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We propose a generalization of the Bogomol’ny—Prasad—Sommerfield Skyrme model [L. A. Ferreira, Exact
self-duality in a modified Skyrme model, J. High Energy Phys. 07 (2017) 039] for simple compact Lie groups G
that leads to Hermitian symmetric spaces. In such a theory, the Skyrme field takes its values in G, while the
remaining fields correspond to the entries of a symmetric, positive, and invertible dim G x dim G-dimensional
matrix 4. We also use the holomorphic map Ansatz between S — G/H ® U(1) proposed in Ferreira and
Livramento [Harmonic, holomorphic and rational maps from self-duality, arXiv:2412.02636] to study the self-
dual sector of the theory, which generalizes the holomorphic Ansatz between S? — CPN proposed in
Ioannidou [Low-energy states in the SU(N) Skyrme models, in International Meeting on Mathematical
Methods in Modern Theoretical Physics (ISPM 98) (1998), pp. 91-123, arXiv:hep-th/9811071]. This
Ansatz is constructed using the fact that stable harmonic maps of the two S? spheres for compact Hermitian
symmetric spaces are holomorphic or antiholomorphic [J. Eells and L. Lemaire, Two Reports on Harmonic
Maps (World Scientific Publishing Company, Singapore, 1995)]. Apart from some special cases, the self-
duality equations do not fix the matrix % entirely in terms of the Skyrme field, which is completely free, as it
happens in the original self-dual Skyrme model for G = SU(2). In general, the freedom of the £ fields tend
to grow with the dimension of G. The holomorphic Ansatz enable us to construct an infinite number of
exact self-dual Skyrmions for each integer value of the topological charge and for each value of N > 1, in

case of the CPV, and for each values of p, ¢ > 1 in case of SU(p + q)/SU(p) ® SU(q) ® U(1).

DOI: 10.1103/dmdd-xcl11

I. INTRODUCTION

The study of self-duality has shed light on the complex
behavior of topological solutions in a wide variety of
classical nonlinear field theories. The topological solitons
are classified by a homotopic invariant quantity, the so-
called topological charge, and self-duality can greatly
facilitate the task of obtaining the topological solutions
corresponding to the global energy minimizer [1]. This
plays a fundamental role in the study of kinks and
instantons in (1 + 1) dimensions [1-4], vortex solutions
in the Abelian Chern-Simons theory in (2 + 1) dimensions
[5], self-dual Skyrmions in (3 + 1) dimensions [6,7], and in
some non-Abelian gauge theories in (3 + 1) dimensions, as
the Yang-Mills-Higgs system [8].

The self-duality usually appears in models that possess
two main ingredients. First, the static energy density of the
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model must be the sum of the squares of two objects A, and
A, that depend on the fields and their first-order spacetime
derivatives only, where the nature of the fields and the «
index depend on each theory. Second, the topological
charge density must be proportional to the contraction of
such objects. It follows that the so-called self-duality
equations A, = +A, imply second-order differential
Euler-Lagrange equations and also correspond to the global
minimizer of the static energy, for each value of the
topological charge (Q). The set of topological solutions
of the self-duality equations is called the self-dual sector,
which can be empty for some models, as is the case with the
standard Skyrme model, as demonstrated in [9,10].

The standard Skyrme model is an effective classical field
theory for the triplet of pions in (3 4 1) dimensions in the
low-energy regime [3,9,11-13]. The model is defined in
terms of the SU(2) Skyrme field U, which includes the
three pion fields and is a map between two three-spheres.
Its standard version contains only two terms in its action,
one quadratic and the other quartic in the spacetime
derivatives. The quartic term, or any other higher-order
kinetic term, is essential to stabilize the Skyrmions under
Derrick’s scale argument [14]. This is still true even if any
positive definite potential defined in terms of the Skyrme
field is added since this SU(2) field is scale invariant.

Published by the American Physical Society
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Such a theory possesses a large number of modifications,
some allowing the construction of electrically charged
multi-Skyrmions. This is the case of the gauged version
of the Skyrme model obtained by gauging the U(1)
subgroup of the SU(2) global symmetry, associated with
the generator of its Cartan subalgebra [15-19].

There are some modifications to the standard Skyrme
model that lead to a nonempty self-dual sector. Notably, one
of these modifications, the so-called Bogomol’ ny—Prasad—
Sommerfield (BPS) Skyrme model [6], can be directly
derived from integral representations of the topological
charge associated with the Skyrme field using ideas of
self-duality seen in [I]. Such an approach spontaneously
includes six extra fields corresponding to the entries of a
symmetric, positive, and invertible 3 x 3 matrix /. The matrix
h and its inverse appear contracted respectively to quadratic
and quartic terms in the spacetime derivatives associated with
the Skyrme field, i.e., the model is defined by

2
m 1
Spps = / d*x [70 habRZRb'ﬂ - Eh;;Hﬁqu'”b

0

(1.1)

where m,, is a coupling constant with dimension of mass, and
eo is a dimensionless coupling constant. In addition,
R% = iTr(9,UUT,), and HY, = e, RLRS, with T,
a=1, 2, 3, being the basis of the SU(2) Lie algebra
satisfying [T, T),] = i€ T, and 'fr(TaTb) =6, The
standard Skyrme model is recovered by imposing & = 1.

It was demonstrated in [7] that self-duality equations
of the BPS Skyrme model can be used to algebraically
determine entierly the 4 matrix in terms of the matrix
T4, = R¢RY, with a, b = 1, 2, 3, in all regions where 7 is
nonsingular, while the Skyrme field is still completely free.
This SU(2) field is still completely free even at the points
where 7 is singular, but in this case some of the components
of the matrix 4 are also free. The reason that leads to this
freedom can be traced to the fact that the nine static Euler-
Lagrange equations for the fields 4 and U are not all
independent. In fact, the equations for the U field can be
derived from the equations of the /i fields when 7 is
nonsingular. The freedom of the Skyrme field leads to
an infinite number of exact topological solutions to each
value of the topological charge.

All the BPS solutions of the model (1.1) are scale
independent due to the conformal invariance of the model
in three spacial dimensions. This freedom of the shapes of
topological solitons can improve the scope of physical
application of the theory, especially if some extra term is
added breaking the scale independence and selecting some
specific form. By example, the scale dependence and the
radial multisolitons configurations that live in the self-dual
sector of the theory (1.1) are essential in one of its
extensions, the false vacuum Skyrme model [20].

Self-duality can also play a fundamental role in models
that are extensions of BPS theories, where the total static

energy contains extra terms, even in nonperturbative
approaches. On the one hand, self-duality can inspire the
construction of Ansdtze in quasi-self-dual models, where
the extra terms weakly break the self-duality equations
[21]. On the other hand, there are models that contain extra
terms that do not break any of the self-duality equations,
such as the false vacuum Skyrme model [20]. This is a
powerful modification of the Skyrme model that leads to
excellent classical results for the binding energy and
radius of the nuclei. In fact, the results are such that for a
list containing 256 nuclei with mass number A > 12, the
root-mean-square deviation of the binding energy per
nucleon and the root-mean-square radius, which are,
respectively, of the order of 0.05 MeV and 0.04 fm,
are of the same order as excellent fits based on phenom-
enological approaches.

The magic of the false vacuum BSP Skyrme model is
that the BSP Skyrme term gives a massive contribution E
to the total nuclear mass, but the binding energy comes just
from the extra terms, despite given a lower order contri-
bution E, to the total mass. The BPS model is extended
through the introduction of kinetic and potential terms for
the baryonic density, which depends only on the Skyrme
field, and a topological term that approximately reproduces
the Coulomb interaction. The /4 fields are still being
determined through the self-duality equations, since the
additional terms do not depend on such fields. Curiously,
Coleman’s false vacuum argument [22-24] shows that
the global minimizer of such a theory must have radial
symmetry. This mathematical result reduces the three-
dimensional static Euler-Lagrange equations to a single
radial second order differential equation for a fractional
power of the baryonic density. However, exploring the
nature of & fields for generalizations of the BPS Skyrme
model can help reveal the physical interpretation of such
fields and if & can still be entirely determined in terms of
the Skyrme fields for Lie groups other than G = SU(2).

A self-dual modification of the Skyrme model proposed
in [25,26], also known as the BPS Skyrme model, intro-
duces a BPS sector without the need for additional fields
beyond the pion degrees of freedom. In this construction,
the standard Skyrme terms are replaced by a potential term
together with a sextic term in the spacetime derivatives of
the Skyrme field, the so-called BPS Skyrme term. Although
it features zero binding energy at the classical level, the
inclusion of Coulomb contributions and quantum correc-
tions yields realistic binding energies for very heavy nuclei
[27]. Furthermore, the model can be extended by adding
the terms of the standard Skyrme theory with a small
deformation parameter ¢ < 1, bringing the theory close to
the BPS limit and providing controlled corrections to the
binding energies [28].

Extensions of such a BPS Skyrme model that contain
the sextic term but do not include the & fields also play
an important role in reducing Skyrme-type solutions to
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configurations with low binding energies [29-31]. The
construction of Skyrme-type theories with a self-dual sector
has also been obtained by the reduction of self-dual Yang-
Mills theory in four dimensions to a Skyrme model coupled
to a tower of vector mesons, leading to a reasonable
description of the spectrum of light nuclei [32-35].

