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overcome pits of performances [2]. On the other hand, in the 
long-term, personalised systems can foster rapport building 
and extend the advantages of using social robots in class-
rooms after the novelty effect has passed  [3]. This strategy 
has a growing application in educational scenarios since it 
affords personalised learning for students who interact with 
these systems [4].

However, the success of the adaptation relies on the 
correctness of the user’s model, where the system tries to 
read and understand users’ answers, attitudes, and signs to 
decision-making about the adequate adaptation based on 
this model. In autonomous robots, the extraction of these 
users’ features is commonly performed by cameras and 
microphones, and the interpretation of the collected data is 
done by using classification algorithms. Although there are 
already many existing models, the designing of the model 
customised to a given task or context is a potential alter-
native to optimise and processing resources   [5]. Despite 
the increasing accuracy of these methods in recent decades, 
it remains imperative to integrate them into a meaningful 

1  Introduction

Personalisation in Human-Robot Interaction (HRI) is a key 
component for achieving better engagement of the users 
with a robot, which commonly leads to higher rates of user 
enjoyment statements and perceptions   [1]. Its advantages 
of making users more engaged are noticeable in both short 
and long-term interactions. In the short-term, the system can 
momentarily boost the users’ motivation by adapting itself 
to address punctual difficulties and supporting students to 
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Abstract
User modelling and knowledge representation are important steps towards building personalised systems. Users’ atten-
tion and communication are examples of social factors that go beyond simply analysing task efficiency, adding additional 
complexity to achieving effective human understanding. More specifically, in the educational domain, while the technical 
performance of adaptive methods plays a primary role in their adoption by researchers, secondary factors, such as teach-
ers’ ability to understand and their intention to adopt, can also influence the implementation and broader acceptance of 
social robots with adaptive behaviours. In this paper, we validate our high-level proposal for user modelling targeting 
activities with social robots in the classroom from two different perspectives: the performance of the methods using data 
from a real-world scenario, and the perceptions of teachers. For the data analysis, various decision-making methods were 
compared. These included two user-parametrised approaches (a simple rule-based and a fuzzy system, both previously 
co-designed with teachers) as well as five established supervised machine learning algorithms. For validation of teach-
ers’ perceptions, five teachers were interviewed to gather feedback on their thoughts about our proposal and its practical 
implications. The findings demonstrate that while teachers initially preferred the semantic modelling offered by the fuzzy 
system due to its interpretability, three out of five teachers changed their preference after being presented with the results 
of our data analysis. They favoured the most accurate method over the one they found more intuitive.

Keywords  User modelling · HRI for education · Social robots · Teachers · Adaptive systems

Received: 17 May 2024 / Revised: 28 July 2025 / Accepted: 18 September 2025 / Published online: 16 October 2025
© The Author(s) 2025

Student Behaviour Modelling and Adaptive Techniques for Social 
Robots: Data-driven and Teacher-Perceived Evaluations

Daniel C. Tozadore1,2  · Roseli A. F. Romero2

1 3

https://doi.org/10.1007/s12369-025-01326-2
http://orcid.org/0000-0003-0744-0132
http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-025-01326-2&domain=pdf&date_stamp=2025-10-14


International Journal of Social Robotics (2025) 17:3069–3086

representation to interpret accurately the current state of the 
user. When it comes to the HRI field, all the challenges from 
Human-Computer Interaction are inherited and combined to 
new complexities brought by the embedded components of 
the robots plus the social elements which a human-robot 
interaction needs to deal with  [6].

The complexity of this process at hardware and software 
levels is constantly pointed out as one of the main challenges 
of social robots in education, especially the systems that aim 
at autonomous behaviours [7]. Furthermore, the difficulty of 
providing efficient adaptive methods is attributed as one of 
the main causes of few works addressing long-term studies 
in HRI for education  [8]. As an alternative, presenting intui-
tive ways for teachers to support the system on this objec-
tive was pointed out as a potential solution for leveraging 
the use of adaptive systems in learning activities [9].

In addition to these challenges, external factors should be 
considered in the educational context. For instance, increas-
ing transparency in the robot behaviour has been shown to 
commonly increase the student’s learning experience, but 
nothing is mentioned about the teachers’ opinion [10]. On 
the other hand, works investigating teachers’ opinion rarely 
explore technical details or designing processes with them. 
Nevertheless, their intention to adopt social robots in their 
activities, their lack of knowledge and the time they need to 
get familiarised with new technologies are often acknowl-
edged   [11]. Teachers’ involvement in research on social 
robots is normally considered at a qualitative level, but few 
studies for long-term present reachable and concrete tools 
and methods to be deployed for this end. Mostly because, in 
practical terms, implementing social robots in educational 
settings presents challenges that can hinder their widespread 
adoption. Integrating social robots into classrooms requires 
teachers to invest considerable time to learn about the tech-
nology and address various logistical issues, which can 
impede their regular teaching activities, besides the techni-
cal knowledge adaptation they think they have to acquired  
[12].

We postulate that teachers’ understanding and active 
participation are fundamental for modelling the student’s 
behaviour in HRI for education, in complement to technical 
factors of the adaptation method. Moreover, explaining the 
adaptation methods to teachers in layman’s terms and dis-
cussing their implications can illuminate previously uncon-
sidered topics. For instance, high-performance classification 
methods typically consume more energy and require more 
data due to their high demand for computational resources. 
To further investigate our hypothesis, we researched meth-
ods that could present better understandability to implement 
our high-level proposal of students’ modelling behaviour.

Even so, it is evident that data-driven algorithms gener-
ally outperform user-parameterised algorithms, regardless 

of the users’ level of . However, accuracy is not the sole fac-
tor influencing teachers’ preferences when selecting social 
robots for classroom exercises. By validating the design of 
more interpretable methods with teachers in real-world sce-
narios, we can compare their performance metrics to those 
of established methods that autonomously extract knowl-
edge from data. This comparison can offer valuable insights 
into the trade-offs between explainability, accuracy, and 
other factors that are essential for teachers when adopting 
adaptive social robots.

Building on these observations, we have reformulated 
the following research questions:

	● RQ1: How the performance of user-modelling and 
adaptive algorithms, designed in collaboration with 
experts for greater understandability, compares in their 
optimal parametrisation to supervised ML algorithms?

	● RQ2: How can the characteristics of this implemen-
tation, such as explainability and accuracy, influence 
teachers’ opinions and intention to adopt adaptive social 
robots in classrooms?

To evaluate the research questions, an experiment was con-
ducted where a robot approached the teaching content using 
the Robotic-Cognitive Adaptive System for Teaching and 
Learning (R-CASTLE) [13]. The R-CASTLE, The robot’s 
activity followed a quiz mode, providing explanations and 
asking three questions. During the sessions, a person with 
experience in education adjusted the difficulty level based 
on children’s verbal responses and non-verbal cues. We 
analysed the outcome of adaptation algorithms in terms of 
accuracy with the collected data and teachers’ preferences. 
From their performance in the data, we compared the 2 
already implemented customizable version of adaptation in 
this system (rule-based method and Fuzzy-system) to super-
vised algorithms of machine learning (ML). For the teach-
ers’ opinion, we performed semi-structured interviews with 
five teachers, exploring their views on social robots, class-
room research, and the impact of the adaptation methods on 
technology adoption in Brazilian schools.

Therefore, the contribution of this paper is three-fold: (i) 
a high-level description of several steps towards implement-
ing user-modelling and adaption for real-world applications 
of social robots in classroom, taking teachers opinion and 
participation in the design; (ii) a technical analysis over the 
data regarding the performance of the resulting algorithms 
and a comparison to consolidated methods of supervised 
learning; (iii) evaluation of teachers, external to the design-
ing phase, in relation to the user-modelling and adaptation 
system and their intention to adopt social robots according 
to the results they are presented with from the technical 
analysis.
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2  Related Works

2.1  Social Robot Interaction Adaptation

The adaptation of robots for the users’ needs has been 
widely researched in the last decades [14]. According to 
Mitsunaga et al. [15], robots should be able to read sub-
conscious comfort and discomfort signals from humans and 
adjust its behaviour accordingly, as other humans do, for 
better human-robot interactions (HRI). This claim is sup-
ported by findings of studies on the topic.

