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strong visual difference. Our classifier works on plates
without holes or cracks, but with only texture variation.
Neural networks and Fuzzy logic seem to be
good tools. Once the network was trained the execution
time is generally small. The objective of this work is real

time application.

3 - ARTIFICIAL NEURAL NETWORKS AND FUZZY
LOGIC

Fuzzy logic allows to implement classification
systems with non binary output within the interval [0,1].
If x is a generic element of an X set, the fuzzy set of A in
Xis:  A={(X,ua(X)) / x € X} where p,(x) is named the
membership function of x in A. The membership function
maps each X element in a continuous membership value

between 0 and 1.
3.1 - Fuzzy Neurons

The Maximum Fuzzy Neuron does the union of
two fuzzy sets (A and B). It’s called AND neuron. It
takes the inputin X = [X; Xp ..-e X, ] operating over then
in the connections with the weights w = [w; w, ...... w,
€ [0,1] and then does the global AND with these results.
This union operator is defined as: y = AND(x;w) or
y = Tha[X; s w;] where t and s are used for representing
the AND and OR operation, respectively.

The Minimum Fuzzy Neuron does the
intersection of two fuzzy sets (A and B). It’s called OR
neuron. Its function is similar to the AND neuron. It takes
the input in X = [X; X; ... X, ] operating over then in
the connections with the weights w = [w; w, ... w,]e
[0,1] and then does the global OR with these resuits. This
intersection operator is defined as:

y = OR(x;w) ory = 8", [x; t wi] _

The task of these neurons is selecting among
several output levels, one that corresponds to a given
input.
The Competitive Neuron compares its state with

. a threshold (T) gotten from previous layer and it has a

binary output (0 or 1). This operator is defined as:
Yo =gsn-TI=0 ifs<T or
=1ifs2T
T=max (tfc;,Cy, veree 1)
where the t is the threshold function s, =X w;*x

3.2 - Fuzzy rules

The fuzzy rules could be classified in three types.
according to its consequent form [7]:
Type 1: Fuzzy rules with a constant consequence.

R;: IfX;is A;; and ....... and X, is A,

then Y is ¢;
Type 2 Fuzzy mules with a consequent linear
combination.

R;: IfX;is Ajy and ....... and X, is Ajn

then Y is gy(Xy, ..y Xp) =bp + 01X + e + b
Type 3 : Fuzzy rules with a consequent fuzzy set.

Ry : If X, is A, and ...... and X, is A,

then Y is B,
where X and Y are the input and output variables,
respectively. The linguistics terms A, are fuzzy sets with
a specific function (triangular, sigmoidal, trapezoida).
The ¢; term is a constant value. The g; term is a linear
array of input variables, and the b, terms are the constant
coefficients. The B, term shows another fuzzy set.

3.3 - Artificial Neural Networks

An Artificial Neural Network (ANN) is a set of
nodes connected by direct links. Each node is a
processing unit that applies one specific function between
its input and its correspondent weight. The ANN’s are
classified, by their connection type, in feed-forward and
back-propagation networks. In the feed-forward type, the
signal flows from one output to one input in the next
layer. In the back-propagation model there are links from
one output to a previous [ayer input.

A Fuzzy Neural Network is set by the following
layers [8]:

B The input layer (fuzzyfication): changes the input
signal in a pertinence value to a class by mean of a
function.

N The input of MIN (MAX) rules : applies the fuzzy
operation AND (OR). The AND and OR rules could
be implemented on different layers {7][8] or in the
same layer [9]. The AND and OR operations could
be also implemented in the same ruler [9].

8 The output layer (defuzzyfication) : changes the fuzzy
signal in a defined value.

Some researchers have used another layer like
the matching layer {8). This layer has a linguistic node as
input with its output going to the rule layer. This layer is
described by the difference function between the input
and the correspondent weight.

4-FUZZY VARIABLES FOR WCODEN PLATE
CLASSIFICATION

The wooden plates, that we have used in this
paper, will be classified in three classes taking into
account the market demand.

B The A class plates are the best ones for pencil
manufacturing. They have a good visual homogeneity.
They don’t have nodes, stripes and dark points on their
surface (see Fig.1).

