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Abstract: A Weibull-model-based approach is examined to handle under- and overdispersed discrete
data in a hierarchical framework. This methodology was first introduced by Nakagawa and Osaki
(1975, IEEE Transactions on Reliability, 24, 300–301), and later examined for under- and
overdispersion by Klakattawi et al. (2018, Entropy, 20, 142) in the univariate case. Extensions to
hierarchical approaches with under- and overdispersion were left unnoted, even though they can
be obtained in a simple manner. This is of particular interest when analysing clustered/longitudinal
data structures, where the underlying correlation structure is often more complex compared to
cross-sectional studies. In this article, a random-effects extension of the Weibull-count model is
proposed and applied to two motivating case studies, originating from the clinical and sociological
research fields. A goodness-of-fit evaluation of the model is provided through a comparison of
some well-known count models, that is, the negative binomial, Conway–Maxwell–Poisson and
double Poisson models. Empirical results show that the proposed extension flexibly fits the data,
more specifically, for heavy-tailed, zero-inflated, overdispersed and correlated count data. Discrete
left-skewed time-to-event data structures are also flexibly modelled using the approach, with the
ability to derive direct interpretations on the median scale, provided the complementary log–log
link is used. Finally, a large simulated set of data is created to examine other characteristics such as
computational ease and orthogonality properties of the model, with the conclusion that the approach
behaves best for highly overdispersed cases.
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1 Introduction

The analysis of count data has received considerable attention in the literature, with
practical applications in public health, and social and behavioural sciences. Since the
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introduction of generalized linear models (GLM’s) by Nelder and Wedderburn (1972),
a GLM based on the Poisson distribution, a well-known member of the exponential
family, is a commonly applied statistical model for count data analysis. In spite of
its many advantages, for example, the ability of fitting skewed non-negative data,
the model possesses a too restricted mean–variance relationship (equidispersion),
a characteristic that is often violated in the data. In particular, two situations can
occur, (a) the variability in the data is larger than the theoretical variance implied
by the model (overdispersion), and (b) the variability in the data is smaller than
the theoretical variance (underdispersion). For these and other reasons, for example,
zero-inflation (Iddi and Molenberghs, 2013) and heavy-tailed profiles (Zhu and Joe,
2009), many alternative and extended models have been proposed in the literature.

These models can often be classified as exponential dispersion models (EDM’s),
introduced by Jørgensen (1987), which include the GLM families as a special
case. More specifically, EDM’s increase the range of univariate/multivariate variance
functions for which generalized linear type models exist. Kokonendji et al.
(2004), for example, investigated two classes of EDM’s for count data that is
overdispersed compared to the Poisson distribution, that is, the Poisson–Tweedie
and Hinde–Demétrio classes. Efron (1986), on the other hand, proposed a different
class of regression families, by introducing a second parameter in the exponential
family that controls the dispersion independently of the mean while still carrying
out the usual regression analysis in a GLM context. These are the so-called
double-exponential families because they enjoy exponential family properties
simultaneously for the mean and dispersion parameters. A popular member is the
double Poisson (DP) model (Appendix A4). A general overview of some popular
models is given in Appendix A for subsequent comparison (Section 4).

While most of these models find their origin back in the Poisson GLM framework,
alternative approaches for modelling count data based on time-to-event distributions
have recently been developed. These approaches are mainly built upon the direct
relationship between the Poisson and exponential distributions (Cooper, 2005).
Zeviani et al. (2014), for example, focused on a discrete version of the Gamma
distribution to model count data by following the two-step approach of Winkelmann
(1995): (a) define the Poisson process as a sequence of iid exponentially distributed
waiting times (Cox, 1962); and (b) replace the exponential distribution with a
less-restrictive (extended) non-negative distribution such as the Gamma distribution.
For the Weibull distribution, Morais and Barreto-Souza (2011) constructed count
versions, that is, the generalized Weibull power series (GWPS) class of distributions.
Another, simple discrete approach based on the Weibull distribution, is that of
Nakagawa and Osaki (1975). In particular, Klakattawi et al. (2018) recently pointed
out that the corresponding regression model can model over- and underdispersed
count data. Moreover, they showed that the model is able to adequately fit highly
skewed count data with excessive zeros, without the need for introducing zero-inflated
or hurdle components, in contrast to other existing methods, for example, the
zero-inflated Conway–Maxwell–Poisson (ZICOM) model (Sellers and Raim, 2016).
A further generalization of this approach was introduced by Nekoukhou and Bidram
(2015), where the exponentiated discrete Weibull (EDW) distribution is defined.
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Apart from the presence of extra-dispersion, extended structures such as
longitudinally collected data, where subjects/patients are repeatedly measured over
time, and hierarchical structures, originating from hierarchical designs such as
multicentre trials, can also be present. For the GLM framework, the generalized
linear mixed model (GLMM), discussed by Engel and Keen (1994), Breslow
and Clayton (1993) and Wolfinger and O’Connell (1993), has been suggested,
and became a popular framework for taking into account hierarchical data
structures. In these models, random effects are introduced to capture the association
structure and to some extent dispersion. Molenberghs et al. (2007) extended
this approach by introducing the so-called combined modelling (CM) framework,
that was mainly developed to encompass both aspects: (a) overdispersion and (b)
hierarchical/longitudinal structures, simultaneously, by adding an extra random effect
into the GLMM framework.

