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We propose a generalization of the Bogomol’ny–Prasad–Sommerfield Skyrmemodel [L. A. Ferreira, Exact
self-duality in amodified Skyrmemodel, J.HighEnergyPhys. 07 (2017) 039] for simple compact LiegroupsG
that leads to Hermitian symmetric spaces. In such a theory, the Skyrme field takes its values in G, while the
remaining fields correspond to the entries of a symmetric, positive, and invertible dim G × dim G-dimensional
matrix h. We also use the holomorphic map Ansatz between S2 → G=H ⊗ Uð1Þ proposed in Ferreira and
Livramento [Harmonic, holomorphic and rationalmaps from self-duality, arXiv:2412.02636] to study the self-
dual sector of the theory, which generalizes the holomorphic Ansatz between S2 → CPN proposed in
Ioannidou [Low-energy states in the SU(N) Skyrme models, in International Meeting on Mathematical
Methods in Modern Theoretical Physics (ISPM 98) (1998), pp. 91–123, arXiv:hep-th/9811071]. This
Ansatz is constructed using the fact that stable harmonic maps of the two S2 spheres for compact Hermitian
symmetric spaces are holomorphic or antiholomorphic [J. Eells and L. Lemaire, Two Reports on Harmonic
Maps (World Scientific Publishing Company, Singapore, 1995)]. Apart from some special cases, the self-
duality equations do not fix the matrix h entirely in terms of the Skyrme field, which is completely free, as it
happens in the original self-dual Skyrme model for G ¼ SUð2Þ. In general, the freedom of the h fields tend
to grow with the dimension of G. The holomorphic Ansatz enable us to construct an infinite number of
exact self-dual Skyrmions for each integer value of the topological charge and for each value of N ≥ 1, in
case of the CPN , and for each values of p, q ≥ 1 in case of SUðpþ qÞ=SUðpÞ ⊗ SUðqÞ ⊗ Uð1Þ.
DOI: 10.1103/dmdd-xc1l

I. INTRODUCTION

The study of self-duality has shed light on the complex
behavior of topological solutions in a wide variety of
classical nonlinear field theories. The topological solitons
are classified by a homotopic invariant quantity, the so-
called topological charge, and self-duality can greatly
facilitate the task of obtaining the topological solutions
corresponding to the global energy minimizer [1]. This
plays a fundamental role in the study of kinks and
instantons in (1þ 1) dimensions [1–4], vortex solutions
in the Abelian Chern-Simons theory in (2þ 1) dimensions
[5], self-dual Skyrmions in (3þ 1) dimensions [6,7], and in
some non-Abelian gauge theories in (3þ 1) dimensions, as
the Yang-Mills-Higgs system [8].
The self-duality usually appears in models that possess

two main ingredients. First, the static energy density of the

model must be the sum of the squares of two objects Aα and
Ãα that depend on the fields and their first-order spacetime
derivatives only, where the nature of the fields and the α
index depend on each theory. Second, the topological
charge density must be proportional to the contraction of
such objects. It follows that the so-called self-duality
equations Aα ¼ �Ãα imply second-order differential
Euler-Lagrange equations and also correspond to the global
minimizer of the static energy, for each value of the
topological charge (Q). The set of topological solutions
of the self-duality equations is called the self-dual sector,
which can be empty for some models, as is the case with the
standard Skyrme model, as demonstrated in [9,10].
The standard Skyrme model is an effective classical field

theory for the triplet of pions in (3þ 1) dimensions in the
low-energy regime [3,9,11–13]. The model is defined in
terms of the SUð2Þ Skyrme field U, which includes the
three pion fields and is a map between two three-spheres.
Its standard version contains only two terms in its action,
one quadratic and the other quartic in the spacetime
derivatives. The quartic term, or any other higher-order
kinetic term, is essential to stabilize the Skyrmions under
Derrick’s scale argument [14]. This is still true even if any
positive definite potential defined in terms of the Skyrme
field is added since this SUð2Þ field is scale invariant.
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Such a theory possesses a large number of modifications,
some allowing the construction of electrically charged
multi-Skyrmions. This is the case of the gauged version
of the Skyrme model obtained by gauging the Uð1Þ
subgroup of the SUð2Þ global symmetry, associated with
the generator of its Cartan subalgebra [15–19].
There are some modifications to the standard Skyrme

model that lead to a nonempty self-dual sector. Notably, one
of these modifications, the so-called Bogomol’ny–Prasad–
Sommerfield (BPS) Skyrme model [6], can be directly
derived from integral representations of the topological
charge associated with the Skyrme field using ideas of
self-duality seen in [1]. Such an approach spontaneously
includes six extra fields corresponding to the entries of a
symmetric, positive, and invertible 3 × 3matrixh. Thematrix
h and its inverse appear contracted respectively to quadratic
and quartic terms in the spacetime derivatives associated with
the Skyrme field, i.e., the model is defined by

SBPS ¼
Z

d4x

�
m2

0

2
habRa

μRb;μ −
1

4e20
h−1abH

a
μνHb;μν

�
ð1:1Þ

wherem0 is a coupling constant with dimension of mass, and
e0 is a dimensionless coupling constant. In addition,
Ra
μ ¼ i bTrð∂μUU†TaÞ, and Ha

μν ¼ εabcRb
μRc

ν, with Ta,
a ¼ 1, 2, 3, being the basis of the SUð2Þ Lie algebra
satisfying ½Ta; Tb� ¼ iεabcTc, and bTrðTaTbÞ ¼ δab. The
standard Skyrme model is recovered by imposing h ¼ 1.
It was demonstrated in [7] that self-duality equations

of the BPS Skyrme model can be used to algebraically
determine entierly the h matrix in terms of the matrix
τab ≡ Ra

i R
b
i , with a, b ¼ 1, 2, 3, in all regions where τ is

nonsingular, while the Skyrme field is still completely free.
This SUð2Þ field is still completely free even at the points
where τ is singular, but in this case some of the components
of the matrix h are also free. The reason that leads to this
freedom can be traced to the fact that the nine static Euler-
Lagrange equations for the fields h and U are not all
independent. In fact, the equations for the U field can be
derived from the equations of the h fields when τ is
nonsingular. The freedom of the Skyrme field leads to
an infinite number of exact topological solutions to each
value of the topological charge.
All the BPS solutions of the model (1.1) are scale

independent due to the conformal invariance of the model
in three spacial dimensions. This freedom of the shapes of
topological solitons can improve the scope of physical
application of the theory, especially if some extra term is
added breaking the scale independence and selecting some
specific form. By example, the scale dependence and the
radial multisolitons configurations that live in the self-dual
sector of the theory (1.1) are essential in one of its
extensions, the false vacuum Skyrme model [20].
Self-duality can also play a fundamental role in models

that are extensions of BPS theories, where the total static

energy contains extra terms, even in nonperturbative
approaches. On the one hand, self-duality can inspire the
construction of Ansätze in quasi-self-dual models, where
the extra terms weakly break the self-duality equations
[21]. On the other hand, there are models that contain extra
terms that do not break any of the self-duality equations,
such as the false vacuum Skyrme model [20]. This is a
powerful modification of the Skyrme model that leads to
excellent classical results for the binding energy and
radius of the nuclei. In fact, the results are such that for a
list containing 256 nuclei with mass number A ≥ 12, the
root-mean-square deviation of the binding energy per
nucleon and the root-mean-square radius, which are,
respectively, of the order of 0.05 MeV and 0.04 fm,
are of the same order as excellent fits based on phenom-
enological approaches.
The magic of the false vacuum BSP Skyrme model is

that the BSP Skyrme term gives a massive contribution E1

to the total nuclear mass, but the binding energy comes just
from the extra terms, despite given a lower order contri-
bution E2 to the total mass. The BPS model is extended
through the introduction of kinetic and potential terms for
the baryonic density, which depends only on the Skyrme
field, and a topological term that approximately reproduces
the Coulomb interaction. The h fields are still being
determined through the self-duality equations, since the
additional terms do not depend on such fields. Curiously,
Coleman’s false vacuum argument [22–24] shows that
the global minimizer of such a theory must have radial
symmetry. This mathematical result reduces the three-
dimensional static Euler-Lagrange equations to a single
radial second order differential equation for a fractional
power of the baryonic density. However, exploring the
nature of h fields for generalizations of the BPS Skyrme
model can help reveal the physical interpretation of such
fields and if h can still be entirely determined in terms of
the Skyrme fields for Lie groups other than G ¼ SUð2Þ.
A self-dual modification of the Skyrme model proposed

in [25,26], also known as the BPS Skyrme model, intro-
duces a BPS sector without the need for additional fields
beyond the pion degrees of freedom. In this construction,
the standard Skyrme terms are replaced by a potential term
together with a sextic term in the spacetime derivatives of
the Skyrme field, the so-called BPS Skyrme term. Although
it features zero binding energy at the classical level, the
inclusion of Coulomb contributions and quantum correc-
tions yields realistic binding energies for very heavy nuclei
[27]. Furthermore, the model can be extended by adding
the terms of the standard Skyrme theory with a small
deformation parameter ϵ ≪ 1, bringing the theory close to
the BPS limit and providing controlled corrections to the
binding energies [28].
Extensions of such a BPS Skyrme model that contain

the sextic term but do not include the h fields also play
an important role in reducing Skyrme-type solutions to
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configurations with low binding energies [29–31]. The
construction of Skyrme-type theories with a self-dual sector
has also been obtained by the reduction of self-dual Yang-
Mills theory in four dimensions to a Skyrme model coupled
to a tower of vector mesons, leading to a reasonable
description of the spectrum of light nuclei [32–35].
An important mathematical result that motivates us to

generalize the BPS Skyrme model shows that for a
simple compact Lie group G, it follows that π3ðGÞ ¼ Z,
where π3ðGÞ is the homotopy group of the mapping of G
into a three-sphere. The topological charge associated
with this map admits integral representation similar to
the G ¼ SUð2Þ case. Let us consider now the cases where
G leads to a Hermitian symmetric space G=H ⊗ Uð1Þ,
where little group H ⊗ Uð1Þ is a subgroup of G. Some
examples of Lie groups that lead to a Hermitian symmetric
space are G ¼ Ar; Br; Cr; Dr; E6; E7, and some counter-
examples include the Lie groups G ¼ E8; F4; G2.
Another important mathematical result that can shed

light on how we can study the self-duality in such model
was derived by Eells and Lemaire [36]. It states that stable
harmonic maps X from the two-sphere S2 to compact
Hermitian symmetric spaces are holomorphic or antiholo-
morphic. This laid the foundation for constructing the
Ansatz holomorphic map Ansatz between S2 → G=H ⊗
Uð1Þ proposed in [37] by Ferreira and Livramento.
Although this Ansatz only works in certain specific
representations of the Lie group G, as will be discussed
later, it is major generalization of the holomorphic Ansatz
between S2 → CPN proposed in [38] to the CPN .
The main idea of this work is to first construct a

generalized BPS Skyrme model with the Skyrme fields
mapping the physical space to a simple compact Lie groupG
that leads to the Hermitian symmetric space G=H ⊗ Uð1Þ.
In this case, as the indices of the rows and columns of
the matrix h are contracted with each index of the generators
of the Lie algebra G associated with G, in such a theory
it becomes a dim G × dim G dimensional symmetric,
invertible, and positive matrix. Therefore, the h matrix and
the Skyrme fields can be written in terms of dim Gðdim Gþ
1Þ=2 and dim G independents fields, respectively.
Our second objective in this paper is to study the self-

