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Abstract

User modelling and knowledge representation are important steps towards building personalised systems. Users’ atten-
tion and communication are examples of social factors that go beyond simply analysing task efficiency, adding additional
complexity to achieving effective human understanding. More specifically, in the educational domain, while the technical
performance of adaptive methods plays a primary role in their adoption by researchers, secondary factors, such as teach-
ers’ ability to understand and their intention to adopt, can also influence the implementation and broader acceptance of
social robots with adaptive behaviours. In this paper, we validate our high-level proposal for user modelling targeting
activities with social robots in the classroom from two different perspectives: the performance of the methods using data
from a real-world scenario, and the perceptions of teachers. For the data analysis, various decision-making methods were
compared. These included two user-parametrised approaches (a simple rule-based and a fuzzy system, both previously
co-designed with teachers) as well as five established supervised machine learning algorithms. For validation of teach-
ers’ perceptions, five teachers were interviewed to gather feedback on their thoughts about our proposal and its practical
implications. The findings demonstrate that while teachers initially preferred the semantic modelling offered by the fuzzy
system due to its interpretability, three out of five teachers changed their preference after being presented with the results
of our data analysis. They favoured the most accurate method over the one they found more intuitive.

Keywords User modelling - HRI for education - Social robots - Teachers - Adaptive systems

1 Introduction

Personalisation in Human-Robot Interaction (HRI) is a key
component for achieving better engagement of the users
with a robot, which commonly leads to higher rates of user
enjoyment statements and perceptions [1]. Its advantages
of making users more engaged are noticeable in both short
and long-term interactions. In the short-term, the system can
momentarily boost the users’ motivation by adapting itself
to address punctual difficulties and supporting students to
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overcome pits of performances [2]. On the other hand, in the
long-term, personalised systems can foster rapport building
and extend the advantages of using social robots in class-
rooms after the novelty effect has passed [3]. This strategy
has a growing application in educational scenarios since it
affords personalised learning for students who interact with
these systems [4].

However, the success of the adaptation relies on the
correctness of the user’s model, where the system tries to
read and understand users’ answers, attitudes, and signs to
decision-making about the adequate adaptation based on
this model. In autonomous robots, the extraction of these
users’ features is commonly performed by cameras and
microphones, and the interpretation of the collected data is
done by using classification algorithms. Although there are
already many existing models, the designing of the model
customised to a given task or context is a potential alter-
native to optimise and processing resources [5]. Despite
the increasing accuracy of these methods in recent decades,
it remains imperative to integrate them into a meaningful
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representation to interpret accurately the current state of the
user. When it comes to the HRI field, all the challenges from
Human-Computer Interaction are inherited and combined to
new complexities brought by the embedded components of
the robots plus the social elements which a human-robot
interaction needs to deal with [6].

The complexity of this process at hardware and software
levels is constantly pointed out as one of the main challenges
of social robots in education, especially the systems that aim
at autonomous behaviours [7]. Furthermore, the difficulty of
providing efficient adaptive methods is attributed as one of
the main causes of few works addressing long-term studies
in HRI for education [8]. As an alternative, presenting intui-
tive ways for teachers to support the system on this objec-
tive was pointed out as a potential solution for leveraging
the use of adaptive systems in learning activities [9].

In addition to these challenges, external factors should be
considered in the educational context. For instance, increas-
ing transparency in the robot behaviour has been shown to
commonly increase the student’s learning experience, but
nothing is mentioned about the teachers’ opinion [10]. On
the other hand, works investigating teachers’ opinion rarely
explore technical details or designing processes with them.
Nevertheless, their intention to adopt social robots in their
activities, their lack of knowledge and the time they need to
get familiarised with new technologies are often acknowl-
edged [11]. Teachers’ involvement in research on social
robots is normally considered at a qualitative level, but few
studies for long-term present reachable and concrete tools
and methods to be deployed for this end. Mostly because, in
practical terms, implementing social robots in educational
settings presents challenges that can hinder their widespread
adoption. Integrating social robots into classrooms requires
teachers to invest considerable time to learn about the tech-
nology and address various logistical issues, which can
impede their regular teaching activities, besides the techni-
cal knowledge adaptation they think they have to acquired
[12].

We postulate that teachers’ understanding and active
participation are fundamental for modelling the student’s
behaviour in HRI for education, in complement to technical
factors of the adaptation method. Moreover, explaining the
adaptation methods to teachers in layman’s terms and dis-
cussing their implications can illuminate previously uncon-
sidered topics. For instance, high-performance classification
methods typically consume more energy and require more
data due to their high demand for computational resources.
To further investigate our hypothesis, we researched meth-
ods that could present better understandability to implement
our high-level proposal of students’ modelling behaviour.

Even so, it is evident that data-driven algorithms gener-
ally outperform user-parameterised algorithms, regardless
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of the users’ level of . However, accuracy is not the sole fac-
tor influencing teachers’ preferences when selecting social
robots for classroom exercises. By validating the design of
more interpretable methods with teachers in real-world sce-
narios, we can compare their performance metrics to those
of established methods that autonomously extract knowl-
edge from data. This comparison can offer valuable insights
into the trade-offs between explainability, accuracy, and
other factors that are essential for teachers when adopting
adaptive social robots.

Building on these observations, we have reformulated
the following research questions:

e ROQI1: How the performance of user-modelling and
adaptive algorithms, designed in collaboration with
experts for greater understandability, compares in their
optimal parametrisation to supervised ML algorithms?

e RQ2: How can the characteristics of this implemen-
tation, such as explainability and accuracy, influence
teachers’ opinions and intention to adopt adaptive social
robots in classrooms?

To evaluate the research questions, an experiment was con-
ducted where a robot approached the teaching content using
the Robotic-Cognitive Adaptive System for Teaching and
Learning (R-CASTLE) [13]. The R-CASTLE, The robot’s
activity followed a quiz mode, providing explanations and
asking three questions. During the sessions, a person with
experience in education adjusted the difficulty level based
on children’s verbal responses and non-verbal cues. We
analysed the outcome of adaptation algorithms in terms of
accuracy with the collected data and teachers’ preferences.
From their performance in the data, we compared the 2
already implemented customizable version of adaptation in
this system (rule-based method and Fuzzy-system) to super-
vised algorithms of machine learning (ML). For the teach-
ers’ opinion, we performed semi-structured interviews with
five teachers, exploring their views on social robots, class-
room research, and the impact of the adaptation methods on
technology adoption in Brazilian schools.

Therefore, the contribution of this paper is three-fold: (i)
a high-level description of several steps towards implement-
ing user-modelling and adaption for real-world applications
of social robots in classroom, taking teachers opinion and
participation in the design; (ii) a technical analysis over the
data regarding the performance of the resulting algorithms
and a comparison to consolidated methods of supervised
learning; (iii) evaluation of teachers, external to the design-
ing phase, in relation to the user-modelling and adaptation
system and their intention to adopt social robots according
to the results they are presented with from the technical
analysis.
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2 Related Works
2.1 Social Robot Interaction Adaptation

The adaptation of robots for the users’ needs has been
widely researched in the last decades [14]. According to
Mitsunaga et al. [15], robots should be able to read sub-
conscious comfort and discomfort signals from humans and
adjust its behaviour accordingly, as other humans do, for
better human-robot interactions (HRI). This claim is sup-
ported by findings of studies on the topic.