In studies aimed at learning the multimodal behaviours 
and conversational strategies of the agent to dynamically 
optimize the users’ engagement and impressions of the 
agent showed a higher evaluation of user enjoyment when 
the agent was programmed with adaptive behaviour. The 
authors concluded that the effects of the person’s preference 
highlighted the importance of considering the users’ expec-
tancies in human-agent interactions  [16].

Robots that take into consideration humans displaying of 
emotions and humours are also successfully accepted by the 
users. A proposal of a system for personalising humour for 
interactive robots had a higher preference for users com-
pared to a human comedian [17]. The system was equipped 
with natural language processing and emotion recognition 
techniques that allowed multimodal mapping of the users’ 
humour state, which afforded decision-making techniques 
for the robot to display appropriate jokes and timing.

A growing trend in adaptive HRI can be noticed in indus-
trial applications as well [18]. The analyses of adaptive 
mechanisms comprise physical [19], psychological [20], 
and social mapping of human collaborators in their appli-
cations [21], taking into consideration several user inputs, 
such as visual cues and even EEGs. The results constantly 
point out a high acceptance of robots programmed with 
adaptive methods in industrial scenarios, which is shaping 
the horizons for the industry 4.0  [22].

However, Pollmann et al. [23] raised the ethical issues 
regarding the users’ autonomy and manipulation of them. 
As a result of their observations, the authors proposed three 
design principles to balance user experience and ethical 
considerations in personal HRI for social robot behaviour: 
(1) a gradual model of emotionality, (2) adaptive respon-
siveness, and (3) a progressive reduction in immersion and 
motivation over time. These principles are grounded in cas-
cading models, which begin with user characteristics and 
preferences as a baseline. The robot’s expressiveness is 
then progressively adjusted to maximize the user’s positive 
experience while remaining within ethical limits.

In [24], a conceptual model for dynamic robot role adap-
tation for an enhanced flow experience was proposed as a 
result of their observation in the literature gap. Many robot 

adaptation strategies in social human-robot interactions are 
limited by their static and single-dimensional objectives, 
which fail to capture the dynamic and multi-dimensional 
nature of human interaction. Additionally, another promi-
nent finding from the authors implies that personalization, 
in the most of HRI studies, has predominantly focused on 
content customization, such as adjusting learning materi-
als or curricula, while neglecting the potential of robots as 
embodied social agents. This narrow approach often reduces 
robots to the role of personalized content providers, with 
a limited adaptation of their behaviour policies to enhance 
social engagement.

The complexity of the proposed algorithms for adapta-
tion presents a wide variation, from simple rule-based meth-
ods to complex multimodal systems. Rule-based systems 
show results of satisfactory adaptation with a good trade-
off in the observed mainly in those cases that their goals 
are very simple or very specific [25], such as adapting the 
robot’s speech while talking to the users or whether to talk 
or change the robot’s personality [26, 27]. More sophisti-
cated algorithms are also employed. A mathematical model 
can be used either to formalize simple things or very com-
plex adaptation systems, such as the Theory of Mind (ToM). 
In [28], the authors presented the perception, cognition, and 
decision-making of humans through a dynamic mathemati-
cal framework by introducing a novel formalization and 
an extension to fuzzy cognitive maps (FCM). This model-
ling was proposed based on the pillars of transparency and 
generalisability and outperformed previous state-of-the-art 
methods. However, the proposal was not validated from the 
users’ understandability point of view.

Finally, in addition to offering more engaging and enjoy-
able interactions, the robot’s behaviour adaptation also dis-
plays broader influences on users. For instance, the level 
of automation of a robot adaptation can be related to what 
users think about the robot [29]. This phenomenon can also 
be expected in education, where the level of autonomy of 
the system motivated changing the students’ perception of 
the robot. Students participating in autonomous conditions 
rated the robot as more intelligent than students in a teleop-
erated condition, even without knowing about the robot’s 
operation condition  [30].

2.2  Adaptation in Education

Adaptation and personalisation have also long been investi-
gated in the educational realm [31, 32]. Intelligent Tutoring 
Systems (ITS), are examples of adaptive systems for educa-
tion that have been extensively investigated [33–35]. These 
systems are “designed to incorporate techniques from the 
artificial intelligence (AI) community to provide (intelli-
gent) tutors who know what they teach, who they teach, and 
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Furthermore, these methods are mostly based on multiple-
choices and lack of multimodal assessment of students. 
Hence, a common strategy used is to add a layer of observed 
features on top of adaptive methods from technological 
learning scenarios, such as proposed in [48]. The challenge 
in using such a method is to incorporate the social features 
(extra layer) added by the social robots to the learning expe-
rience, and consequently to the user modelling. However, 
the robot’s advantage for enhancing the learning experience 
by providing a more concrete interaction when compared 
to other devices, as tablets, is a trade-off worth being paid 
[49]. In all cases, the propagation of errors in autonomous 
classifications of features is a crucial point to pay attention 
to when analyzing its results. Thus, it is important not only 
to evaluate but also to ensure that the evaluation uses the 
correct methods. Otherwise, this can lead to wrong conclu-
sions  [50].

Moreover, although the adaptation generated by user 
modelling techniques often tends to improve the user-
system interaction, in the majority of systems, these tech-
niques make the system more complex to understand. 
Consequently, it should be evaluated whether the adaptation 
improves the system and the user prefers the adaptive ver-
sion from it [51].

For that reason, the utilisation of devices that can have 
a cleaner reading of users’ intentions might present a more 
accurate user modelling. In [52], for instance, the authors 
introduced a novel fuzzy-based system for cooperative 
learning, integrating a brain-computer interface model 
and a fuzzy markup language based reinforcement learn-
ing agent. The system uses agents to support human-robot 
interactions in education, with experiments showing robot 
teachers boost motivation and learning. The agent personal-
izes content and predicts physiological indices to enhance 
co-learning. While highlighting the promise of human-robot 
co-learning, the study does not assess user understanding of 
the methods.

However, although approaching the social capabilities of 
the students in the interactions often lead to better results, 
concerns about side effects of these interventions are raised, 
such as privacy, security, and workload of the teachers  [53]. 
Therefore, the teachers’ participation and willingness to 
adopt social robotic systems are the key to the successful 
implementation of adaptive robots in classrooms.

Similarly, a work performed with teachers using adap-
tive robots in classrooms showed important findings regard 
to teachers’ understanding and perceptions about the topic  
[9]. The outcomes suggest that robots in educational set-
tings should address repeated classroom questions, adapt to 
children’s emotions and personalities in real-time through 
dialogue-based mechanisms, and dynamically adjust their 
roles using memory adaptation. Culture-based adaptation is 

how to teach it” [36]. As a result, ITS allows for personalized 
learning experiences tailored to individual students’ unique 
learning styles and preferences. Moreover, AI-driven tools 
offer teachers valuable, data-driven insights into student 
performance, emotional states, and engagement levels. This 
enables educators to adapt their teaching methods, imple-
ment targeted interventions, and provide timely support to 
improve learning outcomes effectively  [37]. Although they 
often present increases in learning outcomes, their evalua-
tion can be affected by the nature of control treatments and 
the adequacy of program implementations [38]. Therefore, 
allowing customization for adaptive algorithms for stake-
holders who are aware of local influences could be seen as a 
potential solution to ease this issue.

Among the methods investigated for the adaptation 
mechanisms, using fuzzy systems as part of ITS modelling 
can show better performance in the students’ outcome and 
the accuracy of the adaptation system [39]. The fuzzy sys-
tem applications for ITS have successfully implemented in 
programming platforms [40], augmented reality (AR) sce-
narios [41], and even in social robots [42].