dual sector of such a theory through the holomorphic
Ansatz between S2 → G=H ⊗ Uð1Þ proposed in [37]. In
particular, we want to determine whether the matrix h can
still be entirely determined in terms of the Skyrme fields
in the generalized BPS Skyrme model, similar to what
happens in the case G ¼ SUð2Þ, and whether U is still
completely free. Despite the fact that the number of self-
duality equations is, in principle, equal to the number of
independent fields of the theory, the full determination of
all the fields by the self-duality equations is not expected,
since this does not happen even for the G ¼ SUð2Þ case,
as discussed above. This Ansatz can drastically simplify
the self-duality equations, aiding in our investigation of

the self-dual sector and in the construction of exact BPS
topological solutions.
A powerful holomorphic Ansatz for the standard Skyrme

model was constructed for the G ¼ SUð2Þ case by
Houghton et al. in [39] using harmonic maps from
S3→S3. It is based on the rational map, which is a
holomorphic function from S2 → S2 [3,4,39,40]. Although
solving all Euler-Lagrange equations only for Q ¼ �1,
such Ansatz leads to a quite good approximation of the true
topological solitons corresponding to the global energy
minimizer, in the BPS Skyrme model (1.1), as the Skyrme
field is completely free inside the self-dual sector, the
rational map leads to an infinite number of exact solutions
for each value of Q [7].
In interpreting the Skyrme model as a low-energy

effective field theory of QCD in the limit where the number
of colors is large, the number N þ 1 of the Lie group
SUðN þ 1Þ where the Skyrme field takes its values
corresponds to the number of light quark flavors. The
holomorphic Ansatz proposed by Houghton et al. in [39]
for G ¼ SUð2Þ was generalized in [38] for G¼SUðNþ1Þ
using harmonic maps from S2 to CPN ≅ SUðN þ 1Þ=
SUðNÞ ⊗ Uð1Þ. As the other Ansatzë used to construct
multi-Skyrmions for some values of N of the G¼SUðNþ
1Þ case, the goal of this Ansatz is just give some approxi-
mation of the global energy minimizers. However, in
general the energies obtained through such an Ansatz
are marginally higher than the ones obtained through
SUð2Þ embeddings.
Through the holomorphic Ansatz we can construct an

infinite number of exact topological solutions for each
values of Q and N of the CPN space. This set of self-dual
solutions even includes field configurations based on the
standard rational map Ansatz. We also obtain self-dual
solutions within this Ansatz for the Hermitian symmetric
space SUðpþ qÞ=SUðpÞ ⊗ SUðqÞ ⊗ Uð1Þ, which gener-
alizes our results obtained for the CPN . In this case, we also
provide explicit solutions for any value of the topological
charge. This study has the potential to reveal the nature of h
fields in such models and how the role of self-duality
manifests in determining the h and U fields.
The paper is organized as follows. In Sec. II, we

construct the generalized BPS Skyrme model. Additionally,
we obtain the self-dual equations and the expression for the
topological charge and energy within the self-dual sector. In
this section we also discuss an important symmetry of the
model under the composition of parity and target space
parity transformations. In Sec. III, we derive the Euler-
Lagrange equations and demonstrate how they can be
solved using the self-dual field configurations. In Sec. IV
we construct our holomorphic Ansatz between S2 →
G=H ⊗ Uð1Þ. We also obtain the explicit general form
of the self-duality equations using the structure of the
Hermitian symmetric space and our holomorphic Ansatz. In
Secs. V and VI we study our holomorphic Ansatz in the
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G ¼ SUð2Þ and G ¼ SUðN þ 1Þ cases, respectively. The
case SUð2Þ is done separately due to its peculiar structure,
and in both cases we obtain exact multi-BPS Skyrmions
for all integer values of the topological charge. In Sec. VII
we obtain the self-dual equations inside the holomorphic
Ansatz for the Hermitian symmetric space SUðpþ qÞ=
SUðpÞ ⊗ SUðqÞ ⊗ Uð1Þ, and construct particular self-
dual solutions for all integer values of the topological
charge. In Sec. VIII we present our final considerations.

II. THE MODEL AND ITS CONSTRUCTION

Consider a simple compact Lie group G. It is known that
the maps S3 → G are classified by the integers since

π3ðGÞ ¼ Z: ð2:1Þ
The topological charge associated to such homotopy group
is given by

Q ¼ i
48π2κ

Z
d3xεijkTrðRiRjRkÞ ð2:2Þ

where

Rμ ≡ i∂μUU−1 ≡ Ra
μTa ð2:3Þ

with U being an element of the group G, and Ta,
a ¼ 1;…; dim G, being the generators of the correspond-
ing compact simple Lie algebra

½Ta; Tb� ¼ ifabcTc ð2:4Þ
and where we work with an orthogonal basis, i.e.,

TrðTaTbÞ ¼ κδab ð2:5Þ
with κ depending upon the representation where the trace is
taken. We shall use a normalized trace defined as

bTrðTaTbÞ≡ 1

κ
TrðTaTbÞ ¼ δab: ð2:6Þ

The quantities Rμ introduced in (2.3) satisfy by con-
struction the Maurer-Cartan equation

∂μRν − ∂νRμ þ i½Rμ; Rν� ¼ 0; ð2:7Þ

which allows us to split the topological charge (2.2) as

Q ¼ 1

48π2

Z
d3xAa

i Ã
a
i ð2:8Þ

with

Aa
i ≡ Rb

i kba; Ãa
i ≡ i

2
k−1abεijk bTrðTb½Rj; Rk�Þ ð2:9Þ

where kab is some invertible matrix. Using the ideas of self-
duality seen in [1], through this splitting we can introduce
the self-duality equation as

λAa
i ¼ Ãa

i with λ ¼ �me ð2:10Þ

or

λRb
i hba ¼

i
2
εijk bTrðTa½Rj; Rk�Þ ð2:11Þ

where we have introduced a dim G × dim G-dimensional
matrix

hab ¼ ðkkTÞab ¼ kackbc: ð2:12Þ

Due the fact the k is invertible and the definition (2.12), it
so follows that the h matrix is invertible, symmetric, and
positive. The fact that h is positive is less trivial, but
consider real vector v and define u≡ kTv, which implies
that v ¼ 0⃗ ⇒ u ¼ 0⃗. Using the fact that k is invertible, we
can write v ¼ kT−1u, and so u ¼ 0⃗ ⇒ v ¼ 0⃗. Therefore,
the fact that k is invertible implies that u ¼ 0⃗ ⇔ v ¼ 0⃗. It so
follows that for all nonvanishing real vector v we have
vThv ¼ jkTvj2 ¼ juj2 > 0, and so h ¼ kkT is a positive
matrix.
The solutions of (2.9) solve the Euler-Lagrange equa-

tions associated to the following static energy functional
constructed using ideas of self-duality [1]

E ¼ 1

2

Z
d3x
�
m2ðAa

i Þ2 þ
1

e2
ðÃa

i Þ2
�

¼ 1

2

Z
d3x

�
m2habRa

i R
b
i −

1

2e2
h−1ab bTrðTa½Rj; Rk�Þ bTrðTb½Rj; Rk�Þ

�
ð2:13Þ

which is the static energy of a generalized Skyrme model. The action associated to energy (2.13) that defines the generalized
BPS Skyrme model is so given by

S ¼ 1

2

Z
d4x

�
m2habRa

μRb;μ þ 1

2e2
h−1ab bTrðTa½Rμ; Rν�Þ bTrðTb½Rμ; Rν�Þ

�

¼
Z

d4x

�
m2

2
habRa

μRb;μ −
1

4e2
h−1abH

a
μνHb;μν

�
ð2:14Þ
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where we have defined [see Eq. (2.7)]

Ha
μν ≡ −i bTrðTa½Rμ; Rν�Þ ¼ ∂μRa

ν − ∂νRa
μ ¼ fabcRb

μRc
ν:

ð2:15Þ

We can write the energy (2.13) as

E ¼ 1

2e2

Z
d3x½m2e2ðAa

i Þ2 þ ðÃa
i Þ2�

¼ 1

2e2

Z
d3x½λAa

i − Ãa
i �2 þ

λ

e2

Z
d3xAa

i Ã
a
i

¼ 1

2e2

Z
d3x½λAa

i − Ãa
i �2

þ signðλÞ48π2 m
e
Q ≥ signðλÞ48π2m

e
Q; ð2:16Þ

which corresponds to the usual BPS bound. When the self-
duality (2.10) holds true the topological charge (2.8) can be
written as

Q ¼ � me
48π2

Z
d3xðAa

i Þ2 ð2:17Þ

and so Q is positive for the plus sign (λ > 0) and negative
otherwise (λ < 0), i.e.,

signðQλÞ ¼ 1: ð2:18Þ

Then, using (2.10) and (2.18) the energy (2.16) of the self-
dual solutions saturates the BPS bound, also given in
(2.16), i.e., the energy becomes

E ¼ 48π2
m
e
jQj: ð2:19Þ

Clearly, as usual, the self-dual energy (2.19) is proportional
to the modulus of the topological charge. Contracting the
self-duality equations (2.11) with Rc

i we get

λτcbhba ¼ σca ð2:20Þ

with

τab ≡ Ra
i R

b
i ð2:21Þ

and

σab ≡ i
2
Ra
i εijk bTrðTb½Rj; Rk�Þ

¼ −
1

2
εijkfbcdRa

i R
c
jR

d
k ¼ −

1

2
εijkRa

i H
b
jk: ð2:22Þ

Note that the self-dual equations (2.11) are labeled by
one spatial index i ¼ 1;…; 3 and one algebra index
a ¼ 1;…; dim G, while, due to the contraction with Rc

i ,

the Eq. (2.20) are labeled by two algebraic indices
a; c ¼ 1;…; dim G. In Sec. III, we show that the dim G ×
dim G self-duality equations (2.20) are equivalent to the
dim G × 3 self-duality equations (2.11).
From (2.2) and (2.22) the topological charge becomes

Q ¼ i
96π2

Z
d3xεijk bTrðRi½Rj; Rk�Þ

¼ −
1

96π2

Z
d3xεijkfabcRa

i R
b
jR

c
k

¼ 1

48π2

Z
d3xσaa ð2:23Þ

Note that in the particular cases where τ is invertible we can
write h in terms of the U fields only as

h ¼ 1

λ
τ−1σ: ð2:24Þ

So, the self-duality equation is solved for any U-field
configuration (as long as τ is invertible at least), and so the
h fields are spectators in the sense they adjust themselves to
that U-configuration to solve the self-duality equations.
However, in the case τ is not invertible, the BPS Skyrmions
need to be constructed by solving the self-duality
equations (2.20).
Under space parity P transformations ðt; xiÞ → ðt;−xiÞ

and under the target space parity PU transformations
U → U−1, where U can be any element of the target space
G, we have the same transformations for the quantities
ðτ; σ; h; EÞ → ðτ;−σ;−h;−EÞ. Note that the way that h
transforms under P and PU can be derived from the way
that σ and τ transform using the self-duality equa-
tions (2.20). Clearly, by the space parity transformations
τ is a scalar, while E, σ, and the h fields are pseudoscalars.
These two sets of transformations shows in particular that
the energy E is invariant under the composition PPU.
The fact that the h fields gets a minus sign in both

transformations P and PU leads to an important distinc-
tion of our theory and the standard Skyrme model, where
by definition h ¼ 1 does not transform. The energy of the
standard Skyrme model ESk is also invariant under the
composition PPU, but this comes from the fact that ESk
is also invariant under both P and PU transformations
separately.
The h fields plays the same role of the Wess-Zumino

term with respect the P and PU transformations. The Wess-
Zumino term is introduced into the Skyrme model in [41]
to break both invariances P and PU while preserving the
invariance PPg. This is fundamental in the interpretation of
the Skyrme model as an effective theory in the low energy
regime, where just the composition PPU must be a
symmetry of the action. In fact, for three flavors the
Skyrme field takes its values in the SUð3Þ Lie group
and can be written in terms of an octet formed by pions,
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kaons, and eta mesons [42–45]. The PU invariance would
forbid, for example, the process KþK− → πþπ−π0, where
Kþ is the kaon, K− the antikaon, and ðπþ; π−; π0Þ corre-
sponds to the three pions with electrical charges þe;−e; 0,
respectively, where e is the electric charge of the proton.
However, this process can be observed experimentally and
is allowed in QCD by the non-Abelian anomaly.