In this article, we examine the existing (univariate) discrete Weibull-based
approach of Nakagawa and Osaki (1975), and extend it with random effects
to accommodate more complex data structures. This approach assumes that
extra dispersion is captured in the pre-specified distribution, and differs from
that in Molenberghs et al. (2007) where the extra dispersion is captured by an
additional random effect. In addition, various settings (heavy tails, zero-inflation)
in combination with dispersion and correlation are examined, and compared with
other well-known count models (Appendix A). Conclusions are supported with some
characteristics of the model.

The remainder of our article is organized as follows. In Section 2, two motivating
case studies are presented, stemming from patients with epileptic seizures, and historic
data on household members from a Belgian town. An overview of the discrete
Weibull version of Nakagawa and Osaki (1975) is sketched in Section 3, alongside
its extended version and characteristics. Section 4 is devoted to the analysis of our
case studies, where a comparison is made between this approach and other count
models (Appendix A). A simulation study is reported in Section 5 to investigate other
characteristics of the framework, and concluding remarks are given in Section 6.

2 Case studies

2.1 Epilepsy dataset

The epilepsy dataset comes from a randomized, double-blinded, parallel group
multi-centre study aimed at comparing placebo with a new anti-epileptic drug (AED),
in combination with one or two other AEDs. In total, 45 patients were assigned
to the placebo group, and 44 to the active (new) treatment group. Patients were
then followed for several weeks—during which the number of epileptic seizures
experienced in the last week—were counted, that is, since the last time the outcome
was measured. The main research question is whether or not the new treatment
reduces the number of epileptic seizures. A full description of the epilepsy dataset is
provided in Faught et al. (2011). Figure 1 (top) shows the individual profiles with
corresponding mean and median profiles of the seizure counts for every study week,
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and Figure 1 (bottom) shows the observed mean and variance of the seizure counts per
patient ID, categorized for both treatment groups. The figure shows highly variable
longitudinal count data with the presence of extreme values, zero-inflation and very
few observations available at some of the time-points, especially past week 20.

Figure 1 Epilepsy data (Faught et al., 2011). Subject-specific profiles (grey) with corresponding average
(solid black) and median (dashed black) profiles of the number of epileptic attacks for every visit (top), and
observed mean and variance of the seizure counts per patient ID (bottom), categorized for both treatments

2.2 Moerzeke dataset

The second dataset comes from a demographic, historical database of Moerzeke, a
small village in the centre of Flanders (the Dutch-speaking part of Belgium) within
the province of East Flanders. Information in the database is drawn from church and
civil registers, which can be taken as high quality and appropriate for population
studies, and includes all individuals who were born, married or died in Moerzeke.

In this study, a sample of 457 families was taken—by selecting all fathers born
between 1750 and 1830, and then forming a family by also including their first born
children and the children’s mothers. To avoid overlap, children already selected are
not included again, as either father or mother of new families. For the group under
study, the mean age at death for those who were born and deceased in Moerzeke
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Figure 2 Moerzeke data. Household-specific profiles (grey) with corresponding average (solid black) and
median (dashed black) profiles of the (discrete) life expectancy (rescaled) for every household member
(top), and observed mean and variance of the (discrete) life expectancy (rescaled) per household ID
(bottom), categorized for the gender of the first born child.The indexes F, M and C refer to father, mother
and the first-born child, respectively

was 71.9 years for men and 71.7 for women, respectively. The main interest lies in
the exploration of different social and/or household characteristics (e.g., gender of
first born child) on the (discrete) life expectancy of family members. Figure 2 (top)
shows the household profiles with corresponding average and median profiles of
the (discrete) life expectancy, and Figure 2 (bottom) shows the observed mean and
variance of the (discrete) life expectancy per household ID, categorized for the gender
of the first-born child. On the average and median scales, a higher life expectancy of
first-born male children is observed compared to first-born female children.

3 The Weibull-count approach

Due to the reproductive property of the Gamma distribution, that is, the sum of
two Gamma distributed random variables again follows a Gamma distribution.
Winkelmann (1995) pointed out that the Gamma distribution is a useful choice for
his two-step approach. Unfortunately, this reproductive property does not hold for
the Weibull distribution. As an alternative, the discrete approach of Nakagawa and
Osaki (1975), which is here referred to as the discrete Weibull (DW) model, can be
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used instead and gives a simple and adaptable alternative for the Weibull case. In
what follows, we will give a general overview of the DW approach of Nakagawa and
Osaki (1975).