Another important feature of fuzzy systems is their 
understandability through their semantic implementation. 
Incorporating such strategies into self-regulated learning 
scenarios suggests an increase in the students’ understand-
ing of their learning process [43]. By understanding how 
the system personalizes learning in semantic terms, making 
it more comprehensible from a human language perspec-
tive, students can reflect on their learning and identify areas 
for improvement. These findings instigate deeper analy-
ses regarding how teachers would be triggered by under-
standability of autonomous adaptation of social robots for 
education.

2.3  Adaptation in Social Robots for Education

Adaptation and personalisation have shown increased stu-
dent performance compared to static robot behaviours [4, 
44]. The applications for adaptive robot learning have a 
wide range. For language learning, students who interacted 
with a robot that personalized its affective feedback strategy 
showed a significant increase in valence as compared to stu-
dents who interacted with a non-personalizing robot [45]. 
For maths, a robot that adaptively scaffolded instructions 
was able to help children get better in the topic and was seen 
more as a friend the more it personalised the conversations 
[46].

The main practice for achieving that is to experiment 
with a particular set of users and check out their common 
behaviours and perceptions [47]. Nonetheless, there is no 
standard agreed measurement framework for assessing the 
effectiveness of the adaptation achieved by these systems. 
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for adoption. A study investigating 180 grade 5 students 
and 6 teachers concluded that teachers’ intention of adop-
tion is highly correlated with their interest [62]. They were 
submitted to mandatory Computer Science Continuing Pro-
fessional Development program over an academic year and 
evaluated through interviews, and survey throughout the 
program.

Results showed that teachers’ self-efficacy and interest 
significantly influenced the likelihood of content adoption, 
with interest playing a pivotal role. Teachers with low ICT 
experience needed onboarding, while middle-aged teachers 
required more convincing to adopt CS content. The findings 
highlight the importance of the interest, and establish the 
interplay between contextual, prior, and acceptance factors 
in adopting CS pedagogical content for primary education 
that was observed to increase a long time, the more teachers 
understood the methods.

In addition to the typical concerns associated with con-
ventional technologies, social robots introduce unique chal-
lenges related to social and ethical issues. These challenges 
include questions about privacy, the appropriate use of 
AI, and the implications of robots simulating human-like 
behaviour. Such concerns create paradoxical dilemmas. On 
one hand, researchers strive to design robots that exhibit 
human-like manners and social intelligence to enhance user 
acceptance and engagement. On the other hand, these very 
human-like qualities often lead to discomfort and rejection 
among users, who may perceive such robots as uncanny 
or fear potential misuse of their human-mimicking capa-
bilities. This critical disjunction highlights a fundamental 
tension in social robotics, as efforts to make robots more 
relatable and effective can sometimes undermine public 
trust and acceptance   [63]. For these reasons, explaining 
how the algorithms work to afford these social behaviours 
is the key point for fighting the barriers of their adoption.

3  User Behaviour Modelling

To implement research in classrooms, one key element is 
to provide understandable and minimally impactful inter-
ventions and tools for teachers. At the same time, designing 
computational models for human behaviour representa-
tion is a complex task. Aiming to present a solution that 
finds a good balance between these two assumptions, the 
R-CASTLE framework was proposed [13]. Its main goal is 
to provide intuitive content programming to be addressed 
by a social robot, that also affords adaptive behaviour of the 
robot that can be customised by the teachers. Since custom-
ization and adaptation are crucial for ensuring the success 
of long-term studies and activities in classroom settings, 

crucial for language learning tasks, and an easy-to-use inter-
face for teachers to update lessons is essential for maintain-
ing long-term engagement.

2.4  Teachers’ Adoption

The use of artificial intelligence (AI) in robots for educa-
tion in the last decade has presented a remarkable increase. 
A study analysing the works in the literature pointed out 
a boom in the number of published papers starting from 
2019 using AI in robots for education. Most of the works 
(more than 85%) focus on social features for the robots to 
interact with students  [54]. However, the authors detected 
a serious gap in the investigated work on human-centred AI 
(HCAI), which the authors define as ”AI taking humanities 
as the primary consideration, which requires explainable 
and trustworthy computation for continuously adjusting AI 
algorithms through human context and societal phenomena 
to augment human intelligence with machine intelligence, 
thereby enhancing the welfare of human kinds”. One of 
the potential reasons for explaining this phenomenon is the 
search for high-accuracy methods rather than explainability, 
which means methods that are easier to understand by the 
users and stakeholders.

This philosophy aligns with the growing trends still 
regarding the explainability [55], and transparency in 
human-robot interactions [56]. Explainability in HRI is 
defined as novel computational models, methods, and algo-
rithms for generating explanations that allow robots to oper-
ate at different levels of autonomy and communicate with 
humans in a trustworthy and human-friendly way [57]. On 
the other hand, transparency in HRI focus on the importance 
of user awareness of the robots’ attitudes to foster trustiness 
[58].

Nevertheless, while it is shown that explainability 
increases the robot acceptance in other domains [59], and 
explainable AI (XAI) is earning space in education [60], 
more investigation is required specifically for explainable 
HRI in education. More than increasing teachers’ adoption, 
XAI is crucial in learning domains to guarantee that the 
employed methods are utilised responsibly and ethically.

Although there is a gap in the literature related to studies 
investigating the impacts of explainable strategies foster-
ing the adoption of social robots for teachers, main aspects 
and concerns can be transferred from similar applications 
of technology in education. The exploration of explainable 
AI methods to interpret deep learning-based models for 
STEM teachers  [61]. After being exposed to explainable AI 
methods, participants reported a higher trust and technology 
acceptance in the classroom discourse models.

Similarly, the intention of adopting theoretical contents 
related to technology requires the acceptance of teachers 
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to the algorithm that generates the Right/Wrong questions 
according to a matching pattern with the expected answer. 
This process is better explained in [67].

They were proposed to be clustered in the superclasses 
of major skills of Attention (α), Communication (β), and 
Learning (γ), as presented in [68]. Table 1 summarizes the 
measures in their respective major skills.

The measures are taken during a cycle of interactions 
between the student and the robot, called here as adap-
tive window, and denoted by t. An adaptive window is pre-
defined by the programmer, and it is usually a set of robot 
questions or requisitions to evaluate the success rate of the 
user’s response or a given time in seconds predefined before 
the interaction starts. Therefore, results from each one of 
the major skills are taken by calculating (regardless of the 
method used) the following functions: α(t) = (Fg(t), P (t)), 
β(t) = (nW (t), Em(t)) and γ(t) = (RWa(t), T ta(t)) in 
an adaptive window t. Likewise, the calculation of the final 
adaptation in a given t (FAdp(t)) based on these three skills 
would be mathematically represented as in Eq. 1, in which 
the functions themselves can vary according to the chosen 
method, as presented in the following subsections. 

FAdp(t) = FAdp(α(t), β(t), γ(t)), t ∈ N� (1)

Two adaptation methods were previously proposed based 
on the reading signals of the users in the R-CASTLE and 
briefly described in the next subsections. The Simple Rule-
Based System, briefly described in Sect. 3.1, and the Fuzzy 
Decision-Making System, briefly presented in Sect. 3.2. In 
both of them, the person running the activities (normally the 
teacher) has to set some values of references for each one 
these variables to guide the system into this process. Thus, 
the Knowledge present in the algorithm is estimated by an 
expert. Next, we want to evaluate how Machine Learning 
algorithms, that can learn and set parameters from the data-
set, can predict adaptation results compared to the previ-
ously proposed methods.

3.1  Simple Ruled-Based System (SRB)

The Simple Ruled-Based (SRB) decision-making algo-
rithm is proposed in [68]. In summary, in this method, the 
user needs to set maximum values for every readable vari-
able that will be used to transform each output value in the 
interval [0, 1]. Signal values going outside this interval are 
capped. The result of each major skill will also be a nor-
malized value, in the same interval, that makes an average 
of each value belonging to that major skill, multiplied by a 
weight given by the user for each one of the major skills, as 
in Eq. 2. 

the proposed system must provide these capabilities while 
maintaining ease the parameter configuration.