An important mathematical result that motivates us to
generalize the BPS Skyrme model shows that for a
simple compact Lie group G, it follows that 73(G) = Z,
where 73(G) is the homotopy group of the mapping of G
into a three-sphere. The topological charge associated
with this map admits integral representation similar to
the G = SU(2) case. Let us consider now the cases where
G leads to a Hermitian symmetric space G/H ® U(1),
where little group H ® U(1) is a subgroup of G. Some
examples of Lie groups that lead to a Hermitian symmetric
space are G =A,,B,,C,,D,, E¢, E;, and some counter-
examples include the Lie groups G = Eg, Fy, G,.

Another important mathematical result that can shed
light on how we can study the self-duality in such model
was derived by Eells and Lemaire [36]. It states that stable
harmonic maps X from the two-sphere $? to compact
Hermitian symmetric spaces are holomorphic or antiholo-
morphic. This laid the foundation for constructing the
Ansatz holomorphic map Ansatz between S?> - G/H ®
U(1) proposed in [37] by Ferreira and Livramento.
Although this Ansatz only works in certain specific
representations of the Lie group G, as will be discussed
later, it is major generalization of the holomorphic Ansatz
between S?> — CP" proposed in [38] to the CPV.

The main idea of this work is to first construct a
generalized BPS Skyrme model with the Skyrme fields
mapping the physical space to a simple compact Lie group G
that leads to the Hermitian symmetric space G/H @ U(1).
In this case, as the indices of the rows and columns of
the matrix / are contracted with each index of the generators
of the Lie algebra G associated with G, in such a theory
it becomes a dim G xdim G dimensional symmetric,
invertible, and positive matrix. Therefore, the # matrix and
the Skyrme fields can be written in terms of dim G(dim G +
1)/2 and dim G independents fields, respectively.

Our second objective in this paper is to study the self-
dual sector of such a theory through the holomorphic
Ansatz between S? — G/H ® U(1) proposed in [37]. In
particular, we want to determine whether the matrix 4 can
still be entirely determined in terms of the Skyrme fields
in the generalized BPS Skyrme model, similar to what
happens in the case G = SU(2), and whether U is still
completely free. Despite the fact that the number of self-
duality equations is, in principle, equal to the number of
independent fields of the theory, the full determination of
all the fields by the self-duality equations is not expected,
since this does not happen even for the G = SU(2) case,
as discussed above. This Ansatz can drastically simplify
the self-duality equations, aiding in our investigation of

the self-dual sector and in the construction of exact BPS
topological solutions.

A powerful holomorphic Ansatz for the standard Skyrme
model was constructed for the G = SU(2) case by
Houghton et al. in [39] using harmonic maps from
S$3 - S3. It is based on the rational map, which is a
holomorphic function from §? — $? [3,4,39,40]. Although
solving all Euler-Lagrange equations only for Q = =1,
such Ansatz leads to a quite good approximation of the true
topological solitons corresponding to the global energy
minimizer, in the BPS Skyrme model (1.1), as the Skyrme
field is completely free inside the self-dual sector, the
rational map leads to an infinite number of exact solutions
for each value of Q [7].

In interpreting the Skyrme model as a low-energy
effective field theory of QCD in the limit where the number
of colors is large, the number N 4+ 1 of the Lie group
SU(N + 1) where the Skyrme field takes its values
corresponds to the number of light quark flavors. The
holomorphic Ansatz proposed by Houghton et al. in [39]
for G = SU(2) was generalized in [38] for G=SU(N +1)
using harmonic maps from S$* to CP¥N = SU(N +1)/
SU(N) ® U(1). As the other Ansatz¢ used to construct
multi-Skyrmions for some values of N of the G=SU(N+
1) case, the goal of this Ansatz is just give some approxi-
mation of the global energy minimizers. However, in
general the energies obtained through such an Ansatz
are marginally higher than the ones obtained through
SU(2) embeddings.

Through the holomorphic Ansatz we can construct an
infinite number of exact topological solutions for each
values of Q and N of the CP" space. This set of self-dual
solutions even includes field configurations based on the
standard rational map Ansatz. We also obtain self-dual
solutions within this Ansatz for the Hermitian symmetric
space SU(p+ q)/SU(p) ® SU(q) ® U(1), which gener-
alizes our results obtained for the CPY. In this case, we also
provide explicit solutions for any value of the topological
charge. This study has the potential to reveal the nature of &
fields in such models and how the role of self-duality
manifests in determining the /& and U fields.

The paper is organized as follows. In Sec. II, we
construct the generalized BPS Skyrme model. Additionally,
we obtain the self-dual equations and the expression for the
topological charge and energy within the self-dual sector. In
this section we also discuss an important symmetry of the
model under the composition of parity and target space
parity transformations. In Sec. III, we derive the Euler-
Lagrange equations and demonstrate how they can be
solved using the self-dual field configurations. In Sec. IV
we construct our holomorphic Ansatz between S —
G/H ® U(1). We also obtain the explicit general form
of the self-duality equations using the structure of the
Hermitian symmetric space and our holomorphic Ansatz. In
Secs. V and VI we study our holomorphic Ansatz in the
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G =SU(2) and G = SU(N + 1) cases, respectively. The
case SU(2) is done separately due to its peculiar structure,
and in both cases we obtain exact multi-BPS Skyrmions
for all integer values of the topological charge. In Sec. VII
we obtain the self-dual equations inside the holomorphic
Ansatz for the Hermitian symmetric space SU(p + q)/
SU(p) ® SU(q) ® U(1), and construct particular self-
dual solutions for all integer values of the topological
charge. In Sec. VIII we present our final considerations.

II. THE MODEL AND ITS CONSTRUCTION

Consider a simple compact Lie group G. It is known that

the maps S* — G are classified by the integers since

The topological charge associated to such homotopy group
is given by

Q

= 5 / dxe;; Tr(R;R Ry (2.2)

where
R, = iaﬂUU'] =RiT, (2.3)

with U being an element of the group G, and T,
a=1,...,dim G, being the generators of the correspond-
ing compact simple Lie algebra

[Tuv Th] = ifuthc (24)
and where we work with an orthogonal basis, i.e.,
TI'(TaTb) = K6ab (25)

with x depending upon the representation where the trace is
taken. We shall use a normalized trace defined as

~

Te(T,Ty) =—-Tr(T,Ty) = Sup- (2.6)

A=

The quantities R, introduced in (2.3) satisfy by con-
struction the Maurer-Cartan equation |

1
2

2

£=y [ ex|war s Gy

1 1 ~ ~
= —/ d3x |:m2habR?R? - 2—e2h;l}Tr(Ta [Rj’ Rk])Tr(Tb[R], Rk}):|

,R, — ,R, + i[R,,R,] =0, (2.7)

which allows us to split the topological charge (2.2) as

0= [ axaa

T 4872 (28)

with

~ i ~
A;l = R{)kba’ A? = Ek;blgl]kTr(Tb [R’, Rk]) (29)
where k,, is some invertible matrix. Using the ideas of self-
duality seen in [1], through this splitting we can introduce
the self-duality equation as

AAC = A with 1= +me (2.10)

or

i ~
AR hyq = EgijkTr(Ta[ijRkD (2.11)
where we have introduced a dim G x dim G-dimensional
matrix
hay, = (kkT)ab = kackpe- (212)

Due the fact the k is invertible and the definition (2.12), it
so follows that the & matrix is invertible, symmetric, and
positive. The fact that & is positive is less trivial, but
consider real vector v and define u = k7 v, which implies
that v = 0 = u = 0. Using the fact that & is invertible, we
can write v = k" "'u, and so u = 0 = p=0. Therefore,
the fact that & is invertible implies that u = 0< v=0.Itso
follows that for all nonvanishing real vector » we have
vTho = |k"v|?> = |u]*> > 0, and so h = kk” is a positive
matrix.

The solutions of (2.9) solve the Euler-Lagrange equa-
tions associated to the following static energy functional
constructed using ideas of self-duality [1]

(2.13)

which is the static energy of a generalized Skyrme model. The action associated to energy (2.13) that defines the generalized

BPS Skyrme model is so given by

1 1 N R
S = 5/ d*x |:m2hahRZRbﬂ + ﬁh;blTr(Ta [R,. R,))Tr(T,[R", Ru])]

m> 1
= [ d*x|—h,,R4R"H — —
/ )C|: 2 ab™™pu 4

—1gga pybuv
eZhabH l/H H

g (2.14)
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where we have defined [see Eq. (2.7)]

Hj, = —i’fr(Ta[Rﬂ, R,]) = 0,R} — 0,R;, = fabcRﬁR,f.

(2.15)
We can write the energy (2.13) as
1 -
E— 37 dx[m?e?(A9)? + (A¢)?)
e
1 3 a2 A 3 Ha
== | Ex[RA} = Af]" + = [ &xA}A;
2e e
1 a a2
= ﬁ/d’&x[//{ftl - A,]
. m . m
+ sign(1)487%> — Q > sign(1)48z% — Q, (2.16)
e e

which corresponds to the usual BPS bound. When the self-
duality (2.10) holds true the topological charge (2.8) can be
written as

0=+ /d%(A;?)Z

yrr (2.17)

and so Q is positive for the plus sign (4 > 0) and negative
otherwise (4 < 0), i.e.,

sign(Q4) = 1.

