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Abstract

We introduce the notion of isometric envelope of a subspace in a Banach space, estab-
lishing its connections with several key elements: (a) we explore its relation to the
mean ergodic projection on fixed points within a semigroup of contractions, (b) we
draw parallels with Korovkin sets from the 1970s, (c) we investigate its impact on the
extension properties of linear isometric embeddings. We use this concept to address the
recent conjecture that the Gurarij space and the spaces L ,, p ¢ 2N+-4 are the only sep-
arable approximately ultrahomogeneous Banach spaces (a certain multidimensional
transitivity of the action of the linear isometry group). The similar conjecture for
Fraissé Banach spaces (a strengthening of the approximately homogeneous property)
is also considered. We characterize the Hilbert space as the only separable reflex-
ive space in which any closed subspace coincides with its envelope; and we show
that the Gurarij space satisfies the same property. We compute some envelopes in the
case of Lebesgue spaces, showing that the reflexive L ,-spaces are the only reflexive
rearrangement invariant spaces on [0, 1] for which all 1-complemented subspaces are
envelopes. We also identify the isometrically unique “full” quotient space of L, by a
Hilbertian subspace, for appropriate values of p, as well as the associated topological
group embedding of the unitary group into the isometry group of L .
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1 Introduction and notation
1.1 The motivation

An initial motivation for this work stems from the famous rotations problem of Mazur.
Assume the linear isometry group of a separable Banach space X acts transitively on
its unit sphere; must X be isometric to the Hilbert space? (see, for example, [10] or
the recent survey [12]). Many examples of non-Hilbertian spaces which are almost
transitive (AT) can be found, meaning that the orbits of the action of the isometry group
on the sphere are dense. Striking examples of this are the Lebesgue spaces L (0, 1)
for 1 < p < oo. For p # 2, these spaces, although not transitive, are very close
to being so: they admit exactly two orbits for the action of the isometry group, the
orbit of functions with full support, resp. without full support. This suggests that the
L, spaces are transitive “with respect to the supports”, that is, provided one sees each
function f inside its “appropriate L ,-space” L ,(supp f). The concept of an isometric
envelope, defined in the present paper, initially aimed to imitate some aspects of the
support of a function in an abstract setting that would not require the structure of a
function space.

The correct setting for defining the isometric envelope is multidimensional, so let
us recall a few facts. A Banach space X is ultrahomogeneous when any isometric
map between finite-dimensional subspaces extends to a (surjective) isometry on X.
A multidimensional version of Mazur’s rotation problem asks: must any separable
ultrahomogeneous Banach space be isometric to the Hilbert space [21]?

The separable Lebesgue spaces are very close to being ultrahomogeneous, although
one has to exclude the even values of p > 4. For p ¢ 2N 4+ 4, L,(0,1) is
approximately ultrahomogeneous (AUH), meaning that any isometric map between
finite-dimensional subspaces may be approximated as accurately as desired by a (sur-
jective) isometry (essentially due to Lusky [40]). The Gurarij space is also AUH [36].
A conjecture formulated in [21] and which is our main interest in this paper is the
following: Is every separable AUH space isometric either to some L (0, 1) or to the
Gurarij space?

Isometric maps between subspaces of the AUH L ,’s extend to isometries between
respective appropriate L ,-subspaces “enveloping” them, a consequence of Plotkin and
Rudin’s equimeasurability theorem [50, 53], see also [34] (the “envelope” terminology
is ours and does not appear in those works). Based on these examples, our aim is to
define envelopes of subspaces in general Banach spaces, so that AUH spaces can be
proved to be “ultrahomogeneous with respect to envelopes”, in a precise sense to
be defined later. The notion of envelope is then expected to be useful to address the
conjecture from [21].

Another motivation for studying (AUH) spaces is that they are natural universal
objects. Two separable (AUH) spaces are isometric as soon as they have the same
finite-dimensional subspaces up to isometry [21, Proposition 2.22]. For a strengthen-
ing of the (AUH) property, called the “Fraissé” property (see Definition 2.44), there is
a correspondence between these spaces and classes of finite-dimensional spaces with a
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natural amalgamation property. Thus, the separable Fraissé Banach space correspond-
ing to one of such classes F (called the Fraissé limit of ) is the “generic” universal
space for all those spaces having dense subspaces consisting of an increasing union
of elements in . Examples of this situation are precisely the Gurarij space and the
spaces L [0, 1], for p ¢ 2N+4, that are the generic universal spaces corresponding to
the amalgamation classes of all separable spaces, and the class of L ,-spaces, respec-
tively (see [21]). They are the only known examples, and it is unknown whether there
exist (AUH) spaces which are not Fraissé. Moreover, the Kechris—Pestov—Todorcevic
correspondence for (AUH) Banach spaces characterizes a fixed point property, called
extreme amenability, of their linear isometry group in terms of an approximate Ramsey
property of the collection of their finite-dimensional subspaces. All the known (AUH)
Banach spaces have this property (see [29] for £, [26] and [21] for the other L’s,
and [5] for the Gurarij space). New examples of (AUH) Banach spaces could provide
new extremely amenable groups; on the other hand, if all separable (AUH) Banach
spaces are either isometric to the L ,’s or the Gurarij, then their isometry groups appear
as canonical extremely amenable groups of isometries of Banach spaces. Let us note
finally that Fraissé spaces must contain an isometric copy of the Hilbert space [21,
Proposition 2.13.], and therefore the study of the envelopes of Hilbertian subspaces
of Fraissé spaces will be particularly relevant.

Here is the definition of the isometric envelope Env(Y) of a subspace Y of X (for
full details see Sect.2): it is the subspace of x € X such that (7;(x)); converges
to x whenever the net (7;); in Isom(X) converges pointwise on Y to Idy. Under
reflexivity, we may relate the isometric envelope to ergodic decompositions relative
to semigroups of contractions, in the so-called Jacobs—de Leeuw—Glicksberg theory
(see [20, Chapters 8 and 16]), as well as to results on Korovkin sets (see [56]). In
particular, we prove the fundamental result that if X is reflexive and strictly convex,
then Env(Y) is always 1-complemented, and if X is reflexive and locally uniformly
convex, then Env(Y) is actually the smallest superspace of ¥ complemented by a
projection in the “isometric hull” conv (Isom(X)). As a byproduct, the Hilbert space is
the only separable reflexive space on which all subspaces are equal to their envelopes.
We conclude Sect. 2 with a fundamental extension property of the envelope, which
we state here for (AUH) spaces X: any partial isometry between subspaces Y, Z of X
extends uniquely to a partial isometry between their envelopes Env(Y) and Env(Z);if Y
is separable, then this extension map is SOT-SOT continuous and Env(Y) is maximum
among superspaces of Y satisfying this property. Of particular interest are the “full”
subspaces of X, i.e., those whose envelope is equal to X: any partial isometry between
full subspaces extends uniquely to a surjective isometry on X, and the isometry group
of a full subspace embeds naturally as a subgroup of Isom(X). Thus, we achieve the
extension properties that envelopes were designed to satisfy.

In Sect. 3 we investigate envelopes in L , spaces, and prove thatif Y is unital, then the
envelope coincides with some classical notions such as the sublattice generated by Y,
the minimal 1-complemented subspace containing Y, or the range of the conditional
expectation associated to Y. In particular, all 1-complemented unital subspaces are
envelopes in those spaces, and we prove that the L,’s, 1 < p < oo are the only r.i.
reflexive spaces on [0, 1] for which this happens. On the other hand, we prove that in
the Gurarij space, every closed subspace is equal to its envelope.
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After proving that, for p ¢ 2N + 4, the L,’s contain a full copy of the Hilbert
space, we apply the isometric extension results of Sect. 2 to study the associated
exact sequence of Banach spaces and define objects such as the group embedding
of U(¢£>) inside Isom(L ) or the associated “full quotient” of L, by £. In the final
section, we establish relations between the (AUH) or Fraissé property and geometrical
conditions from local theory such as type or cotype or complementations of Euclidean
or Hilbertian subspaces. With these estimates, we obtain “local versions” of the known
fact that L ,-spaces are Fraissé if and only if p ¢ 2N + 4. With this, we reinforce the
conjecture that all separable reflexive Fraissé spaces must be L ,-spaces, as well as
identify natural intermediary steps towards proving this fact. We also answer a question
of G. Godefroy by proving that any Fraissé Banach space with a Coo-norm must be
isomorphic to a Hilbert space.

We shall define envelopes in arbitrary Banach spaces, but with a focus on the
reflexive case. We aimed at identifying the minimal hypotheses regarding the norm
for each of our results (strict convexity/local uniform convexity, strict convexity of
the dual, etc.). However, it should be noted that (AUH) spaces are always uniformly
convex and uniformly smooth as soon as they are reflexive. Therefore, the reader
mainly interested in the concept of envelope inside a reflexive (AUH) space X can
safely assume that the norm on X is always uniformly convex and uniformly smooth.

1.2 Notation

Given a Banach space X = (X, || - ||) we shall write Sph(X) to denote the unit sphere
of X and By to denote its unit ball. We write GL(X) and Isom(X) to denote the group
of surjective linear isomorphisms and surjective linear isometries, respectively, £1(X)
to denote the semigroup of contractions on X, and if X is a Banach lattice, ET (X) to
denote the semigroup of positive contractions.

For the definition of classical properties of norms (strict convexity, uniform convex-
ity, etc.) and related notions we refer to [18] and/or [38]. For completeness we recall
the slightly less classical notion of local uniform convexity: a Banach space (X, ||.||)
is locally uniformly convex if Vxo € Sph(X) and Ve > 0, there exists § > 0 such that
whenever x € By,

X + xo

if > 1 — 8, then |lx — xo|| < e.

Locally uniformly convex norms are also called locally uniformly rotund and for these
reasons this property is abbreviated as “LUR”.

If T is an operator on X we denote by Fix(T") the closed subspace of fixed points
of T,ie. Fix(T) = {x € X : Tx = x}. If § is a semigroup of operators on X then
Fix(S) denotes the closed subspace of fixed points of S, i.e. Fix(S) := (g Fix(T)
is the largest subspace where all T € § act as the identity. On the other hand, if Y is
a subspace of X, then Stabg(Y) denotes the semigroup of operators in S acting as the
identity on Y.
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2 Envelopes

An (abstract) envelope is a set-valued map e to every subset A of a Banach space X
its envelope, i.e. a closed subspace e(A) of X satisfying the following properties

() A Ce(A).
(b) If B C A, then e(B) C e(A).
(c) e(span(A)) = e(A).

(d) e(e(A)) = e(A).

So, e is a standard (algebraic) closure operator with the additional property (c). Alter-
natively, any envelope map on X may be fully described by the class £ of closed
subspaces of X which are envelopes, and by the condition that e(A) is the smallest
element of £ containing A as a subset. It is routine that a necessary and sufficient
condition for a given class £ to define an envelope map in this manner is to be stable
by (finite or infinite) intersections.

2.1 The minimal envelope

Perhaps the most geometrical example of envelope is the minimal envelope that assigns
to a subset, if it exists, the smallest superspace of it that is 1-complemented. This set-
mapping is not always well defined: there are examples of Banach spaces containing
pairs of 1-complemented subspaces whose intersection is not 1-complemented (and
therefore does not have a minimal envelope)—see W. B. Johnson’s comment in Math-
overflow [32] for a simple proof using pushout. However in reflexive spaces with
strictly convex norm we have a positive result, which was also indicated to us by W.B.
Johnson.

Proposition 2.1 Let X be a reflexive space with strictly convex norm. Then any inter-
section of afamily (Y;);cy of 1-complemented subspaces of X must be 1-complemented.

Proof Pick a family (p;);c; such that p; is a contractive projection on Y; for each
i. Given any non-empty finite F C [, strict convexity implies that the average
Tr = (1/#F))_,cp pi of the projections p; for i € F has ();.p Yi as its space
Fix(TF) of fixed points. Consequently, the Yosida’s mean ergodic theorem for reflex-
ive spaces and power-bounded operators [57] implies that the averages of powers of
Tr (1/n Z;:ol T};)n converges SOT to a contractive projection pr onto ();cy Yi. By
reflexivity we can pick a subnet of (pr)fFcy. finite that converges WOT. The limit will
be a contractive projection onto [);¢; Yi. O
Remark 2.2 Let us note from the proof of Proposition 2.1 that if X is reflexive strictly
convex and p; is a contractive projection onto Y; for each i € I, then a contractive
projection onto [);.; ¥; may be chosen in the WOT-closure of the convex hull of

{pi,iel}.

iel

Definition 2.3 (Minimal envelope of a subspace) Let X be a Banach space, and A be a
subset of X. We let Envpyin (A) be the envelope defined as the smallest 1-complemented
subspace of X containing A, when such subspace exists.
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Remark 2.4 When Envpi, (A) exists, Envpin (T A) = T (Envpin(A)) for every T €
Isom(X).

