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Abstract: Maintenance plays a crucial role in the availability of an asset. In particular, when a
company’s assets are decentralized, logistical aspects directly impact maintenance management and,
consequently, productivity. In the energy generation sector, this scenario is common in enterprises
and projects in which distributed energy resources (DERs), such as small hydroelectric power plants
(SHPPs), are considered. Hence, the objective of this work is to propose an application of generalized
stochastic Petri nets (GSPN) for the planning and optimization of the maintenance logistics of a
DER enterprise with two SHPPs. In the presented case study, different scenarios are modeled
considering logistical aspects related to the availability of spare parts and the sharing of maintenance
teams between plants. From the financial return resulting from the estimated energy generation
and the operating cost of each simulated scenario, the most profitable one can be estimated. The
results demonstrate the ability of GSPNs to estimate the influence of the number of spare parts
and maintenance teams on the availability of DERs, allowing the optimization of costs related to
maintenance logistics.

Keywords: generalized stochastic Petri nets (GSPN); maintenance; distributed energy resources
(DER); small hydroelectric power plants (SHPP)

1. Introduction

The global demand for energy, even in the face of economic, financial, and health crises,
continues to grow exponentially [1,2], requiring the optimization of existing generating
systems and the implementation of new projects and endeavors. At the same time, given
the need to reduce greenhouse gas emissions, the generation of electricity from clean
and renewable energy sources has been intensified, while the use of fossil fuels has been
reduced.

In this scenario, the generation of electricity considering hydroelectric power plants
(HPP) becomes very attractive for several reasons, but principally because these are a more
stable source than other clean energy sources such as solar and wind power. In particular,
small hydroelectric power plants (SHPPs) have been standing out all over the world, mainly
due to their short construction period, easy maintenance, high energy density, and local
distributed energy generation capacity [3-5].

Notably, being a distributed energy resource (DER), SHPPs have been widely im-
plemented by underdeveloped and developing nations in the last years, enabling a large
part of the population, especially in rural areas, to have access to electricity [5]. Many of
these countries, such as Brazil, adopt an open market business environment for electricity
generation, in which both private and public companies can freely negotiate the electricity
supply, following the regulations of the sector.
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In this trading environment, investments not only in SHPPs but also in renewable
energy generation as a whole, bring benefits from a socio-environmental point of view, in
addition to being financially advantageous, as presented by a survey released by Imperial
College London and the International Energy Agency [6]. Taking as an example some
countries in Europe and the United States, investments in renewable energy in Germany
and France generated returns of around 178% between 2015 and 2020, compared to a
negative return of around 21% for investments in fossil fuels. In the UK, meanwhile, over
the same period, investments in green energy generated returns greater than 75% compared
to less than 9% for fossil fuels. In the US, renewable energies yielded more than 200% of
return against practically half of this value for fossil fuels.

However, as attractive as these investments can be, no business can thrive without
good planning and proper management. Among other aspects that demand the attention
of administrators and managers is the availability of energy generation equipment, which
is directly influenced by its reliability and maintainability. Would maximizing equipment
availability, and consequently energy production, be the best approach in these cases to
maximize the financial return?

Despite the opportunities and demand from customers, the constant pressure to reduce
operating costs imposed on aggregators, mainly due to fierce competition, has increasingly
highlighted the importance of effective maintenance and associated logistics. In other
words, the cost considerations involved in getting the necessary human and material
resources in the right place in the shortest possible time have become a critical issue for
maintenance planners and managers at any stage of the life cycle of an enterprise. In the
authors’ experience, cost reduction in the case of DERs herein contemplates two critical
considerations: keeping spare parts inventories to a minimum and sharing the maintenance
workforce between sites. The former consideration prevents immobilization of otherwise
much-needed capital and eliminates the need for costly and burdensome preservation of
shelf items. The latter provides a more effective allocation of the available human resources.

In the quest to find a balance between costs and the conservation of equipment
performance, new methodologies are adopted and applied to improve the efficiency, quality,
and reliability of the repairable systems [7]. Some works that seek to develop more realistic
techniques using simulation models to analyze the reliability and availability of systems
are already found in the literature. Such models are very useful in the case of complex
systems and propose, based on the understanding of the analyzed system, the application
of generalized stochastic Petri nets (GSPN) [7-10].