Let Yi, i = 1, . . . , n, be (type 1) DW distributed (Nakagawa and Osaki, 1975)
with parameters 0 < q < 1 and � > 0. The probability mass function, cumulative
distribution function and hazard function are given by

P(Yi = yi) = qy
�
i − q(yi+1)�

, F(yi) = 1 − q(yi+1)�
,

h(yi) = qy
�
i −(yi+1)� − 1,

respectively. Special cases result from this. When � = 1 and q = 1 − p, the geometric
distribution follows. Particularly, when � = 1 and q = e−�, the discrete exponential
(DE) distribution results (Sato et al., 1999), which is overdispersed relative to the
standard Poisson distribution (Appendix B). In addition, when � = 2 and q = �, the
discrete Rayleigh (DR) distribution of Roy (2004) obtains. If � → +∞, the DW
approaches a Bernoulli distribution with probability q. When q is small, an excessive
zero case occurs (Klakattawi et al., 2018).

The mean and variance of the DW are given by

E(Yi) = � =
+∞∑
n=1

qn�

,

Var(Yi) = 2 ·
+∞∑
n=1

n · qn� − � − �2.

It can easily be shown that both of these infinite series converge (Appendix C). Based
on the integral test, general approximations can be found consisting of incomplete
gamma functions, for example, Englehardt and Li (2011).

To explore the characteristics of the DW model, we compute indexes for dispersion
(DI), zero-inflation (ZI) and heavy-tail (HT), which are respectively given by

DI = Var(Yi)
E(Yi)

, ZI = 1 + logP(Yi = 0)
E(Yi)

, HT = P(Yi = yi + 1)
P(Yi = yi)

, for yi → ∞.

Note that these indices are defined in relation to the Poisson distribution. Thus, the
dispersion index indicates over-, under- and equidispersion for, respectively, DI >
1, DI < 1 and DI = 1. The zero-inflation index indicates zero-inflation for ZI > 0,
zero-deflation for ZI < 0 and no excess of zeros for ZI = 0. Finally, the heavy-tail
index indicates a heavy-tail distribution for HT → 1 when y → ∞. Figure 3 shows
that the DW framework is able to model highly overdispersed, zero-inflated and
heavy-tailed data. The approach also allows the fit of low overdispersed, zero-deflated
data and even some amount of underdispersion.

Statistical Modelling 2018; xx(x): 1–21



A flexible hierarchical Weibull-count approach 7

Mean

0.2 0.4 0.6 0.8

0.0

2.5

5.0

q

1.0 1.5 2.0 2.5 3.0
ρ

Dispersion index

0.2 0.4 0.6 0.8
0.0

1.0

2.5

5.0

7.5

10.0

12.5

q

1.0 1.5 2.0 2.5 3.0
ρ

Zero−inflation index

0.2 0.4 0.6 0.8

−0.4

0.0

0.4

q

1.0 1.5 2.0 2.5 3.0
ρ

Heavy−tail index (q=0.2)

50 75 100 125 150

0.00

0.25

0.50

0.75

1.00

y

1 2 3
ρ

Heavy−tail index (q=0.5)

50 75 100 125 150

0.00

0.25

0.50

0.75

1.00

y

1 2 3
ρ

Heavy−tail index (q=0.7)

50 75 100 125 150

0.00

0.25

0.50

0.75

1.00

y

1 2 3
ρ

Figure 3 Characteristic indexes related to the Poisson distribution. Dashed, dot dashed and dotted lines
represent the Poisson, DE and DR distribution, respectively

In a regression framework, Klakattawi et al. (2018) assumed that the response
Yi has a DW distribution, where a subject-specific parameter qi is related to a
p-dimensional vector of covariates xi for ith observation through the complementary
log–log link function
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ln[−ln(qi)] = x
′
i · ˇ

⇔
qi = e−ex

′
i
·ˇ
(= e−�i ).

Note that the complementary log–log link for qi corresponds to a log link for
�i. In addition, ˇ represents the associated regression parameter vector, which can
directly be interpreted in terms of the logarithm of the (closed-form) median. This
is of particular interest when modelling, for example, highly skewed data, which
often occurs in count data. Particularly, by splitting the regression parameters ˇ
into {ˇ0} ∪ {ˇl | l = 1, . . . , p}, it can easily be shown, thanks to the use of the
complementary log–log link function (Klakattawi et al., 2018), that {ln[ln(2)] − ˇ0}/�
is related to the conditional median when all covariates are set to zero, whereas −ˇl/�
(l = 1, . . . , p) can be related to the change in the median of the response corresponding
to a one unit change of xli, keeping all other covariates constant.

In terms of estimation procedures, Klakattawi et al. (2018) and Kulasekera (1994)
used maximum likelihood for parameter estimation, while Haselimashhadi et al.
(2017) proposed a Bayesian approach for estimating the parameters.