From Proposition 2.1, the minimal envelope is always well-defined in reflexive
spaces with strictly convex norm. Under the additional hypothesis that X is strictly
convex, then we also have that the contractive projection on a 1-complemented sub-
space is unique [17]. In such spaces, the duality mapping plays a central role in
understanding the contractive projection onto the minimal envelope.

Definition 2.5 For a reflexive space X such that X, X* are both strictly convex, we
let J : Sph(X) — Sph(X™) be the duality mapping, i.e. (Jx,x) = 1 for every
x € Sph(X).

It is convenient to extend J to the whole of X by homogeneity. We recommend the
survey [52], and also [23, Section 4], for a better understanding of the relationship
between J and the isometry groups. In particular, there it is observed that J is well
defined, and that it is a bijection between Sph(X) and Sph(X*) whose inverse is the
corresponding duality mapping J, between Sph(X*) and Sph(X); in addition, when
X and X* are assumed to be locally uniformly rotund, then J is an homeomorphism;
finally, JT = T*~'J whenever T € Isom(X).

The next relations between J and 1-complemented subspaces are due to Calvert
[13], and Cohen and Sullivan [17], see [52, Thm 5.5 and Thm. 5.6.].

Theorem 2.6 Let X be reflexive strictly convex and with strictly convex dual. A closed
subspace Y of X is 1-complemented in X if and only if JY is a linear subspace of X*.
In this case there is a unique contractive projection of X onto Y which is associated
to the decomposition X =Y & (JY)*, and if JY is closed then it is 1-complemented,
associated to X* = JY @& (Y)*.

Assume that the space X is reflexive and both X and X* have strictly convex norms. Of
special interest is the minimal (contractive) projection associated to Envyin (Y). Recall
that a minimal contractive projection on a Banach space is a contractive projection
which is minimal with respect to the usual order p < g i.e.ifandonlyif pg = gp = p.
Under the current hypothesis on X, the intersection of 1-complemented subspaces is
again 1-complemented, but it is not so obvious how to find (if it exists) a minimal
contractive projection for a 1-complemented subspace. To this end we describe the
mean ergodic projection associated to a semigroup of contractions, which may be
seen as part of the Jacobs—de Leeuw—Glicksberg (or JALG) theory, see [20, Chapters
8 and 16] for a reference. Recall that Fix(S) denotes the subspace of points which
are fixed by all elements of a semigroup S of operators on X. We denote by S* the
corresponding semigroup {s* : s € S} of operators on X*.

Part of the following description of the decomposition of the mean ergodic projec-
tion was obtained in [22] under the restriction that S is an isometry group and that X*
is strictly convex. We include a description through the convex hull of the semigroup.
Note that the description of the second summand through duality differs from the
classical JALG description.

Proposition 2.7 Assume X is reflexive strictly convex, and that S is a semigroup of
contractions on X. Then

W Birkhauser
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. . . ., ———=WOT
(1) Fix(S) is 1-complemented by a projection in conv(S) .
If furthermore X* is assumed strictly convex, then
(2) The contractive projection onto Fix(S) is the unique minimal projection pg in
————WOT
conv(S) , and we have the formula

ps(x) = the unique element of Fix(S) N conv(Sx).
(3) The associated decomposition of X is the S-invariant decomposition
X = Fix(S) @ J (Fix(5))* = Fix(S) ® Fix(5*)*.

Proof We assume X is reflexive and strictly convex and we prove (1). Forany T € S,
the mean ergodic Theorem states that the averages of powers of 7T converge to a
contractive projection pr onto Fix(T); therefore pr belongs to the SOT closure of
conv(S). By Remark 2.2, there exists a contractive projection onto [, es FiX(T) =
Fix(S), belonging to the WOT-closure of the convex hull of the pr’s, and therefore to
the WOT-closure of conv(S).

We now assume X* is strictly convex and prove (2) and (3). From the fact that J
is a bijection it follows immediately that J (Fix(S)) = Fix(S*) is a linear subspace.
Therefore the 1-complementation of Fix(S) by a unique projection (called g for now)
satisfying decomposition (3) follow from previously mentioned [52, Theorems 5.5
and 5.6.].

By the mean ergodic Theorem [20, Theorem 8.34], we know that EWOT is mean
ergodic, and therefore by [20, Theorem 8.33 b)] determines uniquely the so-called
mean ergodic projection onto Fix(S) = Fix (§WOT) called p for now, which is char-
acterized by px € conv(Sx) and pT = Tp = pforall T € S. Strict convexity of X*
imply by [17] that p = q.

The uniqueness and existence of the minimal idempotent pg in conv(S )WOT is in
[20, Theorem 16.20].

Since pT = Tp = p forall T € § it is immediate that this also holds for all
T e conv(S)WOT and therefore for pg, i.e. p < ps. To conclude that p = pg it is

————WOT
now enough to observe that p € conv(S) by (1). O

Remark 2.8 The condition that X* strictly convex is necessary for the uniqueness in
(2) and the decomposition in (3). Indeed if z is a point of X of norm 1 admitting two
norming functionals ¢ and ¢1, then consider the two contractive projections onto the
span of z defined by p; (x) = ¢;(x)z,andlet S = {pg, p1}. Note that Fix(S) = [z] and
both pg and p; are projections onto it. Also fori = 0, 1, Fix(p?‘ ) = [¢;], therefore
Fix(5*) = {0} and Fix(§*)* = X.

2.2 The algebraic envelope
Recall that given a semigroup S and asubset ¥ of X, the (point) S-stabilizer Stabg (Y) of
Y isthe collection of s € S that acts as the identity on Y. Inspired by the decomposition

in Proposition 2.7 we define the following.

) Birkhauser



59 Page8o0f38 V. Ferenczi and J. Lopez-Abad

Definition 2.9 (S-algebraic envelope) Given a subspace Y of X and a semigroup S of
operators on X, the S-algebraic envelope of Y is defined as

Envi¥(Y) = Fix(Stabs(Y)).

In other words, the S-algebraic envelope of Y is the subspace of points which are fixed
by all operators of S fixing each point of Y.

It is worth noting that when J is a bijection between the unit spheres of X and
X*, and S a semigroup of contractions, then (Stabg(Y))* := {s* : s € Stabg(Y)} =

Stabg+(JY). The inclusion Stabg (Y )WOT c StabEWOT (Y) holds, but the equality does
not seem to in general; unless S is WOT-closed, in which case Stabg(Y) is also WOT-
closed. The next relates the minimal and algebraic envelope.

Proposition 2.10 Assume X is reflexive strictly convex, S is a semigroup of contrac-
tions on X, and Y is a closed subspace of X. Then Env Sg(Y) is 1-complemented in

———— 5 WOT
X by a contractive projection in conv(Stabg(Y)) . If furthermore X* is strictly
convex, then holds the Stabg (Y )-invariant decomposition

X = Envi¥(Y) @ EnviE(JY)™,

and the projection upon the first summand is the unique minimal projection of
————————WOT
conv(Stabg(Y))

Proof This is a consequence of Proposition 2.7, of the fact that Envalg(Y ) =
Fix(Stabg(Y)) and of the fact that

Env“‘g(JY) Fix(Stabg«(JY)) = Fix((Stabs(Y))*) = J (Fix(Stabg(Y)))
= JEVEE(Y)).

Remark2 11 Observe that if 7 € S is an automorphism then Envalg (T(Y))

T(Env £(Y)): note that StabsTY = TStabg(¥Y)T ! and that Fix(TST!)
T(le(S))

Even though the equality Fix(S) = Fix(conv(S)) always holds, the algebraic
envelopes of a semigroup S and of its convex hull do not seem to coincide in general.
Indeed we have conv(Stabg(Y)) C Stabcony(s)(¥) but no reason to assume equality,
unless under additional hypotheses:

Proposition 2.12 Let X be a space with strictly convex norm, let S be a semigroup of
contractions on X, and let Y be a subspace of X. Then

Envi¥(Y) = Env’ o (V).

conv(S)

W Birkhauser
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Proof 1Itis enough to prove that conv(Stabg(Y)) = Stabcony(s)(Y), the direct inclusion
of which always holds. Assume T € conv(S) acts as the identity on Y. Writing T as
a convex combination ), AkSk, sk € S, we see that forany y € ¥, y = >, Aesp ().
By strict convexity and the fact that the s;’s are contractions, we deduce s (y) = y for
every kand y € Y, i.e. sy € Stabg(Y). This means that 7 belongs to conv(Stabg(Y)).
We have proved that conv(Stabg(Y)) D Stabcony(s)(Y). m]

Definition 2.13 (Algebraic envelope) The algebraic envelope of a subspace Y of X,
denoted by Env¥!#(Y), is the subspace Envflgm x@).

2.3 Korovkin and isometric envelopes

In some aspects the algebraic envelope seems to be “too rigid” and does not capture
topological properties of a semigroup. We introduce a topological modification of the
algebraic envelope.

Definition 2.14 (Korovkin envelope) Let X be a Banach space and S be a bounded
semigroup of operators. We define the (Korovkin) envelope Envg(A) of a subset A of
X as the set of x € X such that whenever a net (7;);<; in S converges pointwise on A
to Id4, then the net (7; (x));e; converges to x.

It is straightforward that ¥ +— Envg(Y) is an envelope map. Also, we have the
following inequalities.

Envs(Y) C EnV%ISgOT(Y) < EnviE(Y).

To see this, suppose that x belong to Envg(Y), and assume that T = lim; 7;, with

each T; € ESOT andthat T [ Y = Idy. Then (T; | Y); tends SOT to Idy, and since
x € Envg(Y), by definition of the Korovkin envelope, we have that (7;x); converges
in norm to x, and consequently 7x = x.

The name we chose for this envelope has the following explanation. We recall that
we denote by £ (X) the semigroup of contractions on X, and if X is a Banach lattice,
by £1+(X ) the semigroup of positive contractions. When S is equal to £1(X) (resp.
LT (X)), results on envelope maps have been obtained by several authors as extensions
of Korovkin theorems, as described for example in [7, 8]. Namely, if T = (7;);cs is a
net of contractions, the convergence set Crt is defined as

Ct :={x € X : (T;(x));es converges to x},

and if A is a subset of X, the shadow I'1(A) (resp. FT(A))) of A is the intersection of
all convergence sets (resp. of positive contractions) containing A (in the 1994 survey
of Altomare and Campiti [1, Def 3.1.1. p 142.], the term Korovkin closure is also
used). In other words, I'1(A) coincides with the envelope Envz, (x)(A) and Ffr(A)
with EHVLT(X) (A).

We use the terminology Korovkin set (resp. Korovkin™ set) in X for a set A for
which I'1 (A) = X (resp. IT(A) = X). Korovkin Theorem [35] states that {1, 7, 2} is
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aKorovkin™ setin C(0, 1). This was later improved to being a Korovkin set by Wulbert
[56] and independently, Saskin [54]. Bernau [8] proves that {1, ¢} is a Korovkin set in
L,(0,1),1 < p < 400, and Berens—Lorentz [7] for p = 1. In [13], Calvert obtains
that if X is a reflexive space with locally uniformly convex norm and dual norm, then
convergence sets are ranges of linear contractive projections, and the envelope I'{ (A)
is the smallest 1-complemented subspace containing A, i.e. I'1 (A) = Envpyin(A), [13]
Corollary 2. We shall revisit these results in the present section.

Definition 2.15 (Isometric envelope) When G is the isometry group of (X, | - ||) then
Envg (Y) is called the (isometric) envelope of Y in X, and we denote it by Env . (Y),
or simply Env(Y), when the norm on X is clear from the context.