Then, using (2.10) and (2.18) the energy (2.16) of the self-
dual solutions saturates the BPS bound, also given in
(2.16), i.e., the energy becomes

(2.18)

E =48220 (2.19)
e

Clearly, as usual, the self-dual energy (2.19) is proportional

to the modulus of the topological charge. Contracting the

self-duality equations (2.11) with RS we get

AT ephpy = 0. (2.20)
with
Ty = RORY (2.21)
and
Oap = %R?gijkfr(Th [Rj. R])
= - %SijkfbcdR?R;Rg = —%Siij?ka- (2'22)

Note that the self-dual equations (2.11) are labeled by
one spatial index i=1,...,3 and one algebra index
a=1,...,dim G, while, due to the contraction with R¢,

the Eq. (2.20) are labeled by two algebraic indices
a,c=1,...,dim G. In Sec. III, we show that the dim G x
dim G self-duality equations (2.20) are equivalent to the
dim G x 3 self-duality equations (2.11).

From (2.2) and (2.22) the topological charge becomes

i ~
Q — @ d3x€ijkTr(Ri[ij Rk])
1
= — 9671'2 / d3xgijkfabcR?R?Ri
1
=282 | 40 (2.23)

Note that in the particular cases where 7 is invertible we can
write 4 in terms of the U fields only as

h=-7"¢. (2.24)

So, the self-duality equation is solved for any U-field
configuration (as long as 7 is invertible at least), and so the
h fields are spectators in the sense they adjust themselves to
that U-configuration to solve the self-duality equations.
However, in the case 7 is not invertible, the BPS Skyrmions
need to be constructed by solving the self-duality
equations (2.20).

Under space parity P transformations (7, x;) — (7, —x;)
and under the target space parity Py transformations
U — U~', where U can be any element of the target space
G, we have the same transformations for the quantities
(z,0,h,E) - (r,—0,—h,—E). Note that the way that h
transforms under P and Py can be derived from the way
that ¢ and 7 transform using the self-duality equa-
tions (2.20). Clearly, by the space parity transformations
7 is a scalar, while E, o, and the / fields are pseudoscalars.
These two sets of transformations shows in particular that
the energy E is invariant under the composition PPy,.

The fact that the i fields gets a minus sign in both
transformations P and Py leads to an important distinc-
tion of our theory and the standard Skyrme model, where
by definition 2 = 1 does not transform. The energy of the
standard Skyrme model Egy is also invariant under the
composition PPy, but this comes from the fact that Eg
is also invariant under both P and Py transformations
separately.

The h fields plays the same role of the Wess-Zumino
term with respect the P and Py; transformations. The Wess-
Zumino term is introduced into the Skyrme model in [41]
to break both invariances P and Py while preserving the
invariance PP,. This is fundamental in the interpretation of
the Skyrme model as an effective theory in the low energy
regime, where just the composition PPy must be a
symmetry of the action. In fact, for three flavors the
Skyrme field takes its values in the SU(3) Lie group
and can be written in terms of an octet formed by pions,
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kaons, and eta mesons [42—45]. The P invariance would
forbid, for example, the process K™K~ — zt7~ 2%, where
K is the kaon, K~ the antikaon, and (7", 7", z°) corre-
sponds to the three pions with electrical charges +e¢, —e, 0,
respectively, where e is the electric charge of the proton.
However, this process can be observed experimentally and
is allowed in QCD by the non-Abelian anomaly.

III. THE EULER-LAGRANGE EQUATIONS

The Euler-Lagrange equations associated to the Skyrme
field and the action (2.14) are

aﬂ(_ﬂzhabRb‘” + fcbaRlC/hI:al,’Hd’}w)

— feba [—AzhbdR;’RW + h;‘}H""‘”aﬂR;’] =0. (3.1
Its static version is given by
ai(/?’zhabR? + bellR;h;;ngj)
— febalPhpaRERS + hyyHE0RS) = 0. (3.2)

The Euler-Lagrange equations associated to the £, fields
and the action (2.14) are

1
PRI I H S 0. (33
Let us introduce
1
+ a a — C
S,(- Ja — |A|RS :*:E(?ijkhaclij’ (3.4)
which satisfies by construction
SISO = By A 33
where
1 — —_ C
B, = m?e*R¢RY — Ehaclhb;Hintg'lj;
Agy = P[0 4y = (0h71),). (3:6)

The Eq. (3.5) splits S§+)'QS§_)"’ into its symmetric and
antisymmetric parts B,, and A,,, respectively. The static
version of (3.3) becomes

By =0 StHes — 4,

i

(3.7)

On the other hand, the self-duality equations (2.11) can be
written as

sign(2) = +1 = s =, (3.8)

which implies

sirash — o,

1 ]

(3.9)

Let us show that the dim G x dim G self-duality equa-
tions (2.20) are equivalent to the dim G x 3 self-duality
equations (2.11), which can also be written as (3.8). The
Eq. (2.20) is obtained in Sec. II from (2.11). Now, let us
prove that (2.20) implies (2.11). In particular, the self-
duality equations are also solutions of the static Euler-
Lagrange equation associated with the £ field (3.7), i.e.,
B,, = 0. On the other hand, from (2.20), we obtain that
oh™! is symmetric, and due to (3.6), we have A, = 0.
Therefore, the rhs of (3.5) vanishes, reducing this equation
to (3.9). The definition (3.4) leads to

sthha 4 gha — 9)4|Re (3.10)

()b

Contracting (3.10) with S; and using (3.9) we obtain

SEHSE = 2 RESTN = 20 [|fea F (0h71) )
= 202[14] F Alzas (3.11)

where we use (2.20), which implies the self-duality
equations (3.8), completing the proof.

Now, let us explicitly show that the Euler-Lagrange
equation for the U field (3.2) is implied by the self-duality
equations (2.11). Using (2.15) we also can write (2.11) as

1
8ljka]R;; = Esiij.l;k = —AR?hba = H?j = _/IgiijZhba'

(3.12)

Consequently, 9;(h,,R¢) = —A""¢,;;,0,0,R} = 0. Using this
expression, and defining L, as the lhs of (3.2), we obtain

L, = 0;(RhyR? + fopaRSHyIHE)
— febalPhpaRERS + hiy HY0.RS)]

= fcbaR;al(h;c}H?]) - fcba’lzhbdR;]RzL'.' (313)

However, (3.12) implies RS0, (h, H{;) = —ARS¢;;0;
(h;;Rihld) = —/leel]kalRZ = ﬂchgtjka]RZ = —lzRICRldhdb

Then, the first and second terms on the lhs of (3.13) are
equal, and we can write it as

Ly = 2f paARS€;340,RY = —2iATr(CT,,) (3.14)
where we use [, = —ifr([Tc, T,|T,) and
C = &[R;, 0;R] = €k (0,[R;, Ri] — [0;R;, Ry])
= —ig;30;(0;R; — OR;) — €k [0;R;, Ry]
= —€ijk[5jRi,Rk] = _8ijk[Ri» 0ij] =-C. (3-15)
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Therefore, C = 0 leading due to (3.14) to L, = 0, which
corresponds to the static Euler-Lagrange equations for the
Skyrme field (3.2).

In the self-dual sector, the Eq. (2.11) implies that ch~! is
symmetric. Therefore, A,, = 0, and using (3.9) we obtain
that the self-duality equations (3.8) imply the static Euler-
Lagrange equations for the / field (3.7). However, the
converse does not seem to hold true in general. In fact, in
any domain D C S* where oh~! is not a symmetric matrix,

Eq. (3.7) gives S'7“S7 £ 0. Therefore, in this domain
we cannot have self-dual solutions, which satisfies (3.9).
Additionally, note that this argument does not depend on
whether 7 is invertible.

In the case of G = SU(2) we can treat the Maurer-Cartan
components R¢ as 3 x 3 matrix with the following ordering
of rows and columns R;, = R¢,i =1,2,3anda =1, 2, 3.
Therefore, glij?R?Rli = 8abcgiij[1Rj2Rk3 = Eupe det R,
and using (2.22), we obtain

1
Oap = = 5 &ijk€pcaRiRSRY = =5,y detR.

: (3.16)

The G = SU(2) case is very special since both 4~! and o
are symmetric by construction, and the structure constant
reduces to the Levi-Civita symbol. Using these two proper-
ties, it was demonstrated in [7] that the self-duality
equations (3.8) are a consequence of the static Euler-
Lagrange equations associated with the /4 fields. In par-
ticular, this implies that the static sector is equivalent to the
self-dual sector for G = SU(2).