3.1 The extended hierarchical Weibull-count approach

If the discrete data are hierarchically structured, with Yij denoting the jth discrete
outcome measured for cluster (subject) i, i = 1, . . . , N, j = 1, . . . , ni, univariate
models are often not appropriate to take into account the underlying correlation
structure of the data. Therefore, mixed-effects models are often proposed where,
in addition to fixed effects, random effects are added to the model to allow
for the correlation structure of the data. These approaches have been studied
extensively in the GLM framework, for example, LMM and GLMM (Molenberghs
and Verbeke, 2005), while little research has focused on dispersion models
outside of this framework. In our context, where the focus is on the DW
approach, a dispersion model extension with random effects can simply be achieved
as follows:

ln[−ln(qij)] = x
′
ij · ˇ + z

′
ij · bi,

where zij represents a q-dimensional vector of known covariate values corresponding
to the q-dimensional random effects vector bi following a multivariate normal
distribution with mean vector 0 and variance–covariance matrix D.

In the following, we will analyse the epilepsy and Moerzeke datasets
introduced in Section 2. Maximum likelihood principles are used to obtain
parameter estimates. The SAS procedure NLMIXED is used for the computations
(Appendix D).
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4 Analysis of case studies

4.1 Epilepsy dataset
The epilepsy data of Section 2 will be analysed with the DW and its nested
DE model (Section 3), and compared with some conventional models from
Appendix A, that is, the classical Poisson log-linear (P), negative binomial (NB),
Conway–Maxwell–Poisson (COM) and DP models. Previous work on this dataset
was reported by Molenberghs and Verbeke (2005) and Molenberghs et al. (2007) in
the context of generalized estimating equations (Liang and Zeger, 1986) and the CM
framework, respectively.

Let Yij be the number of epileptic seizures that patient i experiences during week
j of the follow-up period, and let tij be the time-point at which outcome Yij has been
measured, that is, tij = 1, 2, . . ., until at most 27. The following specific choice is made
for the linear predictor:

�ij = ˇ0 + bi + ˇ
′
0 · Ti + (ˇ1 + ˇ

′
1 · Ti) · tij,

where Ti = 1 if patient i receives the treatment, and 0 for placebo. Here, ˇ
′
0 and

ˇ
′
1 represent differences between treatment and placebo in terms of intercept and

slope, respectively. The link functions are �ij = exp(�ij) for the P, DE, NB, COM
and DP models, and �ij = ln[−ln(qij)] for the DW model. The random intercept
bi is assumed to be normally distributed with mean 0 and variance �2, reflecting
the between-patient variability within the data. Maximum likelihood estimates and
corresponding standard errors of the parameters are reported in Table 1 (for the
univariate case, that is, without the subject random effect) and Table 2 (for the
clustered case, that is, with the subject random effect).

In the univariate case, that is, where clustering is ignored (Table 1), we clearly
observe very large improvements in the DE, NB, DP and DW models, in terms
of the likelihood, relative to the classical Poisson model. This, of course, is to be
expected since the Poisson model assumes equidispersion while the parameters ˛, �
and � (see Appendix A for details) provide significant evidence of overdispersion.
Furthermore, when a comparison is made between the DW and the conventional
models, for example, NB and DP, w.r.t the Poisson model, we could consider the DW
model as the better one in terms of log-likelihood. Indeed, similar to the NB approach
(Appendix E1), the DW model is able to capture highly overdispersed, zero-inflated
and heavy-tailed data (Figure 3), characteristics that are definitely present within the
epilepsy dataset. Bar charts of the fitted univariate models are given in Figure 4.

Furthermore, we should mention that ‘illegal’ estimates were obtained for the
COM model, implying that no valid conclusions can be made from it. Indeed, when
looking at the fitted dispersion parameter 	, a negative estimate (−0.1188) is observed
which is outside the parameter space (Appendix A3). This, of course, can easily be
explained by the fact that the COM distribution limits itself in flexibility towards
underdispersed data with narrow flexibility to zero-inflation (Appendix E2).
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Figure 4 Bar charts of fitted univariate models
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Table 1 Epilepsy dataset. Parameter estimates and standard errors for the (a) Poisson (P) model, (b)
discrete exponential (DE) approach, (c) negative binomial (NB) model, (d) Conway–Maxwell–Poisson (COM)
model, (e) double Poisson (DP) model and (f) the discrete Weibull (DW) model

P DE NB
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)

Intercept placebo ˇ0 1.2662 (0.0424) 1.2601 (0.0864) 1.2594 (0.1119)
Difference in intercepts ˇ

′
0 0.1869 (0.0571) 0.2115 (0.1202) 0.2156 (0.1564)

Slope placebo ˇ1 −0.0134 (0.0043) −0.0126 (0.0086) −0.0126 (0.0111)
Difference in slopes ˇ