Continuing in this line of research, the present work proposes an application of GSPNs
in which a DER enterprise with two SHPPs is modeled, taking into account logistical aspects
related to the availability of spare parts and the sharing of maintenance teams between
units. The method proposed for the development of this application is based on the study
of the considered systems, the collection of data related to failures and repairs of these
systems’ components, and the estimation of time for the displacement of maintenance teams
between the systems’ sites and for the purchase and arrival of spare parts to these sites.

Different GSPN models are considered where the number of available maintenance
teams and the availability of spare parts varies. From the financial return resulting from the
estimated energy generation and the operating cost of each case, the most profitable scenario
can be estimated. The chosen approach mainly aims to demonstrate the applicability of
GSPNs as a modeling tool to optimize and plan the most efficient maintenance logistics of
DERs projects. The results obtained in this article demonstrate the capacity and potential
use of GSPN for this task, in addition to its already well-known ability to estimate the
availability and reliability of engineering systems.

The rest of this work is organized as follows: Section 2 presents the fundamental
concepts of GSPN; Section 3 presents the proposed method in this work; Section 4 presents
the application of this method in a case study; and, finally, Section 5 presents the work
conclusions.
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2. Generalized Stochastic Petri Net

Petri net (PN) was first documented by Carl Adam Petri back in 1962 as part of his
Ph.D. dissertation, Kommunikation mit Automaten (Communication with Automaton), de-
scribing the casual relationships between conditions and events in computer systems [7-11],
although some claim that this technique was originally invented by Petri in 1939 at the age
of 13 to model chemical processes. However, the current graphical representation of PNs
emerged in the mid-1960s [12].

This combination of graphical, mathematical, and simulation techniques for modeling,
interpretation, visualization, and optimization of complex systems with concurrent, dis-
tributed, stochastic (or non-deterministic), and both continuous and discrete features, have
been used in a wide range of domains, directly benefiting from the theoretical foundations
developed in the last five decades [12-14].

Functionally, PNs resemble a flowchart or block diagram, being graphically repre-
sented by four fundamental elements: places (described by a circle that represents the
state or condition of an object, component, or system), transitions (described by rectangles,
boxes, or bars that allow the system state change, modeling its dynamic behavior), arcs
(described by solid arrows that connect places to transitions and vice versa), and tokens
(described by a black dot or small solid circle stored in places representing the state of the
object, component, or system) [7,14,15].

In its original design, PNs did not contemplate the concept of time, and its transitions
only enabled instantaneous changes in the states of the modeled system. However, in
the late 1970s and early 1980s, the idea of a PN with “timed” transitions arose based
on the dissertations of S. Natkin, published in 1980 at the Conservatoire National des Arts
et Métiers in Paris, France, and of M. K. Molloy, published in 1981 at the University of
California in Los Angeles, USA. These works were developed independently and virtually
simultaneously, which led to the definition of almost identical models also named in the
same way: stochastic Petri nets (SPN) [16].

An extension of SPNs in which two different classes of transitions are supported—
immediate transitions (that describe logical behaviors), represented by solid bars, and
timed transitions (that describe time-consuming activities” execution), represented by open
bars—are the generalized stochastic Petri nets (GSPNs) [15,17].

The GSPNs are defined through a six-element enuple, given by GSPN = (P, T, F, W,
My, A) [9,15,18], where:

P ={p1,p2 ..., pm} is a finite set of places;

T = {t1,t2,...,ty} is a finite set of transitions;

FC (PxT)U(T x P) is a set of arcs;

W:F—{1,2,3,...} is a weight function;

My : P — {0,1,2,3,...} is the initial marking;

A ={A1,Ay,..., Au} is the set of firing rates associated with the transitions;
PNT=gand PUT # 2.

GSPN has been used in several application areas [12,15,19-22], including fault diagno-
sis [23-25] and reliability and availability analysis [7,26]. However, maintenance planning
and optimization can be considered one of the most prominent fields of application of
GSPN, given the applicability of this technique in modeling and analyzing systems com-
posed of components and equipment with different failure and repair times. The way the
system and the context in which it is inserted are modeled is fundamental in these cases,
and different approaches are found in the literature.