IV. THE HOLOMORPHIC ANSATZ

Let us consider a compact simple Lie group G, and let
denote its highest positive root. This root can be write in

terms of the simple roots a,, a =1,2,3,...,rank G, as
w = "kGp a, where n,’s are positive integers. The

irreducible compact Hermitian symmetric spaces, as
defined in (see [46]), correspond to those cases where
the expansion of y in terms of the simple roots presents at
least one coefficient n, as equals to unity, i.e.,

rank G

Y=o, + Z n,a,

a=1,a#x

(4.1)

where @, denote the simple root that appears only once in
the expansion (n, = 1).
Let us denote A, the fundamental weight of G, which is
not orthogonal to a,, i.e.,
2/1*'61*_1. 24, - a,
’ 2

o? o

=0; fora#x*. (4.2)

The Hermitian symmetric spaces are characterized by
the U(1) factor in the little group, and the involutive

automorphism o (6> = 1), defining the symmetric space
structure is inner and constructed from the generator A of
the U(1) subgroup, i.e.,

24, -H
2 foranyTeg (4.3)

*

o(T)=e ™ Te=™; A=

where we choose to work in the Cartan-Weyl basis
and H;, i=1,2,3,...,rankG, are the generators of
the Cartan subalgebra of G. Denoting E, as the step
operator associated to the root a of G, the Killing form
of G becomes

2
Tr(H;H;)=6;;, Tr(H,E,)=0, Tr(E,Eps)=-—50641p0-
a

(4.4)

The relations (4.3) and [H;, E,| = a;E,, where the
index i denotes the component of the root «, leads
to [AE,] :%Ea. Expanding the root through

a=ma, +> "% m, a, where m, are integers and

m,, can take the values —1, 0, 1 due to (4.1), and using (4.2)
we obtain [A, E,] = n, ,E,. Consequently, the step oper-
ators E,, (anthcommute with ™ for n,,=0
(ng,« = £1). Denoting y as any positive root of G that
does not contain a, in its expansion in terms of simple
roots, and «, as the remaining positive roots, we get
from (4.3) that

G(Hi) :Hi; G(Eiy) :Eiy; G(Ei-aK) = _Eiak' (45)
Therefore, the Lie algebra G of G breaks in even and odd
subalgebras under the involutive automorphism (4.3),
denoted, respectively, by K and P, i.e.,

G=P+K with 6(P)=—-P o(K)=KPeP; KeKk.

(4.6)

Note that A and E,, belong to the even subgroup I,
and A generates an U(1), invariant subalgebra of it.
Consequently, we can write = H @ A, and we obtain
the irreducible compact Hermitian symmetric space
G/HQ® U(1),. The subgroup H is generated by
H, =2 with a, #a,, (E,+E_,), and i(E, —E_,).

az

The odd subgroup is generated by E. , , as defined in (4.5),
where k = 1,2,..., 922,
The Hermitian symmetric space has the form of
a coset G/K, where K is the little group K = H ® U(1)
and we get the usual algebraic structure of a symmetric
space
G.6lcGg [G.PICcP

P.PlcG. (47)
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The Hermitian character of such symmetric spaces is that P
is even dimensional and it is split by A into two parts
according its eigenvalues

P:P++P_ [A’Pi]:ipi

The generators of P, and P_ are, respectively, E, and
E_, ., withk =1,2,...,9%2 Tt turns out that P_ is like the
Hermitian conjugate of P, , and so both spaces have the
same dimension, i.e., dim P, =dimP_ :%. Therefore,

SU(p+q)/SU(p) ® SU(q) ® U(1);

SO(N +2)/SO(N) ® U(1);
E4/SO(10) @ U(1);

The trace form is invariant under the automorphism o, i.e.,
Tr(o(T)o(T')) = Tr(TT'). Therefore, the even and odd
generators are orthogonal

Tr(PK) = 0. (4.11)

In addition one has
0 = Tr(A[P+. Pi]) = Tr(P[A, Py]) = £Tr(PLPy)
(4.12)
and so
Tr(P,P,) =Tr(P_P_) =0. (4.13)

The even subalgebra K has the form I =H @ A. If H is
simple or even semisimple [no U(1) factors], then it is true
that any of its elements can be written as the commutator of
some other two, i.e., H = [H', H"]. Then it follows that

Tr(AH) = Tr(A[H . H"]) = Tr((A, H]H") =0 (4.14)

and so

Tr(AH) = 0. (4.15)

One nice thing about symmetric spaces (not only
Hermitian) is that one can parametrize it quite easily.
Given a matrix of the group G one may construct the
so-called principal variable

X(g9)=go(g9)~" andso X(gk)=X(g) and o(X)=X"!
(4.16)

with k being any element of the K subgroup and g is any
element of G. Therefore, X(g) parametrizes the coset space
(symmetric space) G/K. The three dimensional space R?
can be foliated with spheres with center at the origin, being
useful introduce the spherical coordinates (r,6, ). We
stereographically project the spheres on a plane with the
infinity identified to a point, i.e., the Riemann sphere. The

A not only provides the automorphism ¢, but it also provides
a gradation of the Lie algebra G into subspaces of grades 0
and =£1. Since there are no subspaces of grades 42, it turns
out that P are Abelian. So we have

K.KlcK (K, Pyl Cc Py
—[P_.P]=0

[P P.]

[P,.P_] c K. (4.9)

The compact irreducible Hermitian symmetric spaces are

SO(2N)/SU(N) ® U(1);
Sp(N)/SU(N) ® U(1);

Ey/Es ® U(1). (4.10)

maps from that sphere to the Hermitian symmetric space
are labeled by integers. Let z and Z be the complex
coordinates on that plane introduced by the coordinate
system (r, z,Zz) defined by (z = z; + iz»)

i(z—2z) 2+7 (=1+1z%)
X|=Fr——%5, Xo=Tr s Xy =r———75—, 4.17
! 1+|z|? 2 1+ |z)? 3 1+ |z (4.17)
which have the metric
42
ds? = dr* + ——— dzdz. 4.18
T+ PP .

A powerful Ansatz for the Skyrme field U was proposed
by L. A. Ferreira and L. R. Livramento in [37]. First, it
considers the rational map for the group elements U of the
group G as

U = geif(r)Ag_l — eif(r)gAg’l g(g) — g_l (419)

where f(r) is a radial profile function, A is defined in (4.3)
and g is an element of the compact Lie group G, and it
depends only z and z, ie., g =g(z,Z). Clearly, as A
commutes with the elements of the even subgroup
K=H® U(1),, it so follows that gkA(gk)™" = gAg™",
with k € K. Consequently, the term gAg~' depends only on
the fields parametrizing the cosets in G/H ® U(1),, which
are parametrized by a principal variable of the form (4.16).
In fact, we can take g as a principal variable (4.16), i.e.,
g(w) = wo(w)~!, with w being any element of G depend-
ing only on z and Z. The definition (4.16) implies that
o(g) = ¢g~', and so the principal variable X is reduced
to X(g) = go(9)™" = ¢*.

The Maurer-Cartan form associated to g, i.e., g~'0;g can
be projected into even and odd subspaces through

1+o0

-0
g '0,9=P;+K;, Pi:Tg_laigv Ki:Tg_laig'

(4.20)
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Since we are dealing with Hermitian symmetric spaces we
can use (4.8) to split P; into the +1 subspaces, i.e.,

(4.21)

The second key ingredient of the Ansarz proposed in [37]
is the construction of the g elements. Let us introduce

S = ZWKEO,K;
K

which lies on P, by definition, and where w, are func-
tionals of the fields parametrizing the Hermitian symmetric
spaces G/H ® U(1),. Consequently,

ST = wiE_,:
K

First, S and ST are even, respectively, holomorphic and
antiholomorphic, i.e., S = S(z) and S*(Z), or vice versa.
We can consider both cases by writing

S=S()

where y = z (y = z) corresponds to a (anti)holomorphic
matrix S. Second, the Ansatz works for representations of
the Lie algebra of G where the matrix associated to S is
nilpotent with index of nilpotency equal to two, and an
eigenvector of the Hermitian matrix SST with a non-
negative eigenvalue, i.e.,

[A.S] =S, (4.22)

A.ST]=—8".  (4.23)

and S'=Si(7) with y=2z72 (4.24)

52 = 0; (8ST)S = wS (4.25)
where the eigenvalue @ is non-negative. From (4.25) we
can obtain some useful relations, such as

0,8 =0,8'8"=0;  $570,55'S = w(9,wS ~ $9,5"5).

(4.26)
On the other hand, the Eq. (4.25) implies S™ = 0 and

(S7S)ST = wST. Third, the Ansatz for g = g(z,Z) corre-
sponds to

1 1
g=14+—|i(S+5)——— (55T +578)|; 9=V1+w,
9 9+1
(4.27)

which is unitary and satisfies 6(g) = ¢g~'. Alternatively, g
given by (4.27) can be also written as

g = eiSevl5STeiS" — pia(s+sT) (4.28)

ﬂ

with ¢ = @' In /T + ® and a = ™2 arcsin( £2-). Using
also (4.20), (4.21), and (4.25) we get

g

(+) _ i
Pt —Zss
A TSy

i

9

(S9;S7S — 2909,95).

P =18t + (570,88t —290,957),  (4.29)

l
9 (1+9)

which satisfies (PIH)T = —P,(»_). Let us introduce the
Hermitian and invertible operator

SST+ 8'S SST+S'S
Q=1+" """ Ql=1-"2_""" (430
e 7 it 30
Using also (4.25) and (4.26) it so follows that
¥ _
QPQ = ia,s=>QP Q= ig,st. (431)

The details of these calculations are presented in [37].

