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A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is

developed for the logistic positive exponent (LPE) model proposed by

Samejima and for a new skewed Logistic Item Response Theory (IRT) model,

named Reflection LPE model. Both models lead to asymmetric item

characteristic curves (ICC) and can be appropriate because a symmetric ICC

treats both correct and incorrect answers symmetrically, which results in a

logical contradiction in ordering examinees on the ability scale. A data set

corresponding to a mathematical test applied in Peruvian public schools is

analyzed, where comparisons with other parametric IRT models also are

conducted. Several model comparison criteria are discussed and

implemented. The main conclusion is that the LPE and RLPE IRT models are

easy to implement and seem to provide the best fit to the data set considered.
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1. Introduction

In successive papers, Samejima (1995, 1997a, 1997b, 2000) has presented the

derivation of an item response theory (IRT) model, namely, the logistic positive

exponent (LPE) family of models, which consider an asymmetric item character-

istic curve (ICC) that can be appropriate in many situations, because, as shown in

those papers, symmetric ICCs as the normal ogive and the Logistic IRT can lead

to an intrinsic contradiction in the philosophy of ordering individuals on the abil-

ity scale. A characteristic of a symmetric ICC is that it treats both correct and

incorrect answers symmetrically, which results in a logical contradiction in

ordering examinees on the ability scale.

In addition, LPE models include the item task complexity because the third

item parameter is different from item discrimination and item difficulty
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parameters, which determine the single principle of ordering individuals on

the ability scale.

The LPE model has a high degree of substantive validity and inner consistency

in ordering individuals (Samejima, 1997b) and the point-symmetric (logistic)

model is treated as one of the infinitely many models in the family, but LPE seems

to provide more appropriate ICCs. Thus, the LPE model includes as special

case the logistic IRT model so that it is a more flexible model allowing sym-

metric and asymmetric ICCs for the items in a test. In addition, as proved in

Samejima (2000), the contradiction in the rank order of response patterns does

not exist in LPE models.

In this article, we introduce Bayesian estimation to the LPE model. In addi-

tion, another IRT model is introduced. As will be shown later, this new model

is a reflection of the LPE model and is named here as RLPE. Both models can

be considered as skewed logistic IRT models and have as its main characteristic

a point-asymmetric ICC. As also seen later, both models are derived by consid-

ering two links proposed by Prentice (1976).

Bayesian estimation will be developed using the MCMC methodology and the

WinBUGS software, which can be used for simulating from the posterior distri-

butions of item parameters and latent variables.

The main objective of this article is to offer a clear presentation of Bayesian

estimation via MCMC for the two skewed logistic IRT models considered. The

article is organized as follows. In Section 2, we introduce the LPE IRT model by

considering a particular ICC based in a skew-logit link. Moreover, a new skewed

logistic IRT model is proposed by considering another ICC based in other skew-

logit link. In Section 3, we discussed the inference for the models considered and

we deal with Bayesian inference including several model comparison criteria. In

Section 4, we illustrate the methodology with simulated data sets (Samejima,

2000). An example is given in Section 5, illustrating the usefulness of the

approach in comparing it with other parametric IRT models using a real data set.

To choose the model that fits the data better, we consider the deviance informa-

tion criterion (DIC) as presented in Spiegelhalter, Best, Carlin, and van der Linde

(2002) as well as other model comparison criteria. Finally, we discuss possible

extensions of the model proposed.

2. Skewed Logistic IRT Models

2.1. Symmetric ICCs

IRT models to dichotomous item responses assume that the sequence of bin-

ary random variables Yij : 1 � i � n; 1 � j � k
� �

associated with item

responses are conditionally independent, given yi, the latent variable associated

with the ability or latent trait for individual i. It is considered that Yij ¼ 1, if sub-

ject i correctly answers item j, and Yij ¼ 0 otherwise. The response pattern of
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person i is written as Yi ¼ Yi1; . . . ; Yikð Þ. It also is assumed that the probability of

the event Yij ¼ 1 (correct response), namely, pij, can be written as

pij ¼ P Yij ¼ 1 yi; aj bj

��� �
¼ F mij

� �
; ð1Þ

where F is called the ICC, and

mij ¼ aj yi � bj

� �
; i ¼ 1; . . . ; n; j ¼ 1; . . . ; k ð2Þ

is a latent linear predictor where aj and bj are parameters associated with the

items (denominated discrimination and difficulty parameters, respectively).

Two known cases of ICCs follow by considering in (Equation 1) the cumula-

tive distribution function (cdf) of the standard normal distribution and the cdf of

the standard logistic distribution. Such models usually are called the normal

ogive IRT model and Logistic IRT model, respectively, denoted here as 2P and

2L IRT models. When aj ¼ 1 in (Equation 2), we obtain models 1P and 1L by

considering only item difficulty parameters. In addition, models 3P and 3L

are obtained when we consider pij ¼ cj þ 1� cj

� �
F mij

� �
in Equation 1, where

cj is a pseudo-chance-level parameter or guessing parameter, indicating that the

probability of correct response is greater than zero even for those with very low

trait levels.

