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Linearity is an important and frequently sought property in electronics and instrumentation. Here, we
report a method capable of, given a transfer function (theoretical or derived from some real system),
identifying the respective most linear region of operation with a fixed width. This methodology,
which is based on least squares regression and systematic consideration of all possible regions, has
been illustrated with respect to both an analytical (sigmoid transfer function) and a simple situation
involving experimental data of a low-power, one-stage class A transistor current amplifier. Such
an approach, which has been addressed in terms of transfer functions derived from experimentally
obtained characteristic surface, also yielded contributions such as the estimation of local constants
of the device, as opposed to typically considered average values. The reported method and results
pave the way to several further applications in other types of devices and systems, intelligent control
operation, and other areas such as identifying regions of power law behavior. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4969058]

I. INTRODUCTION

Several situations in applied sciences involve trans-
forming a signal from an input to an output domain. This
includes measuring any physical property through a sensor,
conditioning a signal through a filter1 or amplifier,2 and
transducing an electrical signal into some action (e.g., a force).
Any of these situations can be conveniently summarized in
terms of a systems approach such as shown in Fig. 1(a),
where the transforming system T receives an input signal x(t)
and outputs a signal y(t). The effect of the transformation
can be clearly characterized in terms of transfer function
of the system, illustrated in Fig. 1(b). Though the transfer
function can be applied to other situations (e.g., frequency
transforms), here we use this term to quantify the action of
a system (represented by a function) on the amplitude of an
input signal to produce a respective output.3

Oftentimes, a linear mapping is desired between input and
output, which ensures no modification, distortion, or delay
to the signal other than eventual scaling, value shifting, or
delay (linear phase). Unfortunately, the linearity of real-world
transfer functions is never perfect, being limited in several
aspects, such as by noise and distortions. Yet, some of the
regions of the transfer function are closer to being linear, and it
becomes important to devise methods capable of selecting the
best region for operation of the system. Three main problems
can be considered: (i) a maximum deviation from linearity
Emax is imposed on the sought region of a given length L of
the transfer function; (ii) given L (along the input domain),
find the region that minimizes the deviation from linearity;
and (iii) given a maximum deviation from linearity Emax,
search for the longest region in the given transfer function.
In the former situation, the application requires a maximum
acceptable distortion; in (ii), the objective is to select the
best region of operation for a given application. Observe
that criterion (ii) is a particular case of (i) as it optimizes
the error for the same required L. In the present work, we

concentrate on criterion (ii), which is often found in practice,
in the sense that L is pre-specified (e.g., in sensors and
amplifiers applications, the desired output extension is often a
design constraint). Such a methodology can be useful for best
exploring the intrinsic capabilities of any sensor, amplifier,
or transducer, in the sense that maximum linearity operation
can therefore be achieved for a given L, as illustrated in
Fig. 1(c). Frequently, this region of interest is associated or
defined by an operation (or quiescent) point Q, such as in
Fig. 1(c), which corresponds to the operation of the system
under the absence of signal (which defines the null level).
In most cases, the linear region should extend symmetrically
along both sides from Q, in order to allow the maximum
linearity.

Experimentally, the continuous transfer function of a
system, sensor, or transducer is never available and needs to
be sampled in terms of a sequence of points S. The devised
procedure (to be explained in detail in Section II) to find the
most linear region for a given S and L performs minimization
of the least mean square residues for several candidate regions.
The suggested procedure is evaluated in terms of the sigmoid
function, which represents the transfer functions typically
found in electronic systems.4

To illustrate the practical usefulness of the introduced
methodology with respect to a real-world situation, we apply
it to the problem of determining the best operating points of
a simple one-stage class A current amplifier configuration5

based on a single generic low signal transistor. We observe
that we do not address a complete, operational, amplifier
circuit, but only one of the most basic configurations with
minimal circuitry, so that the analysis becomes more directly
related to the device than to circuit setting. Yet, the choice
of a class A configuration as a case example in this work is
justified because this type of circuit is often appreciated by
its linearity and simplicity, though typically at the expense
of increased power consumption.6,7 Also, we observe that the
current approach is limited to resistive loads.
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FIG. 1. (a) Illustration of an input signal x(t) being transformed by a system
T into an output signal y(t). (b) The transfer function specifying the system.
(c) It is often desired to have the operation point Q = (Qx,Qy) of the
system in the center of the most linear region of the transfer curve, so that the
shifted input signal x(t)−Qx is transformed into the output signal y(t)−Qy

with little distortion.