An important consequence of (4.31) is that the
holomorphic and the holomorphic Ansatz (4.24) are equiv-
alent to

0,S=0,S =0 PV =P =0 with

[z §=S5(z)
¥ = { . S=S@) (4.32)

In addition, for later convenience we can also introduce the
sign function

(4.33)

The relation (4.32) also shows that the terms S&XS"'S

and S70,SS" vanish, reducing P)(f) and Pj-(_), which can
be obtained from (4.29), to

) _ (1+9)7 S .
P =
=y \re)

- .(1+9)7? st
r =5 o)

Using (4.3) and (4.27) we have that the Lie algebra
element appearing in the Ansatz (4.19) is given by

(4.34)

gAg' = A - ([S, 8] +i(S—S%)).  (4.35)

1
(14+w)
In particular, if the square of the U(1) generator A can be

written as A? = ¢A + § (1 — ¢?)1 in such a representation,
where c¢ is a real number, it so follows that the quantity

14+¢

/=
2

1—gAg™!

(4.36)
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is a projector, i.e., Z = Z2. This allow us to easily compute
the exponential on the rhs of (4.19) reducing the rational
map to

U = el e 7 = 5[] 4 (e = 1)Z].  (4.37)
Although this condition on A is not assumed in the above
Ansatz, it appears in the parametrization of the Hermitian

symmetric space G/K = SU(p + q)/SU(p) ® SU(q) ®
U(1) given in [37].

A. The self-dual sector

Using (4.20) and (4.21) and the fact that K; commutes
with A, the Maurer-Cartan form R; = id;UU~" associated
to the rational map (4.19) becomes

R, =-V7ILv (4.38)
with
V = e-ifA2g1 S, =0.fA -2 sing (P§*> - P§‘>).
(4.39)
We now have that
p 1 1 =1
Ri = —TI'(TbRi) = ——TT(VTbV 21)
K K
1
= ——Tr(T.2;)d, (V) (4.40)
K

where we have introduced the matrix for the group
elements in the adjoint representation of G

9Tag™" = Tydpa(9)- (4.41)
Similarly we have
TE(T (R, Re) = Tr(VT,VI[E;, %))
= Tr(T.[Z;. Z])dco(V). (4.42)

From (4.39) we note that X, has components along the U(1)
generator A, and on the odd subspace P. In fact, using

that vanishesif 7, € P, or

that vanishesif 7, & P_ or

(4.32) and the definition (4.39) we have

f

. =fA; Zl:—ZsinE f

P)({Jr); %, =2 sinEPg_)

v (4.43)

where P ) and P ) are given by (4.34).

It follows from (4 21) and (4.38) that €, Tr(R;R;Ry) =
12¢; 4.0, f sinngr(Pﬁ-HP,((_)), which reduces the topologi-
cal charge (2.2) to

0= 4 L / drdzdzo,f sin ]; Tr(P§+)P§‘) —P§+)P§‘))
= ﬁ £ (r) = sin f(r)]}=5 Quop (4.44)

with Qtop = . [dzdzTe(PL P — PV PL)) =

N [ dzdzTr(Py7PL)), where we use (4.32) and (4.33).

Using (4.38) and (4 43) the self-duality equations (2.11)
can be written as

licbilba = 5ca (445)
where we have introduced the matrices
hap = dae(V)headgy (V);
Fup = doe(V)eeadg (V):
Gap =d, (V)acda';b1 (V). (4.46)

The adjoint representation of a compact simple Lie group is
unitary and real, and so d is an orthogonal matrix, i.e.,
d" = d~'. Therefore, h,, and 7,, are still symmetric. In

addition, we have %, = £9%/ and &,, = —4fr(T %) X
e Tr(T, £, 54]). Using ie;, 2% % — n I ang (4.43)

we obtain

up = ¥y + T3l + T2

with y=2nf’ sm”(lHZl) and T4 = —(4f' sin>£)~" x
(T ) Tr(T,, [X4.%,]), which is antisymmetric under
the exchange of its last two indices f and y and has the

following components

re, = Tr (TaA)Tr<T,, [P)((H, PE_)D that vanishesif 7, # A or T,€P

T, & P.

T,¢P,
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where we use (4.21) and the cyclic property of the trace.
The components of the matrices 7 and 6 become

P
0, otherwise
o { (=nf') yTr(P+ >Tr(T PLt )), T,eP.
P 0, otherwise
ey (PP T (TP, TeeP,
e {O, otherwise
(4.47)
and
o {yfr(AZ)fr(H PRT]) =
Ot 0, otherwise
5pn = yTr(A2)Tr (P)((HP)%_))
6p,p. =0p_p, —ny(P+ )Te(P_Py )(I —nf'tp,p.
63p =6pp =0p,p, =0p_p_=0. (4.48)

The index H in the row or column indices of the matrices 7
and & represents any index a that labels the generators 7', of
the subalgebra H, and so on. A crucial consequence of
Ty4 = 64,4 =0 foralla =1,...,dim G is that none of the
self-dual equations (4.45) depends on the /5, fields. Then,
if H # @, it follows that /5,4, is totally undetermined and 7
is not invertible. Otherwise, we could apply 7~! to the self-
dual equations (4.45) fixing 7 entirely.

The self-duality equations associated with the row index
H of 7, given by A%, hp, = 63, are automatically satisfied
by (4.47) and (4.43), and the remaining equations are
reduced to

OAb
, 4.49
ATpn ( )

Gap = ATanhap = hpp =

O0=7%pp hpp =Tpp hpy

=%pp hpp =Fp p hp 3. (4.50)

0="2p p (hp,p, +047'f1) =%p p (hpp + 027 ).
(4.51)

Note that there is an implicit sum over the line index of the
h matrix, leading to a linear system to the A, fields.
However, in (4.49) this sum is performed over a single
generator, which corresponds to the U(1) generator A. This
is a consequence of the fact that 7,, is the only

nonvanishing component of 7,, given in (4.47).
Therefore, /1, is fully determined by
EAA = alyTr(P)((+ P)% ),
e = anTe(HIP P e, =0
2sin2L (1 2
with a=—ons (% f' i (4.52)
Af'Tr(A%)

Note that we can replace the modified trace Tr defined
in (2.6) by the usual trace Tr since the « factor cancels in the
self-duality equations (4.45).

Clearly, if the matrix Zp p,
and (4.51) lead to

is invertible, then (4.50)

hpa =0 hpp=-n1"'f'1 (4.53)
However, if 7p p is not invertible, the fields (4.52) and
(4.53) are still a particular self-dual solution of (4.45). In
any case, using (4.47), the self-duality equation for the
fields /p 1 Of (4.50) can be written as
Te(P_PY ip gy = Te(P P i 3 = 0. (4.54)
There is no other self-duality equation that depends on the
fields ilpt'}_i. Thus, there are just dim H equations to fix the
components il'p+7.[, and there is an independent set of
dim H equations to fix the components /p 5,. Therefore,
there are at least 2dim H(dim P, — 1) components of
hyp free. On the other hand, using also (4.32), we obtain a
set of dim P equations to the fields il'p_p+ given by
Tr(P_Py"

Nhp_p, =0. (4.55)

There is another set of linear equations given by
Tr(PJr )hp p =0 that comes from (4.50) but

corresponds to the complex conjugate of (4.55). Finally,
using (4.47) we can write (4.51) as

Te(PL P Vp p. = —ma fTe(PLPS)),  (4.56)

Te(P_PSNhp p = i~ fTe(P_P).  (4.57)
Consequently, there are dim P, equations to fix the
dim P (dim P, +1)/2 fields hp _p, , and the same
follows for the fields &p p . Since hpp has dim P
diagonal elements and forms itself a symmetric matrix,
then the relations (4.55)-(4.57) together compose a set
of 3dim P, equations that contain w =
dim P, (2dim P, + 1) components of the % fields.
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Such facts lead to the freedom of at least
2dim P, (dim P, — 1) components of the ~pp matrix.
The above arguments show that dim P, =1 is a
necessary condition for the fields ipp to be fully deter-
mined by the self-duality equations (4.45). On the other

hand, we also show above that if 7p p _is invertible, then
ﬁpp must be fully determined by (4.53). Consequently,
dim P =1 is also a necessary condition for the 7p p_
matrix to be invertible. In particular, for the G = SU(2)
case 7p p, is a real-value function.

V. THE SU(2)/U(1) HERMITIAN
SYMMETRIC SPACE

In this case we have the symmetric space SU(2)/U(1)
and so

A=T;; H=@; P,={T.}; P_={T_} (5.1)
with
[T3, T:I:] = ZET:E, [T+, T_] = 2T3 (52)
The quantity g is
1 1 iu
o= 1) (53)
V14 uf \in 1
with S = u and ST = & and
1 1 . _ _
9109 = ———[i(QuT + 0;uT_) + (ud;it — ud;u)Ts).
1+ |ul
(5.4)

Then, the quantities K, Pl(»+) and P,(»_) introduced in (4.20)
and (4.21) become

u@iﬁ—ﬁaiu

_ piH) io;u =) i0;u
Yo+ |ul?