It will be relevant to give a name to those subspaces whose envelope coincides with
the whole space:

Definition 2.16 (Full envelope, full subspace) A subspace Y of X has full envelope,
or it is a full subspace of X, when Env(Y) =

When G is a bounded group of isomorphisms, we have the following reformulation
of the definition of the envelope Envg(A). Because of item c) in the definition of
envelope, from now on we only consider envelopes of closed subspaces Y of a Banach
space X.

Proposition 2.17 Let X be a Banach space and Y a closed subspace of X. If G is a
bounded group of isomorphisms on X, then a point x € X belongs to Envg (Y) if and
only if whenever a net (T;)icy in G converges pointwise on Y, then (T;(x))ics also
converges.

Proof Let G be a bounded group of isomorphisms on X. Assume that x satisfies the
last condition, and let us see that x € Envg(Y), so suppose that (7;);es is a net that
converges pointwise on Y to Idy. We consider the set J := I x {0, 1} lexicographically
ordered, and the net (U j)),j)es> Ug,0) :=1d and U; 1y := T; for all i. It follows
that (U, j)) ¢, j) pointwise convergesin Y to Idy, so by hypothesis, (Uy;, j)(x)), ) also
converges, and the limit must be x. This means in particular that (U;(x)); converges
to x.

Suppose now that x does not satisfy the last condition. We can find a net (7;);e;
in G converging pointwise on Y and some & > 0 such that the subset J C I of
those i such that there are j;, k; > i such that ||T}; (x) — T, (x)|| > &. This implies
that, ||x — T._I(Tk.(x))|| > e/supyeq IIT|| for every i € J. For eachi € J let

U; = T o Ty; € G. Then the net (U;);es in G converges pointwise on Y to the
1dent1ty of Y but (U;(x));cs does not converge to x, so x ¢ Envg(Y). O

So, Envg (Y) is the maximum superset Z of Y so that pointwise convergence on Y of
elements of G (toamap? : ¥ — X which does not necessarily extend to an element of
G) implies pointwise convergence of these elements on Z (necessarily to an extension
of t).

Note that when S € S’ are bounded semigroups then Envg/ (Y) € Envg(Y), and
also that whenever T € S is an automorphism, then Envg(7TY) = T (Envg(Y)).
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Example2.18 1f X = H is a Hilbert space and Y is a closed subspace of it then
Env(Y) = Y. Indeed we can decompose H as Y @ Y+ and and define 7}, = Id @ — Id.
If x is not in Y, then we easily use (7,), to deduce that x is not in Env(Y).

A group of isomorphisms G on a space X is said to be trivial if all elements of G
are multiples of the identity map.

Example 2.19 1f the isometry group Isom(X) is trivial, then any subspace Y of X of
dimension at least 1 has envelope equal to X: if a net (7;);c; converges pointwise
on Y, then each T; = A; Idy with (A;);cs a converging net; thus, (7;);c; converges
pointwise on the whole of X.

As in the case of the algebraic envelope, in general the Korovkin envelope for a
semigroup S does not seem to need to coincide with the envelope for its WOT-closure
or for its convex hull. There is however such an identification under mild topological
conditions on the norm, which are related to the topological nature of the Korovkin
envelope.

Proposition 2.20 Let X be a space with a LUR norm and let S be a semigroup of
contractions on X. Let Y be a subspace of X. Then

Envg(Y) = Envmwm(Y).

Proof Only the direct inclusion is not trivial. Let x be normalized in Envg(Y) and fix
¢ > 0. By definition of Envg(Y), there exist normalized y;,...,y, inY and § > 0
such that for any g € S,

if |g(y;) — yill <8 foreveryi =1,...,n, then ||gx — x| < &.

We use the LUR property of the norm to choose for eachi = 1,...,n some §; > 0
such that if ||z]| < 1is such that ||z 4+ y;|| = 2 — &; then ||z — ;|| < 8. Let 8 > 0
be small enough so that /28 < min; §;, B < ¢ and 2n/28 < e. We claim that

———WOT . .
whenever T € conv(S) satisfies that max; ||Ty; — y;|| < B, then it follows that

ITx —x|| < 3e. This implies that whenever (7;);¢; is anetin conV(S)WOT converging
pointwise to the identity on Y, then (7;(x));e; converges to x, and this means that x
belongs to Envmwor (Y). This therefore proves the required direct inclusion.

We now give the proof of the claim. For i = 1,...,n let ¢; be a normalized
functional norming y;, and let ¢g be a normalized functional norming 7'x — x. Denote
yo := x and consider a convex combination Zke x Mgk with each gx € S, such that

(i, (T — ZkeK Agr)yi)| < Bfori =0,...,n. Note that foreveryi =1, ..., n,

1=28 < ¢i(T(i) — B< D dapi(gr () @.1)

keK

For eachi = 1,...,n, let A; be the set of indices k € K such that ¢;(gx(y;)) =
1 — /2B and let B; = K\ A; be the complement of A;. Note that for k € A;, we have
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that ||gx (v;) — yill < 8. Also from the above Eq. (2.1) we have

1=26< ) M+ =V28) ) k.

keA; keB;

from which one immediately deduces

> < V2B

keB;

Finallylet A = (/_, A; and B = | J]_, B;. Wheneverk € A, wehave | gry;—yill < §
foralli = 1,...,n, and therefore ||gix — x|| < ¢, by the choice of §. Using this
estimate, we compute

ITx — x| =¢o(Tx —x) < B+ Y Acllgex — x|l
keK

ﬁ+(Zxk>s+2ZZxk 26 +2ny/B <

keA i=1 keB,
and this concludes the proof of the claim. O

Remark 2.21 An interesting consequence of Proposition 2.20 is that if Y is a subspace
of an LUR space X and S a semigroup of contractions, then the corresponding envelope

Envg(Y) is contained in the range of any contractive projection p € conv(S)WOT
acting as the identity on Y. Indeed from p [ Y = Idy it follows that px = x for any
x € EnV ) WOT(Y) Envg(Y).

We now show that in many cases the Korovkin envelope may be seen as an algebraic
envelope. This is important to obtain a JALG decomposition associated to this envelope.
We shall use the following facts. If X is reflexive (actually the point of continuity
property is enough) and if G is a bounded group of automorphisms on X, then the
weak and norm topologies coincide on each G-orbit of a non-zero point x¢ of X [43,
Theorem 2.5], applied for G equipped with the topology of weak convergence in the
point xg. Also it is a classical and easy fact that if the norm on X is locally uniformly
rotund (LUR), then weak convergence of a net on the unit ball of X to a point of the
sphere, implies strong convergence to this point. See [3, Remark 2.4.] for more details
on both these facts.

Proposition 2.22 Let X be a reflexive space. Assume that either S is a bounded group
of isomorphisms on X, or that X is LUR and S is a semigroup of contractions. Then

Envs(¥) = Envion(Y).
In particular, Envg(Y) and Env?g(Y ) coincide if S is WOT-closed.
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Proof In the first case, we may assume that S is a group of isometries for some
renorming of X. Therefore in either case, for any net (7;); in S, and normalized vector
x € X, weak convergence of (7;x); to x implies norm convergence. Assume some x
does not belong to Envg(Y) and let (7;); converge pointwise to Idy on Y such that
(T;x); does not converge to x in norm and therefore does not converge weakly to x. By
reflexivity, the space of contractions with the WOT is compact, so there is convergent
subnet for (7;);. W.l.o.g., we may assume that (7;); converges WOT to some T but
that Tx is not equal to x, and note that T is the identity on Y. This proves that x does

not belong to Env%lff,OT Y).

Likewise, letx € Envg(Y)and T [ Y =Idy forT € EWOT, then let (7;); anetin S
converging WOT to T, so that (7;); converges WOT to Id on Y. Then the convergence
of (T;)|y to Idy is SOT and so (7;x); converges to x, so Tx = x, and consequently

X € Enval‘;ngT (Y). O

Finally, the next proposition will allow us to compare the Korovkin and the minimal
envelopes. We have the following decomposition for the Korovkin envelope that should
be compared with Proposition 2.10.

Proposition 2.23 Let X be reflexive strictly convex, S a semigroup of contractions on
X, and let Y be a closed subspace of X. Assume additionally that either (i) S is a
group of isometries on X, or that (ii) X is LUR. Then

(1) Envg(Y) is a 1-complemented subspace of X; in case (ii) Envg(Y) is the smallest
superspace of Y complemented by a projection in conv(S)
(2) Iffurthermore X* is strictly convex, then holds the Stab§WOT (Y)-invariant decom-
position
X = Envg(Y) ® Envg(JY)", (2.2)

and in case (ii) the projection on the first summand is the unique minimal projection

—— WO
of the semigroup conv(S) acting as the identity on Y.

Proof The 1-complementation in (1) and the decomposition in (2.2) is a consequence
of Proposition 2.10 and the relation between the algebraic and the Korovkin enve-
lope in Proposition 2.22. Regarding the projection in case (1) (ii), note that as a first

step the set it belongs to is COIlV(Stabfwm 04 ))WOT Under the LUR property and by

Proposition 2.20, this set is the same as conv(Stab o ST Y )) But itis also the

same as Stab o ST (Y) since this set is convex and WOT-closed. This proves that

Envg(Y) is complemented by a projection in conv(S) T, and that it is the smallest
among those containing Y is Remark 2.21. The statement about the projection in (2)(ii)
follows from the one in case (1)(ii) and strict convexity of the dual. O

As an immediate consequence of Proposition 2.23. we spell out the following.

Proposition 2.24 Let X be reflexive strictly convex and let Y be a closed subspace of
X. Then
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(1) the isometric envelope Env(Y) is 1-complemented.
If furthermore X is LUR then

(2) Env(Y) is the smallest superspace of Y complemented by a projection in
———————WOT
conv(Isom(X)) ;if X* is strictly convex, then this projection is the minimal

. . ., ——————WOT . . .
projection in conv(Isom(X)) acting as the identity on Y.
(3) The Korovkin envelope Envp (x)(Y) coincides with the minimal envelope
Envpin (V).

Remark 2.25 Assertion (3) is an improvement of Calvert’s result [13] on the Korovkin
envelope, since there X ™ needs to be LUR and we impose no requirement on it.

Remark 2.26 Under the assumption that X is reflexive strictly convex, we have
Envimin(Y) € Env(Y) € Env¥&(Y).

We do not know of a general characterization of situations where Env(Y') and Env® Y)
must coincide. However when X = L, p # 2, and Y is a unital subspace, then we
shall see in Theorem 3.12 that Envyin(Y) = Env(Y) = L,([0, 1], Zy), where Xy
is the minimal subalgebra of the Borel algebra B([0, 1]) making all functions in Y
measurable. And in this case Env(Y) = Env¥2(Y) exactly when Xy is a fixed-point
subalgebra (see Remark 3.6).

Remark 2.27 In[6] Beauzamy and Maurey consider a non-linear procedure associating
to a subset M the set M C min M of its minimal points in a metric sense. When X
is reflexive strictly convex and with strictly convex dual, it follows from their results
that the minimal envelope of a subspace may be obtained through iteration of their
“min” procedure. In this way they recover the results of Bernau [8] and Calvert [13]
mentioned earlier.

Remark 2.28 We spell out, for X reflexive LUR: Y = Env(Y) if and only if Y is

. Do = WOT . .
complemented by a contractive projection in conv(Isom(X)) . This characterizes
the subspaces which are isometric envelopes as those which are ranges of projections
in the “isometric hull” conv(Isom (X ))WOT, and this fully describes the isometric
envelope map.

Proposition 2.29 Suppose that X is separable reflexive, G is a subgroup of Isom(X),
and Y is a subspace of X. Then Envg (Y) is 1-complemented in X by a projection in

conv(G)WOT.

Proof By Lancien [37] we may renorm X with anorm || - || which is 1+ 1/n-equivalent
to the original norm and so that X is LUR and G € Isom(X, || - ||). It follows from

Proposition 2.23 (1)(ii) that Envg (Y) is 1-complemented with respect to || - || and there-
fore (14 1/n)%-complemented in the original norm, by a projection in conv(G)WOT. A
WOT-cluster point of the sequence of associated projections P, is a norm 1-projection

onto Envg (Y) belonging to conv(G)WOT. m]
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Corollary 2.30 The Hilbert space is the only separable reflexive space for which each
closed subspace Y (2-dimensional subspace is enough) is equal to its envelope Env(Y).