B The C class plates are intermediate plates. They have
longitudinal stripes. These stripes are visually dark but
their total area is smaller than the plate area (see
Fig.2).
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g The S plates are the worst plates for pencil
manufacturing. They have different pigmentation due

1o nodes, surface defects and stripes. They will be
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Figure I- “A” class and its typical histogram
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Figure 3 - "S" class and its typical histogram

reject in an industrial production line (see Fig. 3).

The wooden plates have a standard size due to
the appropriate pre-processing. We theoretically suppose
that the ideal histogram that represents a perfect plate
would be shown by the equalized histogram in Fig. 4.
The distributed gray levels on the surface would be
equals. given security to visual homogeneity. .

The pixel quantity on the plate surface is
calculated by the area under pulse width of the equalized
histogram. It would be constant for all perfectly ideal
plates, so the “range width” showed in Fig. 4 would be
constant, from plate to plate. A range width increase
implies on a gray level change given a great possibility of
existing nodes, stripes or defects on the plate surface.

The “clbow” is the limit of the smallest gray
level on the plate surface and the highest gray level out of
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Figure 5 - Extracted features from histogram.

plate. This region width would be zero. lts derivative
would be represented by only one point. This is shown by
a 90° inclination from the highest level out of plate to the
smallest gray level on the plate, considering the equalized
histogram. An “elbow region” slope different from 90°
would give information about some gray level quantity
darker than the gray level under the “range width”.

Therefore, changes at these parameters would be
changes in the plate visual homogeneity, in a global way.
Their quantities are fuzzy variables contributing for
classifying the wooden plates.

By sampling the A, C and S plates, we could see
by histogram analysis, that “S” class has the “range
width” wider than “A” and “C" classes. So, this class has
less pixel quantity by each level. “A™ class has the “range
with” slightly narrower than “C” class.

The most of authors have used statistical
methods for classifying textures. One example is the use
of co-acurrence matrices [10]{11]. The inconvenience
with these methods is the great amount of processing time
during the classification.

The proposed method described in this paper is
bounded by real time processing. We have to classify at
least {50 plates by minute. due to industry needs.

We extracted the “range width” from histogram.
taking into account the gray levels greater than a “K”
value, as showed in Fig. 5. This feature gives the plate
homogeneity. A narrow “range width” shows that the
plate has a small quantity of gray levels. The more the
“range width” increase, the more gray levels will be
present on the plate surface. So, this quantity is used as a
fuzzy variable giving the plate membership related to
visual homogeneity.



The second fuzzy variable is extracted from
histogram taking the point quantity at “elbow region”.
This region is gotten checking the peak level from
histogram and thus, searching for the beginning of region
slope. This quantity shows darker ievels than the gray
levels under the range width. This means nodes, stripes or
defects on the plate surface. The fuzzy variable based on
the “elbow region” is an inhibiting variable because this
feature is stronger for “S” class.

The third fuzzy variable is need for
discriminating the “C” from “A” class. The visual
difference between then is the stripes in “C” plate. We do
four transversal scans and then we count the number of
crossed stripes. For the majority of the “A” class this
number is small and for the “C” class this number is big.
Moreover, the number of stripes in the “C” class is the

same in any scan.

4.1 - Fuzzyfication

The neural network input layer has four nodes.
The first one is the range width, the second one is the
elbow region, the third one is related with the giobal
contrast and the last one is the number of detected stripes.
By the histogram of 100 piates, front and back,
we get the range width distribution showed in Fig, 6. By
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Figure 6 - Range width distribution

this graphic, we get the membership functions for the
fuzzy variable named range width, as showed in Fig.7; a
bell shaped function and a sigmoidal function.

The second input is the pixel number of elbow
region. That’s a good separator of bad plates (“S” class).
It’s an inhibitor input for the fuzzy rules. It does the
general rules dependent from a specific input {9].

The third input is gotten by contrast enhancement
and then by counting pixels in dark region. This pixel
quantity gives the membership functions showed in Fig, 8.