While previous studies proposed and initially validated 
two adaptation algorithms, in this paper we are delving into 
the analysis from the data perspective and from teachers’ 
point of view. Nevertheless, we bring key elements from 
our works previously published to highlight the important 
points of this study and to make its analysis clearer.

The robot is programmed to approach the content with 
the students using the strategy of constructivism, where a 
concept is presented and then the interlocutor can build a 
line of thought on the concept and ask questions about it to 
guide the listener through the learning process using con-
structivism. This strategy is one of the most used paradigms 
in social robots for education [64]. Hence, it can be modelled 
in the robot as a quiz-mode game, in which the adaptation 
is analysed in windows related to every question. Regard-
less of the algorithm used for adaptation prediction, we pro-
posed a generalized modelling of the students’ behaviour, 
resulting from interactive design performed with teachers 
of elementary school that participated in previous experi-
ments. We identified some measures we could take autono-
mously with the cameras and microphones of the robot and 
clustered these measures in superclasses of students’ skills 
when learning. In an oversimplified way, the goal of this 
adaptation mechanism is to translate audiovisual observable 
manifestations of the students into the user-modelling pro-
posal of the system.

The observable student’s manifestation are signals cap-
tured by microphone and cameras of the robots and pro-
cessed by a set of recognition algorithms. The signals are: 
Face gaze (Fg), Posture quality (P), the Number of spoken 
Words (nW), the correctness of the answers (Right/Wrong 
answer represented by RWa), the balance between good 
and bad emotion by facial expression (Em), and the Time 
the student takes to answer a question (Tta). From a cod-
ing perspective, the observable signals were extracted as 
follows: The Face Gaze is detected by the Haar Cascade 
method [65], the emotion classification is the correspond-
ing value of positive emotions minus negative emotions 
detected by a Convolutional Neural Network (CNN) [66], 
the number of words is counted by taking the user’s verbal 
answer with Google Cloud Speech API through the Python 
Speech Recognition1 into a string, which is also the input 

1  ​h​t​t​p​​s​:​/​​/​p​y​p​​i​.​​o​r​g​​/​p​r​o​​j​e​c​​t​/​S​​p​e​e​c​h​R​e​c​o​g​n​i​t​i​o​n​/ Accessed Feb 2024.

Table 1  Reading values grouped by observed users’ skills
Attention (α) Communication (β) Learning (γ)
Face gaze (Fg) Number of Words (nW) Right/Wrong 

answers (RWa)
Posture (P) Emotions (Em) Time to 

answer (Tta)
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3.3  Dataset Creation

To acquire a testing dataset for performance and teachers’ 
perception validation, we performed activities in a video 
room of an elementary school, where a total of 39 children 
from 5th grade participated by individually interacting with 
a humanoid robot, NAO, answering questions about “Envi-
ronmental Health”. Their teacher programmed the content 
to be addressed through the GUI of R-CASTLE. This con-
tent was composed of 30 questions divided into 5 levels of 
difficulty.

The interaction sessions with the robot were run follow-
ing the Wizard of Oz technique [71], in which a hidden per-
son teleoperated the robot to trick the users that the robot had 
life by itself. The person operating the robot was a 3rd-year 
student of learning science that we hired.3 She was asked 
to perform her judgment for the robot’s behaviour change 
in-loco and in real-time. Furthermore, we also asked her to 
base the decisions on the observations she made regarding 
students’ audiovisual signals, according to the measures 
presented in Table 1. However, we did not mention prefer-
ences for any measures.

The robot started making a question of difficulty level 
3 and, after the current student answered the question, the 
person controlling it chose if the difficulty level of the next 
question would be increased, decreased, or maintained, 
based on the current student’s answers and body signs, as 
described. Thus, the dataset true labels are given by a human 
decision of the adaptive function.

Sessions were made in natural conditions of the school, 
meaning no actions were taken to minimize potential noises 
such as light or sound filters. We decided to perform a test 
in this way to stay as close as the setup faced when experi-
menting in real-world scenarios. Afterward, measures of 
these indicators were extracted in the videos recorded from 
the robot’s camera using the R-CASTLE off-line evaluation 
feature. It uses machine learning algorithms for audiovisual 
recognition to extract users’ observable values. A result-
ing dataset of these measures was created, comprising all 
the autonomously read data and the true labels regarding 
the robot’s behaviour adaptation   [72]. The adaptive win-
dow was set for the time of each question. Therefore, each 
sample comprises one tuple containing 5 out of the 6 read-
ing values (we could not use the posture measures properly 
in this experiment), considering the time interval in which 
the current question started until the time it ended. Each 
tuple is considered an adaptive window and the labels are 
decrease (−1), maintain (0), and increase (1) the content’s 

3  In this course, students in the 3rd year have already studied peda-
gogy strategies and have hands-on experiences supporting teachers in 
classes of Elementary schools.

FAdp(t) = (wα ∗ α(t) + wβ ∗ β(t) + wγ ∗ γ(t)), t ∈ N� (2)

The system decides then to increase, maintain, or decrease 
the intensity of a given behaviour (that in the experiment of 
Sect. 4 will be the difficulty of the questions) according to 
the activation function, Act(t), depending on the resulting 
value of FAdp(t), given by Eq. 3. 

Act(FAdp(t)) =




1, ifFAdp(t) ≥ 0.66
0, if0.33 < FAdp(t) < 0.66
−1, ifFAdp(t) ≤ 0.33

� (3)

3.2  Fuzzy Decision-Making System (FDMS)

The fuzzy modelling was implemented in collaboration 
with teachers and built upon the ideas of the SRB algorithm 
[69]. The goal, however, was to provide more intuitive mod-
elling through the semantic rules. It was developed using 
the Python library SkFuzzy 0.2,2 which requires defining 
fuzzification and defuzzification mechanisms, fuzzy sets for 
linguistic variables, and corresponding fuzzy rules. Triangu-
lar fuzzification was selected for its simplicity after testing 
other shapes (Gaussian and trapezoidal) with similar accu-
racy. The inference method, proposed by Ebrahim Mamdani 
in 1975 [70], and Center of Gravity defuzzification were 
used.

Teachers contributed to defining the linguistic variables 
and rules, enabling a hierarchical fuzzy structure. Each 
major skill (e.g., Attention, Communication, and Learn-
ing) undergoes an independent fuzzy process (fuzzification, 
semantic association, and defuzzification) before combin-
ing the results into a final adaptive fuzzy system. Users 
map numeric inputs to semantic variables (e.g., 3 devia-
tions = “Rare”, 2 seconds to answer = “Fast”, 14 words to 
answer = “Talkative”, and so on) and can customize seman-
tic rules, although default rules are provided. Thus, this 
is the foremost advantage of fuzzy modelling regarding 
understandability. The variables can be associated through 
semantic rules that are more understandable for humans. 
For instance, if “Time to answer” is fast and “correctness of 
answer” is high, then learning (γ) is high.

The final adaptive measure, called the Fuzzy Adaptive 
Function (FAF), calculates the level of adaptation for the 
questions presented to the students. It integrates the three 
measures (α, β, and γ) using MaxMin operations and out-
puts terms such as Decrease, Maintain, or Increase to guide 
adaptation.