III. THE EULER-LAGRANGE EQUATIONS

The Euler-Lagrange equations associated to the Skyrme
field and the action (2.14) are

∂μð−λ2habRb;μ þ fcbaRc
νh−1bdH

d;μνÞ
− fcba½−λ2hbdRd

μRc;μ þ h−1bdH
d;μν

∂μRc
ν� ¼ 0: ð3:1Þ

Its static version is given by

∂iðλ2habRb
i þ fcbaRc

jh
−1
bdH

d
ijÞ

− fcba½λ2hbdRd
i R

c
i þ h−1bdH

d
ij∂iR

c
j � ¼ 0: ð3:2Þ

The Euler-Lagrange equations associated to the hab fields
and the action (2.14) are

λ2Ra
μRb;μ þ 1

2
h−1ac h−1bdH

c
μνHd;μν ¼ 0: ð3:3Þ

Let us introduce

Sð�Þ;a
i ≡ jλjRa

i �
1

2
εijkh−1acHc

jk; ð3:4Þ

which satisfies by construction

SðþÞ;a
i Sð−Þ;bi ¼ Bab þ Aab ð3:5Þ

where

Bab ≡m2e2Ra
i R

b
i −

1

2
h−1ac h−1bdH

c
ijH

d
ij;

Aab ≡ jλj½ðσh−1Þab − ðσh−1Þba�: ð3:6Þ

The Eq. (3.5) splits SðþÞ;a
i Sð−Þ;bi into its symmetric and

antisymmetric parts Bab and Aab, respectively. The static
version of (3.3) becomes

Bab ¼ 0 ⇔ SðþÞ;a
i Sð−Þ;bi ¼ Aab: ð3:7Þ

On the other hand, the self-duality equations (2.11) can be
written as

signðλÞ ¼ �1 ⇒ Sð�Þ;a
i ¼ 0; ð3:8Þ

which implies

SðþÞ;a
i Sð−Þ;bi ¼ 0: ð3:9Þ

Let us show that the dim G × dim G self-duality equa-
tions (2.20) are equivalent to the dim G × 3 self-duality
equations (2.11), which can also be written as (3.8). The
Eq. (2.20) is obtained in Sec. II from (2.11). Now, let us
prove that (2.20) implies (2.11). In particular, the self-
duality equations are also solutions of the static Euler-
Lagrange equation associated with the h field (3.7), i.e.,
Bab ¼ 0. On the other hand, from (2.20), we obtain that
σh−1 is symmetric, and due to (3.6), we have Aab ¼ 0.
Therefore, the rhs of (3.5) vanishes, reducing this equation
to (3.9). The definition (3.4) leads to

SðþÞ;a
i þ Sð−Þ;ai ¼ 2jλjRa

i ð3:10Þ

Contracting (3.10) with Sð�Þ;b
i and using (3.9) we obtain

Sð�Þ;a
i Sð�Þ;b

i ¼ 2jλjRa
i S

ð�Þ;b
i ¼ 2jλj½jλjτab ∓ ðσh−1Þab�

¼ 2jλj½jλj ∓ λ�τab ð3:11Þ

where we use (2.20), which implies the self-duality
equations (3.8), completing the proof.
Now, let us explicitly show that the Euler-Lagrange

equation for the U field (3.2) is implied by the self-duality
equations (2.11). Using (2.15) we also can write (2.11) as

εijk∂jRa
k ¼

1

2
εijkHa

jk ¼ −λRb
i hba ⇒ Ha

ij ¼ −λεijkRb
khba:

ð3:12Þ

Consequently, ∂iðhabRa
i Þ ¼ −λ−1εijk∂i∂jRb

k ¼ 0. Using this
expression, and defining La as the lhs of (3.2), we obtain

La ≡ ∂iðλ2habRb
i þ fcbaRc

jh
−1
bdH

d
ijÞ

− fcba½λ2hbdRd
i R

c
i þ h−1bdH

d
ij∂iR

c
j �

¼ fcbaRc
j∂iðh−1bdHd

ijÞ − fcbaλ2hbdRd
i R

c
i : ð3:13Þ

However, (3.12) implies Rc
j∂iðh−1bdHd

ijÞ ¼−λRc
jεijk∂i

ðh−1bdRl
khldÞ ¼−λRc

jεijk∂iR
b
k ¼ λRc

i εijk∂jR
b
k ¼−λ2Rc

i R
d
i hdb.

Then, the first and second terms on the lhs of (3.13) are
equal, and we can write it as

La ¼ 2fcbaλRc
i εijk∂jR

b
k ¼ −2iλ bTrðCTaÞ ð3:14Þ

where we use fcba ¼ −i bTrð½Tc; Tb�TaÞ and

C≡ εijk½Ri; ∂jRk� ¼ εijkð∂j½Ri; Rk� − ½∂jRi; Rk�Þ
¼ −iεijk∂jð∂iRk − ∂kRiÞ − εijk½∂jRi; Rk�
¼ −εijk½∂jRi; Rk� ¼ −εijk½Ri; ∂jRk� ¼ −C: ð3:15Þ
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Therefore, C ¼ 0 leading due to (3.14) to La ¼ 0, which
corresponds to the static Euler-Lagrange equations for the
Skyrme field (3.2).
In the self-dual sector, the Eq. (2.11) implies that σh−1 is

symmetric. Therefore, Aab ¼ 0, and using (3.9) we obtain
that the self-duality equations (3.8) imply the static Euler-
Lagrange equations for the h field (3.7). However, the
converse does not seem to hold true in general. In fact, in
any domain D ⊂ S3 where σh−1 is not a symmetric matrix,

Eq. (3.7) gives SðþÞ;a
i Sð−Þ;bi ≠ 0. Therefore, in this domain

we cannot have self-dual solutions, which satisfies (3.9).
Additionally, note that this argument does not depend on
whether τ is invertible.
In the case ofG ¼ SUð2Þwe can treat the Maurer-Cartan

components Ra
i as 3 × 3matrix with the following ordering

of rows and columns Ria ≡ Ra
i ; i ¼ 1, 2, 3 and a ¼ 1, 2, 3.

Therefore, εijkRa
i R

b
jR

c
k ¼ εabcεijkRi1Rj2Rk3 ¼ εabc detR,

and using (2.22), we obtain

σab ¼ −
1

2
εijkεbcdRa

i R
c
jR

d
k ¼ −δab detR: ð3:16Þ

The G ¼ SUð2Þ case is very special since both h−1 and σ
are symmetric by construction, and the structure constant
reduces to the Levi-Civita symbol. Using these two proper-
ties, it was demonstrated in [7] that the self-duality
equations (3.8) are a consequence of the static Euler-
Lagrange equations associated with the h fields. In par-
ticular, this implies that the static sector is equivalent to the
self-dual sector for G ¼ SUð2Þ.

IV. THE HOLOMORPHIC ANSATZ

Let us consider a compact simple Lie group G, and let ψ
denote its highest positive root. This root can be write in
terms of the simple roots αa, a ¼ 1; 2; 3;…; rankG, as
ψ ¼PrankG

a¼1 naαa, where na’s are positive integers. The
irreducible compact Hermitian symmetric spaces, as
defined in (see [46]), correspond to those cases where
the expansion of ψ in terms of the simple roots presents at
least one coefficient na as equals to unity, i.e.,

ψ ¼ α� þ
XrankG

a¼1;a≠�
naαa ð4:1Þ

where α� denote the simple root that appears only once in
the expansion (n� ¼ 1).
Let us denote λ� the fundamental weight of G, which is

not orthogonal to α�, i.e.,

2λ� · α�
α2�

¼ 1;
2λ� · αa

α2a
¼ 0; for a ≠ �: ð4:2Þ

The Hermitian symmetric spaces are characterized by
the Uð1Þ factor in the little group, and the involutive

automorphism σ (σ2 ¼ 1), defining the symmetric space
structure is inner and constructed from the generator Λ of
the Uð1Þ subgroup, i.e.,

σðTÞ≡eiπΛTe−iπΛ; Λ≡2λ� ·H
α2�

; for anyT∈G ð4:3Þ

where we choose to work in the Cartan-Weyl basis
and Hi, i ¼ 1; 2; 3;…; rankG, are the generators of
the Cartan subalgebra of G. Denoting Eα as the step
operator associated to the root α of G, the Killing form
of G becomes

TrðHiHjÞ¼δij; TrðHiEαÞ¼0; TrðEαEβÞ¼
2

α2
δαþβ;0:

ð4:4Þ

The relations (4.3) and ½Hi; Eα� ¼ αiEα, where the
index i denotes the component of the root α, leads
to ½Λ; Eα� ¼ 2λ�·α

α2�
Eα. Expanding the root through

α ¼ m�α� þ
P

rankG
a≠� mαaαa, where mαa are integers and

m� can take the values −1, 0, 1 due to (4.1), and using (4.2)
we obtain ½Λ; Eα� ¼ nαa�Eα. Consequently, the step oper-
ators E�α (anti)commute with eiπΛ for nαa� ¼ 0

(nαa� ¼ �1). Denoting γ as any positive root of G that
does not contain α� in its expansion in terms of simple
roots, and ακ as the remaining positive roots, we get
from (4.3) that

σðHiÞ¼Hi; σðE�γÞ¼E�γ; σðE�ακÞ¼−E�ακ : ð4:5Þ

Therefore, the Lie algebra G of G breaks in even and odd
subalgebras under the involutive automorphism (4.3),
denoted, respectively, by K and P, i.e.,

G¼PþK with σðPÞ¼−P σðKÞ¼KP∈P; K∈K:

ð4:6Þ

Note that Λ and E�γ belong to the even subgroup K,
and Λ generates an Uð1ÞΛ invariant subalgebra of it.
Consequently, we can write K ¼ H ⊕ Λ, and we obtain
the irreducible compact Hermitian symmetric space
G=H ⊗ Uð1ÞΛ. The subgroup H is generated by
Ha ≡ 2αa·H

α2a
, with αa ≠ α�, ðEγ þ E−γÞ, and iðEγ − E−γÞ.

The odd subgroup is generated by E�ακ, as defined in (4.5),
where κ ¼ 1; 2;…; dim P

2
.