Proof Indeed it is a known result by Kakutani [33] that X is Hilbertian if and only if all
subspaces are 1-complemented (in fact it is enough to require that all 2-dimensional
subspaces are 1-complemented); in the complex case this is due to Bohnenblust [9].

(]

2.4 Strong isometric embeddings

Closely related to the isometric envelope are the embeddings who are limits or
restriction of (global) isometries.

Definition 2.31 Given a Banach space X, and a subspace Y C X, one defines the
collection Embex (Y, X) of extendable isometric embeddings as

Embex (Y, X) := Isom(X) [ Y € Emb(Y, X),
and the collection Embg (Y, X) of strong isometric embeddings as
————————SOT
Embg(Y, X) :=Isom(X) [ Y C Emb(Y, X).

Note that Embg(Y, X) is by definition SOT-closed in Emb(Y, X), hence a
motivation for the name.

When X is a Hilbert space, then Embey(F, X) = Emb(F, X) for all finite dimen-
sional subspaces F of X. Spaces with these properties are called ultrahomogeneous.
The Hilbert space is the only known separable example; non separable examples appear
in [4] and [21]. When Embg(F, X) = Emb(F, X) for every finite dimensional F, the
space is called approximately ultrahomogeneous (see [21]). Separable examples are
the Hilbert spaces, all L, [0, 1] for p ¢ 4 + 2N, or the Gurarij space.

We shall sometimes use the word partial isometry on a space X to mean a surjective
isometry ¢ between subspaces Y and Z of X. A strong partial isometry is a partial
isometry ¢ : Y — Z such that izx ot belongs to Embg (Y, X), where izx is the
inclusion map Z — X.

Lemma 2.32 The inverse of a strong partial isometry is a strong partial isometry.
When defined, the composition of two strong partial isometries is a strong partial
isometry.

Proof Lety : Y — Z be astrong partial isometry. Given zy, ..., z, € Zofnorm 1, let
yji= y‘lzj foreachl < j < n.Let g € Isom(X) be suchthat [|g(y;) —y(yj)ll < ¢
for every 1 < j < n. Then for each 1 < j < n one has that ||)/_1(Zj) - g_l(Zj)H =
lyj =&~ "ol = llg~ '8y, — g~ v NI = ligy; — vy;jll < e. Similarly one
proves the second part of the statement. O

We may therefore define an equivalence relation between subspaces of X as follows:
Y and Z are strongly isometric if there exists an strong partial isometry between Y
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and Z. The next proposition substantiates the idea that isometric envelopes are well
preserved under strong partial isometries.

Proposition 2.33 Let X be a Banach space and Y a closed subspace of X. Then

(1) Everyt € Embg(Y, X) extends to a unique t € Embg(Env(Y), X).
(2) The image {(Env(Y)) is equal to Env(tY).

In particular if Y and Z are strongly isometric subspaces of X, then so are Env(Y)
and Env(Z). Furthermore,

(3) If Y is separable, the map t + t is SOT-SOT continuous from Emby (Y, X) to
Embg (Env(Y), X).

Proof (1): An extension to Env(Y) is defined by 7(x) = lim;¢; T; (x), if t = lim; T} Y
with T; € Isom(X). If ¢’ is a strong isometric embedding on Env(Y) defined as
pointwise limit of some (Uj;);, extending ¢, then note that since the sequence (Tf1 Ui)i
is pointwise convergent to Idy on Y itis also pointwise convergent on Env(Y), implying
that 7 and ¢’ coincide on Env(Y).

(2): We claim that #(Env(Y)) = Env(tY). We first prove that #(Env(Y)) € Env(¢Y),
so fix x € f(Env(Y)). Let (T});cs be a net of isometries of X that defines 7. Suppose
that (U;) jey is an arbitrary sequence on Isom(X) such that (U;ty); converges for all
y € Y. Without loss of generality we may assume that / = J: One can use the product
ordering I x J and define 7; ; := T; and U; ; := Uj;. It follows that (U; o T;y);
converges for all y € Y, so, by hypothesis, (U; o T;x); converges, or equivalently
(Uit(x)); converges. This means that 7(x) € Env(tY). Now let u : tY — Y be the
inverse of . We know that u € Embg(TY, X), hence, u Env(rY) € Env(utY) =
Env(Y). This means that if x € Env(¢Y), then &t(x) € Env(Y), and so x = f(ii(x)) €
f(Env(Y)).

(3): By separability of Y, Emb(Y, X) is a metric space. Assume (t,), converges SOT
totandletx € Env(Y).Let V, be an element of Isom(X) such thatd (Vi y, tz) < 1/n,
where d is the SOT-convergence metric on Emb(Y, X), and so that | V,x —f,x|| < 1/n
(by definition of 7,). Then note that V,, converges SOT to ¢ on Y and therefore (V,,x),
converges to 7x (by definition of 7). So, 7,x converges to x forall x € Env(Y). O

Corollary 2.34 The following are equivalent for Y C X:

(1) Y is strongly isometric to a full subspace of X.
(2) Env(Y) is strongly isometric to X.

Proof Suppose thatr : ¥ — X is a strong isometry such that 7Y is a full subspace.
it follows from Proposition 2.33 (2) that #(Env(Y)) = Env(tY) = X, hence 7 :
Env(Y) — X isa(surjective) strong isometry. Conversely, assume that 7" : Env(Y) —
X is a surjective strong isometry. Then ¢t := T | ¥ € Embs(Y, X), 7 = T, and it
follows from Proposition 2.33 (2) that X = T (Env(Y)) = Env(T (Y)),so TY isafull
subspace of X. O

The envelope of Y admits an important characterization when Y is assumed
separable.
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Proposition 2.35 Assume Y is a separable subspace of X. Then Env(Y) is the
maximum among subspaces Z of X with the property that

(1) Z contains Y.

(2) Any embedding t in Embg(Y, X) extends uniquely to an embedding t in
Emb,(Z, X).

(3) The mapping t + t is SOT-SOT continuous.

Proof The space Env(Y) does satisfy (1), (2) and (3). Let now Z be such a subspace and
z € Z.If (T,,)n is a sequence of isometries on X converging SOTon Y, lets, = Ty, 1y €
Embex (Y, X) € Embg(Y, X) and 7 = lim,, £,. By definition of Z, (Ty;;z)n = (tn)n
tends SOT to #; therefore (7},z),, converges. This proves that z € Env(Y) and therefore
that Z C Env(Y). O

Propositions 2.33 and 2.35 lead us to see the class of subspaces of X which are iso-
metric envelopes as a “strongly isometric skeleton” of X, in the sense that it is a family
of subspaces of X “containing all the information” on strong isometric embeddings
inside X.

Finally a relevant case of strong isometric embedding defined on a subspace Y are
those whose image is equal to Y, and may therefore be seen as surjective isometries
on Y. In general, not all surjective isometries on Y are of this form. However in a class
of spaces that we will consider in the next subsection 2.5 this is the case and we will
see that is implies that Y € X is a “g-embedding”.

Definition 2.36 (Strong isometry) Let X be a Banach space and Y a closed subspace
of X. We let [somg(Y) be the set of strong isometries on Y, i.e., of strong isometric
embeddings of ¥ whose image is Y.

In other words, elements of Isomg(Y) are isometries on Y which, as maps with
value in X, belong to Embg(Y, X). In what follows we always consider the SOT.

Lemma 2.37 Let X be a Banach space and Y a closed subspace of X. Then Isomg(Y)
is a closed subgroup of Isom(Y).

Proof 1t is clearly closed. If ¢, u are two such elements, with t = lim; 7; [ Y and
u = lim; U}y, then (T;U;y)i = (T;(U; | Y — u) + Tiu); also tends SOT to tu.
Likewise 1! = limi(Ti_l) [Y. O

Corollary2.38 If Y is a closed subspace of X, then t € Isomg(Y) — f €
Isomg(Env(Y)) is an embedding of topological groups.

Proof The group embedding property is clear. Let us denote this embedding by e.
Then let ; € Isomg(Y) converge to t € Isomg(Y), and let 7; = e(#;) defined on
Env(Y) extending ;. Note that 7; converges pointwise to ¢ on Y, so by Proposition
2.17, ignv(y),x T; converges pointwise on Env(Y) to some 7 € Embs(Env(Y)) such
that 7Tjy = t. By the uniqueness result (1) in Proposition 2.33, 7; converges pointwise
to e(t). O
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2.5 Envelopes in AUH or Fraissé spaces

Recall that a space X is called ultrahomogeneous (UH) when Embey (Y, X) =
Emb(Y, X) for every finite dimensional subspace Y of X; and approximately ultra-
homogeneous (AUH) when Embg(Y, X) = Emb(Y, X) for such subspaces Y of
X.

We obtain the following results regarding isometric embeddings in (AuH) spaces,
easy to prove directly from the corresponding results for strong isometric embeddings
in general spaces. The next is Proposition 2.33 reformulated for (AuH) spaces:

Proposition 2.39 Assume X is (AuH), let Y be a subspace of X, lett € Emb(Y, X)
be an isometric embedding of Y into X. Then

(1) t extends uniquely to an isometric embedding € Emb(Env(Y), X); and
f(Env(Y)) = Env(z(Y)).

Assume that Y is separable. Then,

(2) the map t > t is SOT-SOT continuous.

(3) Env(Y) is the maximum among spaces Y' such that any isometric embedding
t : Y — X extends uniquely to an isometric embedding t : Y' — X, and such
that t — £ is SOT-SOT continuous. |

Definition 2.40 (Linear g-embedding) We say that a subspace Y of X is a linear
g-embedding when there is an embedding of topological groups e : Isom(Y) —
Isom(X) such that e(h)y = h for every h € Isom(Y).

This is the linear version of the notion of g-embedding of a subspace M of a metric
space L introduced in [55, Definition 3.1] (see also [48, Definition 5.2.6]), that demands
the existence of an embedding of topological groups e : Zso(M) — Zso(L) such that
e(h);y = h for every h € Zso(L), where Zso(N) is the group of isometries of
N. Recall that the classical Mazur—Ulam Theorem states that the group Zso(Y) of
surjective, not necessarily linear, isometries on Y is the group of the affine ones on
Y. From this it follows easily that if e : Isom(Y) — Isom(X) is an embedding of
topological groups, then e : Zso(Y) — Zso(X) defined by e(y) = e(y — y(0)) +
¥ (0) is also an embedding as topological groups, and consequently every linear g-
embedding is a g-embedding. We have the following direct consequence of Corollary
2.38.

Proposition 2.41 Assume X is (AuH) and let Y be a subspace of X. Then

(1) any surjective isometry t on Y extends uniquely to a surjective isometry t on
Env(Y).

(2) The map t + [ defines a topological (group) embedding of Isom(Y) into
Isom(Env(Y)).

(3) this is the unique such map for which  is an extension of t for each t € Isom(Y).

Consequently Y C Env(Y) is a linear g-embedding. O
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Corollary 2.42 Suppose that X is (AuH), let Y C X be a subspace, and let
y € Emb(Y,Env(Y)). Then y is such that Env(yY) = Env(Y) if and only if
y € Embex (Y, Env(Y)), that is, if y is a restriction of a surjective isometry of Env(Y).
In particular, any partial isometry between full subspaces of X extends to an isometry
of X.

Proof For suppose that g € Isom(Env(Y)), and set y := g | Y. Then, by uniqueness,
y = g and, by Proposition 2.41, Env(yY) = y Env(Y) = gEnv(Y) = Env(Y).
Suppose now that y € Emb(Y,Env(Y)) is such that Env(yY) = Env(Y). We
claim that y € Isom(Env(Y)): First of all, y (Env(Y)) = Env(yY) € Env(Y), so
y € Emb(Env(Y), Env(Y)). Let n € Emb(yY, Env(Y)) be such that n(yY) = Y
and n o y = Idy. Then, similarly we get that € Emb(Env(yY), Env(yY)) =
Emb(Env(Y), Env(Y)). Since 5oy [ Y = n oy = Idy, it follows by uniqueness of
the extensions that 17 o y = Idgay(y), and consequently 7 is surjective and y as well. O

Observe that a subspace Y of X and gY for g € Isom(X) are placed “similarly”
inside X because both ¥ = gV but also the quotient map g : X/Y — X/(gY¥),
x+Y +— g(x)+gY is asurjective isometry compatible with g [ Y : ¥ — gY. In this
way, any of the Isom(X)-orbits of the action by composition in Emb(Y, X) is called
an isometric position of Y inside X, and the previous Corollary says that when X is
(AuH) the isometric position defined by the inclusion i : ¥ — Env(Y) consists of
the isometric embeddings y : ¥ — Env(Y) such that Env(yY) = Env(Y). From a
homological point of view, the exact sequences 0 — ¥ — E(Y) — E(Y)/Y — 0
and 0 - yY — E(yY) — E(yY)/yY — 0 are isometrically equivalent (in the
sense that the extension of y to a map between the envelopes making the diagram
commute is an isometric map), and the associated quotient E(Y)/Y is isometrically
unique (in the sense that E(yY)/y Y is independent of y).