Chang and Hsiang [26], e.g., apply GSPNs to decide the optimal maintenance policy
and build models for different levels of maintenance and renewal for automated manufac-
turing systems with a serial-parallel layout. Basically, two models were built, the first one
considered different levels of preventive maintenance, and in the second, different levels of
renewal maintenance. The models adopted in these cases are composed of a large complex
mesh that can be understood as a combination of four smaller PN, with several places and
transitions.
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Santos, Teixeira and Soares [27] apply GSPNs with predicates coupled with Monte
Carlo simulation to model Operation and Maintenance (O&M) activities planning of an
offshore wind turbine. Included in the modeling are three maintenance categories classified
according to the dimensions and weight of the components to be replaced, and the logistics
involved, considering the need for vessels, the availability of maintenance personnel and
spare parts, as well as delays and associated costs. The meteorological conditions that
define access windows to the wind turbines were also considered and modeled with PN.
Two maintenance models (corrective and preventive with imperfect repair) were compared
considering system availability, component failure rate, and O&M costs. In the following
year of this article, the same authors presented an extension of their work in which different
maintenance models were simulated and compared [10].

Melani et al. [9] use GSPNs to determine the effect that the number of maintenance
teams has on the availability and performance of a coal-fired power plant cooling tower.
Each cooling tower cell was modeled as a PN with five places (stable operation, operation
with degradation, failure, equipment in predictive maintenance, and equipment in correc-
tive maintenance) and several transitions, allowing the action of the available maintenance
teams to occur before or after each equipment fails, causing several different scenarios
to be considered. In addition, three models with one, two, and three maintenance teams,
respectively, were considered and compared concerning plant availability, reliability, and
efficiency.

Batelic, Griparic and Matika [28] apply GSPNs in modeling the operation of coal mills
belonging to a thermoelectric power plant. The objective of the model was to evaluate
the hypothesis that a maintenance strategy based on remediation would increase the
effectiveness of the entire analyzed system. The model was described by three PN, two of
which were designated as mill subsystems (the falling pipe and the coal feeder), considering
three states (operational equipment, malfunctioning equipment, and failing equipment)
where stochastic transition values are calculated based on probabilistic density distributions,
and one designated the operation of the plant as a whole, in which two states are considered
(plant operating and plant failing).

Elusakin et al. [14] present an SPN model for O&M planning of floating offshore
wind turbines, including their supporting structure components. The proposed model
incorporates all the interrelationships between the different factors that influence the
O&M planning of these systems, including the deterioration and renewal process of its
components. In addition to the system degradation process, the condition monitoring and
maintenance process are modeled, each with a specific PN that makes up a single, more
complex GSPN.

The GSPN’s ability to help estimate the availability and reliability of assets and systems
are explored in the current work in a modular way, making the model capable of represent-
ing the logistical challenges associated with inventory management and maintenance team
management. The next session will present the article’s proposed method.

3. Proposed Method

Figure 1 presents the step-by-step procedure proposed in the current work for the
development of the GSPN model, which in turn will be used for estimating the influence
of the number of spare parts and maintenance teams on the availability of the considered
systems, thus allowing the optimization of costs related to maintenance and, consequently,
maximizing the enterprise’s profit.

The first step of the proposed method is the study of the system. At this early stage,
the assets to be represented in the PN need to be defined. It is also necessary to know
the location of the assets, i.e., to which plant do they belong since the method was devel-
oped with DERs in mind. In this case, the use of a functional tree, which presents such
components structurally and hierarchically, is recommended.
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Step 1 - System study

v

Step 2 - Failure and repair data
acquisition

v

Step 3 — Estimation of maintenance
team travel time between sites and new
spare parts shipping time

v

Step 4 — Development of Petri net
model

v

Step 5 - Simulation of different
operating scenarios

v

Step 6 — Definition of optimal scenario

Figure 1. The proposed method.

Once the assets to be represented in the GSPN are known, it is necessary to collect, for
each of them, failure and repair data. Such data generally consist of time-to-failure and
time-to-repair records for each component and can be acquired from the asset management
system used by the company. This data is used so that the GSPN can emulate asset failures,
implying maintenance actions. With these data in hand, it is possible to use the maximum
likelihood estimation (MLE) to determine the probability distribution that better represents
the probability of failure or repair at a given instant of time for each asset [9]. Alternatively, if
such data are not properly recorded by the company, comprehensive reliability commercial
databases can be used to obtain probability distributions.

In the third step, two new types of information need to be collected: the travel time that
a maintenance team, based in the company’s headquarters, take to reach each of the plants
to repair an eventually failed asset; and the time it takes for each spare part, once ordered,
to be delivered by its manufacturer. Such data, if available, may also be collected through
the company’s asset management system. Otherwise, the former can be estimated from
the analysis of the distance to be traveled and the type and availability of roads between
the company’s headquarters and the generating plants; and the latter can be obtained by
consultation with spare parts manufacturers.

