 4.36
(0.014) (0.032) (0.271) (0.143)

Further, we compare the fits of the ELSC and LSC models with the models available in the
gamlss.family package. The fitDist (...,

type=c(‘realplus’)) function is used to

fit all relevant parametric distributions. The Box-Cox power exponential (BCPEo) distribution is
selected as the best model. For details on the distributions available in the package, see [17]. Table 2
lists the MLEs (and the corresponding standard errors in parentheses) of the model parameters
and the values of the Akaike information criterion (AIC) and Bayesian information criterion (BIC)
statistics for the fitted models.

We also evaluate the Cramér-von Mises (W*) and Anderson-Darling (A*) statistics described by
Chen and Balakrishnan.[18] From a random sample x, . . ., x, with empirical distribution function
F,(x), the main objective is to test if the sample comes from a specific distribution. The W* and A*
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Figure 10. Estimated (a) densities and (b) cdfs for the ELSC, LSC and BCPEo models fitted to the eruption data.

statistics are given by

—+00
W = (n / (Fa () — F(u 7)) dF(x;m) (1 + %) — (1 + %)
o ( /+°° (Fa) — F(u 7))
= n = =
—0o {Fl7)1—=F(x9,))}

5 0.75 225
=A (14 —+="),
n n

respectively, where F,(x) is the empirical distribution function and F(x; p,,) is the postulated dis-
tribution function evaluated at the MLE p,, of y. The W* and A™* statistics measure the differences
of F,(x) and F(x; p,,). Thus, the lower their values, the more evidence that F(x; ,) generates the
sample.

The figures in Table 2 indicate that the ELSC model has the lowest AIC and BIC values among
those values of the fitted models, and therefore it could be chosen as the best model. Further, the SEs
of the estimates for all fitted models are quite small.

Formal tests for the extra skewness parameters in the ELSC model can be based on the LR statistic
described in Section 6. Applying the LR statistic to the eruption data, we reject the null hypothesis
Hp : T = 1 in favour of the ELSC distribution. The value of the LR statistic is w = 42.032 with the
p-value < 0.001.

More information is provided by a visual comparison of the histogram of the data with the fitted
density functions. The plots of the fitted ELSC, LSC and BCPEo densities and their cdfs are displayed
in Figure 10. The plot of the ELSC hazard rate in Figure 11 reveals that this function has a bimodal
shape, small at the first mode and large at the second mode.

N 0.75 225
arnz) (1424 22,
n n

8.2. Efrondata

Second, we consider the data from a two-arm clinical trial discussed earlier by Efron.[19] Efron noted
that the empirical hazard functions for both samples start near zero, suggesting an initial high-risk
period at the beginning, a decline for a while, and then stabilization after about one year. He developed
and illustrated a methodology for analysing the data using a combination of techniques of quantal
response analysis and the spline regression methods. Specifically, Efron’s data from a head and neck
cancer clinical trial consist of survival times of 51 patients in arm A who were given radiation therapy
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Figure 11. Estimated hrf for the ELSC distribution for eruption data.

Table 3. MLEs of the model parameters for Efron data, the corresponding SEs (given in parentheses) and the AlC and BIC statistics.

Model i o ) T AlC BIC

ELSC 4.788 2.080 2.794 2.308 1063.9 10741
(0.083) (0.135) (0.129) (0.097)

LSC 6.141 0.494 0.215 1 1074.4 1082.1
(0.102) (0.061) (0.151) -

A y a b 4 AlC BIC

McW 0.092 0.101 74.352 21.126 0.067 1088.5 1101.3
(0.028) (0.008) (0.655) (0.192) (0.001)

BW 0.281 0.062 167.450 60.159 1 1086.1 1096.3
(0.106) (0.005) (0.406) (0.177) -

and 45 patients in arm B who were given radiation plus chemotherapy. Nine patients in arm A and
14 patients in arm B were lost to follow-up and were regarded as censored.

Cordeiro et al. [11] fitted the McW regression model to these data and noted that it provides a
good fit. Here, we consider only the survival times in days x; and compare the results of the fits of
the McW, ELSC and LSC models. Table 3 gives the MLEs (and the corresponding standard errors in
parentheses) of the parameters and the values of the AIC and BIC statistics. They indicate that the
ELSC model has the lowest values of these statistics among the values of the other fitted models, and
therefore it could be chosen as the best model.

By comparing the fits of the ELSC and LSC models using the LR statistic, we reject the null hypoth-
esis Hp : T = 1 in favour of the ELSC distribution. The LR statistic is w = 12.552 with the p-value
< 0.001. Next, we compare the fits of the McW and BW models using the LR statistic. Applying the
LR statistic for testing the null hypothesis Hy : ¢ = 1, we obtain w = 0.00039 with the p-value almost
one. So, we could not reject the BW distribution to fit these data.

The plots of the fitted ELSC, LSC and BW densities and their estimated survival functions are
displayed in Figure 12 for the current data ignoring censored observations. Clearly, the ELSC density
provides a closer fit to the histogram of the data and the corresponding estimated survival function to
the empirical survival function than the other models. The plot of the ELSC hrf in Figure 13 reveals
that it has a modal shape.
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Figure 12. (a) Estimated ELSC, LSC and BW densities for Efron data. (b) Estimated ELSC and LSC survival functions and the empirical
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Figure 13. Estimated ELSC hazard function for Efron data.