2  ​h​t​t​p​​s​:​/​​/​p​y​t​​h​o​​n​h​o​​s​t​e​d​​.​o​r​​g​/​s​​c​i​k​​i​t​-​​f​u​z​z​​y​/​​o​v​e​r​v​i​e​w​.​h​t​m​l Accessed Dec 
2024.
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4.1  Human Parametrised Algorithms

Considering the parameters of the systems RBS and FDMS, 
we took the results from the previous validation phases of 
these algorithms and presented them to the teachers who 
participated in the data collection phase during a post-exper-
iment feedback session. We also shared the performance of 
these two methods over the acquired data, along with vari-
ous parameter configurations changes, to provide a clearer 
understanding of how these variations affected accuracy. 
Teachers and experimenters realised that the accuracy of the 
human-parameterised tests for both algorithm was below 
50% with the initial parametrisation teachers chose. It was 
agreed that, for a better comparison with ML algorithms, 
we needed to determine the optimal configuration for this 
parametrisation. Subsequently, we conducted an exhaustive 
grid search for these parameters with the teachers, based on 
the dataset, and the best parametrisation found is shown in 
Table 3. Since this configuration had already been computed 
in prior analyses with the teachers, we did not perform cross-
validation, but instead used the entire dataset and evaluated 
it per class (as shown in Table 4. Therefore, our goal in this 
part was to validate the design of these two methods - devel-
oped in collaboration with the teachers during the design 
phase - rather than to optimise their parametrisation.

difficulty level. A total of 117 samples of adaptive windows 
were collected.

The dataset has the limitation of being unbalanced, as 
visible in the confusion matrix of Table 4. There are more 
samples of the Decrease class than the others. Nevertheless, 
we opted to retain the dataset in its original form, acknowl-
edging the likelihood of student errors outweighing cor-
rect responses, particularly in activities introducing new 
subjects. Consequently, we aim to investigate the system’s 
performance under these conditions to gain insight into its 
behaviour in challenging learning scenarios as they are.

3.4  Supervised Algorithms

To verify the performance of the given methods face to ML 
algorithms, we have considered the methods: Multilayer Per-
ceptron (MLP), Support Vector Machines (SVM), K-Near-
est Neighbors (KNN), Random Forest Classifier (RFC), and 
Logistic Regression (LR). Please note that this last method 
of linear regression has a very similar approach to the rule-
based system. We chose these methods because each one of 
them has a different approach to extract the knowledge from 
the dataset, as well as to perform a searching for the best 
model of prediction in the possible solution space [73]. In 
this case, there was no division in the skill measures (α, β, 
and γ) since these supervised methods implementations are 
only being made for performances comparison and database 
analysis, whereas the division of the skills measures in the 
rule-based and fuzzy system allows to use and analyse the 
skills individually.

The algorithms were implemented using the Python 
Scikit-Learn library.4 All the parameters not reported were 
used as their default. We run exhaustive Grid Search5 to find 
the best parameters for each method, using a 10-fold cross-
validation. Results are reported in Table 2.

4  Data Performance Validation

In this section, we are providing analyses of the proposed 
algorithms based on their performance over the acquired 
dataset and comparing them to ML methods of supervised 
learning. Our objective is to understand how the perfor-
mance of the proposed user-parametrised algorithms com-
pares to algorithms that learn from data.

4  ​h​t​t​p​​s​:​/​​/​s​c​i​​k​i​​t​-​l​​e​a​r​n​​.​o​r​​g​/​s​​t​a​b​l​e​/. Accessed Feb 2024.
5  ​h​t​t​p​​s​:​/​​/​s​c​i​​k​i​​t​-​l​​e​a​r​n​​.​o​r​​g​/​d​​e​v​/​​m​o​d​​u​l​e​s​​/​g​​e​n​e​​r​a​t​e​​d​/​s​​k​l​e​​a​r​n​​.​m​o​​d​e​l​_​​s​e​​l​e​c​​t​
i​o​n​​.​G​r​​i​d​S​​e​a​r​c​h​C​V​.​h​t​m​l, Accessed Dec 2024.

Table 2  Best parameters from the Grid Search, with the best perform-
ers in bold
Method Parameters
KNN n_neighbors: [3, 5, 7]
MLP hidden_layer_sizes: [(50,), (100,), (50, 50)],

alpha: [0.0001, 0.001]
SVM C: [0.1, 1, 3, 5, 10], kernel: [rbf, linear]
RFC n_estimators: [50, 100, 200],

max_depth: [5, 10, None]
LR C: [0.1, 1, 10]

Table 3  Best weights and operational parameters for SRB and FDMS 
methods
Method wα wβ wγ Fg Em Nw Tta RWa
RBS 0.0 0.4 0.9 20 413 5 59 1
FDMS na na na 30 500 4 78 1

Table 4  Confusion matrix with the Precision, Recall and F-Measures 
of the RBS and FDMS
Labels RBS FDMS
True\Given −1 0 1 −1 0 1
−1 54 7 0 53 3 6
0 10 2 1 11 1 1
1 10 9 24 11 2 29
Precision 0.73 0.11 0.96 0.70 0.17 0.83
Recall 0.89 0.15 0.56 0.87 0.08 0.67
F-1 0.80 0.13 0.71 0.77 0.11 0.74
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could indeed foster a more challenging environment, but it 
also carries the risk of potential learning setbacks. Hence, 
solely evaluating the effectiveness of these methods based 
on quantitative measures, without considering their impact 
on students’ perception, may fail to accurately assess the 
true implications of such algorithmic adjustments.

The RFC and the LR were the ones that presented higher 
metrics. Checking the Feature Importance6 of these algo-
rithms, shown in Table 7, is possible to observe that the 
most relevant features was the threshold in the correctness 
of the answers (RWa), followed by the time to answer (Tta). 
It means that the correctness of the answer given by the stu-
dents was also the most relevant feature in the classifica-
tions, just as observed with RBS with the higher values to γ 
and the FDMS, in which more extreme values of γ (Learn-
ing skill) led to more accurate predictions for this dataset. In 
fact, the importance for the RWa feature in the LR was 0.96, 
that matches with the obtained value for the SRB for the γ 
parameter that was 0.9. These findings suggest that the per-
son operating the robot when it needed to make the decision 
prioritized the students’ right answers rather than the other 
measures. This fact was later confirmed by the professional 
hired for the in-loco labelling.

Results obtained of ML classic methods corroborated 
with the outcomes of both approaches, RBS and FDMS, 
previously implemented. These findings also supported 
the findings of other multimodal classification studies [74], 
reporting constant setbacks and difficulties for adaptive 
behaviour in HRI.

6  A measure that goes from 0 to 1 of each feature, where 0 means not 
relevant at all and 1 means relevant to the classification.

In Table 4 is presented the confusion matrix as well as the 
measures of precision, recall, and F-1, for both methods RBS 
and FDMS, presented by each one of the classes: Decrease 
(−1), Maintain (0) or Increase (1) the difficulty level. The 
database is unbalanced, being 61, 13, and 42 samples of 
the classes Decrease, Maintain, and Increase, respectively. 
Thus, evaluating the methods by their accuracy (correct pre-
dictions divided by the total classification attempts) is not 
a fair analysis, being left behind in this discussion. Hence, 
the values of precision, recall, and F-measure (or F-1) were 
used. The metrics of these methods in all the dataset plus 
their accuracy are shown in Table 5.

4.2  Supervised ML Algorithms

Table 6 shows the resulting metrics (average and standard 
deviation) on the performance obtained for the supervised 
algorithms in a 10-fold cross validation. The methods were 
parametrised with the best parameters found using the Grid 
Search method, as pointed out previously. The metrics 
were calculated using the class-weighted method due to the 
imbalance of the classes.

4.3  Discussion

Analysing the videos, it was possible to note frequent out-
liers from the Face Gaze and Emotions due to luminosity 
problems, even though we tried our best to parametrise 
this method in the R-CASTLE offline laboratory. Thus, the 
classification measures are expected to be slightly altered 
for this reason. Overall, the RBS results showed a higher 
performance of this method with lower values for wα, wβ 
weights, which is justifiable once these outliers are given 
less weight in the final adaptation classification. Although 
low accuracy is not the desirable outcome in this situation, 
the proposed modelling of separating in weights and the 
major skills facilitates an easy workaround to overcome this 
technical limitation. The FDMS presented similar measures 
to RBS. Results of their precision and recall showed that 
they have very close behaviour related to the false positives 
and true negatives (a small variation of 0.02 points), except 
for the Increase class, that presented the measures: precision 
13% higher and a recall 11% smaller in RBD compared to 
FDMS. This means that FDMS increased the difficulty more 
than it should, whereas RBS chose to decrease more than it 
should for this dataset.