The paper is organized as follows. Section II presents the
in-detail description of the proposed methodology to obtain
the most linear regions of a transfer curve. In Section III,
the methodology is illustrated and validated with respect
to a Sigmoid function. In Section IV, we illustrate the
application of the methodology to a real device (a generic,
small signal bipolar junction transistor (BJT)). We start from
the experimentally obtained characteristic surface and then
quantify the linearity of several possible circuit configurations.

II. METHODOLOGY

In the following, we consider a given sequence of points
S = ((x1, y1), (x2, y2), . . . , (xn, yn)), describing the relationship
between variables x and y . An example of such a sequence
is shown in Figure 2. Although we consider S to be a generic
sequence, it can have different meanings, such as data sampled
from a known continuous function or from an experiment. A
contiguous subsequence Sk,q of S is defined as the sequence of
m = q − k + 1 points in S having index i in the range [k,q].8

As mentioned in Sec. I, the linearity of the transfer curve
of a system (e.g., sensor, filter, and amplifier) should be
optimal in the expected operation range L of the system.
Therefore, we only consider subsequences Sk,q having a
size Wk,q = xq − xk which is as close as possible to the
desired target range L. This is done by selecting subsequences

FIG. 2. Example of subsequence having a valid target size L. Given the
original sequence of six points, the highlighted subsequence S2,5 has size
W2,5 ≥ L, which obeys condition (C1). When removing point 2 or 5, the
size of the subsequence becomes smaller than L, which is in agreement with
condition (C2).

contained in S that obey the following conditions:

C1 : Wk,q ≥ L and C2 :




Wk+1,q < L

or

Wk,q−1 < L

.

These conditions are illustrated in Figure 2. The subse-
quence S2,5 shown in the figure follows both conditions
because its size is larger than L (condition 1) and, after
removing one of its endpoints, its size becomes smaller than
L (condition 2). Subsequences that follow these two criteria
are considered valid for linearity quantification.

In order to assess how linear a given subsequence is, we
need to quantify the deviation, E, of such a subsequence from
a straight line. This deviation can have different definitions.
One traditional approach is to calculate the sum of the squared
distances, in the y coordinate, between the points and a
candidate straight line adjusted to the data.9 The process of
finding the straight line that minimizes the sum of squared
distances is known as linear least squares regression,10,9 and
the respective error of the linear regression can be used to
quantify the linearity of the points in a candidate subsequence.
This error is given by

Ek,q =


1
m

q
i=k

(yi − αxi − β)2, (1)

where α and β are, respectively, the slope and the y intercept
value of the best-fitting linear function.

The proposed methodology consists in applying the linear
least squares regression to all subsequences of S following
conditions (C1) and (C2). A simple, but not optimal, approach
for such a task is to explore all existing subsequences in the
investigated sequence of points S. This can be done by varying
both k and q, such that 1 ≤ k < q ≤ |S|, and checking if the
resulting range [k,q] follows the aforementioned conditions.
In addition, all subsequences must have at least 3 data
points for the analysis, since 2 points always define a linear
subsequence. We note that the process can be optimized by
preemptively discarding ranges containing subsequences that
were already considered valid for linearity quantification. A
linear least squares regression is then applied to the points
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FIG. 3. Example of application of the methodology. The original sequence S, containing six points, is shown in (a). All subsequences of S with at least 3 points
are considered for the initial selection. Sequences with 5, 4, and 3 points are presented in, respectively, (b), (c), and (d). The target range L is indicated below
each subsequence. Check marks indicate subsequences that comply with conditions (C1) and (C2), while discarded subsequences are marked with an X. The
selected subsequences are shown in (e), where the most linear subsequence, i.e., the one having the lowest residue Ek,q, is highlighted.

belonging to each valid subsequence Sk,q. Next, the respective
error, Ek,q, of each regression is calculated. Finally, the
subsequence associated with the lowest error defines the most
linear extent of S. Figure 3 illustrates the application of the
methodology to a small sequence of points. In the figure,
all possible subsequences (ten in total) that can be applied
to the sequence of six points are shown. A check mark is
used to indicate subsequences that follow the aforementioned
conditions.