′
1 −0.0195 (0.0058) −0.0222 (0.0116) −0.0227 (0.0150)

Ratio of slopes 1 + ˇ
′
1

ˇ1
2.4576 (0.8480) 2.7586 (1.9721) 2.8081 (2.6066)

˛ – – 1.8961 (0.0918)
� – – –
� – – –
� – – –

−2 loglik 11 590.0 6 502.5 6 326.1
AIC 11 598.0 6 510.5 6 336.1

COM DP DW
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)

Intercept placebo ˇ0 −0.5054 (0.0189) 1.2662 (0.1054) 0.7341 (0.1002)
Difference in intercepts ˇ

′
0 0.0131 (0.0144) 0.1869 (0.1421) 0.0936 (0.1307)

Slope placebo ˇ1 −0.0011 (0.0012) −0.0134 (0.0108) −0.0174 (0.0095)
Difference in slopes ˇ

′
1 −0.0017 (0.0017) −0.0195 (0.0144) −0.0143 (0.0127)

Ratio of slopes 1 + ˇ
′
1

ˇ1
2.5663 (3.1297) 2.4576 (2.1093) 1.8189 (1.1027)

˛ – – –
� −0.1188 (0.0051) – –
� – 0.1616 (0.0061) –
� – – 0.7383 (0.0172)

−2 loglik 6 256.2 6 815.6 6 291.3
AIC 6 266.2 6 825.6 6 301.3

For the clustered case, that is, where a subject-specific random intercept is added
to account for correlation (Table 2), we find that the DWN is considerably better in
terms of likelihood. Moreover, point and precision estimates of such key parameters
as the slope difference and the slope ratio are strongly affected when a random effect
is added to the models. This remark was also made by Molenberghs et al. (2010),
who noted an impact on hypothesis testing. Surprisingly, a valid interpretation on
the extended COM approach can now be given, while this was not possible in the
univariate case. To explain this phenomenon, attention should be directed towards
the limited flexibility of COM in terms of overdispersion and the multiplicity effect
of the random effects. In particular, a limited number of highly overdispersed regions
can be modelled with the COM approach (Appendix E2). By adding a random effect
to the model, extra flexibility has been given towards capturing overdispersed regions.
Indeed, since random effects are mainly used to capture the underlying correlation
structure of the data, they are also able to seize a certain amount of dispersion.
Therefore, more flexibility has been gained with the inclusion of random effects
towards the modelling of overdispersed data. In addition, a much lower parameter
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Table 2 Epilepsy dataset. Parameter estimates and standard errors for the (a) Poisson-normal (PN) model,
(b) discrete exponential-normal (DEN) approach, (c) combined (CM) model, (d) Conway–Maxwell–
Poisson-normal (COMN) model, (e) double Poisson-normal (DPN) model and (f) the discrete
Weibull-normal (DWN) model

PN DEN CM
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)

Intercept placebo ˇ0 0.8177 (0.1677) 0.9443 (0.1843) 0.9112 (0.1755)
Difference in intercepts ˇ

′
0 −0.1705 (0.2387) −0.2670 (0.2620) −0.2556 (0.2500)

Slope placebo ˇ1 −0.0143 (0.0044) −0.0271 (0.0101) −0.0248 (0.0077)
Difference in slopes ˇ

′
1 0.0023 (0.0062) 0.0145 (0.0140) 0.0130 (0.0107)

Ratio of slopes 1 + ˇ
′
1

ˇ1
0.8398 (0.3979) 0.4663 (0.3953) 0.4751 (0.3345)

Std. dev. random effect � 1.0755 (0.0857) 1.0436 (0.0888) 1.0626 (0.0871)
˛ – – 0.4059 (0.0348)
� – – –
� – – –
� – – –

−2 loglik 6 271.9 5 543.9 5 417.0
AIC 6 281.9 5 553.9 5 429.0

COMN DPN DWN
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)

Intercept placebo ˇ0 −0.2384 (0.0779) 0.8314 (0.1721) 1.4319 (0.2183)
Difference in intercepts ˇ

′
0 −0.0947 (0.1042) −0.1582 (0.2451) −0.2970 (0.3005)

Slope placebo ˇ1 −0.0040 (0.0023) −0.0146 (0.0067) −0.0297 (0.0098)
Difference in slopes ˇ

′
1 0.0005 (0.0032) 0.0018 (0.0093) 0.0180 (0.0135)

Ratio of slopes 1 + ˇ
′
1

ˇ1
0.8646 (0.7451) 0.8778 (0.5980) 0.3947 (0.3382)

Std. dev. random effect � 0.4475 (0.0433) 1.0458 (0.0875) 1.2658 (0.1063)
˛ – – –
� 0.1563 (0.0196) – –
� – 0.4355 (0.0169) –
� – – 1.3074 (0.0340)

−2 loglik 5 473.8 5 652.2 5 451.1
AIC 5 485.8 5 664.2 5 463.1

estimate for � was obtained for the COMN case, compared to all other models. This
directly results from the main disadvantage of the COM regression model, that is, its
location parameter does not correspond to the expectation, which complicates the
interpretation of regression models towards the mean specified using this distribution
(Sellers and Shmueli, 2010). Even though the CM model is a more viable candidate
in terms of likelihood (related to the Poisson model), one should be aware of the
restricted mean scale interpretation in this framework, especially when dealing with
skewed data. In this setting, right-skewed data (Figure 1) is observed, making the
inferences less attractive from an interpretational point of view (similar to the DPN
approach). The DW model avoids this problem by allowing inferences directly on the
median scale (Section 3), making the approach more interesting here.