After collecting all the information previously described, it is possible, in the fourth
step, to develop a GSPN that will emulate the behavior of the system under study. The
GSPN proposed here can be divided into three main structures: the representation of the
states of a component; the representation of the states of a spare part; and the representation
of the maintenance teams states. Figure 2 shows in detail these three structures, where the
black dots represent the tokens, circles represent places, white rectangles represent timing
transitions, and black rectangles are direct transitions.

Still considering Figure 2, it can be seen that the asset is represented by three places
(P1, P2, and P3) and three transitions (T1, T2, and T3). In the model, therefore, the asset can
be in one of three possible conditions: in operation or working (P1), in failure (P2), or repair
(P3). The current condition is informed by the position of the token that moves between
such places through transition firings. For example, if the asset fails and ceases to perform
its function (firing of transition T1), the token moves from P1 to P2. It is important to note
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that the firings of T1 and T3 are governed by the probabilistic distributions obtained in step
2 of the proposed method, i.e., they are timing transitions. T2 is a direct transition, which
occurs immediately as soon as the conditions for such are satisfied (P2, P6, and P7 must
have at least one token each for T3 to be fired, i.e., the component must be at fault, it must
have a spare part in stock, and the maintenance team needs to be at the plant).

| Spare Parts Representation
|

working happens failure

[T ————————————————————————= | P6 P5 P4

Component Representation [ Spare parts in Spare parts Spare parts to
: | stock ordered be purchased

|

P1 T1 P2 , [

Component is Failure Component in o

| |

| |

|

T5 T4
Partis Part i
| . art is
T delivered bought
| - |
|
T2 | e e e
Repair | Teams Displacement Representation
starts |
|
|
|

Maintenance teams
in headquarters

P3
Component in
repair

Team ready at Team going to
plant plant

|
|
|
P9 P8 | P7
|
|
|

finnishes

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

T7 T6
Team arrives Component
at plant fails

P10 T8
Team finnishes ~ Team goes back
repair to headquarters

Figure 2. The Generalized Stochastic Petri Nets (GSPN) proposed structures.

The representation of spare parts management in the model is done through three
places (P4, P5, and P6) and two transitions (T5 and T6). Place P4 represents the existence
of spare parts to be purchased from suppliers, so it must have a large number of tokens,
at least enough so that P4 is never empty during the time interval considered during the
GSPN simulation. A token goes from P4 to P5 if a purchase of a spare part is necessary,
that is, T4 is fired only when the number of tokens (spare parts) in P6 (in stock) is less than
planned or when a component failure occurs. T5, on the other hand, is triggered only when
the purchased part arrives in stock and, as there is a time delay between purchase and
delivery, T5 is also a timing transition, governed by the information collected in step 3 of
the method.

The representation of the maintenance team’s work is done through four places (P7,
P8, P9, and P10) and three transitions (T6, T7, and T8). The tokens in P7 represent the
number of maintenance teams available to attend to one or more failures that may occur in
the systems and they only move to the location of the failure if the conditions for firing T6
occur, i.e., a component fails and spare parts are available for the repair. Once at P8, the
token only arrives at P9 after the model considers the time interval for the team to arrive at
the plant (mobilization time), information that was also collected in step 3 of the method.
Once the team performs the repair (P10), the same time interval is considered at T8 for the
team to return to headquarters.

It is important to consider, however, that in some cases, several assets from different
plants/locations must be represented simultaneously by the model. In such cases, the
structures previously described, including the number of places and transitions for each
representation, are replicated as many times as necessary in the GSPN model.

Therefore, to develop the GSPN model, the following information is needed:

e  Number of components/assets, which will determine how many “Component Repre-
sentation” modules, as the one in Figure 2, will be used;
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Failure and repair probabilistic distributions for each component, respectively repre-
sented by transitions T1 and T3 in Figure 2;

Number of different types of spare parts, which will determine how many “Spare
Parts Representation” modules, as the one in Figure 2, will be used;

Number of spare parts of each type, which will determine how many tokens initially
are in the places equivalent to P6 in Figure 2;

Time to deliver each spare part type, represented by transition T5 in Figure 2. Note that
since T5 is a timed transition, it can represent a fixed time or a probabilistic transition;
Number of different plants that the maintenance teams must take over to repair a
component which will determine how many “Teams Displacement Representation”
modules, as the one in Figure 2, will be used;

Mobilization times between headquarters and each plant, represented by transitions
T7 and T8 in Figure 2. Note that since T7 and T8 are timed transitions, they can
represent a fixed time or a probabilistic transition;

Number of maintenance teams in headquarters, which will determine how many
tokens initially are in P7 in Figure 2.