Algorithm 1 summarizes the process of finding the best
linear region in a sequence of points S for a given L.
The function bestLinearFitError(Sk,q) calculates the residue
obtained when applying the least squares method to the
subsequence Sk,q.

ALGORITHM 1. Algorithm to determine the best linear region of a se-
quence S for given L.

III. LINEARITY ON ARTIFICIAL DATA

In order to illustrate the potential of the methodology to
quantify linearity, in this section we present the application of
the methodology to a sigmoid function. For such a task, we
considered the logistic function, given by

f (x) = 1
1 + e−x

. (2)

This function was chosen because it has a clear linear region
around x = 0, while the non-linearity of the function increases
with |x |, until reaching saturation. This behavior is indicated in
Figure 4, where we plot the logistic function and its respective
curvature.11 Note that we considered the interval [−3,3] for the
function domain. The plot shows that at x = 0 the curvature
is zero, meaning that the function is locally linear at this
point. The curvature increases when going away from x = 0,
until it starts to decrease again since the logistic function
tends to a constant value for |x | → ∞, due to saturation.
Therefore, x = 0 should represent the optimal operation
point of a logistic transfer function as far as linearity is
concerned.

In order to verify the robustness of the methodology for
identifying linear regions, we added different levels of noise
to the function f (x). Since f (x) has its values defined in the
interval [0,1], the noise level is represented as a fraction r
of this interval, or equivalently, as a percentage 100r of the
function range. Given a noise level r , we define a new function

gr(x) = f (x) + ζ(x), (3)

where ζ is a random variable having a uniform distribution
in the interval [−r/2,r/2]. In such a case, the region near
the origin should be considered the most linear by the
methodology.

We tested the methodology for different noise levels r
and distinct values for the minimum range L. The results are
shown in Figure 5. Each row of plots corresponds to a distinct
noise level, while each column corresponds to a different L.
The largest linear region of each considered case is indicated
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FIG. 4. The logistic function and its respective local curvature.

in red. The results show that the methodology identifies the
region near the origin as being the most linear, as expected
by the properties of the logistic function, as well as by a
visual inspection of the function shape. We observe a small
variation on the central position of the most linear region
when L is comparable to the noise level added to the function.
Therefore, the results indicate that the methodology is robust
against random perturbations on the analyzed function. As
could be expected, the error E tends to increase with the
intensity of added noise. However, it is interesting to observe
that the intensity of noise tends to have a greater influence
on the value of the error in a more linear part of the curve
than in a less-linear portion. This is a consequence of the fact
that a small perturbation in a more linear, and consequently
symmetric, part of the curve has a greater relative effect on

the overall symmetry than the same level of perturbation
applied to a region already containing larger scales of
non-linearity.

In order to generalize the results obtained when applying
the methodology to the logistic function, we considered
distinct realizations of the noise ζ added to the function
f (x) and calculated the optimal operation point for each
realization. Then, the respective standard deviation of the
calculated positions was estimated, for different values of L.
The results are shown in Figure 6. Each curve in the plot
is relative to a distinct noise level r , as indicated. The plot
shows that the position of the most linear region can have
large changes depending on the noise level and the parameter
L. Still, the position always tends to 0 for large L, showing
that a proper choice of the minimum range is important for
the methodology.

IV. CASE EXAMPLE: CLASS A ONE-STAGE
TRANSISTOR AMPLIFIER

Given their ability to change the amplitude of electronic
signals, amplifiers are part of many electronic systems. In
particular, audio amplifiers play a critical role in transforming
the low power audio signals generated by the source (e.g.,
CD player and DAD) into audible sound. In a high fidelity
(hifi) system, the amplifier should only uniformly affect
the amplitude of the input signal, which requires a nearly
linear transfer function covering the respective operation

FIG. 5. Identification of the most linear region of the logistic function. Each row of plots corresponds to the logistic function having different noise levels, while
each column contains the results for a distinct minimum window size L. Regions marked in red represent the most linear interval found by the method. The
values of the linearity deviation E for the best selected regions are also given respectively in the plots, as well as the values E∗, indicating the errors in the
absence of noise.
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FIG. 6. Standard deviation of the most linear region of the noisy logistic function, as a function of the minimum window size L. Each line represents a different
noise level r added to the data.

region. Typically, several stages are required in order to
accomplish the desired amplification, which demands special
care in achieving good linearity levels at each stage. Here,
we consider analog audio amplifiers, particularly those in
the class A, which is characterized by 100% of the signal
being used.6,12 In addition, we use a low signal BJT
(bipolar junction transistor)13 as the amplification device.
Additional information on transistor amplifiers are provided in
Appendix A.