SO PR P

(5.5)

Note that (anti)holomorphic Ansarz S = S(y) implies
u=u(y). We shall use the trace form in the doublet
representation where [see Eq. (2.5)]

K==; Te(T,.T_) =1. (5.6)

Clearly, since there is no generator of the subalgebra H,
the self-dual equations (4.54) are trivial. Using (5.1) and
(5.5) it follows that the components /1, , & AP, > ilpi'pi, and

ﬁpi%, given in (4.52) and (4.55)—(4.57), become

. 4sin2(§) (1T+1z7? ,_,

han = — ;
AA n /If/rz (1 + |u|2)2 wu
f/

ilnn = iLT,T, = —’777

(5.7)

(5.8)

ilATi = ilTiA = ilTJ, = Er,u =0.

Therefore, the & fields form the diagonal matrix

4sin?(5) (1+22)?
rzf/22 El+||ft||2))2””>1 (5.9)

/
h= —H%diag.(l,l,

which is fully determined in terms of the fields f, u, i,
which remains totally free. Note that due to (4.46) the
eigenvalues of the /1 matrix are the same as eigenvalues of
the 4 matrix, which is non-negative. It so follows from (5.9)
that the profile function f must be a monotonic function
and
sign(f'4) = —1, (5.10)
which due to (2.18) also implies that sign(f'Q) = —.
For the function u(y) to be a well-defined map between
two-spheres it has to be a ratio of two polynomials p(y) and

q(y) without common roots, i.e., the so-called rational map
Ansatz [3,39,40,47]

_rl
"0 =0

The topological degree of the # map is equal to the highest
degree among the polynomials p(y) and ¢(y) and can be
written in the integral representation as

> 2

dee _/ idzdz (1 + |22

ST 2 PR T+
= max {deg p,deg g}.

Therefore, using (5.5) and (5.12) the topological charge

(4.44) becomes

(5.11)

@
dz

(5.12)

[f = sin f];0

0=y == deg u. (5.13)
2r

VI. THE SU(N+1)/SU(N) ® U(1) HERMITIAN
SYMMETRIC SPACE

For the Hermitian symmetric space CPY = SU(N + 1)/
SUN)® U(1) we choose a, =ay, which implies
A, = Ay, and work with the fundamental (N +1) x (N +1)
representation of SU(N + 1) (see Fig. 1). The S matrix is
is parametrized by N complex scalar fields u, = u,(y),
with a = 1, ..., N, corresponding with the components of
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1
A, =8U(r+1)

FIG. 1.

o——©0 - -

(051 (03

1 1 1 1
oo —
a3 Qr_2 Or_1 OQf

Dynkin diagrams of the simple Lie algebra A,. The a,’s below the spots label the simple roots, and the numbers above

correspond to the integers m, in the expansion of the highest root w = 3", m,a,, while the black spots correspond to m, = 1.

u” = (uy,...,uy). The A and S matrices defined, respec-
tively, by (4.3) and (4.22) are given by

1 T 0 Onx
Az—( NN ) and S:< NN u)
N+1 0 —-N Oixv O
(6.1)

where O,y isa 1 x N zero matrix, and so on. The S matrix
(6.1) satisfies (4.25) with @ = u'u and so the g elements
(4.27) that parametrize the CPV are given by the unitary

matrix
1/ A iu
=— 6.2
g 9 <ibfr 1 > (62)
where A is a N x N Hermitian matrix defined by
A=8Tyy+ (1 =T,; with 9=+v1+u'u (6.3)

where T, = “®% is a projector, i.e., T = T,. Note that due
to (6.3) u is an eigenvector of A with eigenvalue +1, i.e.,
Au = u, which also implies that u'A = u" and A~y = u.

The two sets of N Abelian matrices P{ € P, and
P €P_ associated with (6.2) are given by

(Pli)bc = (Pil:)bc - 5b(N+1)5ca
(6.4)

(Pi)bc = 517(156(N+1)7

withb,c=1,...,N+1,anda =1, ..., N. The two sets of
N generators 727! and T%¢, with a = 1, ..., N, are related
to P4 through P4 = T?¢~! 4 iT?¢, and satisfy the ortho-
gonality relation (2.5) with x = % Therefore, together
with (6.2) such a generator satisfies (4.8), and in addition
we have

Tr(P4PL) =0;

TR(PLPL) =6, [APY) = £PL.

(6.5)
Note that the last equation of (6.5) corresponds to (4.8).1

The N? — 1 generator of the group H = SU(N) can be
broken in three set of generators. The first two sets Hp and

'Clearly, the Eq. (4.8) is invariant by transformations
P{ — aP% with a being any complex number. Therefore, the
only matrix proportional to A that satisfies (4.8) is itself, which is
given by (6.2).

‘H,; contain M generators each and can be labeled by

the pair nm, with n=1,.... Nand m=1,...,n—1, ie.
m < n. The third set H, contains N — 1 generators and is
labeled by the index s=1,...,N —1. The generators

of such sets can be written, respectively, for all
a,b=1,...,N, as
nm 1
(HR )ab = E (6un5hm + 5am6/m)’
(H;lm)uh - = % (6an§bm - 5am5bn)’
1
(Hs)ab = E (5as5bs - 5a(s+1)5b(s+1))' (66)

Note that H}", H{™, and H are extensions of the Pauli
matrices o1, 0,, 03, respectively, and for such basis k = % It
so follows that

dim H = N> - 1;

dim P = 2dim P, =2dim P_=2N.  (6.7)

In particular, for the SU(2) case (N = 1) we have H = @
[see Eq. (5.1)].

Due to (6.2) and (6.4) the quantities K, and P\* defined
in (4.20) and (4.21) so become

0.9 1 [A0A+u® ot 0
Ki=—"1+— , 6.8
l 9 Ty < 0 uW,-u) (68)
(+) _ i<Aaiu)a a . (=) _ i(aiuTA)a a

where there is an implicit sum over the index a. In addition,
the topological charge (4.44) becomes

[f = sin f],=0,
2 /

|AW'|? idz A dZ

Q=n 0+ [uP? 2z

(6.10)

Using (6.1), (6.4), (6.6), and (6.9) the fields fz,\pi and
hay fixed through (4.52) become

han=plAu'%; 71/\73’; =hypr =0;
= 1
hAHx :Eﬁ(Mﬁ —M(SJFI)(S+1>)’

- 1 ~ 1 .
hAH’;{“ :Eﬁ(Mnm +an); hAH’;”’ :Eﬂl(Mnm_an)
(6.11)
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where

ﬂz_i(zvﬂ)zsinz(g) (1+22)?
Af' N (14 u'u)?’

Mnm = (Au/)n<u,TA)m'

(6.12)

On the other hand, the self-dual equations for the fields
ﬁpiH and Epi'px, as given, respectively, in (4.54) and
(4.55), are reduced to

(ulTA)ailPiH = (Au/)ailP‘iH = (Au/)ailP",Pi =0 (613)
while the self-dual equations for the fields ]:lp+'p+ and
hp p , as given, respectively, in (4.56) and (4.57), are
reduced to

/
(8) g 0 (80
- f’
= (W A) e+ (WTA), = 0. (6.14)
Using (6.7), the first and second equations of (6.13),
from the left to the right, form each a set of dim H =
N? — 1 linear equations for the N(N? — 1) fields & pey and
the N(N? — 1) fields fipay, respectively. Since & is sym-
metric, the third equation of (6.13), from the left to the
right, forms a set of dim P, = N linear equations for
the N? fields Zpa Pl - Finally, the first and second equation
of (6.14), from the left to the right, forms each a set of
dim P, = N linear equations for the N(N + 1)/2 fields
h pept and the N(N + 1)/2 fields & pa pb, TESpectively.
Consequently, only for N =1 do we have enough
equations to determine such a components of the 7 fields.
However, for such a case dim ‘H =0 and dim P, = 1.
Thus, although we have four equations and only three

independent fields in /pp, it so follows that the third and
fourth equations of (6.13), from the left to the right, which
correspond to one equation each, become equivalent. Thus,

the £ fields are totally determined in terms of the fields
f,u, i1, which remains totally free, as we shown in Sec. V.

A. An explicit example: Exact generalized Skyrmions
for each integer value of Q on the CP" spaces
To construct an explicit self-dual configuration consider
the Ansatz where all the u fields are equal to the same
holomorphic rational map u,(y) = p(x)/q(x) between the
Riemann spheres S [see Eq. (5.11)], the ipp-fields forms a
diagonal matrix, and fsz =0, i.e.,

p(x).