According to the teachers in the post-experiment feed-
back, normally, reducing difficulty beyond the actual 
requirement might lead to increasing students’ boredom, as 
he may feel less engaging. However, teachers have noted 
that this approach does not necessarily result in learning 
regression. On the contrary, improperly increasing difficulty 

Table 5  Measures of the SRB and FDMS overall
Method Precision Recall F-1 Accuracy
SRB 0.6 0.53 0.54 0.61
FDMS 0.56 0.54 0.54 0.66

Table 6  Average (SD) of a 10-fold cross validation for different models
Model F1 Precision Recall Accuracy
KNN 0.65 (0.13) 0.64 (0.13) 0.70 (0.13) 0.70 (0.13)
MLP 0.62 (0.18) 0.67 (0.14) 0.62 (0.20) 0.62 (0.20)
SVM 0.77 (0.09) 0.75 (0.08) 0.81 (0.09) 0.81 (0.09)
RFC 0.79 (0.09) 0.77 (0.09) 0.82 (0.08) 0.82 (0.08)
LR 0.79 (0.09) 0.75 (0.09) 0.83 (0.10) 0.83 (0.10)

Table 7  Features importance
Feature RFC LR
RWa 0.620176 0.969261
Tta 0.150759 0.000861
Em 0.087800 0.001305
Gf 0.071711 0.062469
Nw 0.069554 0.019805
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school, and both of them described their school’s profile as 
“Very motivated to adopt high-tech and innovative solutions 
for education”. Finally, the third and the fifth participants 
(T3 and T5) were teachers working both in private and pub-
lic schools. They were asked to give their feedback based on 
both scenarios and to be clear about each one they were talk-
ing about. The participants were all women, which is a fair 
representation of the Brazilian scenario, since almost 90% 
percent of the primary level teachers in there are women, 
according to Unesco.7

5.2  Methodology and Structure

We used semi-structured interviews, in which one inter-
viewer (always the same experimenter) supported the 
teachers to fill out Likert scale questions and also answer 
open-ended questions regarding their responses afterward 
to collect their opinions on overall and specific points. 
The support was provided if the interviewer identified 
that teachers were hesitating regarding what the questions 
meant. This procedure was adopted to guarantee a common 
interpretation from all the teachers about the proposed ques-
tions.” Although most of the data was structured for objec-
tive measures, two researchers analysed the videos and 
scripts, checking the conclusions we can draw from teach-
ers’ opinions, following a simplified version of the work 
done in [75].

The interview was structured in two phases: one contex-
tualisation phase and a discussion focused on user model-
ling and adaptive methods for social robots, both planned 
to last 30 minutes each. First, we have a generic discussion 
about technologies in classrooms, social robots, and a high-
level explanation of the R-CASTLE, for a better contex-
tualisation of these teachers in the project. Afterwards, we 
started the discussion of the computational modelling of the 
students and presented our modelling and results to foster 
the discussion, as detailed in the next subsections.

5.3  Contextualisation Phase

In the first phase, we analysed the participants’ familiarity 
with technology and how they use popular devices in their 
daily activities. We also asked for their perceptions and 
opinions on social robots, without properly defining what 
we meant by the term to validate how much they would 
know about the topic. We then presented a scientific defini-
tion and videos and asked similar questions to see if they 
had any new ideas.

As the scientific definition, we used the one presented 
in [76] that says “A social robot is an autonomous robot 

7  ​h​t​t​p​​s​:​/​​/​d​a​t​​a​.​​u​i​s​​.​u​n​e​​s​c​o​​.​o​r​​g​/​i​​n​d​e​​x​.​a​s​​p​x​​?​q​u​e​r​y​i​d​=​3​8​0​1, visited in Dec 
2024.

Higher values in the F-1 of supervised methods (almost 
20% more in the largest case) may influence one to believe 
that supervised algorithms are a better decision-making 
solution to these problems. However, it is also important to 
consider that they take time to collect previous data for train-
ing; their parameter configuration is not intuitive (mainly 
for non-programming people) and they may present overfit-
ting to this dataset. These facts can be critical once they may 
compromise the viability of the system as a facilitator for 
teachers in practical exercises.

By these results, we conclude that the performance of 
methods with higher explainability are always outperformed 
by the tested ML methods in their best parametrisation. This 
difference happens at minimum at 11%, in the case of the 
F-1 for KNN, and maximum 25% for the RFC. These find-
ings answer our question RQ1 (How does the performance 
of adaptation algorithms with high-explainability can com-
pare to supervised ML methods?).

5  Teachers Assessment Validation

To validate our proposal from the teachers’ perspective, we 
conducted a qualitative analysis of the data collected from 
interviews performed with 5 teachers who did not partici-
pate in the user modelling proposal.

The recruitment was done by sending the invitation to 
social media groups of teachers, and the first ones to sub-
scribe to the project would be taken if they fit the inclusion 
criteria. The inclusion criteria were teachers of elementary 
school that have more than 5 years of experience in class-
rooms, regardless of the use of technology they have in their 
classroom or their familiarisation with the topic. To preserve 
participants’ opinions unbiased, the final goal of the inter-
views (checking their perception of adaptive methods for 
social robots in a classroom) was not informed in the call for 
participation. Instead, the announcement only informed that 
they would participate in a 60-minute conversation about 
technologies in classrooms.

5.1  Participants

Registered participants were 5 teachers (named here T1 
to T5) belonging to elementary schools from different cit-
ies in the state of São Paulo, Brazil, with age in average of 
43.6 y.o (SD 9.39) and 24 (SD 8.86) years of experience 
in classrooms. To preserve their identities, we provide their 
profiles that can be useful to understand their opinions. The 
first participant (T1) was a retired teacher working for more 
than 35 years until 2019 only in public schools with children 
around 6 y.o. The second and fourth participants (T2 and 
T4), had similar profiles, working only in the same private 
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suggested that teachers’ theoretical and practical percep-
tions are somehow aligned with common findings in the 
literature.

5.4  Adaptive Methods Discussion

5.4.1  High-Level Adaptive Modelling

Finally, we presented to them the proposed modelling (pre-
sented here in Sect. 3, however, obviously in simplified 
terms and not using technical jargons), asking for their opin-
ion about it, as well as comparisons with the manner they 
normally perform student’s evaluation for content adapta-
tion themselves. Additionally, we investigated whether they 
judged the modelling suitable for their context and ques-
tioned how it would work in a specific context they have (or 
used to have) daily in their activities.

We also explained that we are aware that evaluation 
by human observation is still better. Nonetheless, when it 
comes to computational modelling, and given the techni-
cal limitations at the moment this implementation was done, 
we should keep attached exclusively to quantitative mea-
sures that the recognition algorithms provide and perform 
an analysis based on their outputs.

Teachers show plurality in their answers, as shown in 
parts of T3 and T5 mentioned to follow, but all of their 
answers converged to analysis extremely peculiar of human 
sense, observation and assessment. T5 said, “I normally try 
to understand the line of thoughts that they [the students] 
are building when answering my questions. Not always they 
come with the right answer, but, by doing that, I can have a 
hint whether they are on the right way and, if not, how I can 
take advantage of parts of their thinking process to correct 
them”. Similarly, T3 claimed: “I found very interesting this 
modelling, especially because we can split the measures into 
the major skills [attention, communication, and learning]. 
I say it based on my own experience. Oppositely to what 
people think, I base my evaluation on the students’ answers 
more in their communication than on the correctness of the 
answers. [...] In their answer [students], they can just rep-
licate something they hear and don’t understand, and when 
I ask them why they think it is correct what they just said, 
their facial expressions tell me a lot of things that were hid-
den in their verbal answer”.