In the context of generalized linear models, the inverse function of F(.) in

(Equation 1) is called the link function. The models can also be named as probit

and logit IRT models, respectively, by emphasizing the link considered. A spe-

cial feature of both models is the symmetric nature of the probit and logit link or

of the corresponding ICCs used. These models also are named point-symmetric

models (Samejima, 1997a).

However, as emphasized in Chen, Dey, and Shao (1999), in the context of bin-

ary regression, symmetric links do not always provide good fit for some data sets.

This is especially true, when the probability of a given binary response

approaches zero at a different rate then it approaches one. As pointed out by sev-

eral authors, misspecification of the link function can yield substantially biased

mean response estimates (Czado & Santner, 1992).

2.2. Some Asymmetric ICCs in IRT

A variety of asymmetric ICCs or asymmetric links have been proposed for the

binary regression models (see Bazan, Bolfarine, & Branco, 2010), but hardly the

two have been used in IRT models (the skew-probit model proposed by Bazan,

Branco, & Bolfarine, 2006, and the model proposed by Samejima, 1997a),

including the 1P, 2P and 1L, 2L models as particular cases, respectively.

However, different asymmetric ICCs to IRT models can be considered by

taking in (Equation 1) the cdf of an asymmetric distribution. A very popular

example of this situation is the well-known and widely used complementary

log–log link, where the cdf of the Gumbel distribution is considered. However,
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the cdf of other distributions such as the Weibull and log-normal distributions

can also be used to define new IRT models. In such cases, the cdf is completely

specified, and it does not depend on any unknown parameter and no relationship

between them and the usual symmetric links are established, which can be a nui-

sance restriction. Other less restrictive ICCs to IRT models can be obtained when

considering the following cdfs:

F1 xð Þ ¼ 1� 1þ exð Þ�� and F2 xð Þ ¼ 1þ e�xð Þ��; � > 0: ð3Þ

In spite of the fact that there is no well agreed name for the first cdf, Achen

(2002) has named it as the standard scobit distribution and the second cdf corre-

sponds to the standard burr Type II distribution (Johnson, Kotz, & Balakrishnan,

1994). Corresponding links using distributions F1(.) and F2(.) were proposed

in Prentice (1976) and were popularized in the statistical literature by

Aranda-Ordaz (1981) and in the econometric literature by Nagler (1994) and

Achen (2002). These links are skewed modifications of the logit link and are here

termed scobit and power logit, respectively, and include the logit link as special

case by considering the parameter �¼ 1. In general, if we define Y¼ mþ sX, we

say that a variable Y * scobit (m, s) (‘‘*’’ meaning ‘‘distributed as’’) or Y *
burrII (m, s). The corresponding probability density function (pdf) are given by

f1 yð Þ ¼
� exp

y� m
s

	 
h i
s 1þ exp

y� m
s

	 
h i�þ1
and f2 yð Þ ¼

� exp
y� m
s

	 
h i�
s 1þ exp

y� m
s

	 
h i�þ1
;

respectively, where m is a location parameter and s is a scale parameter. For

example, if Y * burr � II (m, s) then
Y � m

s � burr� IIð0; 1Þ.
Note that F1 �yð Þ 6¼ 1� F1 yð Þ or F2 �yð Þ 6¼ 1� F2 yð Þ and then F1 and F2 are

not point-symmetric but F1 �yð Þ ¼ 1� F2 yð Þ, and thus, the burr-II and the scobit

distributions are distinct, though closely related because one is the reflection of

the other.

2.3. LPE and the Reflection of LPE IRT Models

The LPE IRT model proposed in Samejima (1997a, 1997b, 2000) can be

obtained by considering the power logit link or, equivalently, when the Burr

type II distribution F2(.) is considered as an ICC in Equation 1. Moreover, the

formulation of the LPE model essentially implies that the Logistic IRT model is

nested within the LPE model. However, another interesting IRT model can be

obtained when the scobit link or the scobit distribution F1(.) is considered as an

alternative ICC. This other IRT model is denominated here as the reflection of

the LPE IRT model, namely, the RLPE model. In general, we say that LPE

and RLPE IRT models are skewed logistic IRT models and are obtained by

replacing Equation 1 by
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pij ¼ P Yij ¼ 1 yi; aj bj

��� �
¼ F�j

mij

� �
; ð4Þ

where F�j
is the cdf F2(.) (or F1(.)) indexed with �j and evaluated at mij given by

Equation 2. When F2(.) is considered, we have the LPE model and when F1(.) is

considered, we have the RLPE model.

The LPE IRT model can also be obtained within Samejima’s framework by

considering pij ¼ L mij

� ��j
, with L(.) as the cdf of the standard logistic function

and �j > 0 is the shape parameter associated with the jth item, providing asym-

metric ICCs and including the Logit IRT model as a special case when �j ¼ 1.

Hence, the LPE model is as a generalization of the logit link, which follows

by introducing a shape parameter associated with the item, that is, it is interpreted

as a penalization item parameter and can play an important role in testing, as

emphasized in Samejima (1997, 2000).

