ORIGAMI E GEOMETRIA

José de Oliveira Siqueira

Orientadora: Célia Contin Góes

Todos nós sabemos dividir um segmento em três partes congruentes usando régua e compasso. Mas suponha que você não disponha dos instrumentos clássicos (régua e compasso) para esta construção. Porém você possui um quadrado de papel cujo lado tem a medida ℓ do segmento a ser dividido. Seria possível, então, resolver o problema? A resposta é afirmativa e o método que usamos é proveniente da técnica japonesa do Origami.

Observe os 3 problemas a seguir:

Problema 1: Dividir um quadrado de papel em 3 retângulos congruentes usando dobras de papel.

Solução: Pegue uma folha quadrada e siga as instruções:

- a) dobre o papel fazendo A coincidir com D e B coincidir com C. Desta forma, ficam determinados E e F, pontos médios de AD e BC;
- b) abra o papel e agora faça D coincidir com F. Assim construímos um triângulo retângulo com um cateto CF e a soma do outro cateto com a hipotenusa igual ao comprimento do lado do quadrado;
- c) chame de $\,G\,$ o ponto de $\,AB\,$ que coincide com um ponto de $\,AD\,$ na nova posição.

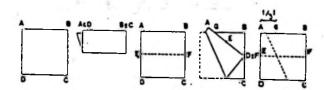


Figura 1: $med(AG) = \frac{1}{2}\ell$

Fazendo o mesmo para o segmento DC podemos obter o ponto H.

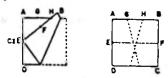
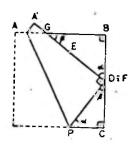


Figura 2: $med(HB) = \frac{1}{3}\ell$

Os pontos G e H assim obtidos dividem o lado AB em três segmentos congruentes.

Demonstração:



O \triangle DGB é semelhante ao \triangle PDC.

Portanto, $\frac{\text{med}(BD)}{\text{med}(PC)} = \frac{\text{med}(GB)}{\text{med}(DC)}$.

Como $\operatorname{med}(DC) = \operatorname{med}(BD) = \frac{\ell}{2}$, então: $\operatorname{med}(GB).\operatorname{med}(PC) = \frac{\ell^2}{4}$.

Por Pitágoras (\triangle PDC), temos: $(\text{med}(PD))^2 = (\text{med}(PC))^2 + (\text{med}(DC))^2$.

Como $\operatorname{med}(PC) + \operatorname{med}(PD))^2 = (\frac{\ell}{2})^2$.

Portanto, temos que: $\operatorname{med}(PC) = \frac{3\ell}{8}$, $\operatorname{med}(GB) = \frac{2\ell}{3}$ e $\operatorname{med}(AG) = \frac{1}{3}\ell$.

c.q.d.

Problema 2: Dividir um quadrado de papel em 5 retângulos congruentes usando dobras de papel.

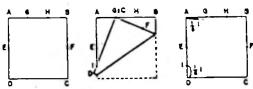
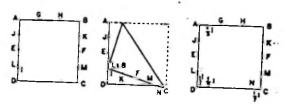


Figura 3: $med(ID) = \frac{1}{5}\ell$

Deixamos a prova deste resultado por conta do leitor.

Problema 3: Dividir um quadrado de papel em 7 retângulos congruentes usando dobras de papel.



J é o ponto médio de AE

L é o ponto médio de ED

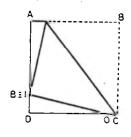
K é o ponto médio de BF

M é o ponto médio de FC

Figura 4:
$$med(NC) = \frac{1}{7}\ell$$

Pedimos ao leitor, novamente, que demonstre este resultado.

Problema 4: Dividir um quadrado de papel em 9 retângulos congruentes usando dobras de papel.



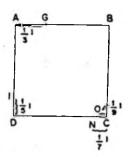


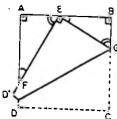
Figura 5: $med(OC) = \frac{1}{9}\ell$

Caro leitor, desta vez é o último que pedimos para você provar.

Demonstraremos o teorema geral que possibilita fazer as divisões acima:

Teorema: Sejam ABCD um quadrado de lado ℓ e $E \in AB$ tal que $\operatorname{med}(AE) = (\frac{m}{m+n})\ell$ e $\operatorname{med}(EB) = (\frac{n}{m+n})\ell$, onde n e $m \in \mathbb{N}^*$.

Se dobrarmos o quadrado de modo que os pontos E e C coincidam, como mostra a figura abaixo, então $\operatorname{med}(FD) = (\frac{m}{2n+m}).\ell$, onde $\{F\} = AD \cap ED'$, sendo D' a nova posição de D.



Demonstração: Os triângulos EBG e FAE são semelhantes, pois $F\hat{A}E$ é congruente a $E\hat{B}G$ e $A\hat{E}F$ é congruente a $E\hat{G}B$, pois $\operatorname{med}(E\hat{G}B) = 90^{\circ}$ - $\operatorname{med}(B\hat{E}G) = \operatorname{med}(A\hat{E}F)$. Portanto, $\frac{\operatorname{med}(BG)}{\operatorname{med}(AE)} = \frac{\operatorname{med}(BE)}{\operatorname{med}(AF)}$. Como $\operatorname{med}(AF) = \ell - \operatorname{med}(FD)$, então $\frac{\ell - \operatorname{med}(FD)}{\operatorname{med}(EB)} = \frac{\operatorname{med}(AE)}{\operatorname{med}(BG)}$. Por Pitágoras (ΔEBG) e considerando que $\operatorname{med}(GE) + \operatorname{med}(BG) = \ell$, temos que $\operatorname{med}(BG) = \ell = \ell - \operatorname{med}(BG)$.

