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computational tractability issues - and start with a logical
system in which propositions are associated to probabilistic
estimates of their truth evaluations. Then we consider what
happens when
1. The probability measures change across time
(which is what happens when e.g. we change from
off-peak hours to rush hours), and when

The events of interest themselves change across
time (thus taking into account the inherent

dynamics of the system).

o

Preliminaries - Probabilistic Propositional Logic

The basic language in use here is the propositional
version of a simple logic extensively explored in
[CorreadaSilva92, CdSRH93, CorreadaSilva96,
CorreadaSilva96b, CDSCO1].

Given a finite set of atomic  propositions

= 1
l)— lpl"--,[)"’
{ﬂ,V./\J, —>} we build propositional expressions the usual

aluated to {T F'} to produce a

and  the standard connectives
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n .
2" alternative

and we have £
aluations for

classical prepositional theory,
evaluations for the set of expressions (the ev
some  expressions  may of course coincide in  different
. . . n

whole set of expressions - €.g. 10 all 2
at the evaluation of (pl \% —lpl) is

v gl

m : r _ P o
equal o). We call the set W= {f,f‘, the set of
possible the

evaluations for the

evaluations we find th

alternative  evaluations, — or worlds ~ for

. )
expressions based on £



Now we build a partition o = {Sl,...Sm}of W .ie.

a collection of  subsets of W such that

SIﬂSIZ{},i;ﬁj.and U'"SI:W,

1
Then, we attach to each subset S,. a probability

estimate £4(.S ) € [0,1], such that Zlm,u(S/) =i,

Given any subset £ C W | the internal and external
probability estimates for £ (respectively, f4 (E) and
Y2 * (E) ) are given by:

ur(B)="3 u(s)

Sick

HH(E)= > u(S)

SinE#{}

It is not  difficult to show

then

My (E) = p*(E) =

2.5

{il,..ir}c{l,...,m}
Given any propositional expression @ . we have
E(p) S W defined as the set of evaluations in which 7

is 1. Thus, we have the probability estimates for @ given
by:

that  if

par(p)= Y u(s)

Sick(p)

@)=Y us)

SinE(p)#{}

It is also not difficult to show that. for any expression
@ . we have:

Hy(@)+pu*(=p)=1

If probability estimates were “non-perishable items”,
given the probability estimates for subsets of W, we could
evaluate at any time the probability estimates for any
propositional expression 0 using the formulae above.

Let us consider however that probability estimates
change smoothly with time, ie. after an infinitesimal
interval of time the estimatcs/l(S,)may have suffered
infinitesimal variations.
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In this case, given an expression ¢, and given an
elapsed time 7 from the moment the corresponding

probabilities £¢ 4 (.S;) and L1 *(S)) were evaluated, we

should account for the possible changes occurred in those
estimated probabilities.

This is what we take into account in the next sessions.

Propositions With Smooth Variations of Probability
Estimates

In a similar vein to what was proposed in [CdSV00], we
define two probability estimates £z, £2': 0@ —> [0,1] to be

H(S)~ u(S) <
S;eo={5,.5S,}.

for all

d-neighbors  if
m-—

Given any two 3-neighbors £/ and f/', we have the

following results for any propositional expression ¢

Hx(p) - ts(p) <0
“*(p)—u*(p) <o

We now define 5(() as a non-decreasing function of

1, 2 0 being a representation of linear time. We assume

that 5(0) = 0.

We assume that, when we reach time f, a probability
estimate £/ may have changed to any of its 3(t)-neighbors.
If we have no means to identify what is the prcvuilm'g
probability estimate at time/, the best we can do is
characterise the smallest interval which we can assure that
contains the updated probability estimate. The intervals

Hx (@) and Yz * ‘(¢) can be defined as below:

,ui« (gf)) = [m;lx{(J‘,u L ()=o), min{l, 1 (p) + ‘5(’)}]

H s (gD) = [mux:O.,u *(p) = 5(1)y, min{l, p ¥ (p) + ‘5(’)}]

In [Vit00] some experimental results are Pfcsc“t%d
based on this model, employing lincar—b}f-P“m :
neighborhood functions. It is shown that, if the linear slope
of 5([) is adjusted from off-peak to rush hour traffic
situations, this framework can be used to provide car drlvf:_r?
with appropriate estimates of the reliability of traffic
information.

While the interval [/J;;g (@), u* I((D)] L equal
to [0,1], we have some information about the possible
probabilities of £(¢). We define the perishing time of ¢



as being the smallest ! such that
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. Ing to d(l) Then we can estimate the probabilities
0se events at ti "

beioe o nts dl. time 0, thus estimating the probability of
g O(1) attime t.