Figure 1 depicts different probability curves or ICCs for the LPE and RLPE

models using different values for y, for an item with a ¼ 1 and b ¼ 0. For

� ¼ 1, the ICC corresponds to the logistic IRT model and for � < 1 (or � > 1). The

ICC corresponding to LPE model is generally above (below) the ICC correspond-

ing to the logistic IRT model within a range of ability values. Note also that for

each value of �, RLPE ICC is a reflection of the LPE ICC, and thus for � < 1

(or � > 1), the corresponding ICC is generally below (above) the corresponding

ICC for the logistic IRT.

For the LPE model, the parameter � typically is called the acceleration para-

meter (Samejima, 1995), in the sense that this will accelerate the point (value)

theta at which the slope or discrimination power of the ICC becomes greatest.

For higher values of �, we have a change point in the ICC more to the right.

FIGURE 1. Probability curves for �¼ 0.4, 0.6, 1, 2, 8 in LPE (left) and for �¼ 8, 6, 1, 0.6,

0.4 in Reflection Logistic Positive Exponent (RLPE) (right) models considering different

ranges for y and a ¼ 1, b ¼ 0. For � ¼ 1, the logistic model is obtained.
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In contrast, for the RLPE model, � can be called the deceleration parameter

because it has now an opposing behavior. That is, for higher values of �, we have

a change point more to the left.

In LPE, the ICC follows the principle of penalizing failure in solving an easier

item when 0 < � < 1 (also it is considered that the item is less complex), whereas

it follows the opposing principle; that is, greater credit is given for solving a more

difficult item when � > 1 (also, it is considered that the item is more complex).

It is expected that the ICC for a less complex task assumes higher probabilities

of success than that for a more complex task, ‘‘By task complexity we mean the

level of demands in a task’’ (Samejima, 1997a, p. 483).

A task is considered more complex if it requires an individual to perform or

successively pass each of many sequential subprocesses to solve successfully the

complete problem. It is expected that, if a process is tougher and/or contains a

larger number of sequential subprocesses, the conditional probability, given the

latent trait or ability, for performing the process successfully will become small.

As is indicated in Samejima (2000), such differences in the conditional probabil-

ity are expected to become more pronounced for lower ability levels. For conve-

nience, let us call this aspect of an item complexity, as distinct from item

difficulty, and taking this item complexity into account, the eventual ICC is

asymmetric and depends on how many and how tough sequential subprocesses

are involved in solving the problem. Note that the word sequential is used by

Samejima in a very broad sense, and subprocesses may be either serial or parallel

as is detailed in Samejima (1995).

Because that RLPE is a reflection of LPE, the principle of greater credit in

solving an easier item is expected when the item is complex, in this case when

0 < � < 1, and penalize failure is given for solving more difficulty item or when

item is less complex (� > 1).

In LPE, if � < 1, then even individuals with very low ability levels have sub-

stantially high probabilities to pass the item. In this case, if a test consists of items

with common values of a, � < 1 and different values of b, individuals failing to

solve easier items are penalized. However, when � > 1, then even individuals

with high ability levels have a substantially low probability to pass the item.

In this case, if a test consists of items with common values of a, � > 1 and dif-

ferent values of b, individuals succeeding in solving more difficult items are

rewarded.

In RLPE, if � < 1, then individuals presenting very low ability levels have

substantially low probabilities of failing the item. In this case, if a test consists

of items with common a values, � < 1 and different b values, then individuals

with low abilities correctly solving easier items are rewarded. Alternatively, if

� > 1, then individuals with high ability levels have a substantially high prob-

ability of failing the item. In this case, if a test consists of items with common

values of a, � > 1 and different b values, then credits are given to fail in solving

more difficult items.
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3. Inference

3.1. Likelihood Function Versions

The likelihood function for the skewed logistic IRT class (or family) of

models indexed by �j is given by

L b; y y;Xjð Þ ¼
Yn

i¼1

Yk

j¼1

F�j
mij

� �� �yij
1� F�j

mij

� �� �1�yij ; ð5Þ

where b ¼ a0; b0ð Þ0, a ¼ a1; . . . anð Þ0, b ¼ b1; . . . bnð Þ0, mij is the latent linear pre-

dictor in Equation 2 and F�j
(mij) is the cdf F2(.) (or F1(.)) in Equation 4, indexed

with �j and evaluated at mij.

In this section, we present a complete data likelihood function for the skewed

logistic IRT models, so that we start with an important alternative representation.

Proposition. The skewed logistic models, as defined before, can be equiva-

lently written as

yij ¼ I sij > 0
� �

¼ 1; sij > 0

0; sij � 0
; i ¼ 1; . . . ; n; j ¼ 1; . . . ; k;

�
ð6Þ

where sij � scobit mij; 1
� �

if the LPE model is defined, or sij � burr � II mij; 1
� �

if the RLPE model is defined, with I(.) as the usual indicator function.

Proof. Note that for the LPE model

P Yij ¼ 1
� �

¼ P sij > 0
� �

¼ 1� P sij � 0
� �

¼ 1� F1 �mij

� �
¼ 1� 1� 1þ exp �mij

� ���j
	 
h i

¼ 1þ exp �mij

� ���j
h i

¼ F2 mij

� �
and

P Yij ¼ 0
� �

¼ P sij < 0
� �

¼ F1 �mij

� �
¼ 1� 1þ exp �mij

� ���j

h i
¼ 1� F2 �mij

� �
:

A similar proof can be presented for the RLPE model.