In studies aimed at learning the multimodal behaviours
and conversational strategies of the agent to dynamically
optimize the users’ engagement and impressions of the
agent showed a higher evaluation of user enjoyment when
the agent was programmed with adaptive behaviour. The
authors concluded that the effects of the person’s preference
highlighted the importance of considering the users’ expec-
tancies in human-agent interactions [16].

Robots that take into consideration humans displaying of
emotions and humours are also successfully accepted by the
users. A proposal of a system for personalising humour for
interactive robots had a higher preference for users com-
pared to a human comedian [17]. The system was equipped
with natural language processing and emotion recognition
techniques that allowed multimodal mapping of the users’
humour state, which afforded decision-making techniques
for the robot to display appropriate jokes and timing.

A growing trend in adaptive HRI can be noticed in indus-
trial applications as well [18]. The analyses of adaptive
mechanisms comprise physical [19], psychological [20],
and social mapping of human collaborators in their appli-
cations [21], taking into consideration several user inputs,
such as visual cues and even EEGs. The results constantly
point out a high acceptance of robots programmed with
adaptive methods in industrial scenarios, which is shaping
the horizons for the industry 4.0 [22].

However, Pollmann et al. [23] raised the ethical issues
regarding the users’ autonomy and manipulation of them.
As aresult of their observations, the authors proposed three
design principles to balance user experience and ethical
considerations in personal HRI for social robot behaviour:
(1) a gradual model of emotionality, (2) adaptive respon-
siveness, and (3) a progressive reduction in immersion and
motivation over time. These principles are grounded in cas-
cading models, which begin with user characteristics and
preferences as a baseline. The robot’s expressiveness is
then progressively adjusted to maximize the user’s positive
experience while remaining within ethical limits.

In [24], a conceptual model for dynamic robot role adap-
tation for an enhanced flow experience was proposed as a
result of their observation in the literature gap. Many robot

adaptation strategies in social human-robot interactions are
limited by their static and single-dimensional objectives,
which fail to capture the dynamic and multi-dimensional
nature of human interaction. Additionally, another promi-
nent finding from the authors implies that personalization,
in the most of HRI studies, has predominantly focused on
content customization, such as adjusting learning materi-
als or curricula, while neglecting the potential of robots as
embodied social agents. This narrow approach often reduces
robots to the role of personalized content providers, with
a limited adaptation of their behaviour policies to enhance
social engagement.

The complexity of the proposed algorithms for adapta-
tion presents a wide variation, from simple rule-based meth-
ods to complex multimodal systems. Rule-based systems
show results of satisfactory adaptation with a good trade-
off in the observed mainly in those cases that their goals
are very simple or very specific [25], such as adapting the
robot’s speech while talking to the users or whether to talk
or change the robot’s personality [26, 27]. More sophisti-
cated algorithms are also employed. A mathematical model
can be used either to formalize simple things or very com-
plex adaptation systems, such as the Theory of Mind (ToM).
In [28], the authors presented the perception, cognition, and
decision-making of humans through a dynamic mathemati-
cal framework by introducing a novel formalization and
an extension to fuzzy cognitive maps (FCM). This model-
ling was proposed based on the pillars of transparency and
generalisability and outperformed previous state-of-the-art
methods. However, the proposal was not validated from the
users’ understandability point of view.

Finally, in addition to offering more engaging and enjoy-
able interactions, the robot’s behaviour adaptation also dis-
plays broader influences on users. For instance, the level
of automation of a robot adaptation can be related to what
users think about the robot [29]. This phenomenon can also
be expected in education, where the level of autonomy of
the system motivated changing the students’ perception of
the robot. Students participating in autonomous conditions
rated the robot as more intelligent than students in a teleop-
erated condition, even without knowing about the robot’s
operation condition [30].

2.2 Adaptation in Education

Adaptation and personalisation have also long been investi-
gated in the educational realm [31, 32]. Intelligent Tutoring
Systems (ITS), are examples of adaptive systems for educa-
tion that have been extensively investigated [33—35]. These
systems are “designed to incorporate techniques from the
artificial intelligence (AI) community to provide (intelli-
gent) tutors who know what they teach, who they teach, and
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how to teach it” [36]. As aresult, ITS allows for personalized
learning experiences tailored to individual students’ unique
learning styles and preferences. Moreover, Al-driven tools
offer teachers valuable, data-driven insights into student
performance, emotional states, and engagement levels. This
enables educators to adapt their teaching methods, imple-
ment targeted interventions, and provide timely support to
improve learning outcomes effectively [37]. Although they
often present increases in learning outcomes, their evalua-
tion can be affected by the nature of control treatments and
the adequacy of program implementations [38]. Therefore,
allowing customization for adaptive algorithms for stake-
holders who are aware of local influences could be seen as a
potential solution to ease this issue.

Among the methods investigated for the adaptation
mechanisms, using fuzzy systems as part of ITS modelling
can show better performance in the students’ outcome and
the accuracy of the adaptation system [39]. The fuzzy sys-
tem applications for ITS have successfully implemented in
programming platforms [40], augmented reality (AR) sce-
narios [41], and even in social robots [42].

Another important feature of fuzzy systems is their
understandability through their semantic implementation.
Incorporating such strategies into self-regulated learning
scenarios suggests an increase in the students’ understand-
ing of their learning process [43]. By understanding how
the system personalizes learning in semantic terms, making
it more comprehensible from a human language perspec-
tive, students can reflect on their learning and identify areas
for improvement. These findings instigate deeper analy-
ses regarding how teachers would be triggered by under-
standability of autonomous adaptation of social robots for
education.

2.3 Adaptation in Social Robots for Education

Adaptation and personalisation have shown increased stu-
dent performance compared to static robot behaviours [4,
44]. The applications for adaptive robot learning have a
wide range. For language learning, students who interacted
with a robot that personalized its affective feedback strategy
showed a significant increase in valence as compared to stu-
dents who interacted with a non-personalizing robot [45].
For maths, a robot that adaptively scaffolded instructions
was able to help children get better in the topic and was seen
more as a friend the more it personalised the conversations
[46].

The main practice for achieving that is to experiment
with a particular set of users and check out their common
behaviours and perceptions [47]. Nonetheless, there is no
standard agreed measurement framework for assessing the
effectiveness of the adaptation achieved by these systems.
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Furthermore, these methods are mostly based on multiple-
choices and lack of multimodal assessment of students.
Hence, a common strategy used is to add a layer of observed
features on top of adaptive methods from technological
learning scenarios, such as proposed in [48]. The challenge
in using such a method is to incorporate the social features
(extra layer) added by the social robots to the learning expe-
rience, and consequently to the user modelling. However,
the robot’s advantage for enhancing the learning experience
by providing a more concrete interaction when compared
to other devices, as tablets, is a trade-off worth being paid
[49]. In all cases, the propagation of errors in autonomous
classifications of features is a crucial point to pay attention
to when analyzing its results. Thus, it is important not only
to evaluate but also to ensure that the evaluation uses the
correct methods. Otherwise, this can lead to wrong conclu-
sions [50].

Moreover, although the adaptation generated by user
modelling techniques often tends to improve the user-
system interaction, in the majority of systems, these tech-
niques make the system more complex to understand.
Consequently, it should be evaluated whether the adaptation
improves the system and the user prefers the adaptive ver-
sion from it [51].