To clawif i
- :n ;learlg our point, we observe that this corresponds to
dsior: acrosﬁ{spef:twe on how information becomes
taking into, s ime: by h‘xmg the event of interest and
Slings mee. O(ijt th.e d-neighbors of the probability
accounting forutr}:: at time 0, we look forward in time,
e e possible changes that may occur in that

» alternatively, when we admit that the present

event of j
v of interest Q(l‘) can be the result of one of its
Cighborj |
: ring events (0,'(0) and take as approximation for
e r bi pom 3 |
Probability of go(t) the measures for U¢I(O) we

look back in time,

N accounting for past events
evolved to the ting for past events that may have

present event of interest,
Probabili
ilities of Smooth Variations of Propositions

In our sett;
T setting, an ¢ i i
: s A% AreQ e 1
Propos; g ent of interest is characterised by a
possible W
interest
St, whose ability i
¢ probability we are interested in estimating.
A nej i
_ ghboring J
of ng event £' must be characterised in terms

- J0Me  measure  of  similari
[l:(:(;R97.DI»E(jG97.E(j(;;:l)1]ILm!) B

Proposal 1o oo ( we find an interesting
“Cknowledgcd[‘bwun'[' for  similarity  between — sets,
. 0 be originally authored by Enrique Ruspini
Similarity s cons .

Y 18 constructed based on the concept of

riangular nopm

: - A triangul; i .
is any binary gular norm in the real interval [0,1]

operation A with the following properties:
* AOIP 5[0,
* XA(yAz) = (xAp)Az

tional ex i i
€) AQQ o o 1
Al EXpression: given an expression @, the set of
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o XAy = yAx

e x2y,z€e[0l]= xAz 2 yAz
e lAx=x

e 0Ax=0

Triangular norms are the standard class of operations
used to capture the notion of fuzzy conjunction. Given two

sets of possible worlds S,, S ; € W , it seems natural to say
that S, and.S; are perfectly similar if S, n Sj = S,. = S] :

This notion of similarity is extended by means of triangular
norms to approximately similar sets in terms of a similarity

measure S(S,,S/) as follows:
. 5:(2")2 [0,
. 5(5,8)=1if5,=S,
o 5(5,8)=15(5,5) 7
e 5(S,8)As(S, S(E)s (S, S

J
Similarity measures are also defined for singleton sets.
. P :
Recalling that W = {T, F} , given two worlds

w, w'e W we have:
s(w,w') = s({w},{w'})

An implicative similarity 1 (S,,S ) extends the notion
of set subsumption: if Sj = S,. we say that Sj is perfectly
from

subsumed by S jis Borrowing

[EGGRY7,DPEGGY7.EGGO0].
similarity as:

e 1:(2")—>[0)]

e I(S,8)=min__ s,{max ey, SOV W)L

we define implicative

We now propose an additional relation. based on the
concept of implicative similarity. We define symmetric

implicative similarity Is as:
. Is:(2") > [0.]]
L] [S(S‘l, S‘/) = I(S‘,,Aq/)Al(S‘/,S'I)

Symmetric implicative similarity measures the extent to
which two subsets of W can be regarded as logically
equivalent.

We are now in position to define the neighborhood of
an event. Given a set £ C W . we define the symmetric

neighborhood ol E - denotedas N * . as:




e N*:2%0,1] - 2V
. N*(Ea)=US,cW:Is(S,E)>a}

Thus, N *(E, &) denotes the largest set £ * such
that IS(E*,E) > ot

Notice that there are no means to characterise a unique
“lower bound” for sets similar to £ based on symmetric

similarity measures.

If we define a(f) as a non-increasing function of
1,t 20, such that a(0) =1, then given an event of
interest & occurring at time £, we can determine the event
E* ) E | that is the least determined event that can have

occurred at time 0 and from which £ may have evolved.
Since E* D E, then u*(E*)> HU*(E) and

My (E*)2> 11 (E) for any probability measure £ .
With all this in hand, we have a safe way to determine an
upper bound for the probability of a propositional

expression (9 occurring at time/ being evaluated to i
given probability estimates generated at time 0. The
“algorithm” is as follows:

*  determine the event of interest at time 7, £ ()

e determine the largest event that may have
occurred at time 0 to evolve to E((p) at time

t,E* = N*(E(p),a(1)

e determine the upper bound for the probability of

E* attime l,,[l ¥Up)= H*(E*).

Since we have no means to characterise a unique “lower

bound” for £ at time 0, we do not have means to construct
a sound definition of a lower bound for the probability

estimate of ¢ being evaluated to 7" at time 1 considering
that this event may have evolved from a different event at
time 0, unless we work by contraposition:

e negate the original expression, thus producing
—®

e determine the event £(— ®)

® determine the largest event that may have
occurred at time 0 to evolve to £(— ®) at time

LE*=N*(E(=p),a(1)

® determine the upper bound for the probability of
E™ at  time f,  given by

A (=)= u(E™).

e determine the lower bound for the probability of
E(p) at time R given by
A N ol
Hy (@) =1-p* (=p).