The latent variable sij is introduced to avoid working with Bernoulli type like-

lihoods, and this representation shows a latent linear structure producing equiv-

alent models for the LPE or RLPE classes. Therefore, the complete data

likelihood function for the skewed logistic IRT model is given by

L a; b; y s; yjð Þ ¼
Yn

i¼1

Yk

j¼1

f �� sij

� �
p yij sij

��� �
; ð7Þ

where

p yij sij

��� �
¼ I sij; yij
� �

¼ I sij > 0
� �

I yij ¼ 1
� �

þ I sij � 0
� �

I yij ¼ 0
� �

; i ¼ 1; . . . ; n;
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j ¼ 1, . . . , k, and f �� is the pdf of the distribution corresponding to the reflection

of F� considered in Equation 6. That is, we use the pdf of the scobit distribution,

if LPE model is assumed or the pdf of the burr-II distribution if the RLPE is

assumed. In both cases, when �j ¼ 1, the corresponding result for the L(.) model

follows, similar to the result presented in Albert (1992) for the probit IRT model.

The result in Equation 6 can also be obtained by considering a latent linear struc-

ture for the skewed logistic IRT model, namely,

sij ¼ mij þ eij; eij � F��ð:Þ; ð8Þ

that is, eij in the equation is an error term distributed as the standard reflection

distribution considered in Equation 6. Note that the errors eij are independent and

are ‘‘latent data’’ residuals (Albert & Chib, 1995). When considered eij¼ sij�mij,

the error can be estimated using the residuals of the data and they can also be

used for model checking. To understand how the observations yij change the

distribution of these residuals, we consider the posterior distribution of eij condi-

tional on aj, bj, yi and sij, that is, e�ij ¼ eij aj; bj; yi; yij; sij

�� . A similar analysis is pre-

sented in Fox (2004).

Note that in the skewed logistic IRT models, the parameters � and a, b ,y have

quite different meaning regarding estimation. On one hand, � is a vector of struc-

tural parameters associated with the choice of the link function. On the other

hand, traditional IRT parameters of the Logistic IRT model a, b, y are a vector

of structural parameters inherent to the observed data and not depending on

model choice (for a discussion, see, e.g., Taylor & Siqueira, 1996). By consider-

ing this fact, two scenarios can be considered. The first scenario is one in which

� and the traditional IRT parameters are estimated jointly; in the second scenario,

only traditional parameters a, b, y are allowed to vary and � is fixed at its ‘‘true’’

value �0. As in Taylor and Siqueira (1996), we shall refer to these two scenarios

as the unconditional and conditional ones for �, respectively.

Inference under conditional scenario for � is easier to be implemented from

both maximum likelihood (ML) and Bayesian approaches because it corresponds

to a particular logistic IRT model by considering a fixed value �0 for the para-

meter �. However, conditions shall be imposed for the existence of the ML esti-

mators and the posterior distribution of a, b, y under improper uniform priors.

Regarding the unconditional approach for �, computing the ML estimators

using the versions of the likelihood functions given in Section 2 is not simple

and is necessary to develop new conditions for the existence of the ML estima-

tors. Additionally, it is important to study the propriety of the posterior distri-

bution under improper uniform priors for b, y and � but considering proper

priors for a. These aspects are being directed to another paper. In this article

as well as in other articles dealing with IRT modeling, the existence of the

ML estimators is assumed and proper priors are considered for the parameters

in the model.
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3.2. A Bayesian Approach

In this article, we adopt mainly the Bayesian view. Our point is made because

several researchers demonstrated that accurate estimation of the item parameters

in small samples can only be accomplished through a Bayesian approach (see,

e.g., Swaminathan, Hambleton, Sireci, Xing, & Rizavi, 2003). Given the

peculiarities of IRT models, ML totally relies on large sample theory, which even

for a large number of examinees, can be complicated by the presence of inciden-

tal parameters. Researches using such an approach typically do separate estima-

tion for item and ability parameters. However, there is no way to jointly evaluate

estimates precision (Patz & Junker, 1999). Because of this, an expectation-

maximization (EM) type algorithm as the one given by Bock and Aitkin

(1981) is preferable. Such problems do not occur with the Bayesian approach

in which, for a large number of examinees, the prior distribution has little effect

on the posterior distribution (Sinharay & Johnson, 2003).

Prior specification. Prior specification is an important issue in Bayesian anal-

ysis. It is more important for small sample sizes where the posterior distribution

represents more of a compromise between the observed data and previous per-

sonal opinion. For large sample sizes, it has less importance because the data

typically dominate the posterior (information) distribution.