Definition 2.43 (Position) Given a (AuH) space X, the position of a subspace Y inside
its envelope Env(Y) is the Isom(Env(Y))-orbit of the inclusioni : ¥ — Env(Y).

The full position of a subspace Y of X is (if exists) the position of some (any) full
isometric copy of Y. We call full quotient of X by Y the isometrically unique associated
quotient X /Y.

This definition was inspired by a notion of isomorphic position related to the so-
called automorphic space problem, see [16].

We finish this subsection with some additional observations on (AuH) with a
stronger extension property. Recall that Embs(E, X) is the collection of all §-
embeddings y : E — X, i.e. linear mappings such that (1 + 8)~![le|| < |lye| <
(1 +6)|le|l forevery e € E.

Definition 2.44 (Fraissé space) A Banach space X is Fraissé when for every ¢ > 0
and every k € N, there is a § > 0 such that for every k-dimensional subspace E of X
and every t € Emb;(E, X), there exists T € Isom(X) such that ||T | E —¢| < e.

The spaces L, for p # 4,6, ... and the Gurarij space are Fraiissé [21], and the
following is the main conjecture on such spaces.
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Conjecture 2.45 The spaces L, for p # 4,6, ... and the Gurarij space G are the
only separable Fraissé or even (AuH) spaces.

It was proved in [21, Proposition 2.13.] that a Fraissé space must contain an iso-
metric copy of the Hilbert space. It remains open whether any (AuH) space is Fraissé,
or simply whether it contains an isometric copy of the Hilbert. In any case, Hilbertian
subspaces seem to be particularly relevant to the study of envelopes, even though we
do not know whether every separable Fraissé space contains a full copy of the Hilbert
space. In Sect. 3 we shall give a positive answer in the case of the Fraissé L ,-spaces.
For more general Fraissé spaces we have the following:

Proposition 2.46 Consider X an (AuH) Banach space and Y a full Hilbertian sub-
space of X. Then Y must be a minimal full subspace of X and a maximal Hilbertian
subspace of X.

Proof Let Y be some full Hilbertian subspace of X. Note that no proper subspace Z
of Y has full envelope: Indeed the identity embedding iz x of Z into X admits several
extensions as an isometric embedding of ¥ into X and therefore several extensions as
an isometric embedding of X into X; while the unique isometric embedding of Env(Z)
extending iz, x iS ignv(z),x by Proposition 2.39 (1). On the other hand all superspaces
of Y have full envelope. Therefore Y is minimal with full envelope.

This also means that Y is maximal Hilbertian inside X. Indeed a non-trivial Hilber-
tian extension of Y would have full envelope and would not be a minimal full subspace,
contradicting the first assertion of the proposition. O

Remark 2.47 1tdoes not seem possible to extend the result of uniqueness of full position
inside the space L to the context of “almost-isometric” position: It is proved in [27,
Theorem V.1 and Remark (2) on page 284] that there is a subspace X of L such that
(a) every isometric embedding of X into L extends uniquely to a surjective isometry
on Li, but (b) for every § > 0 there is a §-embedding ys : X — L; such that
infs~odpm(L1/X, L1/ys(X)) > 1, where dpy is the Banach-Mazur (multiplicative)
distance.

3 Envelopes in rearrangement invariant spaces, L,-spaces and the
Gurarij space

In this section we identify the envelope of subspaces of L ,-spaces, 1 < p < +oo.
We start with facts valid for general reflexive spaces, and then for r.i. spaces on [0, 1]
(also called symmetric by Peller [47]). We start with the following result that allows
to compute the Korovkin envelope.

Proposition 3.1 Assume X is reflexive LUR. Let S be a semigroup of contractions on
X. Let Y € X be the closure of a directed sequence (Y;)icy of subspaces of X. Then

Envs(Y) = | JEnvs(¥).

iel
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Proof Only the direct inclusion is not trivial. For each i € I let p; be a contractive
projection p; € conv(S )WOT onto Envg(Y;) provided by Proposition 2.23. Let p be a

WOT-cluster point of {p;};cs; note that p € conv(S)W T and that p is a contractive
projection onto | _J;; Envg(Y;). Inparticular, p [ ¥ = Idy. Therefore by Remark 2.21,
the range of p contains Envg(Y). O

Remark 3.2 Tt does not seem that the previous proposition holds for the algebraic

envelope. It is clear that Env?g(Y) 2 Uier Envzlg(Y,-). As for the direct inclusion,
alg

assume that d(x, | J;c; Env¢~(Y;)) > €. We use the following claim

iel
Claim 3.2.1 Assume X isreflexive strictly convex. Let S be a semigroup of contractions

on X and let Y C X. If d(x, Env?g(Y)) > ¢, then there exists s € S such that
s Y =1Idy and d(x, sx) > €.

To prove this, by Proposition 2.10, let p be a contractive projection on Envaslg(Y )

belonging to the set conv(Stabg(Y ))WOT. Note that for such x one has that ||x —
px|l > e€; therefore ¢p(x — px) > € for some norm 1 functional ¢. Since p €

conv(StabS(Y))WOT, there is some 7 € conv(Stabg(Y)) such that p(x — Tx) > €
and therefore some s € Stabg(Y) such that ¢ (x — sx) > €.

Once this is established, we can get (s;);e; with s; acting as the identity on
Y and d(x,s;x) > €. Under appropriate hypotheses one would obtain a WOT-
cluster point T of (s;); with T | Y = Idy and d(x,Tx) > €. If T were an

element of S, this would prove that x is not in Env?g(Y); but 7 only belongs to

SVOT 4 priori. This perhaps explains why the result in the desired equality was

proved for the Korovkin envelope and not the algebra one. In the case of X = L,
p # 2, we know the following. Suppose that ¥ = L,([0, 1], ¥), and (X,),
is an increasing sequence of finite subalgebras whose union is dense in X. Then
Env8(Y) = U, Env¥e(L »([0, 1], X)) only holds when X is a fixed-point subalge-
bra (see Remark 3.6), because EnVa]g(Lp([O, 11, Z,)) = L, ([0, 1], ;) (Lemma 3.5)
and consequently the required equality means that Env¥¢(Y) = Y.

Using Lancien’s theorem about the existence of LUR renormings preserving the
isometry group in separable reflexive Banach spaces [37], we deduce the following.

Corollary 3.3 Assume X is separable reflexive. Let Y C X be the closure of a directed
sequence (Y;)icr of subspaces of X. Then

Env(Y) = U Env(Y;).

iel
3.1 Envelopes in rearrangement invariant spaces
In this subsection we consider rearrangement invariant (r.i.) spaces on [0, 1] as defined
in [39, Definition 2.a.1.]. It is well-known that reflexive r.i. spaces on [0, 1] are

separable (see for example [39, pp 118-119]).
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Definition 3.4 For X a r.i. space on I = [0, 1], and every o-subalgebra X of mea-
surable subsets of 7, let Xy be the subspace of X consisting of the X-measurable
functions in X.

Note that X5, is a unital subspace, which is 1-complemented by [52, Theorem 5.25].

Lemma 3.5 If X isari. space on [0, 1], and Y is a finite dimensional unital sublattice,
then Env¥e(Y) = Y.

Proof The sublattice Y is generated by the characteristic functions of n disjoint
measurable subsets (A;) partitioning [0, 1].

Let f be such that T(f) = f forall T € Stabisom(x)(Y). We claim that f [ A; is
constant for each i, and consequently, f € Y. We prove the claim by contradiction.
We can find ¢ € R, and B, C of positive (equal) measure in some A; such that f > ¢
on B and f < con C. Let o be a measure isomorphism such that o (B) = C, and
0(Aj) = Ajforall j = 1,...,n. Observe that the isometry 7, determined by o
belongs to Stabisom(x)(Y), but 75 (f) # f, because T,,(f) | C is a function with
value > ¢ while f)c has always value < c. This is impossible since we are assuming
that f € Env2(Y). O

Remark 3.6 Recall that a o -subalgebra B of a measure algebra (A, ) is called a fixed-
point subalgebra when there is a set I' of measure-preserving isomorphisms of .4 such
that B ={a € A : wa = a for every w € I'} (see [25, Section 333]). This subalgebras
are characterized in [25, Theorem 333R], where in particular is shown that fixed-point
subalgebras can be determined by a single measure-preserving isomorphism of (A, ).
It is straightforward to see that A unital sublattice Y of L [0, 1], p # 2, satisfies that
Envalg(Y ) = Y exactly when Y = L,([0, 1], ) for some fixed-point subalgebra of
the Borel algebra B([0, 1]). Moreover, we will see in Theorem 3.12 that if Y C L I'E
p # 2, is a unital subspace, then Envyin(¥Y) = Env(Y) = L,([0, 1], Xy), and
Envi8(Y) = L, ([0, 1], Xy) iff Ty is a fixed-point subalgebra.

Proposition 3.7 If X is a reflexive r.i. space on I = [0, 1], then for any o -subalgebra
Y one has that Env(Xy) = X3.

Proof Each o -algebra I is separable, hence we can find an increasing sequence (A,);,
of finite subalgebras of ¥ whose union is dense (see [30]), and consequently | J, X,
is dense in X5, because X is a r.i. space. Since each X, is a finite dimensional unital
sublattice, it follows from the previous lemma that Envd8(X s, ) = X, = Env(Xa,).
We know that X is separable, so by Corollary 3.3 we deduce that Env(Xy) =
UnEnV(XAn)=UnXAn =Xg. O

Note that holds: Xn, 5, = ﬂi X, . Therefore we may define the following envelope.

Definition 3.8 (Conditional envelope) Suppose that X is ar.i. space on I = [0, 1]. For
Y C X, let ¥y be the smallest o-algebra making all functions of ¥ measurable. The
conditional envelope Env¢(Y) is the space X, of Xy-measurable functions of X.

The name conditional we chose here is due to the fact that Env(Y) = L, ([0, 1], Zy)
is the range of the conditional expectation projection £*Y .

When X = L,[0, 1], X5 is the Lebesgue space L, ([0, 1], £), hence Env.(Y) =
L, ([0, 1], Zy). We also have the following classical result.
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Proposition 3.9 Suppose that 1 < p < oo, p # 2, and Y is a unital subspace of
L,[0, 1]. Then,

Envyin(Y) = Enve(Y) = Lat(Y),

where Lat(Y) is the sublattice generated by Y.

Proof We first prove that Env.(Y) = Envpi, (Y). We know that the conditional expec-
tation operator £*¥ is a contractive projection whose range is L p([0,1], XZy) =
Env.(Y). On the other hand, classical results by Douglas [19] (for p = 1) and by
Ando [2] (for the rest of p’s) states that a contractive projection that fixes 1jo 1]
must be a conditional expectation defined by some o-subalgebra. Hence any contrac-
tive projection ¢ whose range R(q) contains Y satisfies R(g) = L, ([0, 1], X) for
some o-subalgebra X. Since Y C R(q), it follows that Xy C X, so Env.(Y) =
L,([0,1], Zy) € L,([0,1], ¥) = R(g). This proves that Env¢(Y) = Envpi(Y)
(including that the latter exists when p = 1). O

We now prove that Env¢(Y) = Lat(Y). We start with the following

Claim 3.9.1 Suppose that Z is a unital sublattice. Then £z = {A : 14 € Z} and
Z =Lp([0,1], Zz).