The Hermitian symmetric space has the form of
a coset G=K, where K is the little group K ¼ H ⊗ Uð1Þ
and we get the usual algebraic structure of a symmetric
space

½G;G� ⊂ G ½G;P� ⊂ P ½P;P� ⊂ G: ð4:7Þ
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The Hermitian character of such symmetric spaces is that P
is even dimensional and it is split by Λ into two parts
according its eigenvalues

P ¼ Pþ þ P− ½Λ; P�� ¼ �P� P� ∈P�: ð4:8Þ

The generators of Pþ and P− are, respectively, Eακ and
E−ακ , with κ ¼ 1; 2;…; dim P

2
. It turns out that P− is like the

Hermitian conjugate of Pþ, and so both spaces have the
same dimension, i.e., dimPþ¼dimP−¼ dimP

2
. Therefore,

Λ not only provides the automorphism σ, but it also provides
a gradation of the Lie algebra G into subspaces of grades 0
and �1. Since there are no subspaces of grades �2, it turns
out that P� are Abelian. So we have

½K;K� ⊂ K ½K;P�� ⊂ P� ½Pþ;Pþ�
¼ ½P−;P−� ¼ 0 ½Pþ;P−� ⊂ K: ð4:9Þ

The compact irreducible Hermitian symmetric spaces are

SUðpþ qÞ=SUðpÞ ⊗ SUðqÞ ⊗ Uð1Þ; SOð2NÞ=SUðNÞ ⊗ Uð1Þ;
SOðN þ 2Þ=SOðNÞ ⊗ Uð1Þ; SpðNÞ=SUðNÞ ⊗ Uð1Þ;
E6=SOð10Þ ⊗ Uð1Þ; E7=E6 ⊗ Uð1Þ: ð4:10Þ

The trace form is invariant under the automorphism σ, i.e.,
TrðσðTÞσðT 0ÞÞ ¼ TrðTT 0Þ. Therefore, the even and odd
generators are orthogonal

TrðPKÞ ¼ 0: ð4:11Þ
In addition one has

0 ¼ TrðΛ½P�;P��Þ ¼ TrðP�½Λ;P��Þ ¼ �TrðP�P�Þ
ð4:12Þ

and so

TrðPþPþÞ ¼ TrðP−P−Þ ¼ 0: ð4:13Þ
The even subalgebra K has the form K ¼ H ⊕ Λ. If H is
simple or even semisimple [no Uð1Þ factors], then it is true
that any of its elements can be written as the commutator of
some other two, i.e., H ¼ ½H0;H00�. Then it follows that

TrðΛHÞ ¼ TrðΛ½H0;H00�Þ ¼ Trð½Λ;H0�H00Þ ¼ 0 ð4:14Þ
and so

TrðΛHÞ ¼ 0: ð4:15Þ
One nice thing about symmetric spaces (not only

Hermitian) is that one can parametrize it quite easily.
Given a matrix of the group G one may construct the
so-called principal variable

XðgÞ¼gσðgÞ−1 andso XðgkÞ¼XðgÞ and σðXÞ¼X−1

ð4:16Þ
with k being any element of the K subgroup and g is any
element of G. Therefore, XðgÞ parametrizes the coset space
(symmetric space) G=K. The three dimensional space IR3

can be foliated with spheres with center at the origin, being
useful introduce the spherical coordinates ðr; θ;φÞ. We
stereographically project the spheres on a plane with the
infinity identified to a point, i.e., the Riemann sphere. The

maps from that sphere to the Hermitian symmetric space
are labeled by integers. Let z and z̄ be the complex
coordinates on that plane introduced by the coordinate
system ðr; z; z̄Þ defined by (z ¼ z1 þ iz2)

x1¼ r
iðz̄−zÞ
1þjzj2 ; x2¼ r

zþ z̄
1þjzj2 ; x3¼ r

ð−1þjzj2Þ
1þjzj2 ; ð4:17Þ

which have the metric

ds2 ¼ dr2 þ 4r2

ð1þ jzj2Þ2 dzdz̄: ð4:18Þ

A powerful Ansatz for the Skyrme field U was proposed
by L. A. Ferreira and L. R. Livramento in [37]. First, it
considers the rational map for the group elements U of the
group G as

U ¼ geifðrÞΛg−1 ¼ eifðrÞgΛg−1 σðgÞ ¼ g−1 ð4:19Þ
where fðrÞ is a radial profile function, Λ is defined in (4.3)
and g is an element of the compact Lie group G, and it
depends only z and z̄, i.e., g ¼ gðz; z̄Þ. Clearly, as Λ
commutes with the elements of the even subgroup
K ¼ H ⊗ Uð1ÞΛ, it so follows that gkΛðgkÞ−1 ¼ gΛg−1,
with k∈K. Consequently, the term gΛg−1 depends only on
the fields parametrizing the cosets inG=H ⊗ Uð1ÞΛ, which
are parametrized by a principal variable of the form (4.16).
In fact, we can take g as a principal variable (4.16), i.e.,
gðwÞ ¼ wσðwÞ−1, with w being any element of G depend-
ing only on z and z̄. The definition (4.16) implies that
σðgÞ ¼ g−1, and so the principal variable X is reduced
to XðgÞ ¼ gσðgÞ−1 ¼ g2.
The Maurer-Cartan form associated to g, i.e., g−1∂ig can

be projected into even and odd subspaces through

g−1∂ig¼PiþKi; Pi¼
1−σ

2
g−1∂ig; Ki¼

1þσ

2
g−1∂ig:

ð4:20Þ
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Since we are dealing with Hermitian symmetric spaces we
can use (4.8) to split Pi into the �1 subspaces, i.e.,

Pi ¼ PðþÞ
i þ Pð−Þ

i ½Λ; Pð�Þ
i � ¼ �Pð�Þ

i : ð4:21Þ

The second key ingredient of the Ansatz proposed in [37]
is the construction of the g elements. Let us introduce

S ¼
X
κ

wκEακ ; ½Λ; S� ¼ S; ð4:22Þ

which lies on Pþ by definition, and where wκ are func-
tionals of the fields parametrizing the Hermitian symmetric
spaces G=H ⊗ Uð1ÞΛ. Consequently,

S† ¼
X
κ

w�
κE−ακ ; ½Λ; S†� ¼ −S†: ð4:23Þ

First, S and S† are even, respectively, holomorphic and
antiholomorphic, i.e., S ¼ SðzÞ and S†ðz̄Þ, or vice versa.
We can consider both cases by writing

S ¼ SðχÞ and S† ¼ S†ðχ̄Þ with χ ¼ z; z̄ ð4:24Þ

where χ ¼ z (χ ¼ z̄) corresponds to a (anti)holomorphic
matrix S. Second, the Ansatz works for representations of
the Lie algebra of G where the matrix associated to S is
nilpotent with index of nilpotency equal to two, and an
eigenvector of the Hermitian matrix SS† with a non-
negative eigenvalue, i.e.,

S2 ¼ 0; ðSS†ÞS ¼ ωS ð4:25Þ

where the eigenvalue ω is non-negative. From (4.25) we
can obtain some useful relations, such as

∂iSS ¼ ∂iS†S† ¼ 0; SS†∂iSS†S ¼ ωð∂iωS − S∂iS†SÞ:
ð4:26Þ

On the other hand, the Eq. (4.25) implies S†2 ¼ 0 and
ðS†SÞS† ¼ ωS†. Third, the Ansatz for g ¼ gðz; z̄Þ corre-
sponds to

g¼1þ1

ϑ

�
iðSþS†Þ− 1

ϑþ1
ðSS†þS†SÞ

�
; ϑ≡ ffiffiffiffiffiffiffiffiffiffiffi

1þω
p

;

ð4:27Þ

which is unitary and satisfies σðgÞ ¼ g−1. Alternatively, g
given by (4.27) can be also written as

g ¼ eiSeφ½S;S†�eiS† ¼ eiaðSþS†Þ ð4:28Þ

with φ ¼ ω−1 ln
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω

p
and a ¼ ω−1

2 arcsinð
ffiffiffi
ω

pffiffiffiffiffiffiffi
1þω

p Þ. Using
also (4.20), (4.21), and (4.25) we get

PðþÞ
i ¼ i

ϑ
∂iSþ i

ϑ2ð1þ ϑÞ ðS∂iS
†S − 2ϑ∂iϑSÞ;

Pð−Þ
i ¼ i

ϑ
∂iS† þ

i
ϑ2ð1þ ϑÞ ðS

†
∂iSS† − 2ϑ∂iϑS†Þ; ð4:29Þ

which satisfies ðPðþÞ
i Þ† ¼ −Pð−Þ

i . Let us introduce the
Hermitian and invertible operator

Ω≡ 1þ SS† þ S†S
1þ ϑ

⇒ Ω−1 ¼ 1 −
SS† þ S†S
ϑð1þ ϑÞ : ð4:30Þ

Using also (4.25) and (4.26) it so follows that

ΩPðþÞ
i Ω ¼ i∂iS⇒

†
ΩPð−Þ

i Ω ¼ i∂iS†: ð4:31Þ

The details of these calculations are presented in [37].
An important consequence of (4.31) is that the

holomorphic and the holomorphic Ansatz (4.24) are equiv-
alent to

∂χ̄S ¼ ∂χS† ¼ 0 ⇔ PðþÞ
χ̄ ¼ Pð−Þ

χ ¼ 0 with

χ ≡
�
z; S ¼ SðzÞ
z̄; S ¼ Sðz̄Þ : ð4:32Þ

In addition, for later convenience we can also introduce the
sign function

η≡
�þ1; χ ¼ z

−1; χ ¼ z̄
: ð4:33Þ

The relation (4.32) also shows that the terms S∂χS†S

and S†∂χ̄SS† vanish, reducing PðþÞ
χ and Pð−Þ

χ̄ , which can
be obtained from (4.29), to

PðþÞ
χ ¼ i

ð1þ ϑÞ2
ϑ

∂χ

�
S

ð1þ ϑÞ2
�
;

Pð−Þ
χ̄ ¼ i

ð1þ ϑÞ2
ϑ

∂χ̄

�
S†

ð1þ ϑÞ2
�
: ð4:34Þ

Using (4.3) and (4.27) we have that the Lie algebra
element appearing in the Ansatz (4.19) is given by

gΛg−1 ¼ Λ −
1

ð1þ ωÞ ð½S; S
†� þ iðS − S†ÞÞ: ð4:35Þ

In particular, if the square of the Uð1Þ generator Λ can be
written as Λ2 ¼ cΛþ 1

4
ð1 − c2Þ1 in such a representation,

where c is a real number, it so follows that the quantity

Z≡ 1þ c
2

1 − gΛg−1 ð4:36Þ
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is a projector, i.e., Z ¼ Z2. This allow us to easily compute
the exponential on the rhs of (4.19) reducing the rational
map to

U ¼ eif
1þc
2
1e−ifZ ¼ eif

cþ1
2 ½1þ ðe−if − 1ÞZ�: ð4:37Þ

Although this condition on Λ is not assumed in the above
Ansatz, it appears in the parametrization of the Hermitian
symmetric space G=K ¼ SUðpþ qÞ=SUðpÞ ⊗ SUðqÞ ⊗
Uð1Þ given in [37].

A. The self-dual sector

Using (4.20) and (4.21) and the fact that Ki commutes
with Λ, the Maurer-Cartan form Ri ¼ i∂iUU−1 associated
to the rational map (4.19) becomes

Ri ¼ −V−1ΣiV ð4:38Þ

with

V ≡ e−ifΛ=2g−1; Σi ≡ ∂ifΛ − 2 sin
f
2

�
PðþÞ
i − Pð−Þ

i

	
:

ð4:39Þ

We now have that

Rb
i ¼

1

κ
TrðTbRiÞ ¼ −

1

κ
TrðVTbV−1ΣiÞ

¼ −
1

κ
TrðTcΣiÞdcbðVÞ ð4:40Þ

where we have introduced the matrix for the group
elements in the adjoint representation of G

gTag−1 ¼ TbdbaðgÞ: ð4:41Þ

Similarly we have

TrðTa½Rj; Rk�Þ ¼ TrðVTaV−1½Σj;Σk�Þ
¼ TrðTc½Σj;Σk�ÞdcaðVÞ: ð4:42Þ

From (4.39) we note that Σi has components along theUð1Þ
generator Λ, and on the odd subspace P. In fact, using

(4.32) and the definition (4.39) we have

Σr¼f0Λ; Σχ ¼−2sin
f
2
PðþÞ
χ ; Σχ̄ ¼2sin

f
2
Pð−Þ
χ̄ ð4:43Þ

where PðþÞ
χ and Pð−Þ

χ̄ are given by (4.34).
It follows from (4.21) and (4.38) that εijkTrðRiRjRkÞ ¼

12εijk∂if sin2
f
2
TrðPðþÞ

j Pð−Þ
k Þ, which reduces the topologi-

cal charge (2.2) to

Q ¼ i
4π2κ

Z
drdzdz̄∂rf sin2

f
2
Tr
�
PðþÞ
z Pð−Þ

z̄ − PðþÞ
z̄ Pð−Þ

z

	

¼ 1

2π
½fðrÞ − sin fðrÞ�r¼∞

r¼0 Qtop ð4:44Þ

with Qtop ≡ i
4πκ

R
dzdz̄TrðPðþÞ

z Pð−Þ
z̄ − PðþÞ

z̄ Pð−Þ
z Þ ¼

η i
4πκ

R
dzdz̄TrðPðþÞ

χ Pð−Þ
χ̄ Þ, where we use (4.32) and (4.33).