For that reason, the utilisation of devices that can have
a cleaner reading of users’ intentions might present a more
accurate user modelling. In [52], for instance, the authors
introduced a novel fuzzy-based system for cooperative
learning, integrating a brain-computer interface model
and a fuzzy markup language based reinforcement learn-
ing agent. The system uses agents to support human-robot
interactions in education, with experiments showing robot
teachers boost motivation and learning. The agent personal-
izes content and predicts physiological indices to enhance
co-learning. While highlighting the promise of human-robot
co-learning, the study does not assess user understanding of
the methods.

However, although approaching the social capabilities of
the students in the interactions often lead to better results,
concerns about side effects of these interventions are raised,
such as privacy, security, and workload of the teachers [53].
Therefore, the teachers’ participation and willingness to
adopt social robotic systems are the key to the successful
implementation of adaptive robots in classrooms.

Similarly, a work performed with teachers using adap-
tive robots in classrooms showed important findings regard
to teachers’ understanding and perceptions about the topic
[9]. The outcomes suggest that robots in educational set-
tings should address repeated classroom questions, adapt to
children’s emotions and personalities in real-time through
dialogue-based mechanisms, and dynamically adjust their
roles using memory adaptation. Culture-based adaptation is
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crucial for language learning tasks, and an easy-to-use inter-
face for teachers to update lessons is essential for maintain-
ing long-term engagement.

2.4 Teachers’ Adoption

The use of artificial intelligence (Al) in robots for educa-
tion in the last decade has presented a remarkable increase.
A study analysing the works in the literature pointed out
a boom in the number of published papers starting from
2019 using Al in robots for education. Most of the works
(more than 85%) focus on social features for the robots to
interact with students [54]. However, the authors detected
a serious gap in the investigated work on human-centred Al
(HCAI), which the authors define as “A[ taking humanities
as the primary consideration, which requires explainable
and trustworthy computation for continuously adjusting Al
algorithms through human context and societal phenomena
to augment human intelligence with machine intelligence,
thereby enhancing the welfare of human kinds”. One of
the potential reasons for explaining this phenomenon is the
search for high-accuracy methods rather than explainability,
which means methods that are easier to understand by the
users and stakeholders.

This philosophy aligns with the growing trends still
regarding the explainability [55], and transparency in
human-robot interactions [56]. Explainability in HRI is
defined as novel computational models, methods, and algo-
rithms for generating explanations that allow robots to oper-
ate at different levels of autonomy and communicate with
humans in a trustworthy and human-friendly way [57]. On
the other hand, transparency in HRI focus on the importance
of user awareness of the robots’ attitudes to foster trustiness
[58].

Nevertheless, while it is shown that explainability
increases the robot acceptance in other domains [59], and
explainable Al (XAI) is earning space in education [60],
more investigation is required specifically for explainable
HRI in education. More than increasing teachers’ adoption,
XAl is crucial in learning domains to guarantee that the
employed methods are utilised responsibly and ethically.

Although there is a gap in the literature related to studies
investigating the impacts of explainable strategies foster-
ing the adoption of social robots for teachers, main aspects
and concerns can be transferred from similar applications
of technology in education. The exploration of explainable
Al methods to interpret deep learning-based models for
STEM teachers [61]. After being exposed to explainable Al
methods, participants reported a higher trust and technology
acceptance in the classroom discourse models.

Similarly, the intention of adopting theoretical contents
related to technology requires the acceptance of teachers

for adoption. A study investigating 180 grade 5 students
and 6 teachers concluded that teachers’ intention of adop-
tion is highly correlated with their interest [62]. They were
submitted to mandatory Computer Science Continuing Pro-
fessional Development program over an academic year and
evaluated through interviews, and survey throughout the
program.

Results showed that teachers’ self-efficacy and interest
significantly influenced the likelihood of content adoption,
with interest playing a pivotal role. Teachers with low ICT
experience needed onboarding, while middle-aged teachers
required more convincing to adopt CS content. The findings
highlight the importance of the interest, and establish the
interplay between contextual, prior, and acceptance factors
in adopting CS pedagogical content for primary education
that was observed to increase a long time, the more teachers
understood the methods.

In addition to the typical concerns associated with con-
ventional technologies, social robots introduce unique chal-
lenges related to social and ethical issues. These challenges
include questions about privacy, the appropriate use of
Al, and the implications of robots simulating human-like
behaviour. Such concerns create paradoxical dilemmas. On
one hand, researchers strive to design robots that exhibit
human-like manners and social intelligence to enhance user
acceptance and engagement. On the other hand, these very
human-like qualities often lead to discomfort and rejection
among users, who may perceive such robots as uncanny
or fear potential misuse of their human-mimicking capa-
bilities. This critical disjunction highlights a fundamental
tension in social robotics, as efforts to make robots more
relatable and effective can sometimes undermine public
trust and acceptance [63]. For these reasons, explaining
how the algorithms work to afford these social behaviours
is the key point for fighting the barriers of their adoption.

3 User Behaviour Modelling

To implement research in classrooms, one key element is
to provide understandable and minimally impactful inter-
ventions and tools for teachers. At the same time, designing
computational models for human behaviour representa-
tion is a complex task. Aiming to present a solution that
finds a good balance between these two assumptions, the
R-CASTLE framework was proposed [13]. Its main goal is
to provide intuitive content programming to be addressed
by a social robot, that also affords adaptive behaviour of the
robot that can be customised by the teachers. Since custom-
ization and adaptation are crucial for ensuring the success
of long-term studies and activities in classroom settings,
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the proposed system must provide these capabilities while
maintaining ease the parameter configuration.

While previous studies proposed and initially validated
two adaptation algorithms, in this paper we are delving into
the analysis from the data perspective and from teachers’
point of view. Nevertheless, we bring key elements from
our works previously published to highlight the important
points of this study and to make its analysis clearer.

The robot is programmed to approach the content with
the students using the strategy of constructivism, where a
concept is presented and then the interlocutor can build a
line of thought on the concept and ask questions about it to
guide the listener through the learning process using con-
structivism. This strategy is one of the most used paradigms
in social robots for education [64]. Hence, it can be modelled
in the robot as a quiz-mode game, in which the adaptation
is analysed in windows related to every question. Regard-
less of the algorithm used for adaptation prediction, we pro-
posed a generalized modelling of the students’ behaviour,
resulting from interactive design performed with teachers
of elementary school that participated in previous experi-
ments. We identified some measures we could take autono-
mously with the cameras and microphones of the robot and
clustered these measures in superclasses of students’ skills
when learning. In an oversimplified way, the goal of this
adaptation mechanism is to translate audiovisual observable
manifestations of the students into the user-modelling pro-
posal of the system.

The observable student’s manifestation are signals cap-
tured by microphone and cameras of the robots and pro-
cessed by a set of recognition algorithms. The signals are:
Face gaze (Fg), Posture quality (P), the Number of spoken
Words (nW), the correctness of the answers (Right/Wrong
answer represented by RWa), the balance between good
and bad emotion by facial expression (Em), and the Time
the student takes to answer a question (Tta). From a cod-
ing perspective, the observable signals were extracted as
follows: The Face Gaze is detected by the Haar Cascade
method [65], the emotion classification is the correspond-
ing value of positive emotions minus negative emotions
detected by a Convolutional Neural Network (CNN) [66],
the number of words is counted by taking the user’s verbal
answer with Google Cloud Speech API through the Python
Speech Recognition' into a string, which is also the input

Table 1 Reading values grouped by observed users’ skills

Attention (o) Communication (/) Learning (y)

Face gaze (Fg) Number of Words (nW)  Right/Wrong
answers (RWa)

Posture (P) Emotions (Em) Time to

answer (Tta)

L https:/pypi.org/project/SpeechRecognition/ Accessed Feb 2024,

@ Springer

to the algorithm that generates the Right/Wrong questions
according to a matching pattern with the expected answer.
This process is better explained in [67].