We apply the method proposed in Section II to the
problem of choosing the operation point of a one stage class A

amplifier in order to maximize linearity, given a desired input
range. For generality’s sake, we are not restricted to finding the
best configuration along a load line, instead we consider many
putative load lines derived from the characteristic surface
defining the device operation. In other words, given the
device characteristics, the range of operation, and type of
circuit, the reported methodology is capable of identifying
the best operation point. First, experimental data are obtained
and interpolated as the characteristic surface, in order to
allow accurate estimation of the partial derivatives required
for modeling the transfer function. We show that different

FIG. 7. (a) Circuit of a one-stage class A amplifier with resistive load. (b) Load lines defined by distinct values of Vcc and Rc, shown in the Vc× Ic plane. The
regions near the saturation and cutoff were excluded.
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FIG. 8. Interpolated surface obtained for the device properties Ic, Vc, and Ib. The isolines of Ib are shown in grey.

operation points lead to varying compromises between output
resistance, current gain, and linearity.

The basic circuit for the one-stage class A amplifier is
shown in Figure 7(a). In order to simplify the analysis, we

consider a purely resistive load. In the figure, Ib and Ic are,
respectively, the input and output currents of the transistor
and Vc the collector voltage.14 The considered circuit has two
parameters, the main power supply (Vcc) and the resistance

FIG. 9. Heat map of the linearity error for distinct values of Vcc and Rc. The relationship between the input current, Ib, and output current, Ic, is shown for the
chosen load lines.
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TABLE I. Throughout the discussion we consider some particularly interesting load lines for the circuit. The
table shows the relevant properties of such lines. These properties, and their respective physical units, correspond
to the circuit voltage (Vcc, in Volts), circuit resistance (Rc, in Ohms), linearity error (E , in µ A), average circuit
amplification (A), average current gain (β), average transconductance (Gm, in nMhos), average output resistance
(Ro, in k Ohms), and total harmonic distortion (THD, in percentage).

Label Vcc Rc E ⟨A⟩ ⟨β⟩ ⟨Gm⟩
⟨Ro⟩
(k)

THD
(%)

A 5.63 355 6.23 278 284 −220 16.8 0.49
B 10.4 696 6.70 287 292 −94.1 49.6 0.62
C 15.3 1.64k 7.63 263 291 −227 15.6 0.78
D 18.7 2.58k 15.8 256 289 −173 23.6 2.02
E 18.6 3.36k 18.8 263 288 −104 42.2 2.22
F 16.4 2.50k 14.9 260 286 −145 29.1 1.85
G 12.7 2.02k 10.4 266 284 −124 32.8 1.12
H 9.32 1.10k 7.41 275 285 −115 37.1 0.72

(Rc). These two parameters define a load line for the transistor,
which restricts the relationship between Ic and Ib to a line in the
Vc × Ic plane. Examples of load lines are shown in Figure 7(b).
Also shown in Figure 7(b), in particular for the rightmost load
line, is a specific configuration of operation point defined by
Ibo = 95 µA as well as a region of operation extending between
Ib1 = 70 µA and Ib2 = 120 µA. Observe that the operation
point is defined by the intersection between the load line and
the isoline Ibo. A relevant property of the circuit is the total
current gain, A, for a given region of operation defined as

A =
dIc
dIb

. (4)

This property describes the actual current amplification
imposed by the circuit for given BJT constants and circuit
parameters. Please refer to Appendices A and B for more
information on this property. Typically, the aim of a hifi
amplifier is to provide a linear relationship between Ib and
Ic for a selected load line.