To better exemplify how to use the structures/modules shown in Figure 2, a GSPN

is presented in Figure 3, which represents two plants, each one with two assets. In this
figure, four types of spare parts are represented (A.1, A.2, B.1, and B.2) and each type has
two pieces in stock. In addition, there are two maintenance teams available that can be
mobilized to repair a component at either of the two plants.

|
Component A.1 :| |
| | I
OO | CI=O4=® |
! | I

|I

Component A.2

O

I
I
C tB.2 Il I
] NOHO+@
I | I

|

WL i '
| o OE
' : '

Figure 3. An example of the expansion of the original GSPN structure.
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Once the GSPN model is developed, step 5 of the proposed method consists of per-
forming several simulations, considering different numbers of spare parts for each asset and
a different number of maintenance teams. In each new simulation, the average probability
of having tokens in each presented place is calculated, as well as the average number of
firings of each transition in a given time interval. In this way;, it is possible to obtain, for
each new scenario/simulation, reliability and availability values for each asset and the
systems as a whole.

Such results, together with the financial calculation that involves operating costs
(considering costs with managing spare parts inventories and hiring maintenance teams)
and revenues associated with generation (and, consequently, dependent on the availability
of the system), allow, in step 6 of the method, the most advantageous scenario from an
economic point of view to be established.

Finally, it is worth noting that the modularity of the proposed GSPN modeling allows
the method to be applicable in several industrial scenarios. The method’s ability to represent
the logistical challenges associated with inventory management and maintenance team
management makes it particularly interesting in scenarios where such problems are critical,
such as in hard-to-reach plants. The case study presented in the following chapter tries to
show the advantages of the proposed method in scenarios like this.

4. Case Study

The case study proposed in this work has as primary objective to demonstrate the
application of GSPN as a tool to assist in the planning and optimization of maintenance
logistics. Due to its technical characteristics, the growth of electricity generation from clean
power sources, the need for DERs, and the financial return that can be obtained from such
investments, a case study in which two SHPPs are considered was chosen. The data used
in this case study were obtained from two SHPPs located in the central region of Brazil, as
well as from the literature when necessary.

As proposed by the method previously presented in Section 3, the first step that needs
to be taken is to study the systems that will be analyzed. In this case, the two considered
SHPPs, named “Plant A” and “Plant B”, are capable of generating, respectively, 25 MW and
29.5 MW. The two plants are located in the same stream, being plant A located upstream
from plant B. Each plant has three generating units (Gus), of which the main components
considered in this work are the generator, the turbine, the bearings (one radial bearing, on
the turbine side, and one combined bearing, on the generator side, which joint the functions
of a guide bearing and a thrust bearing), and the control and automation (C&A) system.
Functionally there are no differences between the units and, therefore, a single functional
tree can represent them, as shown in Figure 4.

Generating
Units
I
[ I I 1
ntrol an
Generator Turbine Bearings Contro a' d
Automation
Radial

Bearing

Combined

Bearing

Figure 4. Generating units’ functional tree.
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The second step of the method is the collection of failure and repair data of the
considered assets. Often this type of information is not easy to be obtained, especially
when dealing with new projects. To overcome the lack of real data, it is possible to resort to
literature data sources such as Oreda [29] and seek reference data according to the analyzed
equipment and its failure modes. Thus, the considered failure rate for each component
is assumed to be represented by an exponential distribution with a parameter A for all
considered components, i.e., the assumption that the failure rate function is constant and
independent of time is considered. On the other hand, the generator, turbine, and bearings
repair times were estimated from Oreda’s data on active maintenance time, i.e., the calendar
time during which maintenance work is carried out on each component, regardless of the
number of persons who can work on it [29]. In these cases, the resulting distribution
is a two-parameter Weibull distribution with the highest probabilities of the repair time
occurring around the mean value. In turn, due to the lack of data related to the control
and automation system repair time, the resulting distribution for this component MTTR is
exponential.

Once this data collection was carried out for the components presented in Figure 4,
the values for the distributions of mean time between failures (MTBF) and mean time to
repair (MTTR), respectively shown in Tables 1 and 2, were determined.