They were proposed to be clustered in the superclasses
of major skills of Attention (@), Communication (), and
Learning (y), as presented in [68]. Table 1 summarizes the
measures in their respective major skills.

The measures are taken during a cycle of interactions
between the student and the robot, called here as adap-
tive window, and denoted by ¢. An adaptive window is pre-
defined by the programmer, and it is usually a set of robot
questions or requisitions to evaluate the success rate of the
user’s response or a given time in seconds predefined before
the interaction starts. Therefore, results from each one of
the major skills are taken by calculating (regardless of the
method used) the following functions: «(t) = (Fg(t), P(t)),
B(t) = (nW(t), Em(t)) and v(t) = (RWa(t),Tta(t)) in
an adaptive window ¢. Likewise, the calculation of the final
adaptation in a given ¢ (F'aqp(t)) based on these three skills
would be mathematically represented as in Eq. 1, in which
the functions themselves can vary according to the chosen
method, as presented in the following subsections.

Faap(t) = Faap(a(t), B8(t),7(t),t €N (1

Two adaptation methods were previously proposed based
on the reading signals of the users in the R-CASTLE and
briefly described in the next subsections. The Simple Rule-
Based System, briefly described in Sect. 3.1, and the Fuzzy
Decision-Making System, briefly presented in Sect. 3.2. In
both of them, the person running the activities (normally the
teacher) has to set some values of references for each one
these variables to guide the system into this process. Thus,
the Knowledge present in the algorithm is estimated by an
expert. Next, we want to evaluate how Machine Learning
algorithms, that can learn and set parameters from the data-
set, can predict adaptation results compared to the previ-
ously proposed methods.

3.1 Simple Ruled-Based System (SRB)

The Simple Ruled-Based (SRB) decision-making algo-
rithm is proposed in [68]. In summary, in this method, the
user needs to set maximum values for every readable vari-
able that will be used to transform each output value in the
interval [0, 1]. Signal values going outside this interval are
capped. The result of each major skill will also be a nor-
malized value, in the same interval, that makes an average
of each value belonging to that major skill, multiplied by a
weight given by the user for each one of the major skills, as
in Eq. 2.


https://pypi.org/project/SpeechRecognition/

International Journal of Social Robotics (2025) 17:3069-3086

3075

Faap(t) = (wo * a(t) + wg = B(t) + wy xv(¢)),t € N 2)

The system decides then to increase, maintain, or decrease
the intensity of a given behaviour (that in the experiment of
Sect. 4 will be the difficulty of the questions) according to
the activation function, 4ct(f), depending on the resulting
value of Faqy(t), given by Eq. 3.

1, ifFAdI;(t) > 0.66
ACt(FAdp(t)) =<0, 1f0.33 < FAdp(t) < 0.66 3)
—1, ifFAdp(t) <0.33

3.2 Fuzzy Decision-Making System (FDMS)

The fuzzy modelling was implemented in collaboration
with teachers and built upon the ideas of the SRB algorithm
[69]. The goal, however, was to provide more intuitive mod-
elling through the semantic rules. It was developed using
the Python library SkFuzzy 0.2, which requires defining
fuzzification and defuzzification mechanisms, fuzzy sets for
linguistic variables, and corresponding fuzzy rules. Triangu-
lar fuzzification was selected for its simplicity after testing
other shapes (Gaussian and trapezoidal) with similar accu-
racy. The inference method, proposed by Ebrahim Mamdani
in 1975 [70], and Center of Gravity defuzzification were
used.

Teachers contributed to defining the linguistic variables
and rules, enabling a hierarchical fuzzy structure. Each
major skill (e.g., Attention, Communication, and Learn-
ing) undergoes an independent fuzzy process (fuzzification,
semantic association, and defuzzification) before combin-
ing the results into a final adaptive fuzzy system. Users
map numeric inputs to semantic variables (e.g., 3 devia-
tions=‘“Rare”, 2seconds to answer=‘Fast”, 14 words to
answer="“Talkative”, and so on) and can customize seman-
tic rules, although default rules are provided. Thus, this
is the foremost advantage of fuzzy modelling regarding
understandability. The variables can be associated through
semantic rules that are more understandable for humans.
For instance, if “Time to answer” is fast and “correctness of
answer” is high, then learning (y) is high.

The final adaptive measure, called the Fuzzy Adaptive
Function (FAF), calculates the level of adaptation for the
questions presented to the students. It integrates the three
measures (a, f, and y) using MaxMin operations and out-
puts terms such as Decrease, Maintain, or Increase to guide
adaptation.

2 https://pythonhosted.org/scikit-fuzzy/overview.html Accessed Dec
2024.

3.3 Dataset Creation

To acquire a testing dataset for performance and teachers’
perception validation, we performed activities in a video
room of an elementary school, where a total of 39 children
from 5th grade participated by individually interacting with
a humanoid robot, NAO, answering questions about “Envi-
ronmental Health”. Their teacher programmed the content
to be addressed through the GUI of R-CASTLE. This con-
tent was composed of 30 questions divided into 5 levels of
difficulty.

The interaction sessions with the robot were run follow-
ing the Wizard of Oz technique [71], in which a hidden per-
son teleoperated the robot to trick the users that the robot had
life by itself. The person operating the robot was a 3rd-year
student of learning science that we hired.’> She was asked
to perform her judgment for the robot’s behaviour change
in-loco and in real-time. Furthermore, we also asked her to
base the decisions on the observations she made regarding
students’ audiovisual signals, according to the measures
presented in Table 1. However, we did not mention prefer-
ences for any measures.

The robot started making a question of difficulty level
3 and, after the current student answered the question, the
person controlling it chose if the difficulty level of the next
question would be increased, decreased, or maintained,
based on the current student’s answers and body signs, as
described. Thus, the dataset true labels are given by a human
decision of the adaptive function.

Sessions were made in natural conditions of the school,
meaning no actions were taken to minimize potential noises
such as light or sound filters. We decided to perform a test
in this way to stay as close as the setup faced when experi-
menting in real-world scenarios. Afterward, measures of
these indicators were extracted in the videos recorded from
the robot’s camera using the R-CASTLE off-line evaluation
feature. It uses machine learning algorithms for audiovisual
recognition to extract users’ observable values. A result-
ing dataset of these measures was created, comprising all
the autonomously read data and the true labels regarding
the robot’s behaviour adaptation [72]. The adaptive win-
dow was set for the time of each question. Therefore, each
sample comprises one tuple containing 5 out of the 6 read-
ing values (we could not use the posture measures properly
in this experiment), considering the time interval in which
the current question started until the time it ended. Each
tuple is considered an adaptive window and the labels are
decrease (—1), maintain (0), and increase (1) the content’s

3 In this course, students in the 3rd year have already studied peda-
gogy strategies and have hands-on experiences supporting teachers in
classes of Elementary schools.
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difficulty level. A total of 117 samples of adaptive windows
were collected.

The dataset has the limitation of being unbalanced, as
visible in the confusion matrix of Table 4. There are more
samples of the Decrease class than the others. Nevertheless,
we opted to retain the dataset in its original form, acknowl-
edging the likelihood of student errors outweighing cor-
rect responses, particularly in activities introducing new
subjects. Consequently, we aim to investigate the system’s
performance under these conditions to gain insight into its
behaviour in challenging learning scenarios as they are.