Using (4.38) and (4.43) the self-duality equations (2.11)
can be written as

λτ̃cbh̃ba ¼ σ̃ca ð4:45Þ

where we have introduced the matrices

h̃ab ≡ dacðVÞhcdd−1dbðVÞ;
τ̃ab ≡ dacðVÞτcdd−1dbðVÞ;
σ̃ab ≡ dacðVÞσcdd−1dbðVÞ: ð4:46Þ

The adjoint representation of a compact simple Lie group is
unitary and real, and so d is an orthogonal matrix, i.e.,
dT ¼ d−1. Therefore, h̃ab and τ̃ab are still symmetric. In
addition, we have τ̃ab ¼ Σa

i Σb
i and σ̃ab ¼ − i

2
bTrðTaΣiÞ×

εijk bTrðTb½Σj;Σk�Þ. Using iεijk ∂r
∂xi

∂χ
∂xj

∂χ̄
∂xk

¼η ð1þjzj2Þ2
2r2 and (4.43)

we obtain

σ̃ab ≡ yðΓab
rχχ̄ þ Γab

χ̄rχ þ Γab
χχ̄rÞ

with y≡ 2ηf0 sin2 f
2

ð1þjzj2Þ2
r2 and Γab

αβγ ≡ −ð4f0 sin2 f
2
Þ−1×bTrðTaΣαÞ bTrðTb½Σβ;Σγ�Þ, which is antisymmetric under

the exchange of its last two indices β and γ and has the
following components

Γab
rχχ̄ ¼ bTrðTaΛÞ bTr�Tb

h
PðþÞ
χ ; Pð−Þ

χ̄

i	
that vanishes if Ta ≠ Λ or Tb ∈P

Γab
χ̄rχ ¼ bTr�TaP

ð−Þ
χ̄

	 bTr�TbP
ðþÞ
χ

	
that vanishes if Ta ∉ Pþ or Tb ∉ P−

Γab
χχ̄r ¼ bTr�TaP

ðþÞ
χ

	 bTr�TbP
ð−Þ
χ̄

	
that vanishes if Ta ∉ P− or Tb ∉ Pþ
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where we use (4.21) and the cyclic property of the trace.
The components of the matrices τ̃ and σ̃ become

τ̃Ha ¼ 0; τ̃Λa ¼
�
f02½ bTrðΛ2Þ�2; Ta ¼ Λ
0; otherwise

τ̃Pþa ¼
(
ð−ηf0Þ−1y bTr�PþP

ð−Þ
χ̄

	 bTr�TaP
ðþÞ
χ

	
; Ta ∈P−

0; otherwise

τ̃P−a ¼
(
ð−ηf0Þ−1y bTr�P−P

ðþÞ
χ

	 bTr�TaP
ð−Þ
χ̄

	
; Ta ∈Pþ

0; otherwise

ð4:47Þ

and

σ̃aH ¼
(
y bTrðΛ2Þ bTr�HhPðþÞ

χ ;Pð−Þ
χ̄

i	
; Ta ¼Λ

0; otherwise

σ̃ΛΛ ¼ y bTrðΛ2Þ bTr�PðþÞ
χ Pð−Þ

χ̄

	
σ̃PþP−

¼ σ̃P−Pþ ¼ y bTrðPþP
ð−Þ
χ̄ Þ bTrðP−P

ðþÞ
χ Þ ¼ð4.47Þ− ηf0τ̃PþP−

σ̃Hb ¼ σ̃PΛ ¼ σ̃PþPþ ¼ σ̃P−P−
¼ 0: ð4:48Þ

The indexH in the row or column indices of the matrices τ̃
and σ̃ represents any index a that labels the generators Ta of
the subalgebra H, and so on. A crucial consequence of
τ̃aH ¼ σ̃aH ¼ 0 for all a ¼ 1;…; dim G is that none of the
self-dual equations (4.45) depends on the h̃HH fields. Then,
ifH ≠ ∅, it follows that h̃HH is totally undetermined and τ̃
is not invertible. Otherwise, we could apply τ̃−1 to the self-
dual equations (4.45) fixing h̃ entirely.
The self-duality equations associated with the row index

H of τ̃, given by λτ̃Hbh̃ba ¼ σ̃Ha, are automatically satisfied
by (4.47) and (4.43), and the remaining equations are
reduced to

σ̃Λb ¼ λτ̃ΛΛh̃Λb ⇒ h̃Λb ¼
σ̃Λb
λτ̃ΛΛ

; ð4:49Þ

0 ¼ τ̃PþP−
h̃P−Pþ ¼ τ̃PþP−

h̃P−H

¼ τ̃P−Pþ h̃PþP−
¼ τ̃P−Pþ h̃PþH; ð4:50Þ

0 ¼ τ̃P−Pþðh̃PþPþ þ ηλ−1f01Þ ¼ τ̃PþP−
ðh̃P−P−

þ ηλ−1f01Þ:
ð4:51Þ

Note that there is an implicit sum over the line index of the
h̃ matrix, leading to a linear system to the h̃ab fields.
However, in (4.49) this sum is performed over a single
generator, which corresponds to the Uð1Þ generator Λ. This
is a consequence of the fact that τ̃ΛΛ is the only

nonvanishing component of τ̃Λa given in (4.47).
Therefore, h̃Λa is fully determined by

h̃ΛΛ ¼ αηTrðPðþÞ
χ Pð−Þ

χ̄ Þ;
h̃ΛH ¼ αηTrðH½PðþÞ

χ ; Pð−Þ
χ̄ �Þ; h̃ΛP� ¼ 0

with α≡ 2sin2 f
2

λf0TrðΛ2Þ
ð1þ jzj2Þ2

r2
: ð4:52Þ

Note that we can replace the modified trace bTr defined
in (2.6) by the usual trace Tr since the κ factor cancels in the
self-duality equations (4.45).
Clearly, if the matrix τ̃P−Pþ is invertible, then (4.50)

and (4.51) lead to

h̃P�H ¼ 0 h̃PP ¼ −ηλ−1f01 ð4:53Þ

However, if τ̃P−Pþ is not invertible, the fields (4.52) and
(4.53) are still a particular self-dual solution of (4.45). In
any case, using (4.47), the self-duality equation for the
fields h̃P�H of (4.50) can be written as

TrðP−P
ðþÞ
χ Þh̃P−H ¼ TrðPþP

ð−Þ
χ̄ Þh̃PþH ¼ 0: ð4:54Þ

There is no other self-duality equation that depends on the
fields h̃P�H. Thus, there are just dim H equations to fix the
components h̃PþH, and there is an independent set of

dim H equations to fix the components h̃P−H. Therefore,
there are at least 2 dim Hðdim Pþ − 1Þ components of
h̃HP free. On the other hand, using also (4.32), we obtain a
set of dim Pþ equations to the fields h̃P−Pþ given by

TrðP−P
ðþÞ
χ Þh̃P−Pþ ¼ 0: ð4:55Þ

There is another set of linear equations given by

TrðPþP
ð−Þ
χ̄ Þh̃PþP−

¼ 0 that comes from (4.50) but
corresponds to the complex conjugate of (4.55). Finally,
using (4.47) we can write (4.51) as

TrðPþP
ð−Þ
χ̄ Þh̃PþPþ ¼ −ηλ−1f0TrðPþP

ð−Þ
χ̄ Þ; ð4:56Þ

TrðP−P
ðþÞ
χ Þh̃P−P−

¼ −ηλ−1f0TrðP−P
ðþÞ
χ Þ: ð4:57Þ

Consequently, there are dim Pþ equations to fix the
dim Pþðdim Pþ þ 1Þ=2 fields h̃PþPþ , and the same

follows for the fields h̃P−P−
. Since h̃PP has dim P

diagonal elements and forms itself a symmetric matrix,
then the relations (4.55)–(4.57) together compose a set

of 3 dim Pþ equations that contain dim Pðdim Pþ1Þ
2

¼
dim Pþð2 dim Pþ þ 1Þ components of the h̃ fields.
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Such facts lead to the freedom of at least
2 dim Pþðdim Pþ − 1Þ components of the h̃PP matrix.
The above arguments show that dim Pþ ¼ 1 is a

necessary condition for the fields h̃PP to be fully deter-
mined by the self-duality equations (4.45). On the other
hand, we also show above that if τ̃P−Pþ is invertible, then

h̃PP must be fully determined by (4.53). Consequently,
dim Pþ ¼ 1 is also a necessary condition for the τ̃P−Pþ
matrix to be invertible. In particular, for the G ¼ SUð2Þ
case τ̃P−Pþ is a real-value function.

V. THE SUð2Þ=Uð1Þ HERMITIAN
SYMMETRIC SPACE

In this case we have the symmetric space SUð2Þ=Uð1Þ
and so

Λ¼T3; H¼∅; Pþ¼fTþg; P−¼fT−g ð5:1Þ

with

½T3; T�� ¼ �T�; ½Tþ; T−� ¼ 2T3: ð5:2Þ

The quantity g is

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ juj2

p �
1 iu

iū 1

�
ð5:3Þ

with S ¼ u and S† ¼ ū and

g−1∂ig ¼
1

1þ juj2 ½ið∂iuTþ þ ∂iūT−Þ þ ðu∂iū − ū∂iuÞT3�:

ð5:4Þ

Then, the quantities Ki, P
ðþÞ
i and Pð−Þ

i introduced in (4.20)
and (4.21) become

Ki¼
u∂iū− ū∂iu
1þjuj2 T3; P

ðþÞ
i ¼ i∂iu

1þjuj2Tþ; P
ð−Þ
i ¼ i∂iū

1þjuj2T−:

ð5:5Þ

Note that (anti)holomorphic Ansatz S ¼ SðχÞ implies
u ¼ uðχÞ. We shall use the trace form in the doublet
representation where [see Eq. (2.5)]

κ ¼ 1

2
; TrðTþT−Þ ¼ 1: ð5:6Þ

Clearly, since there is no generator of the subalgebra H,
the self-dual equations (4.54) are trivial. Using (5.1) and
(5.5) it follows that the components h̃ΛΛ, h̃ΛP� , h̃P�P� , and
h̃P�P∓ , given in (4.52) and (4.55)–(4.57), become

h̃ΛΛ ¼ −η
4sin2ðf

2
Þ

λf0r2
ð1þ jzj2Þ2
ð1þ juj2Þ2 u

0ū0;

h̃TþTþ ¼ h̃T−T−
¼ −η

f0

λ
; ð5:7Þ

h̃ΛT� ¼ h̃T�Λ ¼ h̃TþT−
¼ h̃T−Tþ ¼ 0: ð5:8Þ

Therefore, the h̃ fields form the diagonal matrix

h̃ ¼ −η
f0

λ
diag:

�
1; 1;