Logo,
$$med(FD) = (\frac{m}{2n+m})\ell$$
.

c.q.d.

Corolário 1. Se m=1 e n=1 então $med(FD)=\frac{1}{3}\ell$. (Problema 1) (Teorema de Haga).

Corolário 2. Se m=1 e n=2, então $med(FD)=\frac{1}{5}\ell$. (Problema 2).

Corolário 3. Se m=1 e n=3 então $med(FD)=\frac{1}{7}\ell$. (Problema 3).

Corolário 4. Se m=1 e n=4 então $med(FD)=\frac{1}{6}\ell$. (Problema 4).

Corolário 5. Se m=1 e n=5 então $med(F)=\frac{1}{11}\ell$.

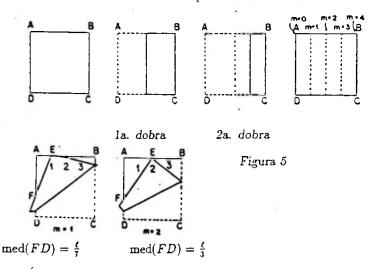
Exercício: Resolva este último problema (Corolário 5) dobrando o papel.

Corolário 6. Se $m+n=2^d$, onde d é o número de dobras paralelas ao lado AD, então

- (i) $med(AE) = \frac{m}{2^d} \ell, \ 1 \le m \le 2^d;$
- (ii) $\operatorname{med}(EB) = (1 \frac{m}{2^4})\ell;$
- (iii) $med(FD) = (\frac{m}{2^{d+1}-m})\ell, \ 2^{(d+1)} > m.$

Observar que 2^d é o número de retângulos congruentes resultantes dos vincos no papel e m significa considerar E como o m-ésimo ponto da divisão depois de A.

Exemplo: Duas dobras (d=2) paralelas ao lado AD.



É interessante notar as relações de dependência entre as divisões.

Exemplos:

- (1) Para se determinar $\operatorname{med}(FD) = \frac{1}{16}\ell$, observamos que $16 = 2^4$ e, portanto, F pode ser obtido como o primeiro ponto depois de A determinado por d = 4 dobras paralelas ao lado AB (notação do teorema).
- (2) Para se determinar $med(FD) = \frac{1}{15}\ell$ observamos que $15 = 2^4 1$. Então, usando o corolário 6 com d = 3, começamos determinando o segmento AE

com $\operatorname{med}(AE) = \frac{1}{8}\ell = \frac{1}{2^3}\ell$, fazendo 3 dobras paralelas ao lado AD.

(3) Para se determinar $\operatorname{med}(FD) = \frac{1}{17}\ell$, usamos diretamente o teorema fazendo $\frac{m}{2n+m} = \frac{1}{17}$ com m=1 e n=8. Precisamos, então, começar com um segmento medindo $\frac{m}{m+n}\ell = \frac{1}{9}\ell$.

Fazendo $\frac{m}{2n+m}=\frac{1}{9}$ com m=1 e n=4, concluímos que precisamos de um segmento medindo $\frac{m}{m+n}\ell=\frac{1}{5}\ell$.

Fazemos, então, $\frac{m}{2n+m}=\frac{1}{5}$ com m=1 e n=2 concluímos que precisamos de um segmento com medida $\frac{m}{m+n}\ell=\frac{1}{3}\ell$ e este já sabemos determinar (veja problema 1), onde $3=2^2-1$ (basta uma dobra paralela ao lado AD).

(4) Para determinar $\operatorname{med}(FD) = \frac{1}{18}\ell$, observamos inicialmente que $\frac{1}{18} = \frac{1}{2} \cdot \frac{1}{9}\ell$ e que um segmento medindo $\frac{1}{9}\ell$ pode ser obtido como no exemplo 3.

Podemos resumir as relações de dependência entre as divisões através do esquema abaixo:

$$\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{5} \quad \frac{1}{6} \quad \frac{1}{7} \quad \frac{1}{8} \quad \frac{1}{9} \quad \frac{1}{10} \quad \frac{1}{11} \quad \frac{1}{12} \quad \frac{1}{13} \quad \frac{1}{14} \quad \frac{1}{15} \quad \frac{1}{16} \quad \frac{1}{17} \quad \frac{1}{18} \qquad \dots$$

Esquema para $\ell=1$

Observamos que as construções acima utilizam uma régua e um compasso não canônicos representados por coincidências de pontos e dobraduras de papel.

Um problema mais complicado seria a generalização usando um retângulo de lados a e b $(a \neq b)$.

Sugerimos ainda ao leitor construir uma tabela de $med(FD) = (\frac{m}{2n+m})$. Apresentamos abaixo a tabela para que o leitor a complete:

Referência

Kasahara, Kunihiko e Toshie, Takahama Origami for the Connoisseur. Japan Publications, Inc. Tokyo and New York. 1987.