3.4 Supervised Algorithms

To verify the performance of the given methods face to ML
algorithms, we have considered the methods: Multilayer Per-
ceptron (MLP), Support Vector Machines (SVM), K-Near-
est Neighbors (KNN), Random Forest Classifier (RFC), and
Logistic Regression (LR). Please note that this last method
of linear regression has a very similar approach to the rule-
based system. We chose these methods because each one of
them has a different approach to extract the knowledge from
the dataset, as well as to perform a searching for the best
model of prediction in the possible solution space [73]. In
this case, there was no division in the skill measures (o, £,
and y) since these supervised methods implementations are
only being made for performances comparison and database
analysis, whereas the division of the skills measures in the
rule-based and fuzzy system allows to use and analyse the
skills individually.

The algorithms were implemented using the Python
Scikit-Learn library.* All the parameters not reported were
used as their default. We run exhaustive Grid Search’ to find
the best parameters for each method, using a 10-fold cross-
validation. Results are reported in Table 2.

4 Data Performance Validation

In this section, we are providing analyses of the proposed
algorithms based on their performance over the acquired
dataset and comparing them to ML methods of supervised
learning. Our objective is to understand how the perfor-
mance of the proposed user-parametrised algorithms com-
pares to algorithms that learn from data.

4 https://scikit-learn.org/stable/. Accessed Feb 2024.

5 https://scikit-learn.org/dev/modules/generated/sklearn.model_select
ion.GridSearchCV.html, Accessed Dec 2024.
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Table 2 Best parameters from the Grid Search, with the best perform-
ers in bold

Method Parameters

KNN n_neighbors: [3, 5, 7]

MLP hidden_layer_sizes: [(50,), (100,), (50, 50)],
alpha: [0.0001, 0.001]

SVM C:[0.1, 1, 3, 5, 10], kernel: [rbf, linear]

RFC n_estimators: [50, 100, 200],
max_depth: [5, 10, None]

LR C:[0.1, 1,10]

Table 3 Best weights and operational parameters for SRB and FDMS

methods
Method  w, wg W, Fg Em Nw Tta RWa
RBS 00 04 09 20 413 5 59 1

FDMS na na na 30 500 4 78 1

Table 4 Confusion matrix with the Precision, Recall and F-Measures
of the RBS and FDMS

Labels RBS FDMS

True\Given -1 0 -1 0 1

-1 54 7 0 53 3 6

0 10 2 1 11 1 1

1 10 9 24 11 2 29
Precision 0.73 0.11 0.96 0.70 0.17 0.83
Recall 0.89 0.15 0.56 0.87 0.08 0.67
F-1 0.80 0.13 0.71 0.77 0.11 0.74

4.1 Human Parametrised Algorithms

Considering the parameters of the systems RBS and FDMS,
we took the results from the previous validation phases of
these algorithms and presented them to the teachers who
participated in the data collection phase during a post-exper-
iment feedback session. We also shared the performance of
these two methods over the acquired data, along with vari-
ous parameter configurations changes, to provide a clearer
understanding of how these variations affected accuracy.
Teachers and experimenters realised that the accuracy of the
human-parameterised tests for both algorithm was below
50% with the initial parametrisation teachers chose. It was
agreed that, for a better comparison with ML algorithms,
we needed to determine the optimal configuration for this
parametrisation. Subsequently, we conducted an exhaustive
grid search for these parameters with the teachers, based on
the dataset, and the best parametrisation found is shown in
Table 3. Since this configuration had already been computed
in prior analyses with the teachers, we did not perform cross-
validation, but instead used the entire dataset and evaluated
it per class (as shown in Table 4. Therefore, our goal in this
part was to validate the design of these two methods - devel-
oped in collaboration with the teachers during the design
phase - rather than to optimise their parametrisation.


https://scikit-learn.org/stable/
https://scikit-learn.org/dev/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/dev/modules/generated/sklearn.model_selection.GridSearchCV.html
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In Table 4 is presented the confusion matrix as well as the
measures of precision, recall, and F-1, for both methods RBS
and FDMS, presented by each one of the classes: Decrease
(—1), Maintain (0) or Increase (1) the difficulty level. The
database is unbalanced, being 61, 13, and 42 samples of
the classes Decrease, Maintain, and Increase, respectively.
Thus, evaluating the methods by their accuracy (correct pre-
dictions divided by the total classification attempts) is not
a fair analysis, being left behind in this discussion. Hence,
the values of precision, recall, and F-measure (or F-1) were
used. The metrics of these methods in all the dataset plus
their accuracy are shown in Table 5.

4.2 Supervised ML Algorithms

Table 6 shows the resulting metrics (average and standard
deviation) on the performance obtained for the supervised
algorithms in a 10-fold cross validation. The methods were
parametrised with the best parameters found using the Grid
Search method, as pointed out previously. The metrics
were calculated using the class-weighted method due to the
imbalance of the classes.

4.3 Discussion

Analysing the videos, it was possible to note frequent out-
liers from the Face Gaze and Emotions due to luminosity
problems, even though we tried our best to parametrise
this method in the R-CASTLE offline laboratory. Thus, the
classification measures are expected to be slightly altered
for this reason. Overall, the RBS results showed a higher
performance of this method with lower values for w,, wy
weights, which is justifiable once these outliers are given
less weight in the final adaptation classification. Although
low accuracy is not the desirable outcome in this situation,
the proposed modelling of separating in weights and the
major skills facilitates an easy workaround to overcome this
technical limitation. The FDMS presented similar measures
to RBS. Results of their precision and recall showed that
they have very close behaviour related to the false positives
and true negatives (a small variation of 0.02 points), except
for the Increase class, that presented the measures: precision
13% higher and a recall 11% smaller in RBD compared to
FDMS. This means that FDMS increased the difficulty more
than it should, whereas RBS chose to decrease more than it
should for this dataset.

According to the teachers in the post-experiment feed-
back, normally, reducing difficulty beyond the actual
requirement might lead to increasing students’ boredom, as
he may feel less engaging. However, teachers have noted
that this approach does not necessarily result in learning
regression. On the contrary, improperly increasing difficulty
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Table 5 Measures of the SRB and FDMS overall
Method Precision Recall F-1 Accuracy
SRB 0.6 0.53 0.54 0.61
FDMS 0.56 0.54 0.54 0.66

Table 6 Average (SD) of'a 10-fold cross validation for different models

Model F1 Precision Recall Accuracy
KNN 0.65(0.13)  0.64(0.13)  0.70(0.13)  0.70(0.13)
MLP 0.62 (0.18)  0.67(0.14)  0.62(0.20)  0.62(0.20)
SVM 0.77 (0.09)  0.75(0.08)  0.81(0.09)  0.81(0.09)
RFC 0.79 (0.09)  0.77 (0.09)  0.82(0.08)  0.82(0.08)
LR 0.79 (0.09)  0.75(0.09)  0.83(0.10)  0.83 (0.10)
Table 7 Features importance

Feature RFC LR

RWa 0.620176 0.969261
Tta 0.150759 0.000861
Em 0.087800 0.001305
Gf 0.071711 0.062469
Nw 0.069554 0.019805

could indeed foster a more challenging environment, but it
also carries the risk of potential learning setbacks. Hence,
solely evaluating the effectiveness of these methods based
on quantitative measures, without considering their impact
on students’ perception, may fail to accurately assess the
true implications of such algorithmic adjustments.