Table 1. Parameter values of the mean time between failures (MTBF) distributions of the considered

components.
Component Distribution Type Parameters
Generator Exponential A=1x10"*
Turbine Exponential A=9 x 107
Combined bearing Exponential A=2x1075
Radial bearing Exponential A=1x107°
Control and automation system Exponential A=2x1075

Table 2. Parameter values of the mean time to repair (MTTR) distributions of the considered compo-

nents.
Component Distribution Type Parameters
Generator Weibull  =1.08,n=36.03
Turbine Weibull p=122;,m1=36.87
Combined bearing Weibull f=129;,n1=23829
Radial bearing Weibull B =1.29;1=38.29
Control and automation system Exponential A=0.333

The third step in the proposed method is the estimation of maintenance team travel
time between sites and new spare parts shipping time. Regarding the former, the considered
SHPPs are compact facilities with a semi-autonomous operation, leading to a minimal
need for in-house personnel. Thus, the operation can be carried out remotely from a
headquarters located in a nearby city whose distance is approximately 60 km for Plant A
and 70 km for Plant B. Maintenance teams remain in the same headquarters, on standby for
any eventuality at the plants while performing routine activities. Thus, in the event of an
alarm from the Supervisory Control and Data Acquisition (SCADA) system of one of the
plants, one of the maintenance teams available at the headquarters moves to the plant with
the unit in a fault condition. The route includes dirt roads and highways, and the travel
time between the headquarters and each plant is shown in Figure 5.
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administrative
headquarters

stream

D

Figure 5. Travel time between the administrative headquarters and the plants.

In addition to the travel time between the headquarters and the plants, preparation
time must be considered for organizing and checking the material and tools needed to
carry out repairs at the plant. In this case, it was considered an average preparation time
of 120 min. Hence, the total mobilization times are 211 min. for plant A and 215 min. for
plant B. Regarding the new spare parts shipping time, a period of 90 days was considered
for the interval between the purchase and delivery of the generator and turbine parts and
a period of 60 days for the bearing parts, since in these cases parts are manufactured on
demand. For the control and automation system parts, a period of 15 days was considered
for the purchase and parts’ delivery, since, in this case, they are counterparts.

After collecting the data from steps 2 and 3, the fourth step of the method is the
development of the PNs according to the proposed method. Figure 6 presents the GSPN
structure used to represent each asset, each spare part, and each maintenance team in the
model. The GSPN presented uses the proposed structures to represent the SHPPs under
study. In total, there are thirty assets represented, located in the two SHPPs. The arcs in
blue (connecting spare parts modules with component modules) and in green (connecting
maintenance teams modules with component modules) are colored to try to facilitate the
visualization of the GSPN, since the total number of arcs ends up making it difficult to
understand. The GSPN was developed in a Petri net software called GRIF [30], which was
used to run the model.

Once the PN models were developed, different scenarios can be simulated. In this
case, 14 different scenarios were considered, in which the number of spare parts initially in
stock for each main component (control and automation system, generator, turbine, and
bearings) and the number of contracted maintenance teams varies. For instance, scenario S1
considered the availability of only one maintenance team and that all components would
have only one set of spare parts available; the other scenarios are variations of this scenario.
Scenario S2, e.g., maintains the same number of spare parts for each considered component
in scenario S1, but the number of available maintenance teams initially considered is
doubled. All other scenarios consider the availability of only one maintenance team, but
there are variations in the number of spare parts available for each main component.
Scenarios S3, S4, S5, and S6 consider, in each case, that only one considered component has
two sets of spare parts available, while the other components keep only one set of spare
parts available; in turn, scenarios S7, S8, S9, and S10 consider, respectively, that one of
the considered components do not have spare parts available, while the others keep only
one set of spare parts available. Scenario S11 considers the lack of available spare parts
for all components, scenario S12 states that only the control and automation system has
spare parts, and scenario S13 considers that only the control and automation system and
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the bearings have spare parts available. Finally, scenario S14 considers that all the main

components have two sets of spare parts each.
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Figure 6. GSPN structure of the case study.
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The criterion used to compare the results of each of these scenarios will be the financial
return obtained in each case. However, some assumptions must be considered concerning
such simulations. As mentioned before, the GUs of each plant do not have functional
differences, being composed of the same assets. However, due to the difference in the
power generated by the two plants, the designs of the GUs of each plant are not the same.
Therefore, the spare parts related to the generator, turbine, and bearings are not interchange-
able between the plants’ units. Besides, the replacement parts of these components occupy
a significant area for proper storage and require some care in transportation. These features
make their storage more suitable if carried out in the plants’ warehouses.