Proof of Claim Set A := {A : 14 € Z}. Obviously, A C Xz. Observe that in general
for an arbitrary subspace V one has that Xy is the o-subalgebra generated by the sets
{f > c}forc > 0and f € V, and when V is assumed to be a lattice then those
f € V can be assumed to be positive. Fix now a positive f € Z, ¢ > 0, and set
g = (f — C]l[()’l])+ eZ. Then,

Lifse) = Lig=0) = (sugn “8) ANljo,1y € Z,
ne

and consequently { f > c} € A. By the previous remark, ¥z C A. Finally, trivially
we have that Z C L, ([0, 1], £z); as for the reverse inclusion, observe that it follows
from the equality X7 = {A : 14 € Z} that every simple function in L, ([0, 1], £z)
belongs to Z, hence L, ([0, 1], ¥z) € Z. O

We have by minimality that Lat(Y) € L,([0, 1], £y) = Env¢(Y). Since Lat(Y) is
1-complemented, it follows that Env.(Y) = Envpin (Y) € Lat(Y) and we are done. O

Lemma 3.10 If X is a reflexive r.i. space on [0, 1], then for any unital subspace Y one
has that

Envmin(Y) € Env(Y) € Envc(Y).
Proof From Propositions 2.24 and 2.29 we know that Env(Y) is 1-complemented,

hence Envpyjn(Y) <  Env(Y). Also, it follows from Proposition 3.7 that
Env(Env.(Y)) = Env.(Y), hence Env(Y) C Env.(Y). O

Lemma 3.11 IfY is a unital subspace of L1, then Lat(Y) C Env(Y).
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Proof By the equimeasurability formula, any isometric map ¢ from Y into L extends
uniquely to an isometric map 7 on Lat(Y) by the formula

1(1)
Td4srn = |t(11)||t(f)|'

So,fix f € Y,and assume (#,), tends SOT toz on Y. We claim that (¢, (| f])),, converges
to T (] f1), that by the characterization of Env(Y) will mean that | f| € Env(Y). Let
us prove this claim. By composing by an isometry acting by change of signs, it is
enough to prove the claim when #(1) is non-negative, and by composing with an
isometric embedding of L1 (supp (#(1))) onto L; we may assume that #(1) is positive,
and therefore that 7'(| f|) = |t(f)|. We compute:

tp (1)

(1) = T = 2l (1 = ()] =
=@ (f)I—It(f)|)+(t”(l) —11) 1. G
(" |ta (1)] ' '

The norm of the first part of the sum is at most i, |11, ()| = 11(/)I] < fiy 1ta =),
and this tends to 0. Since (#,(1)), tends to #(1) in the L-norm, the measure of the
sets A, := {s € [0,1] : t,(1)(s) < 0} tend to 0. The norm of the second summand
in (3.1) is controlled by 2 f A, |t(f)] and therefore tends to 0 as well. O

Theorem 3.12 If1 < p < +o00, p # 2 and Y is a unital subspace of L, then
Env(Y) = Lat(Y) = Env.(Y) = Envyin (Y).

Proof For p > 1, we know from Proposition 3.9 and Lemma 3.10 that Lat(Y) =
Envpin (YY) € Env(Y) € Enve(Y) = Lat(Y).

The proof for p = 1 uses the Mazur maps. For some fixed 1 < p # 2 we let
¢ : Sp, = Si, denote the Mazur map, extend it by homogeneity to a map between
Liand L,.Observethat T € Isom(L1) if and only iquT(j)_l € Isom(Lp). Let us also
note that if Y is a unital lattice of L then ¢ (Y) = L, N'Y which is a unital sublattice
of L,. As we have seen in Claim 3.9.1, there is a 1-1 correspondence between the
class of unital sublattices of L, and the class of sub-o-algebras of Borel subsets of
(0, 11,

YI—)E)/:{AEBIlAEY}
and
¥ > Yy = L,([0, 1], ).

To avoid misinterpretations, we use the terminology Env(z,)(Z) to denote the
isometric envelope of some Z € L,[0, 1]in L,[0, 1]. O
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Claim 3.12.1 ¢ (Env(z,)(Y) € Envy, (¢(Y)).

Admitting the claim, we deduce that if Z < L{[0, 1] is a unital sublattice, then
s0 is ¢(Z), hence ¢(Env(r,)(Z)) S Env,)(¢(Z)) = ¢(Z), and consequently
Env(; ) (Z) = Z, because ¢ is 1-1. This implies that Env(Y) < Env(Lat(Y)) =
Lat(Y), and the equality Env(Y) = Lat(Y) follows from Lemma 3.11. The rest of the
equalities are in Theorem 3.9.

To prove the claim, assume (7;); is a net of isometries of L, so that (7;(g)); tends
to g for all g € ¢ (Y). This is equivalent to that (¢U;(y)); tends to ¢(y) for all y in
Y where each U; := ¢~ !T;¢ is the associated isometry on L1 to T;. Since the Mazur
map is an homeomorphism (see [42]), this is equivalent to that (U;); converges to
Id pointwise on Y, which, since f € Env(z,)(Y), implies that (U;(f)); tends to f.
Therefore (T;¢(f)); converges to ¢ f, because T;¢ (f) = ¢U; (f). O

Remark 3.13 It follows easily that the previous proposition is true for the Lebesgue
spaces L, (A) for every Borel subset A of the unit interval. Hence, if Y C L,[0, 1],
p # 2, 1is a subspace such that 14 € Y where A is the support of Y, then Env(Y) =
Lat(Y) = Envc(Y) = Envpin (Y). This is so, because all these envelopes on the space
L ,(A) are equal to their versions in the full space L,[0, 1].

Remark 3.14 Inthecasel < p < +oothisresultcan also be deduced from Proposition
2.24(b) and the description by Peller of the WOT closure M of the isometry group
of L, [47], from which it follows that any contractive projection on L, belongs to
M. There does not seem to be such a direct proof in the case p = 1, since our WOT
characterization of the envelope is, apparently, only valid in the reflexive case.

The envelopes of non unital subspaces of L, can also be computed.

Proposition 3.15 Suppose that 1 < p < +o00, and let Y be a subspace of L. Then
we have that

(1) Env(Y) = Envpin(Y).
(2) If p is not even, and g € Y is of full support in'Y then

Env(Y) =g -Env(Y/g) = g - Lat(Y/g) = g - Enve(Y/g).

Proof Pick g of full support in Y. To prove (1) first assume Y has full support. Let
T be an isometry on L, sending g to 1, so that T'Y is unital. Then (1) follows from
the equality Env(7'Y) = Envp,in (TY) (Proposition 3.12), and from Remarks 2.4 and
before Example 2.18 about preservation of the minimal and isometric envelopes by
isometries. When Y does not have full support the proof is similar using Remark 3.13.

The last two equalities in (2) for every p # 2 also follow from Remark 3.13. We
have to show that Env(Y) = g Env(Y/g) for non-even p’s. It is well-known that for
every 1 < p < oo, the envelope Envc(Y) = L,([0, 1], Xy) is the closure of the
subspace of functions B(fi,..., f,) where fi,..., f, € Yand B : R* — R is
Borel. Suppose now that p ¢ 2N, fix ¥ C L,[0,1] and g € Y with full support.
Let ¢ be an isometry between a unital subspace Z of L, and Y sending 1 to g. Since
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L [0, 1]is an approximately ultrahomogeneous space, it follows that there is a unique
extension T of ¢ from Env(Z) onto Env(Y). In fact, T is defined by

T(B(fts-..s fn) =8 B(f1/g.....1fu/8)

for every f1,..., fu € Z and every Borel function B : R” — R (see [34, Theorem
4]). Hence,

Env(Y) = T(Env(Z)) = {T(B(fi,..., f)) : fi,..., fn € Z, B Borel }
=g -{B(g1/8:---8n/8) : 81...,8n €Y, B Borel}
=g Lp(suppg, Tyse) =g - Lp([0, 1], Xy/g) = g - Enve(Y/g)
=g -Env(Y/g).

O

Finally we may observe the following regarding separable r.i. spaces on [0, 1]
different from the L,’s. Recall that a contractive map on a r.i. space on [0, 1] is
absolute if it defines a contraction on L and on L.

Theorem 3.16 The L,’s, 1 < p < +o00 are the unique reflexive r.i. spaces on [0, 1]
for which all 1-complemented subspaces (1-dimensional subspaces is enough) are
envelopes.

Proof Let X be areflexiver.i. spaceon [0, 1]. In particular, X is separable. The assertion
that all 1-dimensional subspaces are envelopes implies, by Proposition 2.29, that any
1-dimensional subspace is the range of a contractive projection belonging to the WOT-
closure of the convex hull of the isometry group. On the other hand, it is a classical
result (see [58, Theorem 2]) that if X is different from one of the L ’s, then it follows
that every isometry of X is absolute. Since absolute contractions are closed under
convex combinations and WOT-limits (using for example [47] Theorem 8), it follows
that under our hypothesis every 1-dimensional subspace of X is 1-complemented by
an absolute contractive projection, and we are going to see (probably a well-known
result) in the next claim that this is impossible. O

Claim 3.16.1 Every reflexive r.i. space on [0, 1] admits a 1-dimensional subspace
which is not the range of an absolute projection. More precisely: if # and v are dis-
jointly supported elements of Lo, and ||#||co > ||V]lco > O, then the span of u + v is
not the range of an absolute projection.

Proof of Claim We may assume without loss of generality that xo := u 4+ v has norm 1
in X. Let P be a contractive projection with range equal to the span of x(. It must satisfy
the formula P (x) = (¢, x)xg where ¢g € X™* and ¢g(xo) = ||¢po|| = 1. If P is also
a contraction in Lo, let us define y : Loo = R by y(x) := ||x|loo — {¢0, X} X0l 00>
and let us observe that

y(x) = [xlloo £ [[P(X)]loo = 0.
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We see now that ¢p and v are disjointly supported: Let & := 14 where A C supp v.
Note that for |¢| small enough one has that ||xg + t4|lco = [|X0llc0, hence

y(xo +th) = |lxo + thlleo — (14 {0, h)) [ x0lloo = —tllX0lloc (¢0, h).

Since y is non-negative we deduce that ¢o(h) = 0, and this implies that supp (¢g) N

supp (v) = & and therefore ¢o(u) = ¢o(xp) = 1. It follows that P(u) = xg.
Therefore ||P(u)|l1 = ||xollt = llulli + llvlli > |l#]l1, and P cannot also be a

contraction in L. O

We do not know whether the minimal and isometric envelopes coincide for an
arbitrary reflexive Fraissé or even (AuH) Banach space.

3.2 Full copies of Lg-spaces inside L,

We study the envelopes of L,-spaces inside L ,, obtaining the following.

Theorem 3.17 Assume that 1 < p < +00 is not even. Then

(1) the envelope of any Hilbertian subspace of L , of dimension at least 2 is isometric
to Lp.

(2) If q satisfies 1 < p < q < 2, then the envelopes of L, and £, inside L, are
isometric to L.

Consequently,

(3) L, admits full copies of €5, n > 2, {2, and of Ly and €4 provided that 1 < p <
q <2

Proof In fact, we have the following formally stronger statement: Assume 1 < p <
+00, p not even and let Y be a subspace of L, such that one of the two conditions
hold:

(i) the group Isom(Y) acts almost transitively on Sy and Y does not embed
isometrically into £;
I2E el _

nl/p
Then the envelope of Y is isometric to L . In particular some isometric copy of Y has
full envelope.

Its proof goes as follows. Composing with an isometric embedding of Y into L
sending some vector of full support in Y to 1, we may assume Y is unital, hence
Env(Y) = L,([0, 1], Xy). The proof is finished once we argue that Xy does not
have atoms. Suppose otherwise. Then Env(Y) = L (A1, 1) ®p Lp[A2, X2) where
31, ¥y C Xy are atomless and atomic o-algebras in A and A», respectively, Aj LI
Ay = [0, 1], and X5 is non-empty.

We denote by i the inclusion map of Y into L,(A1, ¥1) ©p Lp(A2, Z1), and
choosing i1 = 0 if necessary, we write i = (i1, i2) with respect to the decomposition
Lp(A1, 1) ®)p Lp(Az, 2p), thatis ij(f) = fia; forevery f € Y. Note that by the
Banach-Lamperti formula for isometries of L ,-spaces, all isometries on this space can
be written as T = (71, T>) where each T is an isometry on L, (A;, X;) fori =1, 2.
Observe that iy # 0, because otherwise Ay = J. O

(i) Y has a 1-symmetric Schauder basis (e;) such that inf),
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Claim 3.17.1 The norm of i,y is constant on Isom(Y )-orbits.