Hence, we have two alternative approaches to account
for the “perishability” of information: we can e.xlhcr look
forward in time and consider that probability estimates can
change as time goes by, or we can look back in time .and
consider that events of interest can be the result of previous
different occurring events. There is no clear way of
choosing which approach will give the most accurate
results, and one possible way to circumvent the problem can

be the adoption of a “most conservative™ choice, i.e. choose
the solutions that minimise the possibility of error.

In the next section we give a numerical example, to
make our discussion more concrete.

An Illustrative Example

As an illustration, let us consider the set
PZ{PI,P2,p3,p4}. We employ the following

notation for possible worlds: a possible world is repres?“ted
by the smallest natural number whose digits are precisely

the indices of the elements of P whose truth evaluation is

setto 7" in that world. Hence,

e the world in which

pl=p2=p3=pd=Fisdenotedas 0,

e the world in which
pl=p2=p3=p4=T is denoted as
1234,

e the world in which pl= p2= F and
p3= p4 =T is denoted as 34,

and so forth. Then, we have the following set of
possible worlds:

W ={0.1234,12,13,14.23 24,34,123,124,134.234,1234 }
Now we define
o ={Sl= {0,1,2,3,4}, 82 = {12,13,14},
§3 =1{23,24},54 = {34},
85 ={123,124,134,234,1234} }

Let us say that at time 0 we hav:
H(S1) =04, u(S2) = p(S4) = 0.1, u(S3) = u(S5) = 0.2.

We now consider the following propositional expression:
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123

124

134

234

1234

~I‘wll">l‘
cla[=]=

(Pl p2  p3  p4)
(Pl (P2 ((p3 p4)
(p3 p4) ( p2 p3 p4))

The expression was carefully constructed so that

E() {12,232434).

We adopt as a triangular norm the relation min,
and define the following similarity relations between pairs

of possible worlds for 7 () :

314 |12 |13 14 (23 |24 |34 | 123 | 124 | 134 | 234

1234

I(A,B) [B=S1 |S2 S3 S4 85

A=S| 1 7 5 4 3

S2 S5 1 8 5 3

S3 3 7/ 1 9 4

S4 2 5 8 1 5

S5 15 4 A 9 1
Implicative  similarities ~ determine  symmetric

implicative similarities as follows for / 0:

9|8 |7 |6 |5|4]3|2]3 4 5 6 |7
T (9|8 |7 |65 ]|4]3]2 3 4 5 |6
BlO1 |9 |87 |6]|54]3 2 3 4 5
T|819 (1 |98 |7]|6|5]4 3 2 3 |4

I
|

[o]=]=

=15

R

=
s

[s(A,B) [ B=SI S2 S3 S4 S5
A=S1 1 ) =) 2 )
S2 1 7 5 3
S3 1 8 4
S4 1 5
S5 |

~
w
[N}
w

BN
[}
o

~

oo
©

. ”Jllsl as an additional illustration, this gives us the
ollowing implicative similarities between pairs of elements

of at [ O .

Let us adopt now the following linear functions for

([) and  (1):

(1) 0.1 1

(" 1 02 ¢

This will give us the following results for =0,1,2,3.4,5:



=0 |1 2 3 4 5
12,23, 3.4, 1,2, 0,1, 0.1, 0,1,
2434 | 12,13, |34, 234, (234, |[234,
1423, 112,13, 12,13, |12,13, |12.13,
2434, 14,23, |[1423, |1423, |[1423,
123,124 (2434, (2434, |2434, |2434,
123,124, 123,124, | 123,124, | 123,124,
134,234 | 134,234, | 134,234, | 134,234,
1234 1234 1234
4 5 6 7 8 9
3 2 1 0 0 0
4 1 1 1 1 1
3 0 0 0 0 0

This means that, if we take into account only the
variation of probability estimates, will not perish before

time t=5, whereas if we take into account the variations of
propositions, will perish as early as at time t=1. A

conservative analysis could then advise us to “look back in
time” with these data, to ensure quality of information being
provided to users of an information system based on these
estimates.

178

Discussion

In this article we proposed a simple system to deal with
information that can become obsolete. We introduced a
propositional logic in which propositions become unreliable
as time passes, and proposed the concept of perishability of
propositions: a proposition perishes when we loose all
probabilistic information about its truth evaluation.

This system can be useful to safeguard users frqm
unreliable information. Many interesting problems arise
from the utilisation of this system and shall be studied for
future presentation:

alternative queries: many interesting queries can
be posed to this system, and their corresponding
algorithms must be constructed and implemented,
e.g. what is the possibly most probable event at

any given time t, given p, (¢) and>{ (£) ?
computational tractability issues.

extensibility to first order languages.

proof systems development for logics of

perishable information.

We are particularly interested in this last issue, apd
future articles shall be devoted to the following topic:
consider that we have time as linearly dependent of the
length of proofs. Then, the lengthier the proof the less
useful its results (from either of the viewpoints considered
here), and if the information used within a proof perislhcs
before the end of the proof then that proof will also perish.
We are at the moment studying how to compute non-
perishable proofs.
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