In order to obtain the S(Vc, Ic, Ib) surface associating
variables Vc, Ic, and Vc, we experimentally sampled the Ic(Vc)
curves along load lines with fixed Rc for a sequence of
Vcc values. Next, we employed a triangle-based interpolation
method15 over the scattered data points, resulting in the surface
S(Vc, Ic, Ib), which is shown in Figure 8.

As mentioned above, each pair of circuit parameters
(Vcc,Rc) implies a load line that defines the operation of the
circuit. The systematic variation of parameters Vcc and Rc

allows a thorough analysis of the circuit properties at distinct
operation conditions. These parameters are bounded by the
adopted values of the transistor constants, shown in Figure 11
of Appendix A. By considering all these allowed values of
Vcc and Rc, we can define an operation domain S for the
circuit. The considered load lines are specified by sampling
this domain with 500 points of resolution for each of the
circuit parameters. The methodology presented in Section II
was applied to each considered load line, given a target input
range of L = 10 µA. The resulting linearity error, E, over S is
shown in Figure 9. It is clear that the error increases steadily
upwards along the vertical. The most linear regions are to be
found precisely for low values of Rc and Vcc. In Figure 9 we
also show the transfer curves defined by a few chosen load

lines. These load lines were chosen as they were found to
provide a good representation of the circuit properties inside
domain S, since the linearity shows smooth variation along
S. The selected operation range L of each transfer curve is
indicated in red. The first four columns of Table I present the
values of Vcc, Rc, and E for each of the load lines, specified by
labels.

Besides the requirement that a proper load line should
provide a highly linear relationship between Ic and Ib, other
properties of the circuit are often also sought. For instance,
one may seek a large amplification and/or transconductance,
the latter being typically useful to minimize the influence of
reactive loads. In Figures 12(a) and 12(b) of Appendix A,
we show the averages of, respectively, the amplification,
⟨A⟩, and transconductance, ⟨Gm⟩, obtained for the load lines.
The averages were calculated along the respective operation
range found by the linearity methodology for each load
line. The values of the average amplification, current gain,
transconductance, and output resistance for some load lines
are indicated in Table I. The total harmonic distortion (THD),
defined in Appendix A, was also applied to the chosen load
lines indicated in Figure 9, and the obtained values are shown
in Table I. This table can be used as a reference to many distinct
amplifier properties associated with the linearity error found
by the presented methodology. For instance, even though load
lines A and B define highly linear transfer functions (given
their low linearity deviation E), load line A has a much
smaller output resistance, which is often a desired property
for amplifiers.

V. CONCLUSIONS

Linear operation has been of paramount importance in
most theoretical and applied areas, as a consequence of
its ability to preserve the properties of signals, avoiding
distortions, and other unwanted effects. Yet, relatively few
approaches have been proposed in order to objectively
quantify the linearity of a given region of operation in a sensor,
device, or transducer. The moving least squares method16,17

bears similarities with our methodology in the sense that the
least squares regression is applied to different parts of the point
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sequence. Nevertheless, the method is used for interpolating
or treating missing points in the data, and not for finding an
optimal region of operation. In the present work, we developed
a methodology capable of, given a transfer function, finding
its respective operation interval allowing maximum linearity.
The reported approach is based on least squares regression,
but also incorporates the constraint given by the extent of the
desired region of operation. In addition, all possible intervals
are considered by scanning a window along the domain of the
transfer function.

The methodology has been characterized with respect to
the analytical situation involving sigmoid transfer functions
in the presence of varying levels of noise and also for real-
world data related to the properties of a low power, one-
stage class A transistor amplifier operating with resistive
load. In the former case, we verified that the method was
capable of identifying the optimal region, centered at the
origin of the coordinate axis of the sigmoid function, where
the curvature is known to be smallest. The application to
the amplifier incorporates several interesting results, such as
the determination of the surface of the transistor operation
(i.e., S(Vc, Ic, Ib)) by using interpolation, which allowed the
detailed estimation of the transistor constants along a domain
in the Vc × Ic space by using partial derivatives, and the
estimation of the linearity error in terms of amplification
and output resistance. A complex structure was found to
underlie the characteristic surface of the adopted small-signal
transistor.