8.3. Entomology data

Third, we consider the data from a study carried out at the Department of Entomology of the Luiz
de Queiroz School of Agriculture, University of Sao Paulo, which aim to assess the longevity of the
mediterranean fruit fly (ceratitis capitata). The need for this fly to seek food just after emerging from
the larval stage has permitted the use of toxic baits for its management in Brazilian orchards for at
least 50 years. This pest control technique consists of using small portions of food laced with an
insecticide, generally an organophosphate, that quickly kills the flies, instead of using an insecticide
alone. Recently, there have been reports of the insecticidal effect of extracts of the neem tree leading
to proposals to adopt various extracts (aqueous extract of the seeds, methanol extract of the leaves
and dichloromethane extract of the branches) to control pests such as the mediterranean fruit fly. For
more details, see [20].
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Table 4. MLEs of the model parameters for the entomology data, the corresponding SEs (given in parentheses) and the AIC and
BIC statistics.

Model % o v T AlC BIC

ELSC 3.018 0.852 3.367 0.907 1249.0 1261.5
(0.027) (0.091) (0.107) (0.075)

LSC 2.998 0.946 3.592 1 1247.7 1257.1
(0.029) (0.101) (0.106) -

s (4 k p AlC BIC

BXIIGII 14.353 1.164 4414 0.981 1270.1 1282.7
(8.175) (0.389) (2.532) (0.0211)

BXII 34.423 2214 2.676 1 1282.7 1292.1

(10.386) (0.232) (1.284) -
A y a b 4 AlC BIC

McW 0.079 1.718 0.883 0.329 0.049 1290.0 1305.8
(0.007) (0.223) (0.313) (0.114) (0.013)

BW 0.055 1.608 1.240 0.688 1 1289.7 13023
(0.017) (0.226) (0.314) (0.313) -

Kww 0.015 1.133 1 8.787 1.776 1288.9 1301.5
(0.004) (0.447) - (0.299) (0.920) -

EW 0.044 1.587 1.254 1 1 1287.5 1296.9
(0.007) (0.275) (0.368) - -

Weibull 0.0400 1.797 1 1 1 1286.1 1292.4
(0.002) (0.111) - - -
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Figure 14. (a) Estimated ELSC and LSC cdfs for entomology data. (b) Estimated ELSC and LSC survival functions and the empirical
survival for the entomology data.

The response variable in the experiment is the lifetime of the adult flies in days after exposure to the
treatments. The experimental period was set at 51 days, so that the numbers of larvae that survived
beyond this period are considered as censored observations. The total sample size is n = 72 because
four cases are lost. Therefore, the variables used in this study are: x;-lifetime of ceratitis capitata adults
in days and §;-censoring indicator.

Recently, Lanjoni [21] fitted the Burr XII geometric type II (BXIIGII) distribution to these data
and noted that it gives a better fit than the special Burr XII model. Now, we compare the McW and
BXIIGII distributions and some of their sub-models with the ELSC and LSC models. For some fitted
models, Table 4 provides the MLEs (and the corresponding standard errors in parentheses) of the
parameters and the values of the AIC and BIC statistics. The computations are performed using the
gamlss subroutine in R. They indicate that the LSC model has the lowest AIC and BIC values among
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Figure 15. Estimated LSC hazard function for entomology data.

those values of the fitted models, and therefore it could be chosen as the best model. The LSC model
is not able to capture asymmetry but it has the bi-modality characteristic.

In order to assess if the model is appropriate, Figure 14(a) displays the empirical and estimated
cumulative distributions for the fitted ELSC and LSC models to the current data. Further, Figure 14(b)
gives the plots of the empirical survival function and the estimated ELSC and LSC survival functions.
They indicate the LSC model provides a good fit to these data. Further, using the LR statistic to com-
pare the fits of these models, that is, for testing the null hypothesis Hy : T = 1, we obtain w = 0.748
with the p-value= 0.387 and then we could accept the LSC distribution. The plot of its hrfin Figure 15
reveals a modal shape.

9. Program description

The ELSC model is implemented in the gamlss function, which is fully documented in the gamlss
package.[3] Here, we will omit several functions for the gamlss package and present only the func-
tions related to the ELSC distribution and its fit to a data set. The computational codes for the ELSC
model can be downloaded from http://goo.gl/yzvolZ. The cdf (5) and pdf (6) can be obtained using
dELSC and pELSC functions, respectively. The qf given by Equation (7) can be obtained using the
gELSC function and samples of the ELSC model can be generated using the rELSC function. We can
use the functions listed above for the LSC sub-model by setting T = 1 with the tau. fix=TRUE
function. To optimize the computational time, we can change the initial values of the parameters
using the parameter . £ix function. Otherwise, we can increase the number of interactions using
the n. cyc function. The fit of the ELSC model to censored data can be performed using the addi-
tional package gamlss.cens. The structure of the gamlss function is familiar to users of the R syntax
(the glm function, in particular).

10. Conclusions

The paper proposes the ELSC distribution that can be used as an alternative to mixture distributions
in modelling bimodal data. Various mathematical properties of the ELSC distribution are investi-
gated. We show that it can accommodate various shapes of the skewness, kurtosis and bi-modality.
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Its model parameters are estimated by maximum likelihood. Some numerical experiments reveal that
the maximum likelihood estimation procedure performs well. Three real data examples prove empir-
ically that the ELSC distribution is very flexible, parsimonious, and a competitive model that deserves
to be added to existing distributions in modelling bimodal data. The ELSC model can be fitted using
the gamlss package described to facilitate its practical use by researchers from other areas.

Notes

1. http://en.wikipedia.org/wiki/Bell_polynomials
2. http://mathworld.wolfram.com/HypergeometricFunction.html
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