Although such a feature of providing critical assessment 
to machines seems still far from being implemented, these 
thoughts shed light on the complexities in truly understand-
ing and modelling human behaviour and communication, 
in which points the human evaluation is still outperforming 
machine evaluation. After these two teachers acknowledged 
that they understand that machines are still not able to per-
form the evaluation they mentioned, they both agreed that 

that can connect and communicate with humans and other 
social robots by adhering to the social behaviours and rules 
associated with its role in a group”. After, we showed vid-
eos about social robots8 (from minute 2:45 to 3:35) and the 
R-CASTLE video9 (from minute 3 to minute 7).

Before defining the term, teachers reported seeing and 
understanding social robots more as personal assistants, 
such as Amazon Alexa and Apple Siri, and not having a 
physical body. After explaining and showing the videos and 
assuming social robots would have a physical body, they 
kept their opinion that it has the potential to support them 
as personal assistants but also to practice content already 
taught. At this point, teachers have already manifested their 
beliefs about the most known advantage of social robots 
at first compared to traditional methods: the novelty fac-
tor [77], and the importance of adaptation in such systems. 
Participants also mentioned the fact that adaptation can be 
crucial both for regular personalisation for each student and 
also for the personalisation to children with special needs, 
like autistic children.

One teacher T4 also mentioned how to use influencing 
variables to extend the students’ motivation to play with the 
robot: “I believe the time they are exposed to the robot also 
can influence how fast they can be bored at this [the robot]”. 
This strategy has been long time evaluated and deployed in 
other scientific works, and they indeed tend to show better 
results when applied [78].

Finally, all of them brought at some point the practical 
challenges that social robots face to be part of their regular 
teaching toolkit, that are also well-known issues according 
to literature. For example, the high financial cost of social 
robots [79], the lack of technological knowledge of teachers 
to deal with these robots [80], how learning new method-
ologies, specially such a complex one, had an impact on 
their time management [81], and how administrative lay-
ers of their school and children’s parents acceptance play 
a role in the social robots’ adoption [82]. Although these 
points are relevant and merit further discussion, this work 
focuses solely on teachers’ opinions and feedback regarding 
the adaptive methods that were tested. Nevertheless, it was 
evident that the methods presented in this paper have the 
potential to support teachers in addressing key challenges, 
such as familiarising themselves with the technology and 
reducing the time required to design and evaluate activities 
involving social robots.

This first part was a fruitful opportunity to understand, 
in general lines, at what stage teachers’ opinions regard-
ing social robots take place in the Brazilian context. It also 

8  ​h​t​t​p​​s​:​/​​/​y​o​u​​t​u​​.​b​e​​/​j​2​3​​q​q​c​​D​G​U​​r​E​?​​s​i​=​​j​4​g​9​​B​h​​A​U​b​l​q​o​i​4​C​g​%​2​6​t​=​1​6​5.
9  ​h​t​t​p​s​:​​​/​​/​y​o​u​t​​u​​.​b​​​e​/​G​l​​N​j​9​​8​L​1​​M​​r​​c​?​​s​​i​=​8​H​​D​Q​​v​5​A​H​c​5​O​W​c​T​y​s.
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teachers’ initial preference for each particularity of the 
methods if they had to choose between them, because, based 
on our experimenting so far, none of them could present all 
of them combined.

Important to note that, even though we did not evaluate 
the algorithms in Sect. 4 in terms of time to respond and 
energy consumption, we consider it relevant to bring them 
in discussion with the teachers.

As illustrated in the chart of Fig. 1, 4 out of 5 teach-
ers rated “extremely important” in the factors of accuracy, 
transparency, and customisation. However, when they have 
to prioritise one over another, teachers most of them classify 
accuracy as the most important factor, followed by customi-
sation, transparency, response time and energy consump-
tion, respectively, as illustrated in Fig. 2.

5.5  Teachers’ Preferences of the Implemented 
Methods

For the validation of the adaptation methods from the 
teachers’ perspective, we presented the three mecha-
nisms discussed in this paper-Simple Rule-Based (SRB), 
Fuzzy Decision-Making System (FDMS), and supervised 
machine learning methods-through a high-level overview. 
We explained the core ideas behind each approach, includ-
ing practical aspects of parameterisation and simplified 
descriptions of their internal workings, without disclosing 
any results. Regarding the machine learning methods, the 
interviewees described them as “computational procedures 
that, after being presented with several examples, cali-
brate themselves to classify new entries.” All ML methods 
were grouped into a single category to emphasize that they 
require multiple runs with different children to achieve ade-
quate calibration.

the computational modelling presented was adequate for its 
aims.

5.4.2  Impactful Factors for the Adaptive Method

When this last topic had concluded, we asked them for their 
opinion on the importance of the 5 factors we hypothesised 
that they could interfere when using adaptation methods. 
They are: Accuracy of correct behaviour, Transparency 
(teachers’ understanding of what the algorithm is doing), 
Delay in response time, Ease of algorithm customisation 
for each activity, Energy/battery consumption. Participants 
were first invited to give importance to the factors on a Lik-
ert scale, and second to rank these factors in ascending order 
of importance. The ranking was important to understand 

Fig. 2  Ranking of factors from the most important (smallest) to the 
least (highest)

 

Fig. 1  Teachers classification 
given weights 0 to 5 (0 most 
important) to the main factors 
regarding the robot behaviour
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vary across different scenarios, but that the current figures 
reflect outcomes from experiments conducted in real-world 
settings. As a result, three teachers (T3–T5) changed their 
preference to the supervised machine learning methods, as 
illustrated in the right-hand bar of Fig. 3.

When inquired for their reasons for changing, their 
answers were mostly grounded on what would be best for 
the students from their point of view but also the rest of the 
school staff, as said T2: “I think if the deliberative board 
of my school knows about this difference in the accuracy, 
they would push me towards using the supervised methods. 
It is how they report to the children’s parents that the school 
is always doing the best for their kids”. Conversely, T5 
said she would change voluntarily: “We are pushed to use 
so many new methods that are given to us [from the delib-
erative board] that one more or one less would not make 
much difference to me [about getting used with the super-
vised methods, even if that was not the one she said it would 
be more intuitive for her]. I would be happy knowing that 
I would be using the best methods for my students though 
[...]”.

T5 even empathised her reasons with a sort of joke: “I 
would change because it was scientifically proved to me that 
this [supervised machine learning algorithms] can have a 
better performance” while she gigged. This opinion change 
is not surprising, given the rank they did before knowing 
these results, where they assessed the accuracy of the adap-
tive methods as the most important factor.

On the other hand, T1 kept her choice with the expla-
nation of still preferring fast setting-ups rather than having 
higher accuracy achieved over a longer period. “Since my 
activities were very dynamic, I would take a lot of time to 

We asked the teachers which of the presented methods 
they would prefer to use if the system were implemented in 
their classrooms, and invited them to elaborate on their rea-
soning. At this stage, all teachers indicated they would need 
more time to make a confident choice. Based on their initial 
understanding, 3 out of 5 teachers preferred the semantic 
configuration (FDMS) (T3, T4, T5), one teacher expressed 
a preference for either the SRB or FDMS (T1), and one 
teacher preferred the supervised method (T2), as shown in 
the first group of bars in Fig. 3. Please note that for a better 
representation in the figure regarding the teacher who chose 
both SRB and FDMS first, we marked as 0.5 for each one 
of her choices.

When asked their reasons, teachers who have chosen 
the FDMS claimed it was because of the ease of setting 
their parameters, as exemplified by the phrase of T5: “If 
I understood correctly, I can easily change the configura-
tion between activities, right? So, since I work with many 
activities during the day, I prefer having an understandable 
parametrisation because I believe I can work faster this 
way”. The teacher that chose either RBS or FDMS justi-
fied her choice as ”Since in both the mathematical method 
and in the ‘wording’ one I have to set numbers, but in the 
second I have to set word-rules too, I might rather stay only 
with the numbers sometimes. But the semantic method looks 
more efficient when I need more detailed adaptation”. On 
the other hand, T2 explained her choice for the supervised 
machine learning algorithm as “... for me, it is easier and 
better to just show samples of student’s attitudes when I 
want the robot to learn how to adapt its behaviour”.