It should be observed that the results obtained for the
amplifier are specific to the considered configuration, device,
and parameters and cannot be directly extended to other
situations. In addition, it should be reminded that the proposed
methodology for selecting linear regions was conceived with
resistive loads in mind and is, in principle, restricted to that
case. Other situations, e.g., involving reactive loads, imply
the transfer function to have hysteresis and, consequently, to
have its behavior split into two or more parts. Such situations
could be eventually approached by applying the reported
methodology in a piecewise fashion, which constitutes a
possible future development. It would also be possible to
extend the methodology to n-port representations of systems,3

involving multiple inputs and outputs, in which case the
problem would become to find linear patches in surfaces or
hypersurfaces.

The reported methodology and results provide several
additional possibilities for future investigation. For instance,
it would be interesting to apply the method to optimize the
operation of sensors and transducers, as well as of amplifiers
involving other configurations and devices (e.g., class AB,
vacuum tubes, and integrated circuits). Other linearity criteria
could be used, for instance, THD. The complex structure
of the characteristic surface obtained for the small signal
transistor also motivates further investigation, including other
models of transistors and devices. Another interesting situ-
ation to be addressed is the amplifiers involving reactive
loads. It would also be interesting to develop intelligent
control systems using the proposed linearity optimization
approach in order to dynamically and interactively set up
the best operation points in such devices and systems. In

addition, it should be also observed that, though presented
here in the context of electronics and instrumentation, the
proposed methodology can be directly used to tackle many
important problems in other areas, such as identifying
linear regions underlying power-law relationships in loga-
rithmically related measurements (e.g., scale free complex
networks18).
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APPENDIX A: ADDITIONAL
AMPLIFIER CHARACTERISTICS

In the main text we show an application of the linearity
methodology for identifying the most linear operating region
of an amplifier. However, seeking for an operating region
solely based on linearity can lead to undesired properties
for the amplifier. Here we present additional properties that
can influence an amplifier operation and show how they vary
according to the parameters optimized by the linearity.

1. Amplifier characteristics—Definitions

The schematics of an NPN bipolar junction transistor
(BJT) is shown in Figure 10(a). Mathematically, the transistor
operation can be described in terms of the state variables
Ic(Ib,Vc), Ib(Ic,Vc), and Vc(Ib, Ic), where Ib and Ic are,
respectively, the input and output currents of the transistor
and Vc, the collector voltage.14 Therefore, a given transistor
has a well-defined surface in the Ic × Ib × Vc space, defined
by the relationship between these three properties. It is a

FIG. 10. A generic NPN BJT (a) and the characterization of its properties in
terms of isolines in the Vc× Ic space (b). The maximum dissipation power is
shown by the dashed curve.
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FIG. 11. Transistor constants calculated from the interpolated values shown in Figure 8. The constants, and the respective equations defining them, are (a)
current gain (Equation (A1)) and (b) transconductance (Equation (A2)). Some load lines considered throughout the discussion are shown in each figure.

common practice to visualize such a surface as isolines in a
2D Vc × Ic space. An example of such visualization is shown
in Figure 10(b).

The S(Ic, Ib,Vc) surface properties of a transistor are
specified by a set of the so-called constants, referred as current
gain (β), transconductance (Gm), and output resistance (Ro).
These constants can be defined in terms of the partial
derivatives of the transistor state variables, that is,

β =
∂Ic
∂Ib

, (A1)

Gm =
∂Ib
∂Vc

, (A2)

Ro =
∂Vc

∂Ic
. (A3)

Ro, however, can be calculated in terms of β and Gm as
Ro = − 1

Gmβ
.

The parameter β expresses the current gain, i.e., how
much the collector current can be modified by the base current.
Typically, β should be large so as to promote amplification.
The transconductance Gm has an analogue interpretation, but
regarding the collector voltage with respect to the base current.
The combined consideration of these two parameters underlies
the power amplification that can be achieved by using the

device. In addition, a high value of this constant is useful
to minimize undesired effects from the reactive components
in the circuit. The output resistance influences the transfer of
power to the load. Another important parameter of an amplifier
is its total current gain A, which is given by Equation (4). The
relationship between A and the transistor constants β and Ro

is presented in Appendix B.

2. Amplifier characteristics—Experimental values

Typically, transistor amplifiers incorporate a high degree
of feedback, which reduces the effect of wide variability of
real-world device constants such as β.12,19 However, in the
present work we consider a relatively less common circuit,
devoid of feedback, so as to provide a more diversified
operation and linearity behavior as the circuit parameters are
varied, therefore allowing a better validation of the proposed
linearity method.