The fourth input is gotten by taken the mean of
the four quantities generated by the four transversal scans.
That’s a good variable for discriminating between “A”
class and “C” class plates. The membership function for
this fuzzy variable is showed in Fig. 9.

The inputs are then applied to the
Neural Network of Fig. 10.
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Figure 7 - Membership functions for range width
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Figure 10 - Classifier based on Neural Network
4.2 - Fuzzy Impiementation
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The second network layer (fuzzyfication)
rocesses the input through the membership function from
each class (A, C, and S).

For fuzzy algorithms impiementing we need a
set of operators that will handle the fuzzy quantities
described by the membership functions. These operators
are the intersection (AND), the union (OR) and the
implication (IF ... THEN...). The fuzzy rule layer of the
nerwork uses the union property described by Jang and
Sun [12], that is:

u(x) = max (ux(x), up(x)) where A, B, and C are fuzzy
sets.

The minimum fuzzy neurons are used in the
output layer of membership functions, that is:

u(x) = min (u,(x), up(x)) where A, B, and C are fuzzy
sets.

The last network layer classifies the plates by
only one neuron. We are using the sigmoidal function
setting up three bands. These bands refer to result of
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Figure 11~ Neural Network output

classification for each plate and have the following values,
as we can see from Fig. 11:

from 0.0 t0 0.399 - “S” class

from 0.4 to 0.699 - “C” class

from 0.7to 1.0 -“A” class

5 - EXPERIMENTAL RESULTS

We have used 20 wooden plates (front and back)
for network training, previously classified: six plates from
“A” class. seven plates from “C” class and seven plates
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Figure 12 - Plate "A" classification
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Figure 13 - Plate “C” classification

from “S” class. The output was taken from the
intermediate point of output range for each plate (see Fig.
11) with a 0.01% of error.
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Figure 14- Plate "S" classification

With a test set of 89 plates the system processes
178 images, considering front and back plate sides. in real
time. The Fig. 12, 13 and 14 show the network output for
classifying plates from “A”, “C”, and “S" classes.
respectively, with the resuits showed by Table 1.

TABLE 1 - Neural Network classification

Network Plates Plates Plates
Classification | from “A” from from “S”
class “cr class
class
as “S” class 1 18 56
as “C” class 6 42 2
as “S” class 45 8 0

For network accuracy and reliability testing, we have
taken one plate from each class, randomly, and submitted
it 100 times to the network input. The Fig. 15, 16. and 17
show the results to “A”," “C”, and “S" class respectively.
It can be seen the high accuracy (repeatability) to “S™
class. This class is easy to classify by visual inspection,
due to node distribution on the surface. The same result
was gotten in our implementation. ’

The “A” and “C” classes got good results.
classifying the same plate within the same class all the
time, without any error. This is an excellent result because
these plates are difficuit to classify by human visual
inspection.
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6 - CONCLUSIONS
With the 178 images gotten from the 89 plates
we did classification task. The errors and right

classification percentage are showed in Table 2.

TABLE 2 - Right classification and errors

Class Right Wrong % | % errors
Classification | results | right
A 45 . 7 86.5 13.5
C’ 42 26 61.7 382
S 56 2 96.5 3.5
Total 143 35 80.3 19.7

These results show the excellent classification
rate for “S” class plate, and a good classification rate for
“A” class plate. The “C” class plate could be classified as
“S" class or “A” class depending on demand. If demand is
high, high values from “C” class could classify the plate
as “A” class and low values as “S"” class. If demand is low
all “C” class could be classified as “S™ class. A new input
could be added to the neural network named demand. The
human operator could introduce this value controlling the

network output. We could control illumination over the
scene and increase network reliability.

The MIN-MAX neurons are simple mathematicy)
operations. This assures a reasonable speed during procesg
production. The processing time for ome piate
classification was about 0.39 seconds. Qur system is baseq
on a 486 processor with a Data Translation frame grabber,
and Hitachi camera mounted over a conveyer beit. [
classifies 153 plates by minute. This processing time
could be reduced by changing the processor,
Nevertheless, our system, with the implemented features,
shows compatibility with industry needs.
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