In the IRT literature, there seems to be consensus with respect to the prior for

y, that is, usually it is assumed that yi � Nð0; 1Þ for i ¼ 1, . . . , n, but different

priors have been investigated for the traditional item parameters aj and bj (see

Rupp, Dey, & Zumbo, 2004). Empirical evidence (see Patz & Junker, 1999,

among others) seems to indicate the presence of posterior correlation between

item parameters. However, it seems difficult to assign dependent priors for those

parameters, being an especially hard task thinking about values for the correla-

tions for such priors, even if a multivariate normal prior is specified. Hence,

we prefer using independent and common priors for a, b, and � and let such cor-

relations be only data dependent. That is, the prior we consider can be written as

� y; a; b; �ð Þ ¼
Yn

i

f yið Þ
Yk

j

�1 aj

� �
�2 bj

� �
�3 �j

� �
: ð9Þ

where f :ð Þ is the pdf of the standard normal distribution and �1 :ð Þ; �2 :ð Þ; �3 :ð Þ are

the prior pdf for parameters aj, bj, and �j, respectively.

Although some authors such as Albert (1992) and Fox and Glass (2001, 2003),

use improper noninformative priors for the parameters aj, bj, of the type

�1 aj

� �
�2 bj

� �
¼ I aj > 0
� �

, we prefer using informative priors on the discrimina-

tion parameters aj because the existence of the joint posterior distribution is not

guaranteed when an improper prior is used. Considering the results of Albert and

Ghosh (1999), the distribution of the discrimination parameter must be proper to

guarantee a proper joint posterior distribution.
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Several informative distributions for aj have been proposed in the literature.

To mention just a few, (a) Bradlow, Wainer, and Wang (1999) and Albert

(1992) use the N ma;s
2
a

� �
with or without hyperparameter distributions specified

for ma and s2
a, respectively; (b) Patz and Junker (1999) and Sinharay (2004) use

the LN ma;s
2
a

� �
with or without hyperparameter distributions specified for ma and

s2
a, respectively, where LN(.) is the log-normal distribution; (c) Spiegelhalter,

Thomas, Best, and Gilks (1996) and Sahu (2002) use the HN ma;s
2
a

� �
where

HN(.) is the half-normal distribution with known values for ma and s2
a; and,

finally, (d) Swaminathan and Gifford (1985) use the IG(m, n), the inverted

gamma distribution with (known) hyperparameter m and n. We consider in this

article, the specifications in (b) above because aj > 0 and also for conjugational

reasons.

When independent informative priors are considered for the item parameters,

it is usually assigned the N mb;s
2
b

� �
for bj, j¼ 1, . . . , k. Moreover, in the common

situation where little prior information is available about the difficulty parameter,

one can chose s2
b to be large. As is mentioned in Albert and Ghosh (1999) in the

Logistic IRT model, this choice will have a modest effect on the posterior distri-

bution for nonextreme data, and it will result in a proper posterior distribution

when extreme data (all items are correct or all items are incorrect) are observed.

Thus, vague priors can be used with the difficulty parameter.

In this article, we consider hyperparameters to be known. In more

general situations, the prior structure needs to be enlarged so that hyper prior

information can also be considered for those parameters. Following Sinharay

(2004), we consider ma ¼ 0 and s2
a ¼ 1 for aj, and then it is expected that

E aj

� �
¼ emaþs2

a ¼ 1:649 and V aj

� �
¼ es

2 � 1
	 


e2maþs2 ¼ 4:671; also, mb ¼ 0

and s2
b ¼ 1 for bj.

The same prior distribution is considered for parameter �j. We consider the

prior specified in the example 5.7 of Carlin and Louis (2000) in the context of

binary regression using the power link. That is, �j * gamma (0.25, 0.25). Thus,

it is expected that E (�j) ¼ 1, V (�j) ¼ 4, with 2.5% and 97.5% quantiles being

q(0.025) ¼ 1.055 � 10�6 and q(0.975) ¼ 6.86647, respectively.

MCMC Bayesian estimation. Considering the likelihood function in Equation 5

or Equation 7 and the general prior specification given in Equation 9, Bayesian

estimation can be implemented by considering implementation of Markov chain

Monte Carlo methods that make it simple to implement efficient sampling from

the marginal posterior distributions.

In the first case, the specification by considering a hierarchical structure is

implemented easily in WinBUGS (see Appendix) but not when the model is

implemented using other programs. We point out that to implement a Bayesian

estimation procedures involving a Bernoulli type likelihood can be complicated

because the integrals involved to obtain the marginal posterior distributions with
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likelihood (Equation 5) are difficult. However, in the second case, by considering

the latent structure in Equation 7, and the approach based on data augmentation

that was introduced in the Section 3, the full conditionals for the skewed

logistic IRT model and the Bayesian inference via MCMC follows without

complications, similarly as reported in Albert (1992) when the normal ogive

IRT model is implemented. Note that some of the full conditionals cannot be

directly sampled from, requiring algorithms such as the Metropolis-Hastings.

However, to implement the Bayesian approach in WinBUGS considering

directly the likelihood function in Equation 7, it is necessary to have the cdf

of the burr or scobit distribution which, to the best of our knowledge, is not yet

implemented with the software.

In the remainder of this article, we develop a computational procedure for the

skewed logistic IRT model based on the original likelihood function in Equation 5.