The RFC and the LR were the ones that presented higher
metrics. Checking the Feature Importance® of these algo-
rithms, shown in Table 7, is possible to observe that the
most relevant features was the threshold in the correctness
of the answers (RWa), followed by the time to answer (Tta).
It means that the correctness of the answer given by the stu-
dents was also the most relevant feature in the classifica-
tions, just as observed with RBS with the higher values to y
and the FDMS, in which more extreme values of y (Learn-
ing skill) led to more accurate predictions for this dataset. In
fact, the importance for the RWa feature in the LR was 0.96,
that matches with the obtained value for the SRB for the y
parameter that was 0.9. These findings suggest that the per-
son operating the robot when it needed to make the decision
prioritized the students’ right answers rather than the other
measures. This fact was later confirmed by the professional
hired for the in-loco labelling.

Results obtained of ML classic methods corroborated
with the outcomes of both approaches, RBS and FDMS,
previously implemented. These findings also supported
the findings of other multimodal classification studies [74],
reporting constant setbacks and difficulties for adaptive
behaviour in HRI.

6 A measure that goes from 0 to 1 of each feature, where 0 means not
relevant at all and 1 means relevant to the classification.
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Higher values in the F-1 of supervised methods (almost
20% more in the largest case) may influence one to believe
that supervised algorithms are a better decision-making
solution to these problems. However, it is also important to
consider that they take time to collect previous data for train-
ing; their parameter configuration is not intuitive (mainly
for non-programming people) and they may present overfit-
ting to this dataset. These facts can be critical once they may
compromise the viability of the system as a facilitator for
teachers in practical exercises.

By these results, we conclude that the performance of
methods with higher explainability are always outperformed
by the tested ML methods in their best parametrisation. This
difference happens at minimum at 11%, in the case of the
F-1 for KNN, and maximum 25% for the RFC. These find-
ings answer our question RQ1 (How does the performance
of adaptation algorithms with high-explainability can com-
pare to supervised ML methods?).

5 Teachers Assessment Validation

To validate our proposal from the teachers’ perspective, we
conducted a qualitative analysis of the data collected from
interviews performed with 5 teachers who did not partici-
pate in the user modelling proposal.

The recruitment was done by sending the invitation to
social media groups of teachers, and the first ones to sub-
scribe to the project would be taken if they fit the inclusion
criteria. The inclusion criteria were teachers of elementary
school that have more than 5years of experience in class-
rooms, regardless of the use of technology they have in their
classroom or their familiarisation with the topic. To preserve
participants’ opinions unbiased, the final goal of the inter-
views (checking their perception of adaptive methods for
social robots in a classroom) was not informed in the call for
participation. Instead, the announcement only informed that
they would participate in a 60-minute conversation about
technologies in classrooms.

5.1 Participants

Registered participants were 5 teachers (named here T1
to T5) belonging to elementary schools from different cit-
ies in the state of Sdo Paulo, Brazil, with age in average of
43.6 y.o (SD 9.39) and 24 (SD 8.86) years of experience
in classrooms. To preserve their identities, we provide their
profiles that can be useful to understand their opinions. The
first participant (T1) was a retired teacher working for more
than 35 years until 2019 only in public schools with children
around 6 y.o. The second and fourth participants (T2 and
T4), had similar profiles, working only in the same private
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school, and both of them described their school’s profile as
“Very motivated to adopt high-tech and innovative solutions
for education”. Finally, the third and the fifth participants
(T3 and T5) were teachers working both in private and pub-
lic schools. They were asked to give their feedback based on
both scenarios and to be clear about each one they were talk-
ing about. The participants were all women, which is a fair
representation of the Brazilian scenario, since almost 90%
percent of the primary level teachers in there are women,
according to Unesco.’

5.2 Methodology and Structure

We used semi-structured interviews, in which one inter-
viewer (always the same experimenter) supported the
teachers to fill out Likert scale questions and also answer
open-ended questions regarding their responses afterward
to collect their opinions on overall and specific points.
The support was provided if the interviewer identified
that teachers were hesitating regarding what the questions
meant. This procedure was adopted to guarantee a common
interpretation from all the teachers about the proposed ques-
tions.” Although most of the data was structured for objec-
tive measures, two researchers analysed the videos and
scripts, checking the conclusions we can draw from teach-
ers’ opinions, following a simplified version of the work
done in [75].

The interview was structured in two phases: one contex-
tualisation phase and a discussion focused on user model-
ling and adaptive methods for social robots, both planned
to last 30 minutes each. First, we have a generic discussion
about technologies in classrooms, social robots, and a high-
level explanation of the R-CASTLE, for a better contex-
tualisation of these teachers in the project. Afterwards, we
started the discussion of the computational modelling of the
students and presented our modelling and results to foster
the discussion, as detailed in the next subsections.

5.3 Contextualisation Phase

In the first phase, we analysed the participants’ familiarity
with technology and how they use popular devices in their
daily activities. We also asked for their perceptions and
opinions on social robots, without properly defining what
we meant by the term to validate how much they would
know about the topic. We then presented a scientific defini-
tion and videos and asked similar questions to see if they
had any new ideas.

As the scientific definition, we used the one presented
in [76] that says “A social robot is an autonomous robot

7 https://data.uis.unesco.org/index.aspx?queryid=3801, visited in Dec
2024.
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that can connect and communicate with humans and other
social robots by adhering to the social behaviours and rules
associated with its role in a group”. After, we showed vid-
eos about social robots® (from minute 2:45 to 3:35) and the
R-CASTLE video’ (from minute 3 to minute 7).

Before defining the term, teachers reported seeing and
understanding social robots more as personal assistants,
such as Amazon Alexa and Apple Siri, and not having a
physical body. After explaining and showing the videos and
assuming social robots would have a physical body, they
kept their opinion that it has the potential to support them
as personal assistants but also to practice content already
taught. At this point, teachers have already manifested their
beliefs about the most known advantage of social robots
at first compared to traditional methods: the novelty fac-
tor [77], and the importance of adaptation in such systems.
Participants also mentioned the fact that adaptation can be
crucial both for regular personalisation for each student and
also for the personalisation to children with special needs,
like autistic children.

One teacher T4 also mentioned how to use influencing
variables to extend the students’ motivation to play with the
robot: “I believe the time they are exposed to the robot also
can influence how fast they can be bored at this [the robot]”.
This strategy has been long time evaluated and deployed in
other scientific works, and they indeed tend to show better
results when applied [78].

Finally, all of them brought at some point the practical
challenges that social robots face to be part of their regular
teaching toolkit, that are also well-known issues according
to literature. For example, the high financial cost of social
robots [79], the lack of technological knowledge of teachers
to deal with these robots [80], how learning new method-
ologies, specially such a complex one, had an impact on
their time management [81], and how administrative lay-
ers of their school and children’s parents acceptance play
a role in the social robots’ adoption [82]. Although these
points are relevant and merit further discussion, this work
focuses solely on teachers’ opinions and feedback regarding
the adaptive methods that were tested. Nevertheless, it was
evident that the methods presented in this paper have the
potential to support teachers in addressing key challenges,
such as familiarising themselves with the technology and
reducing the time required to design and evaluate activities
involving social robots.