On the other hand, regarding the control and automation system, the same compo-
nents (such as sensors, actuators, and programmable logic controllers) can be used in the
units of both plants. Furthermore, these counterpart pieces occupy a small storage area.
Therefore, the replacement parts of this subsystem can be kept in a single warehouse at the
administrative headquarters.

In addition, a two-year simulation period was considered, with the results being
extrapolated to a 25-year concession period for both power plants. These two years are
considered to be the duration of an SHPP UG’s operational campaign. Thus, every two
years, a preventive general overhaul would be carried out at the plants’ units and, therefore,
failures that occur during this period are considered as unforeseen failures, directly affecting
the availability of the units. After each biannual maintenance, maintained components are
considered to be returned to an as-good-as-new condition.

Some hypotheses related to values and costs were also raised so that the simula-
tions could be performed. Based on the Brazilian domestic market, an operating cost of
USD 5.00 per MWh generated is considered. Likewise, the considered revenue value per
MWh generated is USD 20.00, leading to an operational incoming of USD 15.00 per MWh
generated.

The cost of each maintenance team, consisting of five individuals (two mechanical
technicians, two electrical technicians, and an electronics technician) is USD 50.00 per hour.
As part of the company’s permanent staff, it is considered a work regime of 40 h per week
during the entire period analyzed for the maintenance teams. Labor and additional costs,
such as overtime, are considered covered by this amount.

The initial investment considered for each plant, excluding spare parts, is 30 million
US dollars. In turn, the considered unitary investment of spare parts for each component is
given in Table 3.

Table 3. Spare parts unitary investment for each component.

Component Spare Parts Unitary Investment
Generator USD 5,750,000.00
Turbine USD 8,100,000.00
Bearings USD 200,000.00
Control and automation system USD 53,000.00

The unit values of spare parts refer to a complete set of parts that make up one unit
of each component (in the case of bearings, a radial bearing and a combined bearing). In
the event of a failure that requires the replacement of one of the pieces of equipment, it is
accepted that the purchase request for its replacement in stock is made immediately after
the maintenance of the equipment. The cost of such replacement is considered as part of the
operating cost since the amount involved in the replacement of a single part is significantly
less than the cost of the entire component. Besides, costs of disposing of waste and broken
pieces are considered as part of the operating cost as well.

It is important to have in mind that all these values may vary according to the applica-
tion and, as mentioned earlier, they were estimated to show the capacity of the proposed
method. It is recommended that, before the method application, a more detailed investiga-
tion regarding such values should be carried out. Furthermore, given the good practices
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originally applied to the optimization modeling of energy systems [31], the proposed
approach does not aim to accurately forecast the operation of complex systems from a set
of quantitative results, but rather to assist in the development of the maintenance planning
based on insights and reasoning stimulated by the results obtained.

Having said that, the simulations result for the 14 considered scenarios (S1 to S14) in
this work are presented in Table 4. Figure 7, in turn, presents the expected profit for each
simulated scenario.

Table 4. Simulation results for the 14 scenarios considered.

Simulated Scenarios

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

C&A 1 1 2 1 1 1 1 0 1 1 0 0 1 2

Generator A 1 1 1 2 1 1 1 1 0 1 0 0 0 2

Available Bearings A 1 1 1 1 1 2 1 1 1 0 0 1 1 2
spare parts Turbine A 1 1 1 1 2 1 0 1 1 1 0 0 0 2
ininventory ~ Generator B 1 1 1 2 1 1 1 1 0 1 0 0 0 2
Bearings B 1 1 1 1 1 2 1 1 1 0 0 1 1 2

Turbine B 1 1 1 1 2 1 0 1 1 1 0 0 0 2

Number of maintenance 1 5 1 1 1 1 1 1 1 1 1 1 1 1

teams at headquarters

Expected
SHPP Plant A 089 089 089 094 08 08 087 08 087 08 073 076 076 094
availability
for 2 years Plant B 089 089 089 094 089 08 087 08 087 08 073 076 076 095
Expected
electricity
generation Plant A 484 484 484 513 484 485 476 484 474 469 397 412 415 514
(TWh)
during
25 years Plant B 570 571 570 607 570 572 563 570 561 554 471 487 490  6.09
COSthﬂ‘if/’[ﬁfof\:;tS (USDin o155 2815 2821 3965 4435 2855 1195 2810 1665 2775 000 040 045 5631