Hierarchically, the full likelihood specification is given as follows:

yij aj; bj; yj; �j � Ber
�� F� aj yi � bj

� �� �� �
ð10Þ

aj � �1 ma;sbð Þ ð11Þ

bj � �2 mb;s
2
b

� �
ð12Þ

�j � �3 m:nð Þ ð13Þ

yi � N 0; 1ð Þ ð14Þ

i ¼ 1; . . . ; n; j ¼ 1; . . . ; k:

Note that 1L and 2L can be obtained as particular cases of the hierarchical struc-

ture above. In addition, it is possible to introduce for the skewed logistic IRT

model a guessing parameter cj and then to substitute F� aj yi � bj

� �� �
by

cj þ 1� cj

� �
F� aj yi � bj

� �� �
. In addition, a prior specification cj � �4 r; sð Þ

should be considered. In this case, we can obtain 3LPE and 3RLPE models as

generalizations of 3L model, which is obtained when �j ¼1. When this is the

case, the prior specified in Patz and Junker (1999) to cj can be considered; that

is, cj * Beta(5, 17), and then it is expected that E(cj) ¼ 0.227 and V(cj)¼ 0.0076.

3.3. Model Comparison Criteria Using MCMC Outputs

A variety of methodologies exist to compare alternative Bayesian model fits but

the principal criteria used in those works are the DIC proposed by Spiegelhalter

et al. (2002) and the expected information criteria corresponding to Akaike (EAIC)

and Schwarz or Bayesian (EBIC) as proposed in Carlin and Louis (2000) and

Brooks (2002). The criteria are based on the posterior mean of the deviance:

E D a; b; �; yð Þ½ �, where
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D a; b; �; yð Þ ¼ �2 ln p y a; b; �; yjð Þð Þ ¼ �2
Xn

i¼1

ln P Yij ¼ yij a; b; �; yj
� �

;

which is also a measure of fit that can be approximated using the MCMC output,

by considering Dbar ¼ 1
G

PG
i¼1

D ag; bg; �g; ygð Þ;where the index g represents the

gth realization of a total of G realizations and is the Bayesian deviance.

EAIC, EBIC, and DIC can be estimated using the MCMC output by

considering

dEAIC ¼ Dbar þ 2p;dEAIC ¼ Dbar þ plogN ;

and

dDIC ¼ Dbar þ rD̂ ¼ 2Dbar � Dhat;

respectively, where p is the number of parameters in the model; N is the total

number, that is, N¼ k� n of observations; and rD, the effective number of para-

meters, is defined as

rD ¼ E D a; b; �; yð Þ½ � � D E að Þ;E bð Þ;E �ð Þ;E yð Þ½ �;

where D E að Þ;E bð Þ;E �ð Þ;E yð Þ½ � is the deviance of the posterior mean obtained

when considering the mean values of the generated posterior means of the model

parameters, which is estimated by

Dhat ¼ D
1

G

XG

i¼1

ag;
XG

i¼1

bg;
1

G

XG

i¼1

�g;
1

G

XG

i¼1

yg

 !
:

Given the comparison of two alternative models, the model that better fits a data

set is the model with the smallest value of Dbar, DIC, EBIC, and EAIC. In EAIC

and EBIC, 2p and plogN are fixed to penalize the posterior mean of the deviance

whereas in IRT models, p is the number of parameters of the model (in the

skewed logistic IRT model, p ¼ 3k þ n) and N is the total number of observa-

tions. Moreover, as there is no consensus in the use of the DIC (see discussion

in Spiegelhalter, et al. 2002), the use of more than one criterion seems more

appropriate to perform model comparison.

4. Illustration on Simulated Data

To evaluate the Bayesian estimation of the skewed logistic IRT models pre-

sented and evaluate the performance of model comparison criteria, we apply the

estimation showed in Table 1 in Samejima (1999). The table shows, considering

ML, the estimates of y based on 32 response patterns of 5 dichotomous items
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following 2L, 2P, and LPE model with � ¼ 2, aj ¼ 1 for all items and b ¼ c

(�3.0, �1.5, 0.0, 1.5, 3.0), respectively.

Because ML estimation is not possible to extreme cases (response patterns 1,

1, 1, 1, 1 and 0, 0, 0, 0, 0), for the results to be comparable, we conduct Bayesian

estimation for the other response patterns. In addition, as a and b are known para-

meters, we consider a vague prior for y, that is yj * N (0, 1000), and use the pos-

terior mean of y as estimates to compare Bayesian and ML estimation. We

consider a burn-in of 4,000 iterations and a chain of 2,000 iterations. Thin values

for 2P, 2L, and LPE were, respectively, 1, 1, and 20.

By considering the sum of squares of the differences between the estimates,

namely,
P30

i¼1 yi;ML � yi;B

� �2
, we found the minimum differences between the

estimates of y under ML and Bayesian approaches (the values were .044, .099,

.221 for 2P, 2L, and LPE IRT models, respectively). It confirms the good perfor-

mance of the Bayesian estimation approach, because for the minimum informa-

tion priors considered, Bayesian and ML estimation are close when dealing with

abilities estimation.