4sin2ðf
2
Þ

r2f02
ð1þ jzj2Þ2
ð1þ juj2Þ2 u

0ū0
�
; ð5:9Þ

which is fully determined in terms of the fields f; u; ū,
which remains totally free. Note that due to (4.46) the
eigenvalues of the h̃ matrix are the same as eigenvalues of
the hmatrix, which is non-negative. It so follows from (5.9)
that the profile function f must be a monotonic function
and

signðf0λÞ ¼ −η; ð5:10Þ

which due to (2.18) also implies that signðf0QÞ ¼ −η.
For the function uðχÞ to be a well-defined map between

two-spheres it has to be a ratio of two polynomials pðχÞ and
qðχÞ without common roots, i.e., the so-called rational map
Ansatz [3,39,40,47]

uðχÞ ¼ pðχÞ
qðχÞ : ð5:11Þ

The topological degree of the u map is equal to the highest
degree among the polynomials pðχÞ and qðχÞ and can be
written in the integral representation as

deg u ¼
Z

idzdz̄
2πð1þ jzj2Þ2

�
1þ jzj2
1þ juj2





 dudz





�

2

¼ max fdeg p; deg qg: ð5:12Þ

Therefore, using (5.5) and (5.12) the topological charge
(4.44) becomes

Q ¼ η
½f − sin f�r¼0

r¼∞
2π

deg u: ð5:13Þ

VI. THE SUðN + 1Þ=SUðNÞ ⊗ Uð1Þ HERMITIAN
SYMMETRIC SPACE

For the Hermitian symmetric space CPN ¼ SUðN þ 1Þ=
SUðNÞ ⊗ Uð1Þ we choose α� ¼ αN , which implies
λ� ¼ λN , and work with the fundamental ðNþ1Þ×ðNþ1Þ
representation of SUðN þ 1Þ (see Fig. 1). The S matrix is
is parametrized by N complex scalar fields ua ¼ uaðχÞ,
with a ¼ 1;…; N, corresponding with the components of
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uT ¼ ðu1;…; uNÞ. The Λ and S matrices defined, respec-
tively, by (4.3) and (4.22) are given by

Λ ¼ 1

N þ 1

�
1N×N 0

0 −N

�
and S ¼

�
ON×N u

O1×N 0

�

ð6:1Þ

whereO1×N is a 1 × N zero matrix, and so on. The Smatrix
(6.1) satisfies (4.25) with ω ¼ u†u and so the g elements
(4.27) that parametrize the CPN are given by the unitary
matrix

g ¼ 1

ϑ

� Δ iu

iu† 1

�
ð6:2Þ

where Δ is a N × N Hermitian matrix defined by

Δ≡ ϑ1N×N þ ð1 − ϑÞTu; with ϑ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u†u

p
ð6:3Þ

where Tu ≡ u⊗ū
u†u is a projector, i.e., T2

u ¼ Tu. Note that due
to (6.3) u is an eigenvector of Δ with eigenvalue þ1, i.e.,
Δu ¼ u, which also implies that u†Δ ¼ u† and Δ−1u ¼ u.
The two sets of N Abelian matrices Paþ ∈Pþ and

Pa
− ∈P− associated with (6.2) are given by

ðPaþÞbc ≡ δbaδcðNþ1Þ; ðPa
−Þbc ¼ ðPa†

þ Þbc ¼ δbðNþ1Þδca
ð6:4Þ

with b; c ¼ 1;…; N þ 1, and a ¼ 1;…; N. The two sets of
N generators T2a−1 and T2a, with a ¼ 1;…; N, are related
to Pa

� through Pa
� ¼ T2a−1 � iT2a, and satisfy the ortho-

gonality relation (2.5) with κ ¼ 1
2
. Therefore, together

with (6.2) such a generator satisfies (4.8), and in addition
we have

TrðPa
�P

b
�Þ ¼ 0; TrðPa

�P
b∓Þ ¼ δab; ½Λ;Pa

�� ¼ �Pa
�:

ð6:5Þ

Note that the last equation of (6.5) corresponds to (4.8).1

The N2 − 1 generator of the group H ¼ SUðNÞ can be
broken in three set of generators. The first two setsHR and

HI contain
NðN−1Þ

2
generators each and can be labeled by

the pair nm, with n ¼ 1;…; N and m ¼ 1;…; n − 1, i.e.
m < n. The third set Hs contains N − 1 generators and is
labeled by the index s ¼ 1;…; N − 1. The generators
of such sets can be written, respectively, for all
a; b ¼ 1;…; N, as

ðHnm
R Þab ¼

1

2
ðδanδbm þ δamδbnÞ;

ðHnm
I Þab ¼ −

i
2
ðδanδbm − δamδbnÞ;

ðHsÞab ¼
1

2
ðδasδbs − δaðsþ1Þδbðsþ1ÞÞ: ð6:6Þ

Note that Hnm
R ;Hnm

I , and Hs are extensions of the Pauli
matrices σ1, σ2, σ3, respectively, and for such basis κ ¼ 1

2
. It

so follows that

dim H ¼ N2 − 1;

dim P ¼ 2 dim Pþ ¼ 2 dim P− ¼ 2N: ð6:7Þ
In particular, for the SUð2Þ case (N ¼ 1) we have H ¼ ∅
[see Eq. (5.1)].

Due to (6.2) and (6.4) the quantities Ki and P
ð�Þ
i defined

in (4.20) and (4.21) so become

Ki ¼ −
∂iϑ

ϑ
1þ 1

ϑ2

�Δ∂iΔþ u ⊗ ∂iū 0

0 u†∂iu

�
; ð6:8Þ

PðþÞ
i ¼ iðΔ∂iuÞa

ϑ2
Paþ; Pð−Þ

i ¼ ið∂iu†ΔÞa
ϑ2

Pa
− ð6:9Þ

where there is an implicit sum over the index a. In addition,
the topological charge (4.44) becomes

Q ¼ η
½f − sin f�r¼0

r¼∞
2π

Z jΔu0j2
ð1þ juj2Þ2

idz ∧ dz̄
2π

: ð6:10Þ

Using (6.1), (6.4), (6.6), and (6.9) the fields h̃ΛP� and
h̃ΛH fixed through (4.52) become

h̃ΛΛ¼βjΔu0j2; h̃ΛPb
þ
¼ h̃ΛPb

−
¼0;

h̃ΛHs
¼1

2
βðMss−Mðsþ1Þðsþ1ÞÞ;

h̃ΛHnm
R
¼1

2
βðMnmþMmnÞ; h̃ΛHnm

I
¼1

2
βiðMnm−MmnÞ

ð6:11Þ

FIG. 1. Dynkin diagrams of the simple Lie algebra Ar. The αa’s below the spots label the simple roots, and the numbers above
correspond to the integers ma in the expansion of the highest root ψ ¼Pr

a¼1 maαa, while the black spots correspond to ma ¼ 1.

1Clearly, the Eq. (4.8) is invariant by transformations
Pa
� → αPa

� with α being any complex number. Therefore, the
only matrix proportional to Λ that satisfies (4.8) is itself, which is
given by (6.2).
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where

β≡ −
η

λf0
ðN þ 1Þ

N

2sin2ðf
2
Þ

r2
ð1þ zz̄Þ2
ð1þ u†uÞ2 ;

Mnm ≡ ðΔu0Þnðu0†ΔÞm: ð6:12Þ
On the other hand, the self-dual equations for the fields
h̃P�H and h̃P�P∓ , as given, respectively, in (4.54) and
(4.55), are reduced to

ðu0†ΔÞah̃Pa
þH ¼ ðΔu0Þah̃Pa

−H ¼ ðΔu0Þah̃Pa
−Pb

þ
¼ 0 ð6:13Þ

while the self-dual equations for the fields h̃PþPþ and
h̃P−P−

, as given, respectively, in (4.56) and (4.57), are
reduced to

ðΔu0Þah̃Pa
−Pb

−
þ η

f0

λ
ðΔu0Þb

¼ ðu0†ΔÞah̃Pa
þP

b
þ
þ η

f0

λ
ðu0†ΔÞb ¼ 0: ð6:14Þ

Using (6.7), the first and second equations of (6.13),
from the left to the right, form each a set of dim H ¼
N2 − 1 linear equations for the NðN2 − 1Þ fields h̃Pa

þH and

the NðN2 − 1Þ fields h̃Pa
−H, respectively. Since h̃ is sym-

metric, the third equation of (6.13), from the left to the
right, forms a set of dim Pþ ¼ N linear equations for
the N2 fields h̃Pa

−Pb
þ
. Finally, the first and second equation

of (6.14), from the left to the right, forms each a set of
dim Pþ ¼ N linear equations for the NðN þ 1Þ=2 fields
h̃Pa

þP
b
þ
and the NðN þ 1Þ=2 fields h̃Pa

−Pb
−
, respectively.

Consequently, only for N ¼ 1 do we have enough
equations to determine such a components of the h̃ fields.
However, for such a case dim H ¼ 0 and dim Pþ ¼ 1.
Thus, although we have four equations and only three
independent fields in h̃PP , it so follows that the third and
fourth equations of (6.13), from the left to the right, which
correspond to one equation each, become equivalent. Thus,
the h̃ fields are totally determined in terms of the fields
f; u; ū, which remains totally free, as we shown in Sec. V.

A. An explicit example: Exact generalized Skyrmions
for each integer value of Q on the CPN spaces

To construct an explicit self-dual configuration consider
the Ansatz where all the u fields are equal to the same
holomorphic rational map u1ðχÞ ¼ pðχÞ=qðχÞ between the
Riemann spheres S2 [see Eq. (5.11)], the h̃PP-fields forms a
diagonal matrix, and h̃PH ¼ 0, i.e.,

ua¼u1¼
pðχÞ
qðχÞ ; h̃PH¼ h̃Pa

�P
b∓ ¼0; h̃Pa

�P
b
�
¼δabh̃Pa

�P
b
�

ð6:15Þ

for a; b ¼ 1;…; N and where there is no implicit sum over
a or b. It so follows that all self-dual equations given
in (6.13) are automatically satisfied, while (6.14) imposes
that h̃PP must be

h̃PP ¼ −η
f0

λ
12N×2N: ð6:16Þ

On the other hand, using the Ansatz (6.15) and the
definitions (6.3) and (6.12) we obtain ðΔu0Þn ¼ u01, with
n ¼ 1;…; N, which due to (6.15) implies Mnm ¼ u01ū

0
1.