This first part was a fruitful opportunity to understand,
in general lines, at what stage teachers’ opinions regard-
ing social robots take place in the Brazilian context. It also

8 https://youtu.be/j23qqcDGUIE?si=j4g9BhA Ublqoi4Cg%26t=165.
% https:/youtu.be/GINj98L 1 Mrc?si=SHDQv5AHc50WcTys.

suggested that teachers’ theoretical and practical percep-
tions are somehow aligned with common findings in the
literature.

5.4 Adaptive Methods Discussion
5.4.1 High-Level Adaptive Modelling

Finally, we presented to them the proposed modelling (pre-
sented here in Sect. 3, however, obviously in simplified
terms and not using technical jargons), asking for their opin-
ion about it, as well as comparisons with the manner they
normally perform student’s evaluation for content adapta-
tion themselves. Additionally, we investigated whether they
judged the modelling suitable for their context and ques-
tioned how it would work in a specific context they have (or
used to have) daily in their activities.

We also explained that we are aware that evaluation
by human observation is still better. Nonetheless, when it
comes to computational modelling, and given the techni-
cal limitations at the moment this implementation was done,
we should keep attached exclusively to quantitative mea-
sures that the recognition algorithms provide and perform
an analysis based on their outputs.

Teachers show plurality in their answers, as shown in
parts of T3 and TS5 mentioned to follow, but all of their
answers converged to analysis extremely peculiar of human
sense, observation and assessment. T5 said, “I normally try
to understand the line of thoughts that they [the students]
are building when answering my questions. Not always they
come with the right answer, but, by doing that, I can have a
hint whether they are on the right way and, if not, how I can
take advantage of parts of their thinking process to correct
them”. Similarly, T3 claimed: “I found very interesting this
modelling, especially because we can split the measures into
the major skills [attention, communication, and learning].
I say it based on my own experience. Oppositely to what
people think, I base my evaluation on the students’ answers
more in their communication than on the correctness of the
answers. [...] In their answer [students], they can just rep-
licate something they hear and don t understand, and when
I ask them why they think it is correct what they just said,
their facial expressions tell me a lot of things that were hid-
den in their verbal answer”.

Although such a feature of providing critical assessment
to machines seems still far from being implemented, these
thoughts shed light on the complexities in truly understand-
ing and modelling human behaviour and communication,
in which points the human evaluation is still outperforming
machine evaluation. After these two teachers acknowledged
that they understand that machines are still not able to per-
form the evaluation they mentioned, they both agreed that
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Fig. 1 Teachers classification
given weights 0 to 5 (0 most
important) to the main factors

regarding the robot behaviour
Accuracy

Transparency
Delay
Customisation
Energy

0

B Extremely important
Not important

Factors average of teachers ranking

w

N

Fig. 2 Ranking of factors from the most important (smallest) to the
least (highest)

the computational modelling presented was adequate for its
aims.

5.4.2 Impactful Factors for the Adaptive Method

When this last topic had concluded, we asked them for their
opinion on the importance of the 5 factors we hypothesised
that they could interfere when using adaptation methods.
They are: Accuracy of correct behaviour, Transparency
(teachers’ understanding of what the algorithm is doing),
Delay in response time, Ease of algorithm customisation
for each activity, Energy/battery consumption. Participants
were first invited to give importance to the factors on a Lik-
ert scale, and second to rank these factors in ascending order
of importance. The ranking was important to understand
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Importance of factors in the robot's behaviour

1 2 3 4 5

B Important but not critical [ Moderate

Extremely irrelevant

teachers’ initial preference for each particularity of the
methods if they had to choose between them, because, based
on our experimenting so far, none of them could present all
of them combined.

Important to note that, even though we did not evaluate
the algorithms in Sect. 4 in terms of time to respond and
energy consumption, we consider it relevant to bring them
in discussion with the teachers.

As illustrated in the chart of Fig. 1, 4 out of 5 teach-
ers rated “extremely important” in the factors of accuracy,
transparency, and customisation. However, when they have
to prioritise one over another, teachers most of them classify
accuracy as the most important factor, followed by customi-
sation, transparency, response time and energy consump-
tion, respectively, as illustrated in Fig. 2.

5.5 Teachers’ Preferences of the Implemented
Methods

For the validation of the adaptation methods from the
teachers’ perspective, we presented the three mecha-
nisms discussed in this paper-Simple Rule-Based (SRB),
Fuzzy Decision-Making System (FDMS), and supervised
machine learning methods-through a high-level overview.
We explained the core ideas behind each approach, includ-
ing practical aspects of parameterisation and simplified
descriptions of their internal workings, without disclosing
any results. Regarding the machine learning methods, the
interviewees described them as “computational procedures
that, after being presented with several examples, cali-
brate themselves to classify new entries.” All ML methods
were grouped into a single category to emphasize that they
require multiple runs with different children to achieve ade-
quate calibration.
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Fig. 3 Teachers preferences for

the adaptation methods before

and after being exposed to the
method’s performances, as in

Sect. 4 5

w

N

—_

0

We asked the teachers which of the presented methods
they would prefer to use if the system were implemented in
their classrooms, and invited them to elaborate on their rea-
soning. At this stage, all teachers indicated they would need
more time to make a confident choice. Based on their initial
understanding, 3 out of 5 teachers preferred the semantic
configuration (FDMS) (T3, T4, T5), one teacher expressed
a preference for either the SRB or FDMS (T1), and one
teacher preferred the supervised method (T2), as shown in
the first group of bars in Fig. 3. Please note that for a better
representation in the figure regarding the teacher who chose
both SRB and FDMS first, we marked as 0.5 for each one
of her choices.

When asked their reasons, teachers who have chosen
the FDMS claimed it was because of the ease of setting
their parameters, as exemplified by the phrase of T5: “If
1 understood correctly, I can easily change the configura-
tion between activities, right? So, since I work with many
activities during the day, I prefer having an understandable
parametrisation because I believe I can work faster this
way”. The teacher that chose either RBS or FDMS justi-
fied her choice as "Since in both the mathematical method
and in the ‘wording’ one I have to set numbers, but in the
second I have to set word-rules too, I might rather stay only
with the numbers sometimes. But the semantic method looks
more efficient when I need more detailed adaptation”. On
the other hand, T2 explained her choice for the supervised
machine learning algorithm as “... for me, it is easier and
better to just show samples of students attitudes when [
want the robot to learn how to adapt its behaviour”.

Finally, we debriefed the teachers on the results pre-
sented in Sect. 4, highlighting that system performance may

Teachers preferences
M SRB @ FDMS B ML

vary across different scenarios, but that the current figures
reflect outcomes from experiments conducted in real-world
settings. As a result, three teachers (T3-T5) changed their
preference to the supervised machine learning methods, as
illustrated in the right-hand bar of Fig. 3.

When inquired for their reasons for changing, their
answers were mostly grounded on what would be best for
the students from their point of view but also the rest of the
school staff, as said T2: “I think if the deliberative board
of my school knows about this difference in the accuracy,
they would push me towards using the supervised methods.
1t is how they report to the children's parents that the school
is always doing the best for their kids”. Conversely, T5
said she would change voluntarily: “We are pushed to use
so many new methods that are given to us [from the delib-
erative board] that one more or one less would not make
much difference to me [about getting used with the super-
vised methods, even if that was not the one she said it would
be more intuitive for her]. I would be happy knowing that
1 would be using the best methods for my students though
[.]"