Proof of Claim For suppose that 7 € Isom(Y) and y € Y. Since p is not even, we know
that L, is (AuH), and it follows from Proposition 2.41 that there is a unique extension
of t to T € Isom(Env(Y)). Then (i1ty, ixty) = ity = Tiy = (Tii1y, T2iry), and
consequently [liatyll = [T2i2y |l = lli2y |- o

Suppose that (i) holds. Then it follows from the previous claim that the norm of i» has
constant value k > 0 on Sy (because iy # 0). Hence, i3 /k is an isometric embedding
of Yinto L ,(A2, X2), and since X is atomic, L, (A3, X») isisometric to £, (1), where
I is the (countable) set of atoms of X5, contradicting the hypothesis.

Suppose that (ii) holds. Since (e,), is a I-symmetric basis of Y, the isometries of Y
act transitively on the basis, and by the previous claim this implies that the norm of izej,
for n € Nis constant, with value c. As before, we have that ¢ > 0. By w*-compactness
there exists u € Ej‘,* and N an infinite subset of N such that (izep)peny —Y .
We claim that u = 0. To see this, note that for any normalized ¢ in E*[‘,, and any
n € N we can find a finite ¥ € N of cardinality »n such that ¢(Zj€F irej) =

%n¢>(u). It follows that ng (1) < 2||i2(ZjGF el <22l Z?:l ejlly. The estimate
in ii) then implies that ¢ (1) = 0 and therefore the claim that u = 0. Now since
(i2en)nen tends weakly to 0 in £, we can, by a gliding hump argument and passing
to a subset of NV, assume that the sequence (ize),en 1s almost sucessive in the sense
that || ZjeF izejll = %(ZjeF ||i2ej||P)1/P whenever F C N is finite. Therefore
c|FIVP < 20lia || X2 €jlly, contradicting ii) when | F| is large enough. O

3.3 On g-embeddings of ¢; into L, and the spaces L, /{>
Knowing that £, admits a full copy in L, we have an associated exact sequence
0—>4¥4—>L,— Ly/tr — 0,

to which we may apply Corollary 2.42 and the commentary thereafter.

Definition 3.18 (The full quotient space L,/¢>) Let 1 < p < oo, p ¢ 2N. The
quotient L, /£> of L, by any full copy of £, is isometrically unique. We call this space
the full quotient of L, by £5.

Proposition 3.19 Foreach 1 < p < oo, p ¢ 2N + 4, there is a linear g-embedding
(see definition just before Definition 2.41) of U (£3) into Isom(L ). It is defined by
extension of unitaries on any fixed full copy of L2 inside L, to isometries on L.

Proof This is a consequence of Theorem 3.17 and of Proposition 2.41. O

Many questions remain open about concrete representations of full copies of £
inside L p, about the exact sequence 0 — ¢, — L, — L,/£> — 0 associated to the
linear g-embedding of ¢; inside L, for appropriate values of p, about the associated
full quotient of L, by £5, or about the topological embedding of U (H) into Isom(L )
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from a concrete point of view. We shall not address them in this paper but we do make
a few initial comments below.

If 1 < p < 400, then the exact sequence above splits, by complementation of
{3 inside L. This means that L, /£, is isomorphic to L, (since it is isomorphic to
a complemented subspace of L, and since L, is primary). On the other hand when
p =1, then

00—t —>L — Li/th—>0

does not split, and the isomorphic type of the full quotient L{/¢> is unknown.

Many other homological questions arise: what description can be made of
the induced action of U(¢2) on L,/¢> (which is actually an action by bounded
isomorphisms on L, when p > 1)?

What can be said of the quasilinear map €2 associated to the exact sequence and of
the commutator estimates of §2 with the action of the unitary group on L ,? How may
the dual exact sequence be described? For details we refer to [15], for the general theory
of exact sequences of Banach spaces, and to [14], for a theory of their compatibility
with group actions.

Another direction which seems worthwhile to explore is the relation between the
isometric envelopes of the Hilbert space in an L ,-space and Gaussian Hilbert spaces.
See in particular the extension Theorem 4.12 in [31]. Note however that the theory of
Gaussian Hilbert spaces seems to be limited to the context of L ,-spaces and not to
generalize to the (AuH) or Fraissé situation.

3.4 Envelopes in the Gurarij space

One may wonder whether there is a canonical definition of the envelope of a separable
space Y, not depending on the choice of the space where Y embeds. Since the Gurarij
space G is the only (AuH) separable and universal space, it would be natural to define
the canonical envelope of Y to be its envelope inside G. However we shall now see
that any subspace of G is equal to its own envelope, so this concept is not as relevant
as one would hope. On the other hand, the result leads to interesting questions.

Theorem 3.20 Env(X) = X for every subspace X C G.
The proof relies on two steps, starting with an easy lemma.

Lemma 3.21 Let E be a Banach space. Assume that for any finite dimensional sub-
space F of E, for any x € E \ F, there exists 56 = §(x, F) > 0 such that for any
e > 0, there exists T € Isom(E) such that |[Tf — f|| < e forall f € F and
ITx — x|l = 8 — e. Then Env(X) = X for every separable subspace X C E.

Proof Suppose that X C E is arbitrary. Let { F,,}, be an increasing sequence of finite
dimensional subspaces of X whose union is dense in X. Suppose that x ¢ X. We use
the hypothesis to find for each k some Ty € Isom(G) suchthat || Ty | Fx—tf, gl < 2k
and || T (x)—x|| > 8—2"‘.Consequently, Tr | X — Idx pointwise but T (x) /4 x,
and therefore, x ¢ Env(X). O
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Proposition 3.22 The Gurarij space satisfies the hypothesis of Lemma 3.21 with
8(x, F) =2d(x, F).

Proof We prove slightly more than what is required. Fixing F C G, x,y in G,
let G (resp. G’) be a finite dimensional subspace of G containing x (resp. y) and
F. We consider the push-out of G with G, H = (G ®; G')/S, where § =
{(f,—f)eGxG : feF}) Letxg :== (x,0) + S, x; := (0,y) + S. It is easy
to see that || xo —x1||g = 8 :=d(x, F)+d(y, F). Similarly, let Go := (G x {0}) + S,
G := ({0} x G") + S. Using that G is universal for separable spaces and approximate
ultrahomogeneous we can find an isometry 6y : H — G, such that
(a) the mapping 6 : G — G linearly defined by 6(z) = 05 ((z, 0) + S) satisfies that
10(z) — z|l < ¢llz|| forevery z € G.
(b) the mapping 6’ : G’ — G linearly defined by 6'(z) = 05 ((0, z) + S) satisfies that
16Cx) = 0"l = 100 (xo — xD)II = 8.
To finalize the proof, we now restrict to the case where y is chosen equal to a given
x sitting outside of F. We let G = G’ be equal to the subspace generated by F
and x. Observe that (1 + 2&) 'yl < 10| < (1 + &)|ly|| (since ¢ < 1/2).
Setting H := ImAy (H) and Gg := 0y(Go), G := 0 (G1), let 7 : Go — G be
the surjective isometry defined by n(0y ((g,0) + S)) := 0y ((0, g) + S). Then, the
composition 706 : G — H is a (1 + 2¢)-isometry. Since G is a stable Fraissé space
with modulus 27 [21, Example 2.5] there is some isometry 7" € Iso(G) such that
IT —1n o6 <4e.So, given f € F we have that

ITCF) = FI = ITCH) =a@UNT+ I1Lf =@ )
<4ellfIl+I1f = 0NN = Sell f1I.

so T approximates the identity on F, while
IT(x) — x|l =[[7(0(x)) =0 = 1T (x) = 7@ — 10(x) — x|l = & —2¢|lx]],

with 8 = 2d(x, F). o

In the proof we have observed that G satisfies the following property, for every
F, G, G’ finite dimensional subspace of G with F € G, G/, for every x € G and
y € G’, and for every ¢ > 0: there are a finite dimensional subspace V of G, I €
Emb(G, V) and J € Emb(G’, V) suchthat |/ oir ¢ — J oip | < ¢ and

[1(x) = I = (A —e)d(x, y(F)) +d(y, n(F)).

This is a property which recalls the free amalgamation property in model theory for
relational structures (see [24]).

A similar property is easily seen to be satisfied by the Hilbert space, and in particular
the Hilbert space satisfies Lemma 4.2 with § = V2d (x, F), which is another way of
proving that every of its subspaces is equal to its own envelope.

Problem 3.23 Show that the Hilbert space and the Gurarij space are the only separable
Fraissé spaces X for which each subspace is equal to its envelope.
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4 Complementations in (AuH) spaces: numerical estimates

The aim of this section is to establish relations between local properties of a space and
the AUH or Fraissé property. Recall that a Fraissé Banach space X always contains
isometric copies of the Hilbert space. We shall see that the constant of complementation
of such copies in X determines for which values of p the space X is possibly isometric
to L ,. We shall also relate these values to the type and cotype of the space.

In consequence we shall obtain “local versions” of the fact that L ,-spaces are
Fraissé only if p ¢ 2N 4 4, and reinforce the conjecture that those spaces, together
with the Gurarij space, are the only separable Fraissé spaces.

4.1 Complementations in (AuH) spaces

Our first result relates to constants of complementation in (AuH)-spaces. This extends
some results known for L ,-spaces, but our point is to obtain these only through
properties of the isometry group.

Proposition 4.1 Let X be (AuH) and 1-complemented in its bidual. Then any isometric
embedding of a subspace Y of X into X extends to a contraction on X.

Proof Let ¢ be an embedding of a subspace Y of X. For any F finite-dimensional
subspaceof Y ande > 0, thereisamap Tr . € Isom(X) suchthat [|(t—TF )| F| < e.
Using a non-trivial ultrafilter refining the natural filter on the set of (F, €), we define
amap 7T : X — X*™ by Tx = w* — limy TF ¢x. If P is a norm 1 projection from
X** onto X then PT defines a contraction on X extending 7. O

Proposition 4.2 Let X be (AuH), and let Y be C-complemented in X for some C > 1.
Then any isometric copy of Y inside X is also C-complemented, as soon as one of the
following conditions holds:

(1) X is 1-complemented in its bidual, or

(2) Y is finite dimensional, or

(3) Y is 1-complemented in its bidual and can be written as the closure of an increasing
union of a net (F;); of finite dimensional subspaces such that F; is 1-complemented
inY for everyi.

Proof LetY be C-complemented by a projection p and 7 be an isometric embedding of
Y into X. (1): Using Proposition 4.1, 1Y is complemented by tpT’,if T’ is a contraction
on X extending !, (2): forany ¢ > 0 we can find, by classical perturbation arguments,
asurjective 1 +¢-isometry 7, on X extending ¢, and then p, := T pTg_1 is aprojection
onto ¢Y of norm at most C(1 + €). A compactness argument provides a projection
onto tY of norm at most C. (3): Applying (2) we find a projection p; onto ¢ F; of norm
at most C for each i. Using a non-trivial ultrafilter refining the net, we define a map
p: X — (tY)* by px = w* — limy p;x. If P is a norm 1 projection from (¢Y)**
onto tY then Pp defines a projection onto tY of norm at most C. O

From the (AuH) properties of L ,-spaces, we recover a known result in the theory
of L ,-spaces [51], i.e. the above holds inside L,(0,1),1 < p < 400, p ¢ 2N+ 4.
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It also proved in [51] that the result does not hold for p € 2N + 4, since in this case
there is a complemented subspace admitting an isometric uncomplemented copy. One
may actually prove the following:

Remark 4.3 No (AuH) space can contain a complemented isometric copy of any L,
with p € 2N 4 4. This follows from the existence of a constant K and a sequence
of pairwise isometric finite dimensional subspaces F,, and G, of L, such that F), is
K-complemented and G, is not n-complemented in L, for each n € N. It is easy
to see that this fact, together with item (2) of Proposition 4.2, is incompatible with
complementation of a copy of L, inside X. The existence of K, (F,;) and (Gy) is
based on the unconditionality of the subspaces used in [51] and is detailed in the proof
of Proposition 2.10 of [21].