Therefore, the fields given in (4.55) are reduced to

h̃ΛΛ ¼ −
η

λf0
2ðN þ 1Þsin2ðf

2
Þ

r2
ð1þ zz̄Þ2

ð1þ Nju1j2Þ2
ū01u

0
1;

h̃ΛP� ¼ h̃ΛHI
¼ h̃ΛHs

¼ 0; h̃ΛHnm
R

¼ 1

N
h̃ΛΛ ð6:17Þ

where we used u0†Δ2u0 ¼PN
n¼1Mnn ¼ Nū01u

0
1. Therefore,

the only nonvanishing components of h̃ΛH are the h̃ΛHR

fields, which in turn form a column with all components
equal to N−1h̃ΛΛ. An interesting consequence is that the
nonsingular h̃ matrix inside the Ansatz (6.15) is non-
diagonal for N > 1. On the other hand, the field configu-
ration (6.15)–(6.17) is a clear generalization of the (5.9), as
obtained for N ¼ 1 in Sec. V. In fact, the h̃ matrix has the
explicit form

HR HI Hs Pþ P− Λ

HR 0 0 h̃HRΛ
HI 0 0 0
Hs 0 0 0
Pþ 0 0 0 h̃PþPþ

0 0

P− 0 0 0 0 h̃PþPþ
0

Λ h̃ΛHR
0 0 0 0 h̃ΛΛ

where the blank spaces are the free h̃HH components, the
zeros clearly are null matrices, h̃P�P� ¼ −ηλ−1f01N×N , and
h̃HRΛ is a dim HR × 1matrix with all the components equal
toN−1h̃ΛΛ. On the other hand, the topological charge (6.10)
is reduced to

Q ¼ η
½f − sin f�r¼0

r¼∞
2π

deg u1 ð6:18Þ

Let us consider the boundary conditions for the perfil
function fð0Þ ¼ 2πm and fð∞Þ ¼ 0 for some sign function
η0 ¼ 1, and fð0Þ ¼ 0 and fð∞Þ ¼ 2πm for η0 ¼ −1, where
m is any positive integer. Clearly, these boundary con-
ditions ensures thatQ is an integer. The algebraic degree of
the rational map, which corresponds to the highest degree
among the polynomials pðχÞ and qðχÞ, denoted by a
positive integer n, is equal to the topological degree of
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the map u1ðχÞ. Thus, the topological charge (6.18) inside
the rational map Ansatz becomes

Q ¼ η0ηmn; ð6:19Þ

which due to (2.18) implies signðλÞ ¼ η0η.
As the rational map and the profile function are still free,

we have an infinite number of exact solutions for any
integer value of the topological charge and for each value
of N. By example, for the Hermitian symmetric space
SUð3Þ=SUð2Þ ⊗ Uð1Þ (N ¼ 2) let us consider the radial
solutions pðχÞ ¼ χ and qðχÞ ¼ ffiffiffiffi

N
p

, i.e. u1 ¼ χffiffiffi
N

p , which

turn the topological charge and static energy densities, as
well the h̃ fields, spherically symmetric. In such a case
dim Hs ¼ dim HR ¼ dim HI ¼ 1, dim Pþ ¼ dim P− ¼ 2,
and the h̃ matrix becomes

h̃¼−η0f0

0
BBBBBBBBBBBBBBBB@

0 0 0 0
3sin2ðf

2
Þ

2f02ζ2

− η0
f0 h̃HH 0 0 0 0 0

0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

3sin2ðf
2
Þ

2f02ζ2 0 0 0 0 0 0
3sin2ðf

2
Þ

f02ζ2

1
CCCCCCCCCCCCCCCCA

ð6:20Þ

where we introduce the dimensionless radius ζ≡ jλjr, and
we use λ ¼ η0ηjλj.
Now, let us choose h̃HH ¼ −η0f013×3 and take the

example f ¼ 4m arctanððaζÞη
0 Þ, where a is and arbitrary

positive dimensionless constant. This choice of the perfil
function and the h̃HH terms preserves the positivity of the h̃
matrix, reducing (6.20) to the spherically symmetric form

h̃ ¼ δ

0
B@

1 O1×6
1
2
γ

O6×1 16×6 O6×1
1
2
γ O1×6 γ

1
CA ð6:21Þ

with γ ≡ 3 sin2ðf
2
Þ

f02ζ2 ¼ ða2þζ2Þ2
4a2m2ζ2

sin2 ð2m arctanððaζÞηÞÞ, δ≡ 4amjλj
a2þζ2

,

and whereO1×6 denotes a 1 × 6 zero matrix, and so on. The
h̃matrix has six eigenstates equal to δ and the other two are
1
2
δð1þ γ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ð−1þ γÞγÞp Þ. However, as we proof in
the Appendix, for such a perfil function we have

gðζÞ≡ 4sin2ðf
2
Þ

f02ζ2
¼ ða2 þ ζ2Þ2

4m2a2ζ2
sin2b ≤ 1;

b≡ 2m arctan

��
a
ζ

�
η0
�
; ð6:22Þ

which implies 0 ≤ γ ¼ 3
4
g ≤ g ≤ 1. Therefore, all eigen-

values of the h̃ matrix are non-negative. In particular, for
the Q ¼ η0η topological solutions (m ¼ 1), we have γ ¼ 3

4

and δ ¼ 4ajλj
a2þζ2

and therefore the diagonal components of h̃

are equal and all nonvanishing h̃ fields fall asymptotically
with 1=ζ2.

VII. THE CASE OF SUðp+ qÞ=SUðpÞ ⊗ SUðqÞ ⊗ Uð1Þ
In the case of the Hermitian symmetric space

SUðpþqÞ=SUðpÞ⊗SUðqÞ⊗Uð1Þ, we choose α� ¼ αp,
which implies λ� ¼ λp, the fundamental ðpþ qÞ × ðpþ qÞ
representation of SUðpþ qÞ. The S matrix is parametrized
by p complex scalar fields ua ¼ uaðχÞ, with a ¼ 1;…; p,
and q complex scalar fields vb ¼ vbðχÞ, with b ¼ 1;…; q,
corresponding with the components of uT ¼ ðu1;…; upÞ
and vT ¼ ðv1;…; vqÞ. The Λ and S matrices defined,
respectively, by (4.3) and (4.22) are given by

Λ ¼ 1

pþ q

�
q1p×p Op×q

Oq×p −p1q×q

�
and

S ¼
�
Op×p u ⊗ v

Oq×p Oq×q

�
ð7:1Þ

where Op×q is a p × q zero matrix, and so on. We consider
that both the fields u and v are (anti)holomorphic when S is
(anti)holomorphic. The S matrix (6.1) satisfies (4.25) with
ω ¼ juj2jvj2 and so the g elements given in (4.27) become

g ¼ 1

ϑ

� Δu iu ⊗ v

iv̄ ⊗ ū ΔT
v

�
; Δx ≡ ϑ1þ ð1 − ϑÞTx

ð7:2Þ

with ϑ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω

p
, and where Tx ≡ x⊗x̄

x†x is a projector, i.e.,
T2
x ¼ Tx and x is any complex vector. The operator Δx

is Hermitian and inversible, its inverse corresponds to
Δ−1

x ¼ ϑ−1ð1 − ð1 − ϑÞTxÞ and its square to Δ2
x ¼

ð1þ ωÞ1 − ωTx. The vector x is an eigenvector with
eigenvalue þ1 of both operators Δx and Δ−1

x . It so follows
that Δu ¼ u, ΔT

v v̄ ¼ v̄, ΔT
v v̄ ¼ v̄, and u†Δu ¼ u†.

The Λ matrix (7.1) satisfies Λ2 ¼ cΛþ 1
4
ð1 − c2Þ with

c ¼ q−p
qþp, then the field U have the form given in (4.37) (see

Sec. IV), i.e.,

U ¼ e
iqfðrÞ
pþq ½1þ ðe−ifðrÞ − 1ÞZ�; with

Z ¼ 1

ϑ2

�
ωTu iu ⊗ v

−iv̄ ⊗ ū ΔT2
v

�
: ð7:3Þ

The reduction to the CPN case occurs by imposing p ¼ N,
q ¼ 1 with v ¼ v1 implying Δv ¼ 1. In addition, the field
v1 can be absorbed in the field u through the transformation
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u → u=v1, which reduces Δu to (6.3) and g to (6.2). This
transformation is equivalent to setting v ¼ 1.
The two sets of p × q Abelian generators Pcdþ and Pcd

− ,
with c ¼ 1;…; p and d ¼ 1;…; q, of the Pþ and P−
subalgebras are given by

ðPcdþ Þab ≡ δacδðdþpÞb; ðPcd
− Þab ¼ δaðdþpÞδbc ð7:4Þ

with a; b ¼ 1;…; pþ q, which satisfies TrðPcdþ Pc0d0
− Þ ¼

δcc0δdd0 , with c0 ¼ 1;…; p and d0 ¼ 1;…; q. There are
p2 − 1 generators of the group SUðpÞ and q2 − 1 gener-
ators of the group SUðqÞ associated with the H ¼
SUðpÞ ⊗ SUðqÞ subgroup of SUðpþ qÞ. For each of
such a group we can break such a generator into three
distinct types, similar to what we do in (6.6). In case of the

SUðpÞ group, the first two sets HRp
andHIp contain

pðp−1Þ
2

generators each and can be labeled by the pair nm, with
n ¼ 1;…; p andm ¼ 1;…; p − 1, i.e., p < n. The third set
Hsp contains p − 1 generators and is labeled by the index
s ¼ 1;…; p − 1. The same follows for the SUðqÞ group by
changing p → q and changing the indices m → k, n → l,
and s → r. The generators of the SUðpÞ and SUðqÞ groups
are given by

ðHnm
Rp
Þ
ab

¼ 1

2
ðδanδbm þ δamδbnÞ;

ðHlk
Rq
Þ
ab

¼ 1

2
ðδaðlþpÞδbðkþpÞ þ δaðkþpÞδbðlþpÞÞ

ðHnm
Ip
Þ
ab

¼ −
i
2
ðδanδbm − δamδbnÞ;

ðHlk
Iq
Þ
ab

¼ −
i
2
ðδaðlþpÞδbðkþpÞ − δaðkþpÞδbðlþpÞÞ

ðHsÞab ¼
1

2
ðδasδbs − δaðsþ1Þδbðsþ1ÞÞ;

ðHrÞab ¼
1

2
ðδaðrþpÞδbðrþpÞ − δaðrþpþ1Þδbðrþpþ1ÞÞ

with a; b ¼ 1;…; pþ q: ð7:5Þ

Note that for such a basis we have

κ ¼ 1

2
: ð7:6Þ

Using (4.30) and (7.2) we get

Ω−1 ¼ 1

ϑ

� Δu Op×q

Oq×p ΔT
v

�
; ð7:7Þ

which together with (4.31) fixes PðþÞ
χ ¼ iΩ−1

∂χSΩ−1,

Pð−Þ
χ̄ ¼ iΩ−1

∂χ̄S†Ω−1 and the commutator ½PðþÞ
χ ; Pð−Þ

χ̄ �
through

PðþÞ
χ ¼ iϑ−2

�
Op×p B

Oq×p Oq×q

�
;

Pð−Þ
χ̄ ¼ iϑ−2

�Op×p Op×q

B† Oq×q

�
h
PðþÞ
χ ; Pð−Þ

χ̄

i
¼ −

1

ϑ4

�
BB† Op×q

Oq×p −B†B

�
;

with B≡ Δu∂χðu ⊗ vÞΔT
v : ð7:8Þ

From (7.4) and (7.8) we can also write

PðþÞ
χ ¼ iϑ−2BcdPcdþ ; Pð−Þ

χ̄ ¼ −ðPðþÞ
χ Þ† ¼ iϑ−2B†

dcP
cd
− :

ð7:9Þ

On the other hand, using ω ¼ ϑ2 − 1, the definition of the
operators Δx and Tx introduced in (7.2) we obtain

B ¼ ϑ

�
∂χðu ⊗ vÞ − 2∂χϑ

1þ ϑ
u ⊗ v

�
;

B† ¼ ϑ

�
∂χ̄ðv̄ ⊗ ūÞ − 2∂χ̄ϑ

1þ ϑ
v̄ ⊗ ū

�
: ð7:10Þ

Using (7.1) and (7.4)–(7.10) the fields h̃ΛP� and h̃ΛH
fixed through (4.52) become

h̃ΛΛ ¼ βTrðMÞ; h̃ΛP� ¼ 0

h̃ΛHs
¼ 1

2
βðMss −Mðsþ1Þðsþ1ÞÞ; h̃ΛHr

¼ 1
2
βðNrr − Nðrþ1Þðrþ1ÞÞ

h̃ΛHnm
Rp

¼ 1

2
βðMnm þMmnÞ; h̃ΛHlk

Rq
¼ 1

2
βðNlk þ NklÞ

h̃ΛHnm
Ip

¼ 1

2
βiðMnm −MmnÞ; h̃ΛHlk

Iq
¼ 1

2
βiðNlk − NklÞ

ð7:11Þ

where

β≡ −ηϑ−4α ¼ −η
pþ q
qp

2sin2 f
2

λf0r2
ð1þ jzj2Þ2

ϑ4
;

M≡ BB†; N ≡ B†B ð7:12Þ
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and the explicit form of M, N, and the trace TrðMÞ ¼
TrðNÞ corresponds to