T5 even empathised her reasons with a sort of joke: “/
would change because it was scientifically proved to me that
this [supervised machine learning algorithms] can have a
better performance” while she gigged. This opinion change
is not surprising, given the rank they did before knowing
these results, where they assessed the accuracy of the adap-
tive methods as the most important factor.

On the other hand, T1 kept her choice with the expla-
nation of still preferring fast setting-ups rather than having
higher accuracy achieved over a longer period. “Since my
activities were very dynamic, I would take a lot of time to
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make the accuracy good with many samples, so I would still
prefer the semantic configuration [the FMDS]. Even rather
than the mathematical model [RBS], on second thought”,
she concluded, however, with no justification to drop the
RBS.

As a final step of the interview, we explained to the par-
ticipants that, with appropriate parameter tuning and across
different scenarios, the other methods could also achieve
improved accuracy. We also briefly discussed the challenges
involved in collecting the amount of data required for the
supervised algorithm to converge. Overall, participants con-
cluded that, regardless of the method used, several trials
would be necessary for them to form a well-grounded opin-
ion about the presented approaches-highlighting the need
for further long-term experiments. Lastly, they expressed
satisfaction and were impressed with the information pro-
vided during the study.

5.6 Considerations

Based on our observations and experience during this study,
we identified several insights that could benefit future
research. For example, to obtain more meaningful qualita-
tive feedback and encourage greater teacher engagement, it
was essential to clearly explain our application and ensure
participants fully understood our goals. In this study, teach-
ers initially perceived the robot as a personal assistant until
we clarified its intended role as a social robot. After this
explanation, they developed a clearer understanding of its
purpose and could better appreciate its potential benefits in
educational settings.

Unlike previous studies in the literature, where teachers
were only presented with lecture-style and group-work in
role-playing scenarios [75], the exposition to a real-world
scenario and a live discussion of the results afforded a more
concrete view and judgment of social robots in classrooms
to participant teachers. Especially in cases where adaptation
and its aspects are explored.

Furthermore, while previous studies have shown that
teachers see potential in social robots to support learning by
guiding students, modelling behaviour, offering emotional
support, and adapting to individual needs [14, 83], our
study went a step further by enabling teachers to understand
the adaptive methods and their implications. This deeper
understanding appeared to extend beyond their immediate
teaching practice, influencing how they might justify their
choices to broader stakeholders such as parents and school
administrators-suggesting a wider impact on the school
ecosystem.

All participants agreed that a protocol in which research-
ers clearly explain their goals and reasoning in layman-
friendly terms facilitates faster communication between all
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parties and leads to more meaningful research outcomes.
This was exemplified by T2, who stated: “/...] Of course, I
believe it is better [referring to her improved understanding
of the research]. If I understand it better, I can not only use
it better, but also explain it more effectively to my superiors
and the parents about what I am using in my activities”.

In opposition to previous findings in the literature [80],
where teachers valued the students’ privacy and security
more, in our findings, teachers valued the school decision
board and parents’ opinion more. In fact, none of the teach-
ers have touched on the topic of data privacy. Similarly,
they did not seem aware of the implications of algorithms
and devices with high levels of energy consumption can be
harmful to the environment. However, there is a need to find
ways to make this debate less impactful on teachers’ time,
as brought by T3:“Oh yes, that is true [when asked about
the fact of not brining privacy for the discussion]. I have
not thought about it, but we have so many things to think
about already that some important things, like these, are left
behind sometimes. But if we don 't act like this, we are never
moving forward”.

When asked why they had changed their preferred adap-
tation method, teachers explained that it was easier to justify
using “the best” methodology to both their superiors and the
children’s parents. An interesting observation was that only
T1 did not change her opinion-she was also the only teacher
working exclusively in public schools. This suggests a pos-
sible correlation: in private education settings, teachers may
feel more pressure to adopt high-performing methodologies
as a way to justify parents’ financial investment. Hence,
and as well as also concluded by the findings of [82], all
the stakeholders play a key role in the decisions taken in
educational setups for HRI, and all the stakeholders should
be aware of social and moral implications of research in
human-robot interaction for education.

Some of our findings align with existing literature. For
example, in [9] authors concluded that children’s personali-
ties are fluid and context-dependent, suggesting that robots
should adapt dynamically through dialogue rather than rely-
ing on fixed personality types. In their study, teachers also
emphasized the importance of real-time personality and
emotion detection to personalize interactions and enhance
learning. For long-term engagement, they highlighted the
need for teacher involvement, including tools to update
lessons and control robot behaviour. They also supported
memory-based adaptations, enabling robots to recall past
interactions to motivate students.

In our study, we presented teachers with an interface and
the results of a field experiment, and the points raised in the
cited work were reflected in our findings. For instance, by
allowing teachers to select adaptation methods and manage
new content through the interface, we addressed the need
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for dynamic adaptation. The ability to visualize system
performance through graphs and switch between methods
further reinforced this. Combined with other components
of our architecture-such as the user preferences module-we
propose that long-term, memory-based interactions can be
effectively supported.

Therefore, our conclusions address RQ2, which
explores how the characteristics of adaptive methods
influence teachers’ adoption and perception. While teach-
ers acknowledged the importance of understandability,
they were more strongly influenced by the performance
of the methods. This was evident both when they ranked
influencing factors and when they changed their pre-
ferred method after reviewing the results of a specific
case. However, for quicker setup and activity configu-
ration using R-CASTLE, teachers indicated they would
initially opt for the more intuitive algorithms.

6 Conclusion

In this work, we presented an evaluation of user modelling
and adaptation algorithms by the data analysis performed
over an experiment in a real classroom scenario, considering
the teachers’ perspective on the obtained solutions. Meth-
ods with higher understandability, rule-based and fuzzy
decision-making systems, presented similar performance.
However, they presented inferior performance, when com-
pared to supervised ML algorithms. In the initial stages
of the experiments, teachers tended to prefer the methods
they could easily understand. However, after reviewing the
experimental results, many shifted their preference toward
higher-performing methods-even if they did not fully under-
stand how those algorithms functioned.

When analysing the data, we found that it is possible to
prioritise certain weights by checking the importance of
the parameters in the ML algorithms and also in the best
performing weights of the RBS and FDMS. Although more
experiments are requested to validate this hypothesis also
from the dimensions of attention and communication, our
findings suggest a high potential of the proposed modelling
to be quickly adaptive for dynamic scenarios, while still
keeping a desired level of understandability.

It is worth highlighting two major contributions of this
work. The first is the role of stakeholders, helping to adjust
the parameters of the R-CASTLE system and demonstrat-
ing that Al techniques can be a powerful tool in the learn-
ing process. The second is the advantage of conducting this
research in real-world settings, making the adaptation of the
system more true and trustworthy.

Finally, we can conclude that the best alternative would
be a combination of the presented methods, in which,

initially when no data is still acquired, teachers can use the
methods with high explainability, whereas the more data
they collect in specific activities, the better ML algorithms
can be trained to achieve higher performances. The easy
switching between these methods for every activity is a key
element for fast customisation in classrooms that R-CAS-
TLE provides.

Limitations of this work include, notably, the small data-
set used to assess algorithm performance and the analysis
performed solely at the immediate adaptation level. For a
deeper, comprehensive evaluation of the implications and
advantages, long-term experiments are necessary. Further-
more, in relation to qualitative analysis, it is important to
note that this work does not aim to draw a general conclu-
sion on teachers’ opinions regarding adaptive algorithms for
social robots. Rather, it seeks to illuminate common situa-
tions and attitudes arising from synergy among these agents.
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