5. Application to Math Test

We illustrate the Bayesian approach developed in this article for skewed logis-

tic IRT model with an application to real data set. We consider an analysis on the

response pattern obtained by the application of a mathematical test to

fourth-grade students of the rural Peruvian elementary schools. Item response

vectors are available from authors on request and correspond to response of

974 students to 18 items qualified as binary responses (correct or incorrect). The

scores present a mean of 8.27, a median of 8, and a standard deviation of

4.20. The skewness and kurtosis indexes are estimated as �0.075 and �0.836,

respectively. The test presents a regular reliability index given by Cronbach’s

alpha of .83 and presents a mean proportion of items of .449.

TABLE 1

Results Comparing the Skewed Logistic IRT Models With Logistic IRT Models

Models p Dbar Dhat DIC EAIC EBIC

Symmetric

logistic IRT

models

1L 992 17,227.3 16,548.1 17,906.6 19,211.3 26,920.9

2L 1,010 16,886 16,104.3 17,667.8 18,906 26,755.5

3L 1,028 17,021.1 16,506.7 17,535.4 19,077.1 27,066.5

Asymmetric

skewed logistic

IRT models

LPE 1,028 16,885.4 16,728.3 17,042.5 18,941.4 26,930.8

RLPE 1,028 16,832.3 16,708.7 16,955.8 18,888.3 26,877.6

Note. DIC¼ deviance information criterion; EAIC¼ expected Akaike’s information criterion; EBIC¼
expected Bayesian information criterion; IRT¼ item response theory; LPE¼ logistic positive exponent;

RLPE¼ reflection logistic positive exponent.
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The mathematical test is formed with independent items corresponding to dif-

ferent tasks with different definitions. Given the latent ability y, it is considered

that the correct responses to the items are independent. Furthermore, the autocor-

relations within individual responses seem to be low, which provides additional

support for the assumption of local independence.

We present next a study on the fit of the parametric IRT models discussed ear-

lier using the math data. Logistic IRT models with one parameter, two

parameters, and three parameters are considered and denoted by 1L, 2L, and

3L, respectively. Moreover, we implement the Bayesian approach for the skewed

logistic IRT models as discussed in Section 3.

Several criteria computed using the CODA package, including the ones pro-

posed by Geweke (1992), were used to evaluate convergence, with good indica-

tion that such is the case.

DIC values shown in Table 1 seem to indicate that the skewed logistic IRT

models (LPE and RLPE), improve any other proposed model including the cor-

responding symmetric ones (1L, 2L, and 3L). Hence, we expect that ICCs esti-

mates are more precise with the skewed logistic IRT models. However, by

considering EAIC, we found that RLPE is better, and by considering EBIC,

we found that 2L is better. We prefer the interpretation of the parameters in the

RLPE model because it is more consistent with the problem-solving process in

some items, as is showed below.

TABLE 2

Item Parameters for Alternative IRT Models for Item 14, Item 2, and Item 11 in Math Data

Items Models

Item Parameters

Discrimination,

a

Difficulty,

b

Guessing,

c

Acceleration

(deceleration),

�

Item 14 2L 1.003 �0.358

3L 1.065 �0.105 0.108

LPE 0.934 �1.214 2.087

RLPE 4.559 �1.603 0.208

Item 2 2L 1.2777 �0.453

3L 1.607 �0.088 0.165

LPE 1.768 0.253 0.559

RLPE 1.060 0.380 2.107

Item 11 2L 1.826 0.092

3L 2.065 0.220 0.067

LPE 1.680 0.039 2.060

RLPE 2.070 0.023 1.046

Note. IRT ¼ item response theory; LPE ¼ logistic positive exponent; RLPE ¼ reflection logistic

positive exponent.
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By considering the RLPE model and according to Figure 2, we found that items

17, 14, 8, and 4 present significant asymmetries (i.e., the corresponding Highest

Posterior density (HPD) intervals does not include �¼ 1). Other items do no present

significant asymmetries and can be modeled by considering 2L IRT models includ-

ing Items 1, 10, and 2, which have posterior mean values of lambda greater than 1.

For an additional analysis, we choose 3 items: Item 14, clearly asymmetric;

Item 2 with some degree of asymmetry; and Item 12 for which asymmetry is not

evidenced. The items are presented in Figure 3.

Figure 4 depicts ICC fits considering RLPE IRT models in comparison with

2L, 3L, LPE IRT models to the Items 14, 2, and 11 with values of item para-

meters (posterior means) in Table 2. For these items, as shown in this figure, the

ICCs under RLPE model and other alternative models are clearly different

between them with relation to Item 14 in comparison with Item 2 where there

is indication that the ICCs are similar (but not necessarily equal). However, for

Item 11, the ICCs are practically equal.