Cost with maintenance teams
(USD in Millions)

3.65 730 365 365 365 365 365 365 365 365 3.65 365 365 3.65

Profit (USD in Millions)

66.33 6280 6631 6466 50.16 6632 8028 6635 7489 6190 66.62 7080 71.76 48.51

90
80
70
6
5
4
3
2
1
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o O O O O O O
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Figure 7. Overall expected profit for each simulated scenario.

It is interesting to note some aspects concerning the results presented. Considering the
profitability criterion of each scenario, e.g., it is clear that the most advantageous scenario
is scenario 7 (S7), while the least advantageous scenario is scenario 14 (S14). However,
the latter is the scenario in which the greatest output power is obtained, i.e., it is the
scenario with the greatest availability of the plants” GUs. On the other hand, scenario
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4 (S4) is a scenario whose financial return is intermediate between the values of S7 and
514, presenting, at the same time, the expected availability practically identical to that of
scenario 14. The greater availability, in these cases, is obtained due to the greater number
of spare parts available, but the cost associated with such mobilization ends up causing the
enterprise’s return to be reduced compared to the most profitable scenario.

That is, considering the financial return as the only parameter for choosing the best
scenario, although scenario 7 allows a total power generated over the 25 years of conces-
sion just close to the average value considering all scenarios (57 has an output power of
10,392,472 MWh, while the average value considering the 14 scenarios is 10,243,466 MWh),
the number of spare parts and maintenance teams become optimized in this case. It is also
worth mentioning that in scenario 7 there is no provision for spare parts for the turbine,
which among the components considered would be the one with the highest unit value.

5. Conclusions

This work aimed to present an application of GSPNs as a modeling tool to optimize
and plan the most efficient maintenance logistics approach for a DER project with two
SHPPs managed by the same company, taking into account aspects related to the availability
of spare parts and the sharing of maintenance teams.

From this modeling, several scenarios were simulated in which the number of spare
parts of each component was considered and the number of maintenance teams available
to work in the plants varied to verify the condition in which the financial return of the
project would be maximized.

Some strong hypotheses and considerations needed to be made concerning the val-
ues of spare parts, operating costs, costs of maintenance teams, sales value of the MWh
generated, among other aspects, to enable the simulations and demonstrate the proposed
method. The use of such hypotheses sought to balance the cost-benefit of the analysis
performed, keeping it as simple as possible and as complex as necessary. In addition,
following the same best practice applied for energy system optimization modeling, the
proposed approach is not intended to accurately forecast the operation of complex facilities,
such as DERs, but rather to assist in the development of maintenance planning based on
insights and reasoning stimulated by the results obtained. Therefore, such hypotheses do
not affect the validity of the method and, in addition, in applications that more detailed
economic and financial analysis can be considered a priori, such values could be obtained
with better accuracy and precision. The method application must be verified on a case-by-
case basis. However, the GSPN proposed structures, especially concerning the transitions
and places of the representations of components, spare parts, and displacement of teams,
can be considered the same, independently of the analyzed system.

From the results obtained, it is possible to notice the capability and robustness of the
proposed method. In the case study presented and having the financial return obtained in
each scenario as the only criterion for evaluating the results, it was possible to determine the
ideal number of maintenance teams and spare parts for each component. Furthermore, the
results demonstrate how previously established ideas that could be considered reasonable
at first sight are not confirmed, such as considering that the financial return should be
maximized from greater availability of the generating units. For instance, it is interesting
to note that although the scenario considered ideal, S7, is the one that allows the greatest
financial return, it is not the one that has the greatest availability of GUs, i.e., it is not the
one that maximizes the output power.

Another aspect that must be taken into account is the use of the financial return as
a single value to evaluate the proposed approach and classify the best scenario. This
aspect makes the analysis of the results more restricted, although it does not invalidate the
application of the GSPN as a tool for the proposed modeling. Bearing this in mind, as a
proposal for future works, a natural evolution of the work elaborated in this article could
be developed by incorporating a multiple-criteria decision making (MCDM) technique into
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the developed method, in which not only the profit obtained with the different scenarios
would be considered, but also other aspects of interest could be included in the analysis.
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