Finally, we expand our analysis with random slopes in the DWN model, that is,
considering two random effects instead of a single one to reflect the between- and
within-patient variability of the data. The linear predictor becomes:
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Table 3 Epilepsy dataset. Parameter estimates and standard errors for the discrete Weibull-normal (DWN)
model with (a) random intercept, (b) random slope with uncorrelated random effects (IND) and (c) random
slope with correlated random effects (UN)

Random intercept Random slope (IND) Random slope (UN)
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)

Intercept placebo ˇ0 1.4319 (0.2183) 1.4973 (0.2183) 1.4947 (0.2287)
Difference in intercepts ˇ

′
0 −0.2970 (0.3005) −0.2909 (0.2996) −0.2984 (0.3150)

Slope placebo ˇ1 −0.0297 (0.0098) −0.0339 (0.0120) −0.0327 (0.0126)
Difference in slopes ˇ

′
1 0.0180 (0.0135) 0.0169 (0.0168) 0.0167 (0.0176)

Ratio of slopes 1 + ˇ
′
1

ˇ1
0.3947 (0.3382) 0.5016 (0.3920) 0.4884 (0.4219)

Std. dev. random intercept �1 1.2658 (0.1063) 1.2553 (0.1114) 1.3333 (0.1302)
Std. dev. random slope �2 – (–) 0.0417 (0.0092) 0.0474 (0.0099)
Cov. between random effects �12 – (–) – (–) −0.0177 (0.0142)

� 1.3074 (0.0340) 1.3393 (0.0362) 1.3463 (0.0366)

−2 loglik 5 451.1 5 439.6 5 437.7
AIC 5 463.1 5 453.6 5 453.7

�ij = ˇ0 + b1i + ˇ
′
0 · Ti + (ˇ1 + ˇ

′
1 · Ti + b2i) · tij,

where the random effects vector bi = (b1i, b2i)
′
is assumed to be multivariate normally

distributed with mean vector 0 and variance–covariance matrix

D =
(

�2
1 �12

�12 �2
2

)
.

A comparison with the random-intercept model will be made in two ways, that is,
(a) a random-slopes model with uncorrelated random effects (�12 = 0; IND) and
(b) a random slopes model with correlated random effects (�12 /= 0; UN). Maximum
likelihood estimates and corresponding standard errors of the parameters are reported
in Table 3.

A significant improvement in likelihood is observed when adding a random
slope to the model (likelihood ratio test p = 0.0007). However, there are no
qualitative changes in the results of hypothesis testing for the main effects of interest.
Furthermore, by comparing the independent random effects (IND) with correlated
random effects (UN), no significant improvements were obtained (likelihood ratio test
p = 0.1692). This extension at the same time illustrates the ease with which more
than one random effect can be included.

4.2 Moerzeke dataset

While previous work on the Moerzeke data was provided by Matthijs et al. (2002)
for the examination of historical mortality in terms of sociological and biological
components, there has been no consideration of dispersion aspects. To this end, the

Statistical Modelling 2018; xx(x): 1–21



14 Martial Luyts et al.

Table 4 Moerzeke dataset. Parameter estimates and standard errors for the (a) Poisson (P) model, (b)
discrete exponential (DE) approach, (c) Conway–Maxwell–Poisson (COM) model, (d) double Poisson (DP)
model and (e) discrete Weibull (DW) model

P DE COM
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)

Intercept first born child ˇ0 1.7068 (0.0288) 1.7068 (0.0735) 3.0527 (0.1294)
Intercept father ˇ

′
0 1.8473 (0.0268) 1.8473 (0.0727) 3.2891 (0.1373)

Intercept mother ˇ
′′
0 1.8847 (0.0263) 1.8847 (0.0725) 3.3522 (0.1395)

Gender effect on first born child ˇ1 0.1009 (0.0390) 0.1009 (0.1014) 0.1697 (0.0509)
Gender effect on father ˇ

′
1 0.0187 (0.0370) 0.0187 (0.1007) 0.0316 (0.0481)

Gender effect on mother ˇ
′′
1 0.0145 (0.0364) 0.0145 (0.1005) 0.0247 (0.0473)

� – – 1.7484 (0.0690)
� – – –
� – – –

−2 loglik 5 834.3 7 985.1 5 669.3
AIC 5 846.3 7 997.1 5 683.3

DP DW
Effect Par. Est. (s.e.) Est. (s.e.)