Include Table 2 with Item 14, we prefer the interpretation given by the RLPE

model because it is more consistent with the (inherent) mean of the process to

solve it. For this item, estimated � ¼ 0.2077, hence different from 1, clearly

showing differences among the ICCs of alternative models. That is, for ability

values greater than�1.5, the probability of correct response to the item is greater

with the RLPE model and for ability values lower than �1.5, the probability of

correct response to the item is less with RLPE model and for ability values

greater than 1.5, the probability of correct response to the item is greater with the

RLPE model. Item 14, although easy, is not straightforward and can be consid-

ered a complex item in the sense of Samejima. It is a compound item and requires

[17]
[14] [8] [4]

[5] [18]
[7] [16] [15]

[6]
[12]

[9]
[3]

[11]

[13]
[1]

[10]
[2]

E(lambda/y)

0.0

2.0

4.0

6.0

FIGURE 2. Box plots for the � parameters for the 18 items in the math data set under the

reflection logistic positive exponent item response theory (RLPE IRT) model.
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a student to perform or successively pass each of many sequential subprocesses

(parallel or serial, according to Samejima) to solve successfully the complete

problem. However, this process is simple, and as the item also is an easy item,

then students who solve this item should get greater credit in terms of probability

of correct response.

Moreover, Item 14 corresponds to a limiting case and a type of heavyside step

ICC function was obtained because the item has a large (estimated) discrimination

parameter (a ¼ 4,559). Thus, the ICC for Item 14 corresponds to a Guttman type

ICC: at a very low ability level (y < �1.5), the probability of passing the item is

practically zero, but at higher ability level, that is (�1.5 < y < 1.9), a small ability

change is translated into a big change on the probability to pass the item. Finally, at

high ability levels (y > 1.9), the probability of passing the item is practically 1.

Note that Item 2 also is an item requiring a student to perform or successively

pass each of many sequential subprocesses to solve successfully the complete prob-

lem that can include series and parallel processes. It is a complex item with estimated

�¼ 0.5588, but by considering item estimated parameters, the ICCs are maybe sim-

ilar among students with exception of the 3L model that consider higher value of the

guessing parameter. This item cannot be considered totally complex in the sense of

Samejima, because the value of lambda is not significantly different from 1.

FIGURE 3. Items 14, 2, and 11 for the math data set.
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In addition, Item 11 is a typical item where sequential subprocesses are

not required. For Item 11, all the ICCs are practically equal with estimated

� ¼ 1.046 in the RLPE model, making its ICC indistinguishable from the ICC

of a 2L model.

5. Final Discussion

In this article, we propose a new ICC to IRT, named Reflection of LPE or

RLPE model, and implement a Bayesian approach to the already studied LPE

model. The two models are named skewed logistic IRT models and is proved that

one is the reflection of the other. This corresponds to the proposal of Samejima

(1997a, 2000) for the fitting of asymmetrical IRT models and includes the sym-

metric logistic IRT model as a special case.

A data augmentation approach is proposed to implement Bayesian estimation

using the MCMC methodology that can be implemented using the Metropolis-

Hasting algorithm. Several model comparison criteria are used to compare

the symmetrical and asymmetrical IRT models (DIC, EAIC, and EBIC). We also

introduce latent residuals for the models and global discrepancy measures as

the posterior sum of squares of the latent residuals. All these quantities show that

the skewed logistic IRT model presents better fit than the usual logistic IRT

model for the observed data. Moreover, to several items, there is clear indication

that the penalization parameter �, in the RLPE model, is different from one,

indicated by the credibility interval, suggesting that asymmetric ICCs are more
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FIGURE 4. Item characteristic curves (ICCs) for Items 14, 2, and 11 under the 3L, 2L,

reflection logistic positive exponent (RLP) and reflection logistic positive exponent item

response theory (LPE IRT) models in the math data.
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adequate. This parameter has a helpful interpretation in the context of the

Peruvian mathematical test. Moreover, the penalization parameter is concep-

tually different from the guessing parameter in the three-parameter model, which

is valid to the case of items with multiple choices (not considered in the example

studied). Extensions of the model proposed will be subject of future developments,

for example, to consider the inclusion of the new parameter in one-parameter and

testlet models (Bradlow et al., 1999). Extensions to more general models such as

multidimensional, hierarchical, and multilevel skewed logistic IRT models will

also be the subject of future developments. Another possible direction is to conduct

a sensitivity analysis of prior specification for the skewed logistic IRT model as the

one conduced in Bazan, Bolfarine, and Leandro (2006).

Finally, the syntax in the appendix shows that the skew logistic IRT models

can be easily implemented in applications.

Appendix

Program

We present next the program in WinBUGS used to implement the data augu-

mentation approach described in the paper.

model{

for (i in 1:n) { for (j in 1:k ) {

y[i,j]*dbern(p[i,j]) m[i,j]<-a[j]*(theta[i]-b[j])

#LPE Model

logist[i,j]<- exp(m[i,j])/(1þexp(m[i,j]))
p[i,j]<-pow(logist[i,j],lambda[j])

#RLPE Model

p[i,j]<-1-pow(1þexp(m[i,j]),-lambda[j]) }

}

#abilities priors

for (i in 1:n) { theta[i]*dnorm(0,1)}

#items priors

for (j in 1:k) {

# usual priors

b[j]*dnorm(0,1) a[j]*dlnorm(0,0.5)

#CARLIN and Lois (2000, Example 5.7)

lambda[j]*dgamma(0.25,0.25) }

}
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Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima-Perú;
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