Ug =1 :q—()()’ hpy = hpgtp';r =0; hpgtp'; :5abhpaiphi

(6.15)

fora,b =1, ..., N and where there is no implicit sum over
a or b. It so follows that all self-dual equations given
in (6.13) are automatically satisfied, while (6.14) imposes
that 7pp must be

/
hpp = ey Tonsxan- (6.16)
On the other hand, using the Ansatz (6.15) and the
definitions (6.3) and (6.12) we obtain (Au’), = u/, with
n=1,...,N, which due to (6.15) implies M,,, = u}iu}.
Therefore, the fields given in (4.55) are reduced to

8 o 2(N+ Dsin’(§) (1 +22)°

_ —/
AN lf/ r2

(I + Nug )2

/
up,

i’lAPi = il/\H/ = il/\H,. = 0, ilAH;lem = Nil/\/\ (617)

where we used u/TA%u' = YN | M, = Nitju). Therefore,
the only nonvanishing components of fl,\H are the EAHR
fields, which in turn form a column with all components
equal to N~'/i\,. An interesting consequence is that the
nonsingular h matrix inside the Ansarz (6.15) is non-
diagonal for N > 1. On the other hand, the field configu-
ration (6.15)—(6.17) is a clear generalization of the (5.9), as
obtained for N = 1 in Sec. V. In fact, the 7 matrix has the
explicit form

He M, H, P, P A
H R 0 0 Ijl’H rA
H; 0 0 0
M, 0 0 0
P. 0 0 0 Fpp 0 0
P_ 0 0 0 0 . 0
Ay, 00 0 0 fian

where the blank spaces are the free /;17, components, the
zeros clearly are null matrices, hp, p, = =A™ 1 vy, and
szR A ldsadim Hy x 1 matrix with all the components equal

to N~'h, . On the other hand, the topological charge (6.10)
is reduced to

[f = sin f;=0

0=y —=deg u, (6.18)
2n

Let us consider the boundary conditions for the perfil
function f(0) = 2zm and f(o0) = 0 for some sign function
7 =1,and f(0) = 0 and f(c0) = 2zm for ’ = —1, where
m is any positive integer. Clearly, these boundary con-
ditions ensures that Q is an integer. The algebraic degree of
the rational map, which corresponds to the highest degree

among the polynomials p(y) and ¢(y), denoted by a
positive integer n, is equal to the topological degree of
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the map u;(y). Thus, the topological charge (6.18) inside
the rational map Ansatz becomes
Q = n'nmn, (6.19)
which due to (2.18) implies sign(4) = #'n.
As the rational map and the profile function are still free,
we have an infinite number of exact solutions for any
integer value of the topological charge and for each value

of N. By example, for the Hermitian symmetric space

U(3)/SU2) ® U(1) (N =2) let us consider the radial
solutions p(y) =y and q(y) = V/N, ie. u; = f’ which
turn the topological charge and static energy densities, as
well the & fields, spherically symmetric. In such a case
dim H; =dim Hz =dim H; =1, dim P, =dim P_ =2,
and the / matrix becomes

1n 2
0000 35%
~Lhge 0000 0
0000 O
il:—l’]/f, 0 0 01000 O (620)
0 0 00100 O
0 0 00010 O
0 0 00001 O
in2(Z in?(£
wd 0 0000020
where we introduce the dimensionless radius ¢ = |4|r, and

we use 4 = 1'n|4].

Now, let us choose /35y = —1ff'15,; and take the
example f = 4m arctan((%)”'), where a is and arbitrary
positive dimensionless constant. This choice of the perfil
function and the /15,4, terms preserves the positivity of the &
matrix, reducing (6.20) to the spherically symmetric form

1 Oix6 %7
h=06] Oga Toxe Oexi (6.21)
%7 Oix6 4
. 3sin2 (£ a am
with y = ;12 ng) = (4‘22;% 22 sin? (2m arctan((g)"))’ = i—Jr‘;z‘,

and where O, denotes a 1 x 6 zero matrix, and so on. The
h matrix has six eigenstates equal to 6 and the other two are

18(14y=£/1+2(=1+7)y)). However, as we proof in

the Appendix, for such a perfil function we have

(6.22)

b EZmarctan<(g>ﬂ>,

which implies 0 <y = %g < g £ 1. Therefore, all eigen-
values of the /1 matrix are non-negative. In particular, for
the Q = 5y topological solutions (m = 1), we have y = 3
and 6 = i’f‘é‘z and therefore the diagonal components of h
are equal and all nonvanishing 7 fields fall asymptotically
with 1/£2.

VIL THE CASE OF SU(p +4)/SU(p) ® SU(¢q) ® U(1)

In the case of the Hermitian symmetric space
SU(p+q)/SU(p)®@SU(q)®U(1), we choose a, = a,,
which implies 4, = 4,,, the fundamental (p + q) x (p + q)
representation of SU(p + ¢). The S matrix is parametrized
by p complex scalar fields u, = u,(y), witha =1, ..., p,
and ¢ complex scalar fields v, = v,(y), withb =1, ..., q,
corresponding with the components of u” = (uy, ..., u,)
and v? = (vy,..., vq). The A and S matrices defined,
respectively, by (4.3) and (4.22) are given by

A:—l (qﬂpxl, Opxq ) and

p + q qup _p]] gxq
0] U@
pxp
S = < 0 0 > (7.1)
qxp gxq
where OI,Xq is a p X ¢ zero matrix, and so on. We consider

that both the fields u and v are (anti)holomorphic when S is
(anti)holomorphic. The S matrix (6.1) satisfies (4.25) with
@ = |u|?|v|?> and so the g elements given in (4.27) become

_1< A, iu®1j>'
T“9\ineu AT )’

with 9 = v/1 + w, and where
T2 =T, and x is any complex Vector The operator A,
is Hermitian and inversible, its inverse corresponds to
A'=9"'1-(1-9)T,) and its square to A2 =
(14 w)1 —wT,. The vector x is an eigenvector with
eigenvalue +1 of both operators A, and A;!. It so follows
that Au = u, ATp = v, ATp = v, and u'A, = u'.

The A matrix (7.1) satisfies A? = cA + 5 (1 — ¢?) with
c= %, then the field U have the form given in (4.37) (see
Sec. IV), i.e.,

A, =91+ (1-9T,
(7.2)

= % js a projector, i.e.,

U = 1 (10 - 1)2;
1 wT” iu®v

Z=—= v Q® It > )
F\-iv®@un A

The reduction to the CP" case occurs by imposing p = N,
q = 1 with v = v; implying A, = 1. In addition, the field
v, can be absorbed in the field u through the transformation

with

(7.3)
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u — u/v;, which reduces A, to (6.3) and g to (6.2). This
transformation is equivalent to setting v = 1.

The two sets of p x g Abelian generators P! and P9,
with c=1,....,p and d=1,...,q, of the P, and P_
subalgebras are given by

(Pid)ab = 5065(d+p)h’ (74)

(Pid)ab = 5a(d+p)5bc
with a,b =1,..., p+ g, which satisfies Tr(PﬁrdP‘_'/d/) =
SeeOgys With ¢/ =1,...,p and d' =1, ...,q. There are
p* — 1 generators of the group SU(p) and ¢*> — 1 gener-
ators of the group SU(g) associated with the H =
SU(p) ® SU(q) subgroup of SU(p + gq). For each of
such a group we can break such a generator into three
distinct types, similar to what we do in (6.6). In case of the

SU(p) group, the first two sets Hg, and H; contain %

generators each and can be labeled by the pair nm, with
n=1,...,pandm=1,...,p—1,ie., p < n. The third set
H;, contains p — 1 generators and is labeled by the index
s =1,..., p — 1. The same follows for the SU(q) group by
changing p — ¢ and changing the indices m — k, n — [,
and s — r. The generators of the SU(p) and SU(g) groups
are given by

1
(Hﬁzl)ab = 5 <5an5bm + 5am5bn);
1
(M) = 5 Ba(tsp)Obtkrp) + Oatit ) Onii+p))

i
(H;l;n)ab - E (5an6bm - 5am§bn);
(Hlk — i

1)ap = =5 Gatt+)Bbiictp) = athtp)Ob(r+p)
1
(Hs)ab = 5 (5as6hs - 5u(x+l)5b(s+l));
1
(Hr)ab = 5 (éa(r+p)5b(r+p) - 5a(r+p+1)5b(r+p+l))
with a,b=1,...,p+q. (7.5)
Note that for such a basis we have
1
Using (4.30) and (7.2) we get
1 Al,l O X
Q== P, (7.7)

which together with (4.31) fixes P;((Jr> =iQ7'9,5Q7,
Pg_):iQ‘la)—{S*Q‘1 and the commutator [P)" P{7]

bt bt
through
Py :i19‘2<0” w8 );
Ogp Ogxq
bt T
B 04xq
B 1 /BB" O,
|:P£/+)’Pj7 )}___4( I’II>;
9 \0,, -B'B

with B=A,0,(u @ v)Al. (7.8)

From (7.4) and (7.8) we can also write

Py =i972B P P =—(Py))" = i972B] P,

(7.9)

On the other hand, using ® = 92 — 1, the definition of the
operators A, and 7', introduced in (7.2) we obtain

20,9
B=239 ()X(u®v)—1+8u®v ;
. o 20,9
B —19|:(3)?(’U®u)—1+19l]®u:| (7.10)

Using (7.1) and (7.4)(7.10) the fields hyp, and hyy
fixed through (4.52) become

han = BTr(M); ilAPi =0

~ 1 -

hAH,. = Eﬁ(Mss - M(s+1)(s+1))?—_ %ﬁ(N/xH,_ N(r+l)(r+l))
- 1 ~ 1
hAH’,’(’: = Eﬂ(Mnm + M,p); hAHﬁfq = E:B(le + Ny)

~ 1 . = 1 .
hAH;’;’ = Eﬁl(Mnm = M,); hAHj’[‘[ = Eﬂl(le —Nu)