Intercept first born child ˇ0 1.7068 (0.0225) 8.9228 (0.2301)
Intercept father ˇ

′
0 1.8473 (0.0210) 9.0796 (0.2293)

Intercept mother ˇ
′′
0 1.8847 (0.0206) 9.1660 (0.2301)

Gender effect on first born child ˇ1 0.1009 (0.0305) 0.1699 (0.0957)
Gender effect on father ˇ

′
1 0.0187 (0.0290) 0.0831 (0.0955)

Gender effect on mother ˇ
′′
1 0.0145 (0.0285) 0.0350 (0.0954)

� – –
� 1.6333 (0.0624) –
� – 4.5377 (0.1055)

−2 loglik 5 693.3 5 512.3
AIC 5 707.3 5 526.3

DW and its nested DE models are considered in the analysis of the Moerzeke dataset
(Section 2) and compared with the count models from Appendix A.

Let Yij represent the (discrete) life expectancy of the mother, father and first-born
child (j = 1, 2, 3) in household i = 1, . . . , 457. We assume the following predictor:

�ij = ˇ0 · ICij + ˇ
′
0 · IMij + ˇ

′′
0 · IFij + bi + (ˇ1 · ICij + ˇ

′
1 · IMij + ˇ

′′
1 · IFij) · Gi,

where ICij, IMij and IFij are dummy variables for first-born child, mother and father,
respectively, and Gi is the binary indicator for the gender of the first-born child, that
is, 1 for male and 0 for female. Similar to the epilepsy analysis, the link functions are
�ij = exp(�ij) for the P, DE, NB, COM and DP models, and �ij = ln[−ln(qij)] for the
DW model. The random intercept bi is used to capture between-household variability,
which here is assumed normally distributed with mean 0 and variance �2. Maximum
likelihood estimates and corresponding standard errors of the parameters are reported
in Table 4 (for the univariate case without the random effect) and Table 5 (for the
clustered case, including the random effect).
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Table 5 Moerzeke dataset. Parameter estimates and standard errors for the (a) Poisson-normal (PN)
model, (b) discrete exponential-normal (DEN) approach, (c) Conway–Maxwell–Poisson-normal (COMN)
model, (d) double Poisson-normal (DPN) model and (e) discrete Weibull-normal (DWN) model

PN DEN COMN
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)

Intercept first born child ˇ0 1.7068 (0.0288) 1.7068 (0.0735) 3.0529 (0.1294)
Intercept father ˇ

′
0 1.8473 (0.0268) 1.8472 (0.0727) 3.2895 (0.1373)

Intercept mother ˇ
′′
0 1.8847 (0.0263) 1.8847 (0.0727) 3.3527 (0.1395)

Gender effect on first born child ˇ1 0.1009 (0.0390) 0.1009 (0.1014) 0.1698 (0.0509)
Gender effect on father ˇ

′
1 0.0187 (0.0370) 0.0187 (0.1007) 0.0317 (0.0481)

Gender effect on mother ˇ
′′
1 0.0145 (0.0364) 0.0145 (0.1005) 0.0245 (0.0473)

Std. dev. random effect � 1.16E − 4 (0.0119) 1.68E − 4 (0.0215) 7.72E − 4 (0.1039)
� – – 1.7486 (0.0690)
� – – –
� – – –

−2 loglik 5 834.3 7 985.1 5 669.3
AIC 5 848.3 7 999.1 5 685.3

DPN DWN
Effect Par. Est. (s.e.) Est. (s.e.)

Intercept first born child ˇ0 1.7068 (0.0225) 8.9228 (0.2301)
Intercept father ˇ

′
0 1.8473 (0.0210) 9.0795 (0.2293)

Intercept mother ˇ
′′
0 1.8846 (0.0206) 9.1660 (0.2301)

Gender effect on first born child ˇ1 0.1010 (0.0305) 0.1699 (0.0957)
Gender effect on father ˇ

′
1 0.0187 (0.0290) 0.0831 (0.0955)

Gender effect on mother ˇ
′′
1 0.0145 (0.0285) 0.0350 (0.0954)

Std. dev. random effect � 1.85E − 4 (0.0293) 2.33E − 4 (0.0420)
� – –
� 1.6333 (0.0624) –
� – 4.5376 (0.1055)