M ¼ ϑ2
�
∂χ∂χ̄ðωTuÞ −

2

1þ ϑ
½ð∂χϑ∂χ̄ þ ∂χ̄ϑ∂χÞðωTuÞ�

þ 4
∂χϑ∂χ̄ϑ

ð1þ ϑÞ2 ðωTuÞ
�
;

N ¼ ϑ2
�
∂χ∂χ̄ðωTT

v Þ −
2

1þ ϑ
½ð∂χϑ∂χ̄ þ ∂χ̄ϑ∂χÞðωTT

v Þ�

þ 4
∂χϑ∂χ̄ϑ

ð1þ ϑÞ2 ðωT
T
v Þ
�
;

TrðMÞ ¼ 2ϑ2ðϑ∂χ∂χ̄ϑ − ∂χϑ∂χ̄ϑÞ ¼ ϑ2
�
∂χ∂χ̄ω −

∂χω∂χ̄ω

1þ ω

�
:

ð7:13Þ

On the other hand, the self-dual equations for the fields
h̃P�H and h̃P�P∓ , as given, respectively, in (4.54)
and (4.55), are reduced to

Bcdh̃Pcd
− H ¼ B†

dch̃Pcd
þ H ¼ Bcdh̃Pcd

− Pþ ¼ 0 ð7:14Þ

while the self-dual equations for the fields h̃PþPþ and

h̃P−P−
, as given, respectively, in (4.56) and (4.57), are

reduced to

B†
dch̃Pcd

þ Pnm
þ
þ ηλ−1f0B†

mn ¼ Bcdh̃Pcd
− Pnm

−
þ ηλ−1f0Bnm ¼ 0:

ð7:15Þ

Using (7.6) and (7.8), which imply TrðPðþÞ
χ Pð−Þ

χ̄ Þ ¼
−ϑ−4TrM, and (7.13), the topological charge (4.44)
becomes

Q ¼ 1

2π
½fðrÞ − sin fðrÞ�r¼∞

r¼0 Qtop;

Qtop ¼ −
iη
2π

Z
dzdz̄
ϑ4

TrM

¼ −
iη
2π

Z
dzdz̄
ϑ2

�
∂χ∂χ̄ω −

∂χω∂χ̄ω

1þ ω

�
: ð7:16Þ

A. An explicit example: Exact generalized Skyrmions
on the SUðp+ qÞ=SUðpÞ ⊗ SUðqÞ ⊗ Uð1Þ spaces
To construct explicit self-dual configurations consider

the Ansatz where all the component fields u are v are
equal to the same holomorphic rational map u1ðχÞ ¼
puðχÞ=quðχÞ and v1ðχÞ ¼ pvðχÞ=qvðχÞ, respectively,
between the Riemann spheres S2 [see Eq. (5.11)]. By
definition, pt and qt, with t ¼ u, v, does not share any
common root, since u1 and v1 are rational maps. However,
we also impose that pu and qv do not any share common

root, and we impose the same restriction to pv and qu.
Therefore, the product u1v1 is also a rational map. The
Ansatz for the fields u, v, h̃PH, and h̃PP is an generalization
of (6.15) and (6.16), and is given by

uc ¼ u1 ¼
puðχÞ
quðχÞ

; vd ¼ v1 ¼
pvðχÞ
qvðχÞ

;

h̃PH ¼ h̃P�P∓ ¼ 0; h̃Pcd
� Pnm

�
¼ −η

f0

λ
δcnδdm ð7:17Þ

where Pcd
� are defined in (7.4) and c; n ¼ 1;…; p and

d;m ¼ 1;…; q. For these indices, the Ansatz (7.17) implies
ðTuÞan ¼ p−1 and ðTvÞdm ¼ q−1, leading due to (7.13) to
Mcn ¼ M11 and Ndm ¼ N11, where

M11¼
TrM
p

; N11¼
TrM
q

; TrðMÞ¼pq





 ddχ ðu1v1Þ




2≥0:

ð7:18Þ

Therefore, the fields given in (7.11) become

h̃ΛΛ ¼ βTrM; h̃ΛHnm
Rp

¼ βM11; h̃ΛHlk
Rq

¼ βN11;

h̃ΛP� ¼ h̃ΛHs
¼ h̃ΛHr

¼ h̃ΛHnm
Ip

¼ h̃ΛHnm
Iq

¼ 0 ð7:19Þ

while all the self-dual equations given in (6.13) and (6.14)
are automatically satisfied by (7.17). Note that using (7.12)
all the nonvanishing components of h̃ other than the free
terms h̃HH are non-negative if we impose the follow
condition over the perfil function f

−ηsign
�
f0

λ

�
≥ 0 ⇒ β ≥ 0: ð7:20Þ

Using ω ¼ pqju1j2jv1j2, the topological charge (7.16)
becomes

Q ¼
�
fðrÞ − sin fðrÞ

2π

�
r¼∞

r¼0

Qtop;

Qtop ¼ −
iη
2π

Z dzdz̄j d
dχ ð

ffiffiffiffiffiffi
pq

p
u1v1Þj2

ð1þ j ffiffiffiffiffiffipq
p

u1v1j2Þ2
: ð7:21Þ

However, the Eq. (5.12) shows the integral representation
of the degree of a rational map u. Such a degree is in
particular invariant by a the multiplication u → cu,
∀ c∈ IR�þ. Therefore, Qtop given (7.21) corresponds
with the integral representation of the rational map u1v1,
i.e., Qtop ¼ deg ðu1v1Þ and the topological charge
becomes (7.21)

Q ¼ η

�
fðrÞ − sin fðrÞ

2π

�
r¼∞

r¼0

deg ðu1v1Þ: ð7:22Þ
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Consequently, by choosing the degree of the rational map
u1v1 and the boundary conditions of the perfil function f
we get an infinite number of exact self-dual solutions, given
by (7.17) and (7.19), for the Hermitian symmetric space
SUðpþ qÞ=SUðpÞ ⊗ SUðqÞ ⊗ Uð1Þ. The only restriction
is to choose such a fields and the free term h̃HH such as that
h̃ is non-negative, as it is done in the example given
in Sec. VI.

VIII. CONCLUSION

In the self-dual sector of our generalization of the BPS
Skyrme model for any compact Lie group G that leads to a
Hermitian symmetric space, our holomorphic Ansatz shows
that the full determination of the h fields in terms of the
Skyrme fields happens only for some particular Lie groups.
Although this characteristic of the BPS Skyrmions for the
G ¼ SUð2Þ case is not a general feature of the generalized
theory, this model possesses the main symmetries of the
original BPS Skyrme model.
As in the original BPS Skyrme model, the h fields in our

generalized BPS Skyrme model continue to play the same
role as the Wess-Zumino term with respect to breaking the
invariance by the parity and target space parity trans-
formations P and Pg, respectively, while preserving the
symmetry by the composition PPg. These properties may
shed light on the physical nature of the h fields, which may
be related to the chiral anomaly.
Our holomorphic Ansatz simplifies drastically the self-

dual equations. It leads directly to the determination of
the components of h̃ΛΛ; h̃ΛP� ; h̃ΛH in terms of the Skyrme
field, and leads to algebraic equations for the h̃HP� ;
h̃P�P� ; h̃P�P∓ components. However, there are at least a

number of dim Pþð2 dim Pþ − 3Þ components of h̃PP and
2 dim Hðdim Pþ − 1Þ components of h̃HP totally free.
Clearly, the freedom of the system grows with the dimen-
sion of Lie algebra G. In fact, the h̃ fields can be entirely
determined in terms of the Skyrme field inside the
holomorphic Ansatz (4.19) only if H ¼ ∅ and
dim Pþ ¼ 1, which corresponds to G ¼ SUð2Þ.
The generalized holomorphic Ansatz for G¼SUðNþ1Þ

leads to an infinite number of exact BPS Skyrmions for
all integer values of the topological charge and for all
N ≥ 1. We also show how to construct a more restric-
tive Ansatz based on the usual rational map S2 → S2,
which fixes all components of the h̃ matrix except h̃HH.
Using this approach, we gave an example of h̃ matrix
that leads to exact spherically symmetric BPS
Skyrmions for all integer values of Q and N. The
self-dual sector within the holomorphic Ansatz for the
Hermitian symmetric space SUðpþ qÞ=SUðpÞ ⊗
SUðqÞ ⊗ Uð1Þ is quite similar to the CPN case, despite
being a generalization. In fact, we can even obtain
particular solutions for each value of the topological

charge, where all the nondiagonal entries of the h̃
matrix vanish, expect the terms h̃ΛHnm

Rp
and h̃ΛHnm

Rq
.

Our theory facilitates the construction of highly symmet-
ric multi-BPS Skyrmions, and extensions of this model may
have some important physical applications. One example is
the generalization of the false vacuum Skyrme model to
G ¼ SUðN þ 1Þ. This is very promising since such a theory
is strongly based on spherical symmetric multisolitions,
which also appear in our generalized BPS Skyrme model.
On the other hand, our holomorphic Ansatz for Hermitian
symmetric spaces may be of great value in constructing
multisolitons in a vast number of similar theories.
Extensions of the generalized BPS Skyrme model may

break both the self-duality equations and the conformal
invariance in three spatial dimensions. This can be
achieved by introducing kinetic and potential terms for
the h fields into the action, as done in the quasi-self-dual
model proposed in [21] for G ¼ SUð2Þ. This may result in
the full determination of all fields of the model, as is the
case in [21]. Another application of our work is the
construction of a generalization of the SUð2Þ false
vacuum Skyrme model introduced in [20] to larger
groups. These applications may shed light on the physical
meaning of the h fields, which could depend on the type
of extension.
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APPENDIX: THE PROOF OF THE RELATION
(6.22)

Let us introduce the non-negative real-valued function
g as

gðζÞ≡ 4 sin2ðf
2
Þ

f02ζ2
¼ ða2 þ ζ2Þ2

4m2a2ζ2
sin2 b;

b≡ 2m arctan

��
a
ζ

�
η0
�

ðA1Þ

and let us proof that

g ≤ 1: ðA2Þ
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The function g and its first-order derivative are continuous
and g satisfies gð0Þ ¼ gð∞Þ ¼ 1. Therefore, the maximum
of gmust be at a critical point ζp or at ζ ¼ 0, 1. At ζ ¼ awe
have gðaÞ ¼ m−2 sin2ðm π

2
Þ ≤ 1. Clearly, for m ¼ 1 we

have g ¼ 1, which satisfies (A2). From now on, we will
study gðζÞ for m ≥ 2 and for ζ lying on the interval
I ≡ ð0;∞Þ=fag. The critical points ζc in the interval I
correspond to the solutions of

sin2 bc ¼ η
2maζ

ðζ2 − a2Þ sinðbcÞ cosðbcÞ ðA3Þ

where bc ≡ bjζ¼ζc
. We can break the solutions of the

Eq. (A3) into two types, corresponding to those cases
where sinbc ¼ 0 and sin bc ≠ 0. Clearly, if the critical

point satisfies sin bc ¼ 0, which solves automatically (A3),
we have gðζcÞ ¼ 0. Otherwise, the Eq. (A3) is reduced to
sin bc ¼ d cosðbcÞ, with d≡ 2maζ

ðζ2−a2Þ, which leads to

bc ¼ arctanðdÞ þ πnc; ∀ nc ∈Z: ðA4Þ

For this case we have sin2 bc ¼ d2

1þd2, which reduces (A1) to

gc ¼
"
1þ 4ðm2 − 1Þ

 
ðζaÞ

ð1þ ζ
aÞ2
!

2
#−1

≤ 1: ðA5Þ

Therefore, in the interval I with m ≥ 2 we have gðζÞ ≤ 1,
completing the proof of (A2).
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