Finally, we debriefed the teachers on the results pre-
sented in Sect. 4, highlighting that system performance may 

Fig. 3  Teachers preferences for 
the adaptation methods before 
and after being exposed to the 
method’s performances, as in 
Sect. 4
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parties and leads to more meaningful research outcomes. 
This was exemplified by T2, who stated: “[...] Of course, I 
believe it is better [referring to her improved understanding 
of the research]. If I understand it better, I can not only use 
it better, but also explain it more effectively to my superiors 
and the parents about what I am using in my activities”.

In opposition to previous findings in the literature [80], 
where teachers valued the students’ privacy and security 
more, in our findings, teachers valued the school decision 
board and parents’ opinion more. In fact, none of the teach-
ers have touched on the topic of data privacy. Similarly, 
they did not seem aware of the implications of algorithms 
and devices with high levels of energy consumption can be 
harmful to the environment. However, there is a need to find 
ways to make this debate less impactful on teachers’ time, 
as brought by T3:“Oh yes, that is true [when asked about 
the fact of not brining privacy for the discussion]. I have 
not thought about it, but we have so many things to think 
about already that some important things, like these, are left 
behind sometimes. But if we don’t act like this, we are never 
moving forward”.

When asked why they had changed their preferred adap-
tation method, teachers explained that it was easier to justify 
using “the best” methodology to both their superiors and the 
children’s parents. An interesting observation was that only 
T1 did not change her opinion-she was also the only teacher 
working exclusively in public schools. This suggests a pos-
sible correlation: in private education settings, teachers may 
feel more pressure to adopt high-performing methodologies 
as a way to justify parents’ financial investment. Hence, 
and as well as also concluded by the findings of [82], all 
the stakeholders play a key role in the decisions taken in 
educational setups for HRI, and all the stakeholders should 
be aware of social and moral implications of research in 
human-robot interaction for education.

Some of our findings align with existing literature. For 
example, in [9] authors concluded that children’s personali-
ties are fluid and context-dependent, suggesting that robots 
should adapt dynamically through dialogue rather than rely-
ing on fixed personality types. In their study, teachers also 
emphasized the importance of real-time personality and 
emotion detection to personalize interactions and enhance 
learning. For long-term engagement, they highlighted the 
need for teacher involvement, including tools to update 
lessons and control robot behaviour. They also supported 
memory-based adaptations, enabling robots to recall past 
interactions to motivate students.

In our study, we presented teachers with an interface and 
the results of a field experiment, and the points raised in the 
cited work were reflected in our findings. For instance, by 
allowing teachers to select adaptation methods and manage 
new content through the interface, we addressed the need 

make the accuracy good with many samples, so I would still 
prefer the semantic configuration [the FMDS]. Even rather 
than the mathematical model [RBS], on second thought”, 
she concluded, however, with no justification to drop the 
RBS.

As a final step of the interview, we explained to the par-
ticipants that, with appropriate parameter tuning and across 
different scenarios, the other methods could also achieve 
improved accuracy. We also briefly discussed the challenges 
involved in collecting the amount of data required for the 
supervised algorithm to converge. Overall, participants con-
cluded that, regardless of the method used, several trials 
would be necessary for them to form a well-grounded opin-
ion about the presented approaches-highlighting the need 
for further long-term experiments. Lastly, they expressed 
satisfaction and were impressed with the information pro-
vided during the study.

5.6  Considerations

Based on our observations and experience during this study, 
we identified several insights that could benefit future 
research. For example, to obtain more meaningful qualita-
tive feedback and encourage greater teacher engagement, it 
was essential to clearly explain our application and ensure 
participants fully understood our goals. In this study, teach-
ers initially perceived the robot as a personal assistant until 
we clarified its intended role as a social robot. After this 
explanation, they developed a clearer understanding of its 
purpose and could better appreciate its potential benefits in 
educational settings.

Unlike previous studies in the literature, where teachers 
were only presented with lecture-style and group-work in 
role-playing scenarios [75], the exposition to a real-world 
scenario and a live discussion of the results afforded a more 
concrete view and judgment of social robots in classrooms 
to participant teachers. Especially in cases where adaptation 
and its aspects are explored.

Furthermore, while previous studies have shown that 
teachers see potential in social robots to support learning by 
guiding students, modelling behaviour, offering emotional 
support, and adapting to individual needs [14, 83], our 
study went a step further by enabling teachers to understand 
the adaptive methods and their implications. This deeper 
understanding appeared to extend beyond their immediate 
teaching practice, influencing how they might justify their 
choices to broader stakeholders such as parents and school 
administrators-suggesting a wider impact on the school 
ecosystem.

All participants agreed that a protocol in which research-
ers clearly explain their goals and reasoning in layman-
friendly terms facilitates faster communication between all 
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initially when no data is still acquired, teachers can use the 
methods with high explainability, whereas the more data 
they collect in specific activities, the better ML algorithms 
can be trained to achieve higher performances. The easy 
switching between these methods for every activity is a key 
element for fast customisation in classrooms that R-CAS-
TLE provides.

Limitations of this work include, notably, the small data-
set used to assess algorithm performance and the analysis 
performed solely at the immediate adaptation level. For a 
deeper, comprehensive evaluation of the implications and 
advantages, long-term experiments are necessary. Further-
more, in relation to qualitative analysis, it is important to 
note that this work does not aim to draw a general conclu-
sion on teachers’ opinions regarding adaptive algorithms for 
social robots. Rather, it seeks to illuminate common situa-
tions and attitudes arising from synergy among these agents.
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for dynamic adaptation. The ability to visualize system 
performance through graphs and switch between methods 
further reinforced this. Combined with other components 
of our architecture-such as the user preferences module-we 
propose that long-term, memory-based interactions can be 
effectively supported.

Therefore, our conclusions address RQ2, which 
explores how the characteristics of adaptive methods 
influence teachers’ adoption and perception. While teach-
ers acknowledged the importance of understandability, 
they were more strongly influenced by the performance 
of the methods. This was evident both when they ranked 
influencing factors and when they changed their pre-
ferred method after reviewing the results of a specific 
case. However, for quicker setup and activity configu-
ration using R-CASTLE, teachers indicated they would 
initially opt for the more intuitive algorithms.

6  Conclusion

In this work, we presented an evaluation of user modelling 
and adaptation algorithms by the data analysis performed 
over an experiment in a real classroom scenario, considering 
the teachers’ perspective on the obtained solutions. Meth-
ods with higher understandability, rule-based and fuzzy 
decision-making systems, presented similar performance. 
However, they presented inferior performance, when com-
pared to supervised ML algorithms. In the initial stages 
of the experiments, teachers tended to prefer the methods 
they could easily understand. However, after reviewing the 
experimental results, many shifted their preference toward 
higher-performing methods-even if they did not fully under-
stand how those algorithms functioned.

When analysing the data, we found that it is possible to 
prioritise certain weights by checking the importance of 
the parameters in the ML algorithms and also in the best 
performing weights of the RBS and FDMS. Although more 
experiments are requested to validate this hypothesis also 
from the dimensions of attention and communication, our 
findings suggest a high potential of the proposed modelling 
to be quickly adaptive for dynamic scenarios, while still 
keeping a desired level of understandability.

It is worth highlighting two major contributions of this 
work. The first is the role of stakeholders, helping to adjust 
the parameters of the R-CASTLE system and demonstrat-
ing that AI techniques can be a powerful tool in the learn-
ing process. The second is the advantage of conducting this 
research in real-world settings, making the adaptation of the 
system more true and trustworthy.

Finally, we can conclude that the best alternative would 
be a combination of the presented methods, in which, 
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