−2 loglik 5 693.3 5 512.3
AIC 5 709.3 5 528.3

In the univariate case (Table 4), the COM, DP and DW models significantly
improved the model fit, compared to the classical Poisson model, while, in terms
of likelihood, a worse fit is observed for the DE case. Indeed, when considering the
dispersion parameters (	, � and �), we observe the clear presence of underdispersion
within the data. While the COM, DP and DW models are able to capture this
phenomenon (Figures 3, Appendix E1 and Appendix E2), this is not the case for the
DE (Appendix B) and Poisson models. Therefore, it is fair to say that the DE model
is completely wrong, not just in terms of underdispersion but also in the fact that it
fails to capture the unimodal shape, as expected from a geometric distribution. The
underdispersion result can be explained by the fact that Moerzeke has characteristics
of a geographically isolated area as it is almost completely surrounded by a meander
in the river Scheldt and by the river Durme. This was an important geographical
limitation within the time bracket at which data were collected, and led to more
genetic homogeneity than in the typical town. We observe that the DW model
indicates the best fit, relative to the COM and DP models, in terms of likelihood
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compared to the Poisson model. A possible reason for this result is the presence of
left-skewed discrete time-to-event data, which can flexibly be modelled with the DW
approach due to the underlying Weibull connection. Bar charts of the fitted univariate
models are given in Figure 5.

In the clustered case (Table 5), noteworthy results were obtained for the estimated
variance component �2. In all clustered models, the estimated component is very close
to 0, leaving the standard error estimates unchanged relative to the univariate cases.
This phenomenon, while strange at first sight, is reasonably well understood in the
literature. More specifically, partial-marginalization is used here, in agreement with
Molenberghs et al. (2010), where adaptive Gaussian quadrature principles are used
to approximate the marginal likelihood obtained from integrating over the normal
random effects. This automatically adopts a hierarchical perspective, implying the
restriction that no negative estimates of �2 can be achieved, even though this could
be present for several reasons (e.g., negative intra-class correlation, underdispersion,
etc.). Molenberghs and Verbeke (2011) and Verbeke and Molenberghs (2003), for
example, discussed this phenomenon in the context of linear mixed models. Pryseley
et al. (2011) extended this discussion to non-Gaussian outcomes, while Oliveira et al.
(2017) illustrated how such negative variance components play a natural role in
modelling both the correlation between repeated measures on the same experimental
unit and over- or underdispersion from a CM perspective. While a zero variance
component could in principle also point to the absence of correlation, this is not
something one would expect in view of these data.

To conclude, we should mention that, even though the DW model fits the data
quite well in the context of underdispersed data for the univariate case, there is
still scope for further research in the context of underdispersed clustered data. Even
though it is not our scope to fully encounter this problem here, boundary issues are
suggested for the variance component. Also note that the random-effects variability
is very different between the epilepsy and Moerzeke studies, underscoring that a large
range of situations can be handled. Of course, this does not preclude further research
towards underdispersion.

5 A large simulated set of data

To further explore the DW approach with dispersed count data, a large simulated
set of data is obtained to examine the deviance surface under different dispersion
situations. This highlights some other characteristics of the model such as the
orthogonality and computational ease of estimating the parameters (q, �).

Figure 6 presents contour plots of the deviance surfaces for five different simulated
DW data of size 1 000, with expectation fixed at 1 and dispersion indices at 0.25 (very
strong underdispersion), 0.5 (strong underdispersion), 1 (equidispersion), 5 (strong
overdispersion) and 10 (very strong overdispersion). As a result, the figure indicates
that the parameters are highly intra-related in the likelihood function, consequently
the maximum likelihood estimators for � and q are correlated. More specifically, a
decreasing trend in the correlation seems to correspond with an increasing dispersion
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(a) Poisson model  (b) Conway–Maxwell– Poisson model

(c) Double Poisson model (d) Discrete exponential model

(e) Discrete Weibull model

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

Figure 5 Bar charts of fitted univariate models
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Figure 6 Deviance surfaces for discrete Weibull model fitted to five simulated data with expectation 1 and
dispersion 0.25, 0.5, 1, 5 and 10. Dotted lines are the maximum likelihood estimates, and white points are
the parameters used in the simulation

index. Based on the deviance surface, computational ease is combined with the ability
to perform asymptotic (normally based) inferences in the regions with high dispersion,
that is, DI → ∞. Note that this is not a genuine simulation study; such will be the
topic of future research.

6 Concluding remarks

Starting from an existing univariate framework, we have proposed an extended
version that can handle both under- and overdispersed, and hierarchical data
structures. In both case studies, we showed that the model fits the data well, for both
under- and overdispersed situations. More specifically, the approach used is able to
flexibly model highly overdispersed, zero-inflated, heavy-tailed and correlated data,
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similar to the CM approach. In addition, the approach is capable of modelling some
low overdispersed regions with zero-deflation (e.g., the DR approach for small values
of q) and even underdispersed data, regions that cannot be captured within the CM
framework. Due to the presence of a closed-form median expression, interpretations
of the parameters can directly be related to the median profile, which is of particular
interest when modelling skewed data. Finally, orthogonality properties are examined
through a large simulated set of data. The resulting outcome indicates the presence of
correlation between maximum likelihood estimators, related to the dispersion index.
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