As described in Section IV, values of Ic, Ib, and Vc were
experimentally obtained for many distinct combinations of
circuit parameters Rc and Vcc. This allowed the calculation
of the characteristic surface S(Vc, Ic, Ib) of the transistor,
shown in Figure 8 of the main text. The obtained surface
is smooth enough to allow differentiation. From this surface
we estimated the constants β and Gm of the transistor. The

FIG. 12. Circuit and transistor properties calculated for distinct values of Vcc and Rc. (a) Average circuit amplification and (b) transconductance. We also show
in each plot the position of the load lines indicated in Figure 11.
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results, shown in Figure 11, provide a much more informative
characterization of these two properties than the minimum
and maximum values typically given in transistor data sheets.
The region shown in this figure, which corresponds to the
circuit configurations covered by the experimental procedure
and interpolation, is henceforth called polyhedron. The β
values vary from 242 to 437, with average 360 and standard
deviation 30, reaching its highest values at the right lower
region of the polyhedron in Figure 11(a). The obtained Gm

values, depicted in Figure 11(b), range from −400 nMhos to
−10 nMhos, peaking at the upper corner of the polyhedron.
The surfaces obtained for these transistor constants present
some lump-like irregularities, which are in agreement with
the variation of beta suggested by the changing slopes of
experimental isolines sometimes found in the literature (e.g.,
Ref. 12).

In the main text, we present the optimal linearity for
different values of circuit parameters Rc and Vcc, as indicated
in Figure 9. It is also interesting to verify how other amplifier
properties vary for the same circuit parameters. This can be
done using the following procedure. For each load line of the
circuit, defined by a pair of parameters (Rc,Vcc), an optimal
operation range is found using the linearity methodology.
Then, the average of a given amplifier property is calculated
for this optimal range. As a consequence, a surface can be
defined, associating the amplifier property with the considered
values of circuit parameters Rc and Vcc. In Figures 12(a) and
12(b) we show, respectively, the average of total amplification
and transconductance for distinct values of Rc and Vcc. This
figure, which is discussed in Section IV, can be compared with
Figure 9, containing the linearity deviation of the amplifier for
the same values of Rc and Vcc.

3. Total harmonic distortion

A traditional way to study the linearity of an amplifier is
by estimating its total harmonic distortion (THD).7 For a given
frequency f , this measurement can be obtained by using a pure
sinusoidal function with frequency f as input, identifying
new harmonic components in the output (a perfectly linear
amplifier would produce no such components), and taking
the ratio between the magnitudes of these spurious harmonics
(V2 f , V3 f , etc.) and of the fundamental (Vf ). More formally,
the THD can be calculated as

THD( f ) =


V 2
2 f + V 2

3 f + V 2
4 f + · · ·

Vf
. (A4)

Because the load is purely resistive, the same THD will be
attained irrespectively of the input frequency f . Therefore, we
considered a sinusoidal function with f = 1 kHz. In the main
text, we use THD to provide an additional characterization
of the linearity besides the error of the least squares
regression.

APPENDIX B: DERIVATION OF THE TOTAL
CURRENT GAIN

The total current gain of the circuit used for the
experiments (shown in Figure 7) is given by Equation (4).
Since Ic, the collector current, is a function of Vc, the collector
voltage, and Ib, the base current, we can also write A in terms
of the partial derivatives of Ic, that is,

A =
dIc
dIb
=

(
∂Ic
∂Vc

dVc

dIb
+

∂Ic
∂Ib

dIb
dIb

)
. (B1)

Replacing the partial derivatives by the transistor properties
indicated in Equations (A1) and (A3), we obtain

A =
dIc
dIb
=

1
Ro

dVc

dIb
+ β. (B2)

Since Vc and Ic are related through the circuit parameters
according to

Vcc = RcIc + Vc, (B3)

the total derivative dVc/dIb can be rewritten in terms of A and
Rc as

dVc

dIb
= −Rc

dIc
dIb
= −RcA. (B4)

Therefore,

A = − Rc

Ro
A + β =⇒ A =

Ro β

Ro + Rc
. (B5)
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