As for the Hilbert space H, a classical result states that U (H) is WOT-dense in £ (H)
(see for example [47]). This and Proposition 4.1 gives us the following.

Corollary 4.4 Assume X is (AuH) 1-complemented in its bidual. Then every operator
defined on a hilbertian subspace of X extends to an operator of same norm on X.

Proof For suppose that ¥ C X is hilbertian and ¢ : ¥ — Y be a contraction of norm
1. We choose a net (#;); of isometries of Y converging WOT to 7. By Proposition 4.1,
we can extend each #; to norm one operators 7; : X — X.LetU : X — X™* be
WOT-limit of (7});, and let P : X** — X be a contractive projection. Then PU has
norm 1 and extends 7. m]

Note that this holds in particular for for all the separable Fraissé L ,-spaces.

A similar result seems possible for subspaces Y for which the unital algebra £(Y)
is unitary, that is, when the convex hull of its isometries is norm dense in L (Y).
It is classical that £(H) is unitary in the complex case and the real case is due to
Navarro-Pascual and Navarro [45] who actually prove that the infinite convex hull is
equal to £1(H).

Definition 4.5 For X a Banach space, 1 < p < 0o, and n € N, let us denote c'[',(X) S
[1, +o0] the infimum of constants of complementation of an isometric copy of £},
inside X, and ¢, (X) the infimum of constants of complementation of an isometric
copy of L, inside X. Let us also denote by Fr(X) the set of p’s such that £, is finitely
representable in X.

Proposition 4.6 Assume X is Fraissé. The following holds for every p € Fr(X), 1 <
p < +oo:

€))] c;’,(X) is attained.

(2) cp(X) is attained when it is finite.

(3) We have c,(X) = lim, c'l’,(X).

(4) If there is C > 1 such that for any n, and for any ¢ > 0, X contains a C-
complemented 1 4 €-copy ofﬁ’;,, then ¢, (X) < C.

Furthermore

(5) for fixed n, the map p — cZ (X) is continuous on Fr(X)
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Proof Recall that L, embeds into X when p € Fr(X) (see [21]). Here, except for (1),
we are using that the space X is assumed to be Fraissé and not only (AuH). (1): Since
X is (AuH), any isometric map between two copies of E’I’, may be approximated by
a global isometry, therefore extends to a 1 4 e-isometry for ¢ arbitrarily small, and
we deduce that any isometric copy of £, is complemented by a projection of norm at
most ¢}, (X) + 4, for arbitrary § > 0. We may then define a projection as some weak
limit of almost optimal projections along an ultrafilter to see that all copies of £/, are
complemented by a projection of norm cZ(X ).

Note that the sequence c;',(X) is non-decreasing, and assume it is bounded by
C. Writing L, as the closure of the increasing union of £}’s, and again defining a
projection onto L, as some weak limit of projections on the £,’s (using that L, is
1-complemented in its bidual), we deduce that both (2) and (3) hold.

(4): Lete > 0, n > 0, and consider a C-complemented 1 + n-isometric copy F of
Z;’,. If  had been chosen small enough, the Fraissé property allows to extend a partial
14 n-isometry ¢ between F and an isometric copy G of E; to a global isomorphism 7
on X such that | T|||T~"|| < 1 + &, guaranteeing that G is C(1 + &)-complemented.
Then we deduce that CZ(X) < C, and, by (¢), that ¢, (X) < C.

(5): Let p € Fr(X), ¢ > 0, n > 0. For g close enough to p in Fr(X), there is a partial
1 + n-isometry ¢t between copies of Z’;, and ZZ. If n had been chosen small enough,
the Fraissé property allows to extend ¢ to a global isomorphism 7" on X such that
ITIIT M <146, guaranteeing that CZ(X) <A+ s)c’l’,(X). O

In the case (4) we shall say that £, is uniformly complementably finitely repre-
sentable in X; we noted that this implies that X contains a complemented copy of
L.

4.2 The hilbertian case

We now concentrate on the case of Hilbertian/euclidean copies. The exact value of
the (best) constant of complementation of isometric copies of £; or £, inside L,
1 < p < 400 is known (see Gordon—Lewis—Retherford [28, Theorem 6]). Let us
note:

er(Ly) = %(r(p_“))l/”(r(”/; 1))1/”/, | < p <400 4.1)

and
2(Loo) = c2(L1) = +00

where for p € [1, +00] we use the notation p’ € [1, +00] for the conjugate of p.
Recall that p(X) := sup{p : X hastype p} and that g(X) := inf{p

X hascotype g}. The space X is said to be near Hilbert when p(X) = q(X) = 2. Itis

well-known that X does not necessarily have type p(X) or cotype g (X), however the

Maurey—Pisier Theorem [41] states that both £ ,(x) and £, x) are finitely representable

in X. Regarding duality, it is immediate that if X has type p > 1 then X™* has cotype
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p’. A profound result by Pisier [49] states conversely that if X has no-trivial type and
cotype g, then X* has type ¢’. Another result by Pisier [49] states that a Banach space
X has non-trivial type exactly when X is locally m-euclidean, that is, when for some
¢ > 1, forevery n and ¢ > 0, there exists N such that any N-dimensional subspace of
X admits an n-dimensional subspace which is 1 4 e-isometric to an euclidean space
and which is c-complemented in X (see also Pelczynski—Rosenthal [46, Definition
and Observation on p284], noting that the definitions of locally m-euclidean in [49]
and [46] are equivalent by Dvoretsky theorem).

Lemma 4.7 The following hold:

(1) ca(Lp) = ca(Ly) for 1 < p < +o0.
(2) If1 < p < o0 is in Fr(X) for some Fraissé space X, then c3(Lp) < c2(X).
(3) The map p > c»(Lp) is decreasing on [1, 2] and increasing on [2, o0].

Proof Assertion (1) is a direct consequence of the formula (4.1). (2): Since X is
Fraissé and p € Fr(X), it follows that X contains an isometric copy of L. For a
given n, if £} is C-complemented in X, then any copy of {7 inside L is also C-
complemented in X (because X is Fraissé) and consequently also in L ,. This implies
that ¢5 (L) < ¢5(X), and by Proposition 4.6 (3) we have that c2(L ) < c2(X). (3):
since L, embeds isometrically into L, for 1 < p < g < 2, this and assertion (2)
implies that the map is decreasing on [1, 2], and then, by assertion (1), increasing on
[2, 400] by (2). O

The next relates p(X), g(X), and complemented copies of L ,-spaces.

Proposition 4.8 Let X be a Fraissé Banach space.

(1) If g(X) = +oo then X contains an isometric copy of the Gurarij space, and if X
separable then X is isometric to the Gurarij space.

2) If p(X) = 1 and q(X) < +oo, then X contains isometric copies of Ly, £ is
uncomplemented in X, and ¢5(X) > n - ['(n/2)/(J7-T(1/2+n/2)).

) If p(X) > 1 then €3 is complemented in X. There exists a unique 1 < p < 2 such
that c2(X) = c2(Lp), and we have p(X) > p and q(X) < p.

4) If p(X) > 1 and X has type p(X) then X contains a complemented isometric
copy of L p(x).

) If p(X) > 1 and X has cotype q(X) then X contains a complemented isometric
copy of Ly(x) and q(X) ¢ 2N + 4.

Proof Assertion (1) was already observed in [21]. It is a consequence of the Maurey—
Pisier Theorem in [41] that £, is finitely representable in any space with non non-
trivial cotype, implying that a space satisfying (1) must be isometrically universal for
separable spaces, and the fact that the Gurarij space is the unique separably universal
Fraissé space.

Assertion (2) is a consequence of Maurey—Pisier Theorem and the Fraissé
property—Lemma 4.7 (2). Since ¢; is uncomplemented in L it has to be uncom-
plemented in X and this also provides a lower bound for ¢5(X) by ¢5(L1) =

n-T(n/2)/(y7-T(1/2+4n/2)).
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Regarding (3), since X has non-trivial type, it is locally w-euclidean. Therefore X
contains uniformly complemented 1 4 e-copies of euclidean spaces of arbitrary size
and therefore a complemented copy of the Hilbert space. The formula (4.1) implies that
p = c2(L ) is continuous, and by Lemma 4.7 (3), is also decreasing on [1, 2]. Since
c2(L1) = oo and ¢z (L3) = 1, it follows that there must be a unique 1 < p < 2 such
that c2(X) = c2(L ). By the Maurey—Pisier Theorem on the finite representability of
L y(x) in X, and by using that X is Fraissé, X contains an isometric copy of L ,(x).
It follows that c2(L p(x)) < c2(X) = c2(L)p), and therefore p(X) > p. The same
reasoning holds for cotype.

(4): Following [44, Proposition 13.16], if we suppose that p(X) > 1 and X has type
p(X), then X contains for some C > 1 and for any ¢ > 0, 1 + e-isomorphic copies
of ¢/, C-complemented, with p = p(X), and therefore a C-complemented copy of
L »(x) by Proposition 4.6 (4).

(5): the Pisier duality result [49] holds to deduce that p(X*) = g(X)’ and X* has type
p(X™). Therefore as in (4) above X* contains 1 4 g-isomorphic copies of E’,’,(X*)’s
uniformly complemented, and by duality and local reflexivity, X contains 1 + &-
isomorphic copies of ZZ(X)’S uniformly complemented. The rest of the reasoning
is as in (5) to deduce that X admits a complemented copy of L,(x). The fact that
q(X) ¢ 2N + 4 then follows from Remark 4.3. O

We have the following striking corollary of Proposition 4.8:

Corollary 4.9 Any Fraissé space X satisfies exactly one of the two following properties:
either

(1) X contains a complemented isometric copy of {2, or
(2) X contains an isometric copy of L. O

Applying Proposition 4.8 to the case of 1-complemented copies of L, spaces we
also get:

Proposition 4.10 Let X be a Fraissé Banach space. Then

(1) there are at most 2 values of p (which must be conjugate) such that X contains a
1-complemented copy of L p.

(2) if X contains a 1-complemented copy of L, and p < 2 (resp. p > 2), then
p(X) = p (resp. g(X) = p'). In particular if X contains a 1-complemented copy
of Ly then X is near Hilbert.

Proof Suppose that X contains a 1-complemented copy of L ,. Then, by Lemma 4.7
(1), (2) we have that ca (L /) = c2(Lp) < c2(X). On the other, the 1-complementation
of a copy of L, implies that ¢3(X) < c2(L)). This determines the set {p, p'}. ) if
p < 2 then it follows that p(X) > p, but also since X contains a copy of L, that
p(X) < p. Likewise if p > 2 then it follows that g(X) = p'. O

We do not know if any Fraissé space contains a 1-complemented copy of some
L, and if it contains at most such 1-complemented L ,. There are other properties of
Fraissé L, spaces which may be seen as natural steps towards the conjecture that all
separable Fraissé spaces are either L ,-spaces or the Gurarij space. We just list two of
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them here: must any Fraissé space X attain its type and cotype? if X is Fraissé and
reflexive, must Fr(X) be either an interval of the form [p, 2] or a singleton {g} for
2 < g < +00? The reader will easily find other natural conjectures in this vein.

We conclude with a solution to a weak version of the Mazur rotation problem posed
by G. Godefroy (see [12, Problem 5.20, and the paragraph before it]).

Theorem 4.11 A Fraissé space admitting C~, bump functions must be isomorphic to
a Hilbert space.

Proof Assume X is as above and not isomorphic to a Hilbert space. Since a space
with a Fréchet-differentiable bump function is necessarily Asplund, X cannot contain
a copy of L, whereby by Proposition 4.8 (2), X has non trivial type. According to a
Theorem of Deville, see [18, Chapter V.4] for an exposition, this implies that g (X) is
an even number larger than 2 and X has cotype g (X), and this contradicts Proposition
4.8 (5). O

A Banach space X is Lipschitz transitive [11] when there exists C > 1 such that for
any two normalized vectors x, y of X, there is a surjective isometry 7" on X such that
Tx = yand |T — Id|| < C|ly — x||. According to [11, Lemma 2.6], any Lipschitz
transitive norm on a separable space is Cro. We immediately deduce:

Proposition 4.12 A separable Fraissé space which is Lipschitz transitive must be
isomorphic to Hilbert space. O
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