(7.11)
where
PR EE. L (U
gp Af'r 87
= BB, N=B'B (7.12)
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and the explicit form of M, N, and the trace Tr(M) =
Tr(N) corresponds to

2
M = 192{6)(02(0)Tu) - 1—|——19 [((3)(19(3)? + 6219())()<60Tu)]

0,909

2
N = 192{@)(@2 (@17) =5 (0,90 + ,90,) (T

0,80,9
4L X 5 (0T7) ¢,
(1+9)
2 2 0, w0y
Te(M) = 26%(90,0,9 - 9,99;9) = 9*| 9,00 — =L,
(7.13)

On the other hand, the self-dual equations for the fields
EpiH and flpi%, as given, respectively, in (4.54)
and (4.55), are reduced to

BcdilPi"H - BjicilP‘fH - BcdilPid’]%r - 0 (714)

while the self-dual equations for the fields ilPﬂ% and
i‘l’pi'pi, as given, respectively, in (4.56) and (4.57), are
reduced to

Bl Fipeapn -+ 137 f' Biyw = Boahpespm + A~ f'B,,,, = 0.
(7.15)
Using (7.6) and (7.8), which imply Tr(P\" p){;)) _

—97*TrM, and (7.13), the topological charge (4.44)
becomes

1 . =
0= [f(r) = sin f(r)]7=8° Orop-
ir] dzdz
Quop = _E/TTIM
in dzdz a)(a)a)?w
_ _in [dzdzZ o . 1
2n 92 [dxd}(a) l+w (7.16)

A. An explicit example: Exact generalized Skyrmions
on the SU(p+q)/SU(p) @ SU(q) ® U(1) spaces

To construct explicit self-dual configurations consider
the Ansatz where all the component fields u are v are
equal to the same holomorphic rational map u(y) =
pux)/9.(x) and v () = p,(x)/q,(x), respectively,
between the Riemann spheres S? [see Eq. (5.11)]. By
definition, p, and ¢,, with = u, v, does not share any
common root, since #; and v, are rational maps. However,
we also impose that p, and g, do not any share common

root, and we impose the same restriction to p, and g,,.
Therefore, the product u;v; is also a rational map. The

Ansatz for the fields u, v, hpy, and hipp is an generalization
of (6.15) and (6.16), and is given by

B 109 U 1798
T al T a
f/

fsz = ilPiP; =0; EP;"P;'" = —’175cn5dm (7.17)
where P$? are defined in (7.4) and ¢,n=1,...,p and
d,m =1, ..., q. For these indices, the Ansatz (7.17) implies
(T)gn = p~'and (T,),, = q~', leading due to (7.13) to
M., = M, and N, = Ny;, where

2

TrM TrM
= >0.

d
PR Nn—T, TY(M):PQ'a(Mlvl)

(7.18)
Therefore, the fields given in (7.11) become

han = PTIM; ilAH,’;? = pMy; ilAH;é'q = PN,

ilMDi = i‘lAHs. = EAH, = ilAH;‘I:” = ilAH;‘;” =0 (7.19)

while all the self-dual equations given in (6.13) and (6.14)
are automatically satisfied by (7.17). Note that using (7.12)
all the nonvanishing components of % other than the free

terms /35, are non-negative if we impose the follow
condition over the perfil function f

—nsign (g) >0=p>0. (7.20)

Using @ = pgq|u,|*|v,|?, the topological charge (7.16)

becomes
_ | f(r) =sinf(r)]=>
Q - |: 2][ :|r0 Qtopv
_in [ dzdZ] D (/pqui)]?
Quop = _Z/ (1+|y/pquini[?)* 720

However, the Eq. (5.12) shows the integral representation
of the degree of a rational map u. Such a degree is in
particular invariant by a the multiplication u — cu,
V ceR}. Therefore, Q,, given (7.21) corresponds
with the integral representation of the rational map u; vy,

ie, Qqp =deg(ujv;) and the topological charge
becomes (7.21)
f(r) —sin f(r)]| =
Q=1 [% deg (uyv).  (7.22)
4 r=0
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Consequently, by choosing the degree of the rational map
uyv; and the boundary conditions of the perfil function f
we get an infinite number of exact self-dual solutions, given
by (7.17) and (7.19), for the Hermitian symmetric space
SU(p+q)/SU(p) ® SU(q) ® U(1). The only restriction
is to choose such a fields and the free term /15,5, such as that
h is non-negative, as it is done in the example given
in Sec. VL

VIII. CONCLUSION

In the self-dual sector of our generalization of the BPS
Skyrme model for any compact Lie group G that leads to a
Hermitian symmetric space, our holomorphic Ansatz shows
that the full determination of the 4 fields in terms of the
Skyrme fields happens only for some particular Lie groups.
Although this characteristic of the BPS Skyrmions for the
G = SU(2) case is not a general feature of the generalized
theory, this model possesses the main symmetries of the
original BPS Skyrme model.

As in the original BPS Skyrme model, the # fields in our
generalized BPS Skyrme model continue to play the same
role as the Wess-Zumino term with respect to breaking the
invariance by the parity and target space parity trans-
formations P and P, respectively, while preserving the
symmetry by the composition PP,. These properties may
shed light on the physical nature of the £ fields, which may
be related to the chiral anomaly.

Our holomorphic Ansatz simplifies drastically the self-
dual equations. It leads directly to the determination of
the components of N AP, > h an 10 terms of the Skyrme
field, and leads to algebraic equations for the i‘HPi»
il'pipi, I:l'pip¥ components. However, there are at least a

number of dim P (2dim P, — 3) components of /1pp and
2dim H(dim P, — 1) components of /. totally free.
Clearly, the freedom of the system grows with the dimen-
sion of Lie algebra G. In fact, the & fields can be entirely
determined in terms of the Skyrme field inside the
holomorphic Ansat; (4.19) only if H=¢@ and
dim P, = 1, which corresponds to G = SU(2).

The generalized holomorphic Ansatz for G=SU(N +1)
leads to an infinite number of exact BPS Skyrmions for
all integer values of the topological charge and for all
N > 1. We also show how to construct a more restric-
tive Ansatz based on the usual rational map §* — S,
which fixes all components of the / matrix except /3.
Using this approach, we gave an example of 7 matrix
that leads to exact spherically symmetric BPS
Skyrmions for all integer values of Q and N. The
self-dual sector within the holomorphic Ansatz for the
Hermitian ~symmetric space SU(p + ¢q)/SU(p) ®
SU(q) ® U(1) is quite similar to the CPV case, despite
being a generalization. In fact, we can even obtain
particular solutions for each value of the topological

charge, where all the nondiagonal entries of the h
matrix vanish, expect the terms hAH}'?’Z and hAH}%’,’,"

Our theory facilitates the construction of highly symmet-
ric multi-BPS Skyrmions, and extensions of this model may
have some important physical applications. One example is
the generalization of the false vacuum Skyrme model to
G = SU(N + 1). This is very promising since such a theory
is strongly based on spherical symmetric multisolitions,
which also appear in our generalized BPS Skyrme model.
On the other hand, our holomorphic Ansatz for Hermitian
symmetric spaces may be of great value in constructing
multisolitons in a vast number of similar theories.

Extensions of the generalized BPS Skyrme model may
break both the self-duality equations and the conformal
invariance in three spatial dimensions. This can be
achieved by introducing kinetic and potential terms for
the £ fields into the action, as done in the quasi-self-dual
model proposed in [21] for G = SU(2). This may result in
the full determination of all fields of the model, as is the
case in [21]. Another application of our work is the
construction of a generalization of the SU(2) false
vacuum Skyrme model introduced in [20] to larger
groups. These applications may shed light on the physical
meaning of the % fields, which could depend on the type
of extension.
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APPENDIX: THE PROOF OF THE RELATION
(6.22)

Let us introduce the non-negative real-valued function
g as

4sin?(L)  (a® 42 .
g(C) = f/2C22 = 4m2a2C2 Sln2 b;
a\"
b = 2m arctan < <Z> > (Al)
and let us proof that
g<1 (A2)
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The function ¢ and its first-order derivative are continuous
and g satisfies g(0) = g(oo0) = 1. Therefore, the maximum
of gmust be at a critical point {, orat{ = 0, 1. At{ = a we
have g(a) = m™2sin*(m%) < 1. Clearly, for m =1 we
have g = 1, which satisfies (A2). From now on, we will
study ¢(¢) for m > 2 and for { lying on the interval
I=(0,00)/{a}. The critical points {, in the interval /
correspond to the solutions of

2mag
(& -a?)

where b, = b|4:4(_. We can break the solutions of the

Eq. (A3) into two types, corresponding to those cases
where sinb. =0 and sin b. # 0. Clearly, if the critical

sin? b, = n———5-sin(b,) cos(b,) (A3)

point satisfies sin b, = 0, which solves automatically (A3),
we have g({.) = 0. Otherwise, the Eq. (A3) is reduced to

sin b, = dcos(b,), with d = (2’”‘f) which leads to

b, = arctan(d) + zn,; V n.€Z. (A4)

For this case we have sin? b, = which reduces (A1) to

1+d2’

6\
1+4(m2—1)<w>1 <1. (AS)

Therefore, in the interval I with m > 2 we have ¢(¢) < 1,
completing the proof of (A2).
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